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Abstract

We show how the traversable wormhole induced by a double-trace deformation of the
thermofield double state can be understood as a modular inclusion of the algebras of
exterior operators. The effect of this deformation is the creation of a new region of
spacetime deep in the bulk, corresponding to a non-trivial center between the left and
right algebras. This set-up provides a precise framework for investigating how black hole
interiors are encoded in the CFT. In particular, we use modular theory to demonstrate that
state dependence is an inevitable feature of any attempt to represent operators behind
the horizon. Building on this geometrical structure, we propose that modular inclusions
may provide a more precise means of investigating the nascent relationship between
entanglement and geometry in the context of the emergent spacetime paradigm.
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1 Introduction

One of the most fascinating connections to emerge from the study of holography is that be-
tween entanglement entropy and spacetime geometry. Evidence for this relationship made a
dramatic first appearance in the Bekenstein-Hawking formula [1,2], relating the entropy of a
black hole to the surface area of its horizon. This naturally lead to the holographic bound [3],
and the concomitant realization that information is stored holographically [4–6]. AdS/CFT [7]
provides a concrete realization of this idea, in which the connection between entropy and area
is encapsulated in the Ryu-Takayanagi formula [8–10]. Since then, entanglement has come to
play a fundamental role in attempts to reconstruct the bulk from CFT data; see, e.g., [11–16].

Early efforts [16–19] to understand holographic entanglement entropy and its relation to
geometry more deeply capitalized on the modular hamiltonian, which encodes certain ther-
modynamic properties of the vacuum state. Of course, the relationship between modular
theory and thermodynamic properties of the vacuum is well-known in the AQFT literature
(see, e.g., [20–24]), but only recently are physicists beginning to uncover the implications for
entanglement and bulk reconstruction in the holographic context. In part, this difficulty stems
from the fact that there are notoriously few cases in which an explicit expression for the mod-
ular hamiltonian is known.1 The most famous example is that of Rindler space, in which the
modular hamiltonian is proportional to the generator of Lorentz boosts [21,22]:

H = 2πK = 2π

∫

x>0

dd−1 x x T00(x) . (1)

Additionally, by conformally mapping the Rindler wedge to the domain of dependence of the
spherical region |x | < R, one obtains the corresponding expression for a spherical entangling
surface in a CFT:

H = 2π

∫

|x |<R
dd−1 x

R2 − r2

2R
T00(x) . (2)

The Rindler result (1) has also been extended to more general regions bounded by null planes
in a number of recent works, and exhibits a close connection to null energy conditions in QFT;
see [25–29]. It also suggests an intimate relationship between the physics of horizons and
that of entanglement. The holographic manifestation of this relationship is the Ryu-Takayanagi
formula [8,9,30], relating the entanglement entropy of some boundary subregion with the area
of the corresponding minimal surface in the bulk. Indeed, an underlying theme of the present
note is the suggestion that the inherent structure of modular inclusions provides an alternative,
and potentially deeper perspective on the emergent relationship between entanglement and
geometry, to wit: why the Ryu-Takayanagi relation should be true.

In recent years, related ideas from modular theory have shown increasing utility in eluci-
dating the interplay between entanglement, geometry, and locality [26, 27, 29, 31–44]. Such
techniques are especially promising in attempts to reconstruct spacetime within holographic
shadows [45], and behind the horizon of a black hole in particular. A notable example in this
vein is the work of Papadodimas and Raju [46–50], who represented the black hole interior
in terms of “mirror operators” in the exterior algebra. There has been some confusion in the
literature over the state-dependent nature of these operators; that is, while they correctly rep-
resent the interior in any given state of the CFT, they do not exist as well-defined operators
in themselves. One of the main objectives of this note is to demystify this state dependence—
specifically, we shall demonstrate that state dependence is an inherent property of any attempt
to represent physics behind horizons. Indeed, far from being a pathological feature, the neces-
sity of state dependence can be understood from the imposition that such operators be both

1Strictly speaking, there are subtleties associated with attempting to define the modular hamiltonian for local-
ized regions, but such technicalities of rigour will not be relevant here.
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unitary and local (that is, localized to the exterior). As we will review in section 3, this can be
understood from Tomita-Takesaki theory, and makes use of various properties of the modular
operator acting on the vacuum state.

The set-up in which our investigations take place is the traversable wormhole recently
constructed by Gao, Jafferis, and Wall [51]. Starting with the thermofield double (TFD) state
(3) dual to an eternal black hole, they showed how a relevant double-trace deformation that
couples the two CFTs allows a null observer to travel between the previously unbridgeable
spacetimes. As we will explain in section 2, this is made possible due to the fact that the bulk
exterior wedges are no longer disjoint, but instead overlap in a region corresponding to the
creation of a non-trivial center shared by the left and right algebras of exterior operators. Our
approach is inspired by algebraic quantum field theory (AQFT), and builds on the work of Pa-
padodimas and Raju mentioned above.2 In particular, we will demonstrate that the traversable
wormhole induced by this process can be understood in terms of a modular inclusion, whereby
the exterior algebra is enlarged to include information previously hidden behind the horizon of
the black hole. On the bulk side, this appears to correspond to an increase in the entanglement
between the two exteriors, which manifests in the emergence of a new region of spacetime
deep in the bulk.

In this context, we propose that the structure of modular inclusions provides a concrete
testbed for investigating how the black hole interior is encoded in the boundary, as well as
a new perspective on the necessity of state dependence in representing operators behind the
horizon. Furthermore, we suggest that this framework holds promise for investigating the idea
of emergent spacetime in the sense of [53], and illustrate how modular inclusions may provide
a more precise means of formulating the notion of “it from qubit” [54] or ER=EPR [55]. Our
focus is on highlighting what we regard as interesting physical connections between various
ideas in the literature, rather than lengthy calculations, in the hopes of stimulating further
work in this exciting area.

The remainder of this paper is organized as follows. In section 2, we briefly review the
double-trace deformation utilized by [51] to create a traversable wormhole, and show how
this can be understood as a modular inclusion of the algebras of exterior operators. Then in
section 3, we use the inherent structure of these inclusions to show how an operator behind
the horizon can be represented in the exterior algebra. This provides a new perspective on
the mirror operators of Papadodimas and Raju, and suggests that state dependence – that is,
the inability to represent an interior operator locally in either CFT – is an inevitable property
stemming from the fundamental structure of quantum field theories. We then bring together
various ideas in the preceding sections – in particular the suggestive relationship between
spacetime and entanglement – in section 4, and propose a more precise way of addressing the
notion of emergent spacetime or “it from qubit” by iterating this modular inclusion procedure.
We close in section 5 by remarking on some interesting connections to other ideas in the
literature. In particular, we propose that modular theory provides the ontological basis for the
success of quantum error correction (QEC) in holography. In the interest of making this paper
self-contained, we have included a criminally brief overview of some relevant aspects of AQFT
– in particular Tomita-Takesaki modular theory – in appendix A. Lastly, appendix B contains
some additional remarks on the entropy associated with the inclusion structure as applied to
the TFD.

2We note that mirror operators have appeared previously in the context of these double-trace deformations
in [52].
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2 Double-trace deformations and modular inclusions

We shall work with the eternal black hole in AdS, which is dual to the thermofield double
(TFD) state [56]

|T F D〉=
1

Æ

Zβ

∑

i

e−βEi/2 |i〉L |i〉R . (3)

Note that we have chosen the time on both the left (L) and right (R) boundaries to be zero. This
describes two entangled CFTs which are joined in the bulk by a wormhole, i.e., an Einstein-
Rosen bridge [55]. However, the exterior regions are causally disconnected for all time, so an
observer who enters the future horizon inevitably hits the singularity before she can possibly
reach the other side.

In order to create a traversable wormhole, [51] perturbed the TFD by a relevant double-
trace deformation of the form

δS =

∫

dt dd−1 x h(t, x)OL(t, x)OR(t, x) , (4)

where OL,R is a scalar primary inserted in the left or right CFT, and h controls the strength
and spacetime support of the perturbation. Note that the deformation is explicitly chosen to
be relevant, which requires that the dimension of OL,R be less than d/2. Thus we choose the
alternative boundary condition in the UV, giving OL,R scaling dimension ∆−, and flow to the
standard ∆+ condition in the IR; see, e.g., [57–60].

The deformation (4) is finely-tuned to effect a decrease in the energy of the TFD, which
[51] showed explicitly to linear order in h for the BTZ black hole. The bulk interpretation is
therefore that OL,R sources a negative-energy shockwave that reduces the mass of the black
hole, thereby slightly decreasing the horizon area (see fig. 1). From the perspective of either
the left or right CFT, the associated entanglement entropy between the boundaries therefore
also appears to decrease (see appendix B). We shall discuss this in more detail in section 4
in the context of van Raamsdonk’s proposal [53] relating entanglement entropy to spacetime
in the interior. As we shall argue below, the ramifications of this statement are rather more
subtle, due to the fact that in this case the algebras of operators on the left and right sides no
longer commute in the overlapping region in the right panel of fig. 1.

Let us consider the physical effect of this deformation in more detail. As emphasized
in [51], the wormhole is only open for a small amount of proper time, proportional to the
strength of the perturbation h. This is sufficient for light-rays from one boundary – if emit-
ted at sufficiently early times – to propagate through the event horizon to reach the opposite
boundary in the far future. Such a null observer is illustrated in fig. 1 by the dashed line. Of
course, in the unperturbed TFD, the observer is doomed to hit the singularity after entering
the black hole from the left; but the double-trace deformation causes a backreaction on the
geometry, which seems to miraculously extract her from the interior, allowing her to propagate
safely to the right CFT. This effect on the null observer is typically phrased as a time-advance
that shifts the trajectory along the shockwave, and is indicated in the left panel of fig. 1.

The right panel offers a more physical picture: the shockwaves inject negative energy into
the black hole, which causes the future horizon to shrink. Thus, for example, the horizon of
the right black hole is shifted slightly inwards, and similarly for the black hole on the left. This
opens up a causeway through which the null observer can safely travel. Note that insofar as
event horizons are global properties of the spacetime, the observer is never technically inside
the black hole; rather, she falls through the horizon from the left, and immediately finds herself
outside the black hole on the right—passage through the wormhole is instantaneous. This is
not to say that the deformation does not allow one to extract information about the black hole
interior, but that one must be careful in specifying precisely what such statements mean.
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Figure 1: TFD under the double-trace deformation of [51]. (Left) The deformation
manifests in the bulk as two negative-energy shockwaves (red wavy lines). A null
observer (dashed line) who falls into the black hole from the left suffers a time-
advance upon crossing the shockwave, which shifts her to the exterior region on the
right. A more physical way of understanding this is that the negative-energy shocks
lower the mass of the black hole, thereby causing the future horizon to shrink (Right).
The result is that the exterior wedge increases in size (from light to dark blue), which
opens up a causeway through which the observer can safely travel. Note that the
left and right exterior regions are no longer independent, but overlap in the central
diamond (darkest blue). The algebraic structure that corresponds to these nested
wedges is a modular inclusion.

In the present case, we mean that the deformed CFT contains information about the region
which would be causally inaccessible otherwise. The teleological nature of event horizons
implies that the double-trace deformation does not allow information inside the black hole to
escape in any local sense—that is, it does not extract an interior observer across the horizon, as
this would violate causality. However, from the global perspective, the deformation does imply
that information which would otherwise correspond to a region in the interior is encoded in
the (enlarged) exterior algebra. This set-up thus provides a relatively well-controlled testbed
for investigating the issue of how black hole interiors are encoded in the CFT. We propose
that the structure of modular inclusions allows one to precisely formulate and address such
questions.

The reader unfamiliar with Tomita-Takesaki modular theory may wish to consult appendix
A before proceeding, as we shall rely on some basic notions from AQFT henceforth. We shall
denote the von Neumann algebra3 corresponding to the original left/right bulk wedge by NL,R,
and the algebra of the larger wedge in the presence of the deformation by ML,R. Clearly,
NL ⊂ML and NR ⊂MR (cf. fig. 1, in which NR corresponds to the light blue wedge, and MR
extends this to include the dark blue regions). Note that to minimize notational excesses, we
shall often conflate the algebra with the corresponding spacetime region that is its domain, but
the distinction should be kept in mind. We shall also use the same notation to refer to the dual
boundary algebra, and trust that the distinction, when relevant, will be clear from context.
It is important to note that these algebras only contain exterior operators; namely, light CFT

3Strictly speaking, it is necessary to truncate the algebra of CFT operators in order to preserve the separating
property of the vacuum state; see [47,48] and further discussion below.
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operators on the boundary, dual to exterior fields in the bulk (see [47] and further discussion
below). One way to see this is to observe that in the bulk, the (full) modular operator – which
generates an automorphism on the algebra – has no support in the black hole interior. This is
easy to see in the case of Rindler space, and the modular flow in the present geometry respects
the same structure. Consistency with entanglement wedge reconstruction then implies that the
only (state-independent) operators in the boundary algebra likewise correspond to the exterior.
This can also be understood from the requirement that the bulk and boundary modular flows
agree [32], and is consistent with the algebraic truncation discussed below.

Lastly, we shall also suppress the subscript on N ,M when we have no need to specify
the wedge; e.g., we may generally speak of the inclusion N ⊂M. We take the Hilbert space
H on which the algebras act to be equipped with the common cyclic and separating vector
Ω, and denote by ∆N ,M and JN ,M the modular operator and conjugation, respectively. If
the condition ∆i t

MN∆−i t
M ⊂ N is satisfied ∀t ≤ 0 ∈ R, then N ⊂ M is called a modular

inclusion [61].4

This structure was originally introduced by Wiesbrock [61], and is briefly summarized in
appendix A. The basic idea is that the algebras N and M are related by a one-parameter
unitary group U(a) = eiap acting on H, where a ∈ R and the generator p is defined as

p ≡
1

2π
(ln∆N − ln∆M) . (5)

Since N ⊂M,∆1/2
M ≤∆

1/2
N in the sense of quadratic forms,5 and hence 〈p〉≥0 with equality iff

M=N . By expressing the modular operators in terms of the associated modular hamiltonians
KM,N ,

∆M,N = e−KM,N , (6)

the above becomes

p =
1

2π
(KM − KN ) . (7)

In other words, p is the difference in the generators of Lorentz boosts for the two wedge regions
M and N . More precisely, the Lie product formula allows us to express U(a) as

U(a) = lim
n→∞

�

∆
ia

2πn
M ∆

−ia
2πn
N

�n
= lim

n→∞

�

e−iaKM/neiaKN /n
�n

, (8)

and thus U(a) can be thought of as a sequence of infinitesimal Lorentz transformations in M
and N . Note that since N is a subalgebra of M, it is possible for KM to be colinear with
KN , in which case [KM, KN ] = 0 and (8) reduces to the combined boost. In the present case,
where M and N share a horizon, p can be expressed as a simple translation along the null
ray, cf. [29].

As mentioned in the introduction, the modular operator ∆ is known explicitly in very few
examples; accordingly, while it plays a central role in describing the structure of von Neumann
algebras – particularly through the modular theory developed by Tomita and Takesaki – a
general understanding of its physical significance is incomplete. However, it is a well-known
result in algebraic quantum field theory that modular groups of wedge algebras act as Lorentz
boosts [21] (see also [24,62]). This allows one to write an explicit expression for the modular
hamiltonian for Rindler wedges; in particular, it implies that ∆i t

NN∆−i t
N ⊂ N is the algebra

of all (Lorentz-boosted) operators in the Rindler wedge corresponding to the algebra N . Of
course, the present AdS geometry differs from Rindler, but considering the modular flow in
the latter is useful for the purpose of gaining some familiarity with this construction.

4Specifically, our sign convention here indicates a (−)-half-sided modular inclusion; see appendix A.
5That is, the operator relation A≤B means that their inner products satisfy 〈Ax , x〉 ≤ 〈Bx , x〉 for all elements

x ∈H. The inverse, A−1≥B−1, holds if A and B are positive-definite.
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Intuitively, one is tempted to think of the condition ∆i t
MN∆−i t

M ⊂N as imposing that
Lorentz boosts with respect to the larger wedge M do not take one beyond N .6 And in-
deed, this intuition agrees if we consider nested Rindler wedges on the same spacelike Cauchy
slice. In the present case however, M shares a null boundary with N , so this naïve interpre-
tation is not quite right; rather, the condition involves both a forward and backwards trans-
formation, and the combination indeed keeps one in N . In fact, the case in which the wedge
algebras N ⊂ M differ by a translation along the null direction corresponds to a modular
translation [23]. Such null translations are a special instance of modular inclusions (see,
e.g., [63–65]), but we shall continue to use the term “inclusion” for generality.

In this framework, the situation depicted in fig. 1 is that the algebra of the original right/left
exterior NL,R is enlarged – via the deformation (4) – to ML,R, which includes information
previously encoded in the black hole interior.7 A key feature of this construction is that in the
presence of the double-trace deformation, the left and right wedges are no longer independent,
but overlap in the darkest blue diamond in the center (fig. 1, right panel). That is, the algebras
ML , MR share a non-trivial center C =ML ∩MR with support in this overlapping double-
cone, and consequently [ML ,MR] 6= 0. The physical ramification of this is that information
in the region of M behind the horizon does not admit a local representation in either CFT.
We shall demonstrate this explicitly in section 3, which provides a new perspective on the
state-dependent mirror operators of Papadodimas and Raju [48].

Before proceeding, let us clarify what we mean by saying that the exterior algebra is en-
larged. A large-N CFT with a local bulk dual exhibits a hierarchy between low- and high-
dimension operators. Loosely speaking, heavy operators represent the interior microstates
of the black hole, while light operators probe the exterior spacetime [66–70]. Thus, while
the dimensionality of the total Hilbert space remains unchanged under the inclusion struc-
ture above, the demarcation between heavy and light operators is shifted in momentum space
by an amount proportional to h (i.e., the energy of the shock), such that some operators on
the heavy side of the division are now considered light. Pictorially, one sees that an operator
O ∈M just behind the horizon (the dark blue region in fig. 1) is an exterior operator with
respect to M, but corresponds to a state in the interior with respect to N . This categorical
change can be understood from the fact that the deformation (4) induces a flow along the
RG (though still above the Hawking-Page transition), whereupon more low-energy operators
are required to describe the greater exterior spacetime.8 In the bulk, this is reflected in the
decreased size of the eternal black hole, corresponding to the fact that temperature of each
CFT has decreased; we will comment further on this below.

This division is also relevant if we wish to apply the theory of von Neumann algebras. A
natural identification of the exterior algebra is the set spanned by all products of single-trace
operators in the CFT. However, while this set certainly closes to form an algebra, it also con-
tains operators which annihilate the vacuum state, and hence does not preserve the separating
property on which modular theory depends.9 Another way to say this is that allowing arbitrary
products of single-trace operators eventually produces heavy states whose backreaction on the
geometry can no longer be ignored. The necessity of truncating the exterior algebra implies

6We caution the reader again that we are superloading the notation for algebras and regions here.
7As emphasized above, event horizons are global properties of the spacetime, and hence terms like “original”

and “previous” refer to the undeformed CFT rather than some temporally prior state. Said differently, the shift in
the horizons does not correspond to any dynamical process in the bulk.

8More concretely: by the state-operator correspondence, operators are classified as heavy or light depending
on whether the energy of the corresponding state is above or below some positive number (e.g., c/12 for 2d CFTs).
In the high temperature (black hole) phase, the sum of energy eigenstates is inversely proportional to β [66], so
decreasing the temperature of a large black hole forces some of these heavy states below the cutoff.

9In particular, arbitrary products of operators would allow one to approximate the hamiltonian H to any desired
accuracy; and since H |Ω〉= 0, it must be explicitly excluded. See [48] for further discussion.
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that strictly speaking, Tomita-Takesaki theory does not apply. As discussed in [47, 48] how-
ever, provided one limits the set of allowed observables to ® O(1) products of fundamental
operators, the correlators obtained via the Tomita-Takesaki construction agree to leading order
in the large-N expansion with those obtained directly from the TFD. There is an interesting
parallel here with the necessity of remaining in the code subspace in the context of quantum
error correction; see the discussion in section 5. Hence, for the purposes of this note, we shall
operate under the assumption that the algebraic approach can be meaningfully applied pro-
vided we do not examine very high-point correlators, i.e., that we limit inquiries to the domain
of low-energy effective field theory, such that corrections appear only at higher-orders in 1/N .

3 State-dependent interiors

In this section, we shall demonstrate how the inclusion structure introduced above can be used
to clarify how interior operators are encoded in the boundary field theory. We shall first re-
view the construction of mirror operators introduced by Papadodimas and Raju, following [50]
(see also [46–49] for extensive discussion). These were originally arrived at following more
physical arguments, and have led to some confusion/controversy as to the precise meaning
and significance of “state dependence”. In this respect, one of our aims is to show that this
state dependence arises quite naturally from the algebraic perspective, and indeed is an in-
evitable consequence of attempts to represent operators outside their causal domain. In fact,
far from being a pathological feature, this state dependence dovetails with the idea of bulk
reconstruction as a quantum error correction scheme, as we shall remark in sec. 5.

Mirror operators create excitations behind the horizon, and therefore serve as probes of
the black hole interior. Their construction can be neatly understood from Tomita-Takesaki
theory – a basic introduction to which is given in appendix A – and relies on the fact that the
conjugation operator J induces an isomorphism between the von Neumann algebra A and its
commutant A′:

JAJ =A′ , (9)

cf. (39). That is, ∀O ∈A, we may define an element JOJ ∈A′ such that [O, JOJ] = 0.
Explicitly, let O ∈A be a unitary operator with support in the right Rindler wedge R.10 This

creates a state |ψ〉 =O |Ω〉 which is indistinguishable from the vacuum state for all observers
in the left Rindler wedge L, i.e., all operators O′ ∈A′:

〈ψ|O′|ψ〉= 〈Ω|O†O′O|Ω〉= 〈Ω|O′|Ω〉 , (10)

where in the last step, we used the fact that [O,O′] = 0. Note that this wouldn’t have worked
if O were non-unitary. Now consider the state

|φ〉=∆1/2O|Ω〉 . (11)

Perhaps surprisingly, this state is indistinguishable from the vacuum for an observer in R, i.e.,
it represents an excitation localized entirely outside R!11 As demonstrated in [50], this is
straightforward to show, using the properties of the modular conjugation J :

|φ〉= J2∆1/2O|Ω〉= JSO|Ω〉= JO†|Ω〉= JO†J |Ω〉=O′|Ω〉 , (12)

10This framework holds generally, but we have chosen Rindler to make contact with the physical case of interest.
11As emphasized in [50], one cannot blithely say that the state is localized in L, since suitable time-evolution

may propagate the excitation through the future Rindler horizon. For this reason, we’ve temporarily dropped our
cavalier convention of conflating the algebra with its region of support.
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where O′ ≡ JO†J is an operator in the commutant A′. Indistinguishably of |φ〉 from the
vacuum for observers in R then follows by the same logic as (10). However, while it is true
that the state |φ〉 is (initially) localized entirely in L, the same is not true for the operator
∆1/2O! This is due to the fact that, as mentioned previously, ∆ has support in both L and
R, and hence the operator ∆1/2O belongs to neither A nor A′. This example highlights the
subtle yet crucial distinction between localized states vs. localized operators. Another way to
emphasize this is that, as operators,

O′ 6=∆1/2O, (13)

since these exist in different algebras, even though as states,

O′|Ω〉=∆1/2O|Ω〉 , (14)

as shown in (12).12 In the context of firewalls [71, 72] this structure allowed Papadodimas
and Raju to construct a mirror operator Õ which represents an excitation localized behind the
horizon from the perspective of an external observer. The issue of state dependence arises from
the fact that, as we have just seen, Õ does not strictly exist as a well-defined operator in the
exterior algebra, but does exhibit the correct expectation values when inserted in low-energy
correlators. It is in this sense that the mirror operator serves as a probe of physics in the black
hole interior.

The analogous statement in the presence of the traversable wormhole in fig. 1 is that one
can map an interior state in M to an exterior state in N , but one cannot do the same for
operators. Physically, this means that the information in the interior region does not admit a
local representation in either CFT. Of course, this was already implicit in the mirror construc-
tion above, but we shall now rephrase it explicitly using the structure of modular inclusions;
subsequently, in section 4, we shall use this to strengthen the idea that the interior spacetime
emerges from quantum entanglement [53]. Fundamentally, the lack of a local representation
in either exterior stems from the fact that ML and MR have a non-trivial center C. Hence our
goal is to obtain an analogue of the mirror operator Õ above that represents the physics in the
subregion of MR that lies behind the horizon in the exterior algebra NR.

To that end, denote by DR =MR−NR ⊂ MR the difference between the right wedges,
that is, the region of MR not contained in NR; see fig. 2. Since we shall work entirely from
the perspective of the right algebras, we shall suppress the corresponding subscript on the
operators in order to minimize clutter. Hence, let D ∈DR be a unitary operator in this region,
which acts on the vacuum to create the state |ψ〉 ≡ D |Ω〉. Note that since the support of DR
lies entirely behind the horizon, this represents an excitation localized inside the black hole.13

We shall now show that by using the unitary operator U(a) and the modular conjugation J ,
we can find an equivalent state localized in the exterior algebra NR. The statement that |ψ〉 is
localized to NR means that the expectation value of any operator in the commutant, Ñ ′ ∈N ′R,
as well as any other operator D̃ ∈DR (where D̃ 6= D) is indistinguishable from its expectation
value in the vacuum state, cf. (10). The first of these conditions is trivial, since [D, Ñ ′] = 0 by
construction:14

〈ψ| Ñ ′ |ψ〉= 〈Ω|D†Ñ ′D |Ω〉= 〈Ω| Ñ ′ |Ω〉 . (15)

But since [D, D̃] 6= 0, the second equality in the analogous computation for D̃ would fail.
However, in the spirit of the mirror construction above, we can find a state which is equivalent
to |ψ〉 for which this condition holds.

12I am grateful to Kyriakos Papadodimas for clarifying this distinction to me.
13In this section, the horizon is defined relative to the “original” exterior NR; obviously, the operators D do not

live in the interior relative to MR; cf. footnote 7.
14When discussing particular states, we imagine selecting a Cauchy slice that connects the left and right bound-

aries through the bulk, such that D ∈DR indeed commutes with any N ∈NR on the same slice.
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Figure 2: Same as the right panel of fig. 1, but with a greatly exaggerated shift in the
horizon for illustration. NR and N ′R are shaded blue, while MR and M′

R are filled
with red lines. Note that N ′R =NL , but M′

R 6=ML since the inclusion breaks the left-
right symmetry. The figure also illustrates the fact that NR ⊂MR =⇒ M′

R ⊂ N ′R.
The behind-the-horizon region DR ⊂MR, i.e., the portion of MR not contained in
NR, is shaded red.

The tactic implemented in the following sequence of operations uses the structure of mod-
ular inclusions to map D ∈ DR ⊂MR into the commutant M′

R ⊂ N ′R, and then conjugate to
an operator N ∈NR. Of course, as operators, N 6= D, but the corresponding states will satisfy
N |Ω〉= D |Ω〉. First, since D ∈MR, there exists an operator D′ ∈M′

R such that JMD′JM = D.
Hence

|ψ〉= JMD′JM |Ω〉= JMD′U(1) |Ω〉= JMSU(−1)D′† |Ω〉

= JMSU(−1)D′†U(1) |Ω〉= JMSN ′† |Ω〉= JMN ′ |Ω〉 ,
(16)

where we have used the fact that JM |Ω〉 = U |Ω〉 = |Ω〉, and the existence of the operator
N ′† ≡ U(−1)D′†U(1) ∈ N ′R follows from (48). We can then trade JM for conjugacy with
respect to N (thereby enabling us to map N ′ into NR) via (46), whence the above becomes

JN U(2)N ′ |Ω〉= JNSN ′†U(−2) |Ω〉= JN N ′ |Ω〉= JN N ′JN |Ω〉= N |Ω〉 , (17)

where in the last step, we have defined N ≡ JN N ′JN ∈NR. We therefore have

D |Ω〉= N |Ω〉 , (18)

which achieves our goal of describing the excitation |ψ〉 entirely within the exterior wedge
NR. We emphasize again that (18) holds only at the level of states, as we relied heavily on the
invariance of the vacuum state (37) in deriving this relation. In particular, it is clear that as
operators,

D 6= N . (19)

In fact, by tracing back through the operator identifications employed above, one sees that

N = JN N ′JN = JN U(−1)D′U(1)JN = JN U(−1)JMDJMU(1)JN = U(3)DU(−3) , (20)

where the last step follows from (46) in conjunction with (45); e.g.,

JN U(−1)JM = JMU(−2)U(−1)JM = U(3) . (21)
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Thus, by creating the state |ψ〉 with N in lieu of D, one can see that the aforementioned
localization condition is satisfied,

〈ψ| D̃ |ψ〉= 〈Ω|N †D̃N |Ω〉= 〈Ω| D̃ |Ω〉 , (22)

since [N , D̃] = 0 for all D̃ 6= D ∈DR. Explicitly,

〈ψ| D̃ |ψ〉= 〈Ω|N †D̃N |Ω〉= 〈Ω| [U(3)DU(−3)]† D̃ [U(3)DU(−3)] |Ω〉

= 〈Ω|U(3)D†U(−3)D̃U(3)DU(−3) |Ω〉

= 〈Ω|
�

U(1)D†U(−1)
� �

U(−2)D̃U(2)
�

[U(1)DU(−1)] |Ω〉

= 〈Ω|
�

U(1)D†U(−1)
�

[U(1)DU(−1)]
�

U(−2)D̃U(2)
�

|Ω〉= 〈Ω| D̃ |Ω〉 ,

(23)

where in going to the last line, we used the fact that since DR ⊂ MR, (48) implies that
U(1)DRU(−1) ⊂ NR, while U(−a)DRU(a) ⊂ DR for a > 0, and therefore these particular
groupings of operators commute.

Of course, the state dependence inherent to (18) is essentially the same as that which
underlies the Papadodimas-Raju construction of mirror operators discussed above. Furthering
the analogy with these mirror operators, the state N |Ω〉 contains information about the region
behind the horizon, but the operator inequivalence (19) implies that this interior region is not
probed by any (state-independent) local operator in either CFT. In this context, the necessity
of state dependence [49] can be understood in at least two ways.

First, as emphasized above, the algebras ML and MR have non-trivial center C, corre-
sponding to the darkest blue double-cone in fig. 1. The physical consequence of this is that
neither algebra is factor, and hence the algebra of bulk operators fails to respect the factor-
ization of the boundary Hilbert space. Of course, even for the unperturbed TFD, it is an open
question as to how the bulk spacetime emerges in a manner consistent with this factoriza-
tion. It is a well-known albeit under-appreciated fact that the Hilbert space of even free
quantum field theories (i.e., type III von Neumann algebras) does not factorize. There has
been considerable interest in the factorization problem in the context of gauge [73–79] and
gravitational [80–82] theories, but the failure in the case of free field theories is generally dis-
regarded as the purview of some regularization procedure (see however [83], as well as [84]
for a recent, physics-oriented review). Thus in the case of the algebras NL and NR, one would
typically attribute the failure of the bulk Hilbert space to factorize to UV divergences near the
bifurcation horizon. In the case of ML and MR however, the problem is more severe due
to the finite center. The lesson from the above is that in this case it is not possible to spec-
ify the complete bulk state behind the horizon using only state-independent operators on the
boundary. One expects that a similar scenario holds in the case of a one-sided black hole in
Minkowski space, namely that there does not exist a factorization HI⊗HE between the interior
(I) and exterior (E) Hilbert spaces, which underlies many of the issues encountered in naïve
models of black hole evaporation [85]; see section 5 for further discussion.

Another way to say this is that the inability to encode information about the black hole
interior in terms of operators localized to either CFT is a natural consequence of the Reeh-
Schlieder theorem [86]; specifically, that the existence of N ∈NR as an operator precludes
unitarity thereof. This highlights an intriguing relationship between locality and unitarity
embedded within the algebraic framework. While (18) gives the appearance of having created
an excitation in MR – specifically, in the region DR⊂MR behind the horizon – by acting with
an operator in NR, the preceding derivation implicitly relies on the modular operator∆, which
lives in both the algebra and its commutant. To accomplish this feat with an operator whose
support lies purely in NR would require it to be non-unitary. This is nicely explained in the
recent review by Witten [84], which we adapt to the present scenario as follows.

11

https://scipost.org
https://scipost.org/SciPostPhys.6.4.042


SciPost Phys. 6, 042 (2019)

Suppose that |φ〉 represents a state with an excitation behind the horizon, but within the
domain of MR. For example, this could correspond to the action of a local bulk operator in
the center C⊂MR; cf. fig. 2. Following [84], we may define an operator D ∈DR⊂MR which
has expectation value 1 in states which contain this excitation, and zero otherwise; i.e.,

〈φ|D |φ〉= 1 and 〈Ω|D |Ω〉= 0 . (24)

An intensely counterintuitive property of quantum field theories is that one can reconstruct
this behind-the-horizon excitation arbitrarily well using operators which have no support in
this region—in particular, an operator localized entirely in the exterior NR. This is the content
of the Reeh-Schielder theorem, which asserts that the set of states in NR is dense in H.15

Therefore, there exists an operator N ∈NR which approximates |φ〉 arbitrarily well, and hence

〈φ|D |φ〉 ≈ 〈Ω|N †DN |Ω〉= 〈Ω|N †N D |Ω〉 , (25)

where by definition [N , D] = 0. Now observe that if N were unitary, (25) would imply a
contradiction with (24). Thus, the guarantee on the existence of the local operator N is fur-
nished by Reeh-Schlieder at the cost of unitarity. At an operational level, this precludes the
existence of any physical operation one might perform that effects such a gross violation of
microcausality.

While the Reeh-Schlieder theorem and the particular consequences reviewed above are
of course very well-known in the literature, extrapolating the above construction of modular
inclusions demonstrates that information behind the horizon cannot be reconstructed by uni-
tary operators in either CFT. This echoes claims in the literature, particularly [49] and related
works, that there do not exist linear, state-independent operators in the CFT which describe
the black hole interior. In this sense, the Reeh-Schlieder theorem may be regarded as a no-go
result on the state-independent representation of any operator outside one’s causal domain.
Furthermore, in the case of the two-sided black hole dual to the TFD, our analysis suggests
that physics in this interior region is encoded non-locally, in operators with support on both the
left and right CFTs (that is, both ML and MR). Another way to say this is that the spacetime
region C that emerges as a result of the deformation (4) does so via the intrinsic entanglement
of the vacuum Ω. In this sense, the structure of modular inclusions provides a precise realiza-
tion of the notion of emergent spacetime or “it from qubit” [53] (see also [54, 87]). We shall
pursue this line of thought in the next section.

4 Building up spacetime with modular inclusions

In this section, we illustrate the possibility of formulating the notion of emergent spacetime
using the framework of modular inclusions above. We first review the Shenker-Stanford pre-
scription [88,89] for creating long wormholes in the bulk by sending in positive-energy shock-
waves. Geometrically, these have the opposite effect of the deformation discussed in sec. 2
insofar as they increase the size of the black hole. We argue that the structure of modular in-
clusions provides a unified way of treating both processes, and may thereby allow us to more
rigorously investigate van Raamsdonk’s proposal [53] that the interior spacetime is constructed
from entanglement.

In [88, 89], Shenker and Stanford perturb the TFD by acting with unitary operators with
energy E ∼ β−1 (that is, O(1) in AdS units). This is much less than the mass of the black hole
M ∼ G−1

N ∼ N2 in a large-N gauge theory, and thus the immediate backreaction on the metric

15Physically, this is the statement that the vacuum (i.e., the cyclic and separating vector Ω) is an infinitely
entangled state—a fact which underlies the pervasive need for regulation whenever one restricts to a subspace.
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is negligible. However, by inserting the source at some very early time t1� 0, the blueshift
relative to the t=0 slice which passes through the bifurcation surface implies that the energy
is boosted to

E(t=0)∼ E(t1)e
2πt1/β , (26)

and hence backreaction becomes important when t1 reaches of order the scrambling time,
t∗ =

β
2π ln SBH. The result is that by taking t1 much larger than t∗, we can create an arbitrarily

high-energy shockwave in the bulk that shifts the horizon outwards. We shall refer to the
shocks induced in this manner as SS-type, which one can visualize as injecting positive energy
into the black hole. By repeating this process with alternating insertions in the far future
and past,16 one creates a long wormhole with a deep interior region causally disconnected
from both CFTs. The first three steps in this procedure are illustrated in the top row of fig. 3,
where we’ve introduced a pair of insertions,17 indicated in blue, that shift the future horizon
outwards to orange (first pair, left-most panel), then the past horizon to green (second pair,
middle panel), and then the future horizon to pink (third pair, right-most panel). Letting
N0 ≡ NR denote the original right exterior wedge, and N−i the wedge for the ith shock, one
sees that the resulting structure of modular inclusions is

. . . ⊂N−3 ⊂N−2 ⊂N−1 ⊂N0 . (27)

In the limit of infinitely many shocks, correlations between the left and right boundaries vanish,
and the geometry pinches off into two disconnected CFTs and their associated exterior regions
[53,89].

In contrast, the deformations employed by Gao, Jafferis, and Wall [51] that make the
wormhole traversable do so by shrinking the future horizon. As elaborated above, one can
think of these as negative-energy shockwaves, which we shall refer to as GJW-type. One can
then imagine iterating this process by a sequence of relevant deformations, such that the du-
ration of proper time for which the wormhole remains open increases. As illustrated in the
second row of fig. 3, this effects precisely the reverse of the SS-type shockwaves above, in that
it iteratively shrinks the interior region. Here, the GJW-type shocks are shown in red, and
move the horizons inwards to orange (left), then green (middle), then pink (right). Letting
Ni denote the wedge for the ith such insertion, with N0 the original wedge as before, we have

N0 ⊂N1 ⊂N2 ⊂N3 ⊂ . . . . (28)

In the language of enlarging the exterior algebra in section 2, this procedure sequentially shifts
the cutoff between heavy and light operators in favour of the latter; eventually, in the limit
of infinitely many shocks, the entire interior algebra has been subsumed by the exterior, and
there are no more heavy states remaining. At this point the black hole has undergone a sort of
forced evaporation, corresponding to the fact that the field theory has flown all the way to the
Hawking-Page transition at the self-dual temperature β ' π. Formally, the final state would
then be a single algebra of exterior operators which maximally fails to respect the Hilbert space
factorization of the CFT.

As the illustration suggests, the SS- and GJW-type deformations can be viewed as two
sides of the same coin, obtained by running the algebraic construction in opposite directions
relative to the unperturbed initial state (3) at t = 0; cf. the two sequences (27) and (28).
In this sense, the structure of modular inclusions offers a precise realization of the emergent

16This can be described in the field theory via a timefold [90].
17Note that in contrast to the deformations (4), these are independent and do not couple the two CFTs. Had

we wished, we could have replaced all shocks on the left boundary with shocks propagating from the opposite
direction on the right, but we have grouped them this way to facilitate the comparison with the GJW-type shocks
below.
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Figure 3: (Top row) TFD under sequential SS-type shocks, which move the horizons
outwards. The original horizons are indicated in black, while their positions under
the first three shocks are shown in orange (first shock, left), green (second shock,
middle), and pink (third shock, right). The portion of the right exterior wedge NR
lost behind the horizon after each inclusion is shaded according to this same scheme,
while the original interior is shaded grey. (Bottom row) TFD under sequential GJW-
type shocks, using the same color scheme above. In this case, the horizons move
inwards, so the interior of the black hole shrinks. Note the increasing overlap be-
tween the exterior wedges Ni .

spacetime picture proposed by van Raamsdonk in [53]. He argued that decreasing the mutual
information between the left and right CFTs in the TFD (3) corresponds to increasing the
proper distance through the wormhole—and hence, running this reasoning in reverse, that
the classical spacetime in the interior emerges from quantum entanglement between the two
asymptotic boundaries. This was largely based on the observation that the mutual information
imposes an upper bound on the correlators [91],

I(L, R)≥
(〈OLOR〉 − 〈OL〉〈OR〉)

2

2|OL|2|OR|2
, (29)

in conjunction with the fact that certain two-point correlators of local operators decrease with
the geodesic distance between them.

Instead of pinching-off the wormhole as in van Raamsdonk’s story, let us consider the
opposite direction, starting from two disentangled copies of the CFT. As explained above, we
may think of this as an infinitely long wormhole, obtained by a large number of SS-type shocks.
Starting in the upper right-most panel of fig. 3 and proceeding counter-clockwise, one sees
that backing away from this limit corresponds to a sequence (27) of modular inclusions that
slowly stitch together the interior spacetime. Eventually, at t=0, one recovers the TFD dual
to the eternal black hole, whose interior is encoded in the entanglement between the two
boundaries. If we continue past this point along the sequence (28), this interpretation suggests
that we introduce so much entanglement that the previously independent bulk duals begin to
merge into one; that is, one expects an increase in the mutual information corresponding
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to the creation of the new exterior spacetime region C in the deep IR.18 Schematically, the
sequence of modular inclusions terminates at the self-dual temperature, when the black hole
interior has been completely transferred to what is now a single exterior algebra.19 Note that
one can arrange for the geometry throughout this process to be smooth simply by taking each
perturbation to be sufficiently weak (i.e., h� 1, which corresponds to E

4M e2πt i/β � 1 in [89]).
Of course, the heuristic picture above assumes that the algebraic approach can continue

to be meaningfully applied throughout the entire process. As mentioned in section 2 however,
Tomita-Takesaki theory is predicated on the existence of a cyclic and separating vector Ω, and
hence it was necessary to truncate the algebras to ® O(1) products of fundamental opera-
tors. This is exponentially less than the number of operators in the interior,20 and therefore
one might expect this construction to break down long before we manage to reconstruct an
appreciable portion of the interior spacetime. However, recall that we create more room for
formerly-heavy operators in the exterior as we flow into the IR. Thus one might hope that the
necessary truncation is pushed farther into the UV relative to each new inclusion, but whether
this can be self-consistently arranged requires a more detailed analysis. In particular, one might
allow sufficient time between successive perturbations in the inclusion sequence (28) for the
state to equilibriate at the new energy scale. Algebraically, this amounts to the requirement
that we base the Tomita-Takesaki construction for each algebra Ni on the unique cyclic and
separating vector Ωi induced by the GNS representation. But then, while the non-uniqueness
of the vacuum in this regard is not itself an issue, the ontological map between inequivalent
representations is notoriously subtle; see, e.g., [93].

5 Discussion

In the preceding sections, we highlighted various ways in which the structure of modular
inclusions may be used to shed light on black hole interiors, as well as on the relationship
between entanglement, spacetime geometry, and the locality of information (or lack thereof)
in holographic theories. We wish to close by discussing some connections to other ideas in the
literature, and speculate on some interesting directions for further work in this vein.

In [94], it was proposed that AdS/CFT functions like a quantum error correction (QEC)
scheme; see also [95–97] for applications of QEC in the context of firewalls. As alluded in sec-
tion 2, the necessity of truncating the operator algebras is precisely analogous to the require-
ment, in this context, that one remain in the code subspace: both stem from the constraint
that the backreaction on the metric remain sufficiently small. In the algebraic language, al-
lowing arbitrary products of operators destroys the separating property of the vector Ω (e.g.,
by approximating the hamiltonian). Equivalently, one says that backreaction moves one be-
yond the code subspace, which implies a loss of the QEC code’s capacity to correct erasures.
Additionally, the authors of [94] put forth a number of simple examples to demonstrate that
the bulk algebra cannot hold at the level of operators in the CFT. Rather, contradictions can be
avoided by formulating the operators in terms of their action on the code subspace of states.
This is precisely the same issue of state dependence we encountered above, couched in terms
of quantum information theory. However, despite its epistemic utility, phrasing matters at such

18In fact, it is important to distinguish between bulk and boundary mutual information; see the discussion in
appendix B.

19It is unclear whether this limit has a sensible holographic interpretation; at the very least, the existence of
two distinct asymptotic regions in the bulk suggests that we must exercise more care in identifying the spacetime
region of support. I am grateful to Raphael Bousso for raising this point.

20In order to reproduce the Hawking-Page phase structure, the spectrum of light operators must be sparse [66,
67,92]. Therefore heavy states dominate the microcanonical ensemble for the eternal black hole, and the density
of states satisfies the Cardy formula, ρ(E)∼eSBH(E)∼eN .
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an operational level does not explain, ontologically, why holography should function as a QEC
code. Modular theory thus provides the underlying physical reason for the efficacy of QEC in
attempts to reconstruct both the bulk and the black hole interior. We hope that this approach
may lend further insight into the fascinating connections between quantum information theory
and high energy physics uncovered in recent years.

There is, however, an important technical distinction between the aforementioned appli-
cations of QEC and the algebraic approach discussed here, namely that the code subspace is
typically regarded as tensor factor of the global Hilbert space; but as we have remarked above,
the Hilbert space of continuum quantum field theory does not factorize.21 This highlights an
important connection between the problem of Hilbert space factorization and emergent space-
time. By construction, the TFD (3) – that is, the boundary Hilbert space – factorizes into a
tensor product of the left and right CFTs, and therefore the bulk spacetime must emergent in
a manner consistent with this factorization; see [98] for an interesting analysis in this context.
This is especially pertinent in the context of the emergent spacetime paradigm discussed in
section 4 above, in which gravity is conjectured to emerge from quantum entanglement. In
particular, implicit in the definition of the von Neumann entropy, SA = −trρA lnρA, is the as-
sumption that the Hilbert space admits a tensor product decomposition H = HA ⊗HĀ, such
that the subsystem ρA is obtained by tracing out degrees of freedom in the complementary
factor. But such a factorization fails already at the level of free field theory, to say nothing
of gravity, and thus any attempt to found the latter on this premise is inherently contradic-
tory! In light of the deepening connections between entanglement and geometry uncovered
in recent years, it therefore seems well-worth investigating whether ideas from AQFT, such as
the approach from modular theory advocated here, may provide a less problematic means of
addressing such questions.22

As an aside, we remark that the above is in agreement with the Weak – as opposed to Strong
– interpretation of black hole complementarity (BHC) [100,101]. Strong BHC assumes inde-
pendent Hilbert spaces for the interior and exterior; but this is problematic since, in addition to
the factorization issue above, it would require consistent matching conditions in order to stitch
the spacetime together along the entire event horizon. As noted in [101], it is also undesirable
insofar as it makes the Hilbert space structure subordinate to the causal structure. This is the
opposite of the standard formulation of QFT, in which microcausality naturally emerges from
quantum mechanics in conjunction with special relativity and the clustering property [102].
Obviously, one would like to preserve this notion of emergent locality in any attempt to derive
spacetime from entanglement. In contrast, Weak BHC posits a global Hilbert space, except
that spacelike operators in the interior and exterior no longer commute. Naïvely, it appears
that locality is badly broken; but the issue is again the same as that which underlies the need
for state dependence, or the use of QEC in bulk reconstruction, namely that the interior cannot
be represented in terms of state-independent operators in the exterior. Indeed, the harmony
of the Weak interpretation with holography was noted already in [101] (see also [48]); we
have merely strengthened the connection between these ideas.

As we emphasized in section 3, one can view state dependence – i.e., the inability to repre-
sent the interior of the black hole in terms of localized operators in the exterior algebra – as an
inevitable property of quantum field theories that ultimately follows from the Reeh-Schlieder
theorem. In our discussion of mirror operators, we demonstrated explicitly that this intrinsic
non-locality is in fact necessary in order to preserve unitarity of the theory. Extrapolating this
to the limiting procedure in which we built-up the bulk spacetime from modular inclusions in

21Technically, the issue is not whether the Hilbert space factorizes (e.g., there is no obstruction for separable
states), but whether the algebra of operators respects this factorization; it is the latter which fails for ML and MR

above. I am grateful to Chris Fewster for clarifying this distinction.
22See, e.g., [99] for a more algebraic treatment of entanglement entropy.
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section 4 therefore contributes to the growing body of evidence that holography must be fun-
damentally non-local. Furthermore, this construction shows that, far from being a pathological
quirk of existing bulk reconstruction schemes, non-locality and unitarity are inseparable sides
of the same coin.

Our prescription for building-up spacetime via modular inclusions in section 4 was quite
abstract; for example, our arguments from entanglement entropy and overlapping algebras
do not suffice to show that one recovers, say, the bulk Einstein equations from this algebraic
structure. However, this is precisely what was done in [103] for small perturbations of the
vacuum by utilizing the first law of entanglement entropy (see, e.g., [34]), and Faulkner has
shown [17] that the linearized Einstein equations arise quite naturally via the entropy-area
relation implicit in this law. Indeed, as alluded above, the modular hamiltonian appears to
encode aspects of the geometry in the thermodynamic properties of the vacuum. For example,
the Unruh effect [104, 105] arises as a consequence of the fact that the vacuum is a KMS
state with respect to the generator of Lorentz boosts, i.e., the modular hamiltonian [21, 22].
More generally, the modular operator arises as a natural distance measure used in defining
the relative entropy between states (see, e.g., [106–109]), and connections between modular
theory and the Poincaré group are very well-known in the AQFT literature [21,24,63–65,110,
111]. Thus, while the proposal in section 4 is little more than a rough sketch, there are certainly
grounds for suspecting that the structure of modular inclusions may enable one to make the
nascent connection between entanglement and spacetime geometry much more solid. In doing
so, it may shed light on the deeper reasons for the validity of the Ryu-Takayanagi formula and
its generalizations, as well as provide a precise realization of the ER=EPR proposal [55] (see
also related discussion in [49]). It would be very interesting to explore this more concretely,
e.g., in conjunction with the behaviour of the dual field theory under the RG flow induced by
(4).

Finally, it has been suggested that when considering dynamical information, entangle-
ment entropy alone is insufficient to reconstruct the bulk spacetime in the wormhole’s in-
terior [112].23 In particular, Susskind has proposed “holographic complexity” as the field-
theoretic quantity that encodes the evolution of the Einstein-Rosen bridge, whose bulk dual
is given by either the volume of the codimension-1 slice that connects the two CFTs [114],
or the Einstein-Hilbert action of the Wheeler-DeWitt patch defined by null rays emitted at
times tL and tR [115, 116]. While our understanding of complexity in field theory is still in
its nascent stages (see initial works [117,118] and subsequent extensions, including [119] for
an application of circuit complexity to the TFD, and [120] for considerations in the context of
double-trace deformations), preliminary evidence indicates that complexity does indeed probe
global information to which entanglement entropy is insensitive [121]. Additionally, as one
observes in fig. 3, the double-cone prescribed by the overlapping wedge regions is reminiscent
of the Wheeler-deWitt patch behind the horizon; see in particular [122]. Hence, in light of the
central role of the modular operator in information theory alluded above, such an approach
may provide insight as to a more natural definition of complexity for general quantum field
theories.
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A Tomita-Takesaki in a nutshell

In this appendix, we collect some results from AQFT, in particular the modular theory of Tomita
and Takesaki, that we use in the main text. Our goal is to convey the basic ingredients as con-
cisely as possible, and no pretense is made at mathematical rigour. The reader interested in
a more mathematical treatment is referred to the classic book by Haag [20], or the excellent
review by Halvorson [123], both of which are noteworthy for their emphasis on foundational
issues. A more physics-oriented introduction is provided by the recent and pedagogically exem-
plary review by Witten [84], which is explicitly geared towards understanding entanglement
in quantum field theory.

We begin with the Hilbert space H of some quantum field theory,24 and denote by B(H)
the set of all bounded linear operators acting on H. A C∗-algebra AU is a subalgebra of B(H)
consisting of all observables in the spacetime region U , which is closed both under the norm
topology and the adjoint operation. Note that the C∗-algebra does not contain unbounded
operators. These are of central importance in physics, and include, e.g., the total energy,
the number operator, and even the basic position and momentum observables in field theory.
This motivates us to consider the weak closure of AU , which defines a von Neumann algebra.
Recycling notation, and suppressing the spacetime region U , we henceforth refer to this von
Neumann algebra as A, and denote the commutant A′, where

A′ = {B ∈ B(H) : [A, B] = 0 ∀A∈A} . (30)

By von Neumann’s double commutant theorem, (A′)′ = A′′ = A. Note that we are implicitly
assuming Haag duality, A′U =AU ′ , which applies when U and U ′ are causal complements.

We take A to be equipped with the cyclic and separating vector Ω. Cyclic means that the
states spanned by O ∈A are dense in H. In other words, we can approximate any state in the
total Hilbert space by acting on |Ω〉 with operators whose support is limited to the subregion
U over which A is defined (cf. Reeh-Schlieder). Separating means that O|Ω〉 = 0 iff O = 0.
The vector Ω thus furnishes a representation of the vacuum state.

Given a von Neumann algebra A, Tomita-Takesaki theory admits a canonical construction
of the commutant A′. The starting point is the antilinear map S : H→H, defined by

SO|Ω〉=O†|Ω〉 , (31)

where recall that an antilinear map f : V →W between complex vector spaces V, W satisfies
f (aX + bY ) = a∗ f (X ) + b∗ f (Y ) ∀a, b ∈ C and X , Y ∈ V . Note that S is a state-dependent
operator, insofar as it is defined in terms of its action on the cyclic and separating state |Ω〉.
We emphasize that there is nothing pathological about this state dependence; rather, it is an
intrinsic feature of the algebraic construction.

24We are concerned with type III von Neumann algebras only.

18

https://scipost.org
https://scipost.org/SciPostPhys.6.4.042


SciPost Phys. 6, 042 (2019)

For example, that the fact that Ω is separating is necessary for S to be well-defined,
otherwise there would exist an annihilation operator a ∈ A such that a|Ω〉 = 0, but
Sa|Ω〉 = a†|Ω〉 6= 0, which contradicts the definition (31). The fact that Ω is cyclic then
ensures that it maps to a dense set of states on H. Additionally, it follows from (31) that, as an
operator, we must have S2 = 1, and therefore S is its own inverse, S−1=S. As shown in [84],
taking the hermitian conjugate yields the corresponding operator on the commutant, S† = S′.
Lastly, and quite crucially, observe that taking O = 1 in (31) implies that S leaves the vacuum
state invariant, S |Ω〉= |Ω〉.

Now, since S is invertible, it admits a unique polar decomposition,

S = J∆1/2 , (32)

where J is an antiunitary operator (i.e., 〈JA, JB〉 = 〈A, B〉† ∀A, B ∈ H) called the modular
conjugation, and ∆ is a self-adjoint operator called the modular operator. The decomposition
(32), combined with the fact that ∆† =∆, implies that

∆= S†S , (33)

which is sometimes taken as its definition. Additionally, since ∆ is a positive hermitian oper-
ator, we may define the modular hamiltonian

K ≡ − log(S†S) , (34)

such that25

∆= e−K . (35)

Since both S and S† leave the vacuum state invariant, this property extends via (33) to the
modular operator as well, ∆|Ω〉= |Ω〉. Additionally, it is of central importance to note that ∆
does not have support purely within the region U , but acts on the full Hilbert space defined
over both A and its commutant A′.26

By way of final preliminaries, we note the following useful identities:

J∆1/2 =∆−1/2J and J2 = 1 ⇐⇒ J−1 = J . (36)

These essentially follow from the fact that S2=1 in conjunction with the polar decomposition;
see [84] for more details. Combining these with the aforementioned fact that S′ = S† then
leads to J ′ = J and ∆′ =∆−1. Lastly, expressing J in terms of S and ∆ via (32) reveals that it
likewise leaves the vacuum invariant; i.e., we have

S|Ω〉= J |Ω〉=∆|Ω〉= |Ω〉 . (37)

This invariance of the vacuum features crucially in our analysis in section 3, as well as in the
state-dependent mirror operators introduced by Papadodimas and Raju.

Now, the fundamental result of Tomita-Takesaki theory is comprised of the following two
facts: first, the modular operator∆ defines a one-parameter family of modular automorphisms

∆i tA∆−i t =A , ∀t ∈ R . (38)

25Note that K is occasionally defined (e.g., in [84]) with an additional factor of 2π, so that it precisely equals
the generator of Lorentz boosts (cf. H in the Rindler example (1)), but we prefer to keep these a priori distinct,
following [50].

26The attentive reader may be disturbed by the implication that K |Ω〉 = 0, but this does not contradict the
separating property of Ω since K is not localized to any subregion. This, incidentally, is also why there are no truly
local modular hamiltonians.
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In other words, the algebra A is invariant under modular flow. Second, the modular conjuga-
tion induces an isomorphism between the algebra and its commutant A′,

JAJ =A′ , (39)

i.e., ∀O ∈ A, J defines an element O′ ≡ JOJ such that [O,O′] = 0. The isomorphism (39)
is rather remarkable. For example, it allows one to map operators between the left and right
Rindler wedges [50]—or, as shown in section 3, across the horizon of a black hole.

Motivated by the desire to understand more deeply the physical interpretation of these
modular objects, Wiesbrock [61] introduced the notion of a half-sided modular inclusion.27

Given the preliminaries above, we shall simply state the results from his paper that we employ
in the main text. Further discussion and intuition for this structure is included in section 2.
Modular inclusions are also treated in more detail in [23, 63, 64, 125], and have appeared
recently in the field theory literature in [29].

Let N ⊂M be von Neumann algebras acting on H, equipped with a common cyclic and
separating vector Ω. The associated modular operators and modular conjugations are respec-
tively denoted∆N ,∆M and JN , JM. Further suppose that N is preserved under the modular
flow induced by M, specifically

∆i t
MN∆−i t

M ⊂N ∀ ∓ t ≤ 0 ∈ R . (40)

In this case, the inclusion N ⊂M is called (∓)-half-sided modular. Note that allowing t ∈ R
implies only the trivial solution N =M, hence the restricted range [125]. The algebras are
related by a one-parameter unitary group

U(a) = eiap , a ∈ R , (41)

where the generator is defined as

p ≡
1

2π
(ln∆N − ln∆M)≥ 0 , (42)

cf. (5). We note that
U(t)MU(−t) ⊂M ∀± t ≥ 0 , (43)

i.e., (∓)-half-sided inclusions are associated with (±)-half-sided translations; see [125] for
more details. With this structure in hand, one has the following relations [61]:

∆i t
MU(a)∆−i t

M =∆i t
N U(a)∆−i t

N = U
�

e∓2πt a
�

, ∀t, a ∈ R (44)

JMU(a)JM = JN U(a)JN = U(−a) , ∀a ∈ R (45)

JN JM = U(2) , (46)

∆i t
N = U(1)∆i t

MU(−1) , ∀t ∈ R (47)

N = U(±1)MU(∓1) . (48)

It is common to work with (−)-half-sided inclusions (and hence (+)-half-sided transla-
tions), and we follow this sign convention in the main text.

27There is a technical flaw in Wiesbrock’s original proof, which was remedied in [124].
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B Entropic musings

In this appendix, we collect some results on the behaviour of various entropy measures under
the double-trace deformations discussed in the main text. We first discuss relative entropy,
which furnishes the relationship between modular hamiltonians and entanglement entropy
encoded in the eponymous “first law” [34]. We find that the expectation value of the gen-
erator (5) vanishes to first order, and admits an expression entirely in terms of the relative
entropies between the associated algebras and their commutants. We then examine the en-
tanglement entropy and mutual information between the left and right algebras, and find that
these quantities appear to change in opposite directions in the bulk vs. the boundary. In the
context of the emergent spacetime picture discussed in section 4, this calls for a more careful
study of entanglement measures to diagnose connectivity of the interior spacetime.

B.1 Modular hamiltonians and relative entropy

Recall the definition of relative entropy between two states ρ1 and ρ0:

S(ρ1|ρ0) = tr(ρ1lnρ1)− tr(ρ1lnρ0) = δ〈K0〉 −δS ≥ 0 , (49)

where
δ〈K0〉= tr(ρ1K0)− tr(ρ0K0) , and δS = S(ρ1)− S(ρ0) , (50)

and K0 is the half-sided modular hamiltonian corresponding to the reduced density matrix
ρ0, i.e., K0 = − lnρ0. Note that we use δ to denote both finite and infinitesimal changes,
so as to avoid confusion with the modular operator ∆. Relative entropy has many impor-
tant properties. For example, positivity of relative entropy was shown to underlie positiv-
ity of quantum mutual information in [126]. It is also monotonic under inclusions, i.e.,
S
�

ρM
1 |ρ

M
0

�

> S
�

ρN
1 |ρ

N
0

�

for N ⊂ M, where ρA
1 , ρA

0 are taken to be an arbitrary state
and the vacuum state, respectively, restricted to the region A; this fact was used in [26] to
demonstrate the positivity of the operator p (7). Perhaps the most salient feature, at least in
the holographic context, is the observation by [34] that the relative entropy vanishes for linear
perturbations around the reference state ρ0, and hence to first order,

δ〈K0〉= δS . (51)

This is the so-called first law of entanglement entropy, and provides perhaps the cleanest con-
nection between the modular hamiltonian and familiar notions of entropy.

To that end, it is natural to ask whether the operator p associated with the inclusion struc-
ture in the main text has a similarly simple interpretation. Observe that this is the difference
in the full (that is, two-sided) bulk modular hamiltonians; working from the perspective of the
right wedge, we would therefore write the generator (7) as

2πpb = bK b
MR
− bK b

MN
= (K b

MR
− K b

M′
R
)− (K b

NR
− K b

N ′R
) , (52)

where here we denote the full-sided hamiltonians with hats, to distinguish them from their
one-sided constituents without. To minimize clutter, we shall henceforth suppress the super-
script “b”, with the understanding that we’re working from the perspective of the right bulk
wedge.28 The expectation value of (52) may then be written

2π〈p〉= 〈KMR
− KNR

〉+ 〈KN ′R − KM′
R
〉= 〈δK〉+ 〈δK ′〉 , (53)

28Since the bulk and boundary relative entropies are equal, this distinction is not relevant anyway [32].
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where we have defined

δK ≡ KMR
− KNR

, δK ′ ≡ KN ′R − KM′
R

. (54)

For our purposes, it is sufficient to work with 〈δK〉; the analysis for the commutant operator
is precisely identical. Of course, evaluating this expectation value requires that we specify a
state—two states, in fact, if we wish to connect with relative entropy. Let us therefore consider
the change in the expectation value between the initial and final state, i.e.,

δ〈δK〉= tr(ρMR
δK)− tr(ρNR

δK) = −S(MR|NR)− S(NR|MR) , (55)

where
S(MR|NR) = −tr(ρMR

KMR
) + tr(ρMR

KNR
) ,

S(NR|MR) = −tr(ρNR
KNR
) + tr(ρNR

KMR
) .

(56)

Repeating this for δK ′, we therefore find

2π〈p〉= S(M′
R|N

′
R)− S(MR|NR) + S(N ′R|M

′
R)− S(NR|MR) . (57)

Given the quadratic nature of relative entropy under perturbations mentioned above, this im-
plies that 〈p〉 vanishes to first order for the case where M represents only a small deviation
from N . In some sense, this is disappointing, as it necessitates working to at least quadratic
order to derive further insight; see for example [34] for an analysis of such second-order cor-
rections. On the other hand, the ability to express 〈p〉 in terms of relative entropy makes the
freedom from UV divergences manifest. That is, while the half-sided modular hamiltonians
(and for that matter, the associated reduced density matrices) are not well-defined in type III
theories, the full modular hamiltonian certainly is. Hence we would not expect this quantity
to be directly expressible in terms of the (UV-divergent) von Neumann entropy. While in this
sense, the expectation value of the generator for the modular inclusion N ⊂M provides a
finite measure of distinguishability between the associated states, it would be interesting to
explore whether more tractable or deeper relations exist.

B.2 Entanglement and mutual information

It is important to distinguish between the boundary and bulk entropies/modular hamiltonians,
as these contribute at different orders in the 1/N expansion.29 Accordingly, we shall denote
a boundary entity by X ∂ b, and the corresponding bulk quantity by X b; unless otherwise indi-
cated, the absence of either superscript indicates that a given expression holds on both sides.
In particular, the bulk/boundary entropies [13] and modular hamiltonians [32] are related by

S∂ b =
Area
4GN

+ Sb + . . . , K∂ b =
Area
4GN

+ K b + . . . , (58)

where the leading-order area term is computed via the Ryu-Takayanagi prescription [8,9], and
the ellipses denote higher-order terms which we shall ignore. Of course, entropy is a property
of a state, and hence evaluating these expressions requires the selection of a particular Cauchy
slice. Since we’re interested in examining the effect of the deformation, we shall consider two
constant time-slices through the bulk. The first, on which quantities will be denoted XN , is
taken to join the two unperturbed CFTs at tL = tR = 0, such that it runs through the bifurcation
point at the lower tip of the double-cone in fig. 1. The second, on which quantities will be
denoted XM, is chosen to horizontally bisect this double-cone through the left- and right-tips
(though in fact, our analysis holds for any such time-slice which crosses this overlap region.

29I am grateful to Michal Heller for emphasizing this point.
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Since bulk and boundary states are dual, we shall suppress the corresponding superscript on
the reduced density matrices; thus, for example, ρNR

will be taken to represent both the bulk
state in the right wedge on the prescribed Cauchy slice, as well as the thermal density matrix
for the right CFT at inverse temperature βN .

Now, let us begin by considering the change in the boundary entropy under the deforma-
tion,

δS∂ b = S∂ b
MR
− S∂ b

NR
. (59)

By (58), this expression consists of two parts, namely the change in the Ryu-Takayanagi area
term and the change in the bulk entropy. Since MR, NR are taken to have support on the
entire (right) boundary, the Ryu-Takayanagi surface wraps the horizon of the black hole, so
the difference in areas corresponds to the change in the entropy of the black hole, denoted
SBH. As illustrated in sec. 2, the size of the black hole decreases due to the negative-energy
shockwave, and hence the contribution from the area term is negative,

δArea
4GN

= δSBH = SBH
MR
− SBH

NR
< 0 . (60)

In contrast, the change in the bulk entropy is positive due to the enlargement of the exterior
algebras,

δSb = Sb
MR
− Sb

NR
> 0 . (61)

Here it is important to bear in mind that the exterior algebra is given by ML,R, not the com-
mutants M′

L,R, otherwise the Penrose diagrams in the main text may lead to confusion. Recall
that for any pure state, the entropy of a given region A must be equal to the entropy of the
complement Ā, and furthermore that this is bounded by the smaller of the two regions. This
is easy to see by imagining pairwise entangled degrees of freedom in A and Ā, in which case
one will run out of points in the smaller region before the larger. Therefore, if the total system
size were fixed, the fact that M′

R ⊂N ′R ∼=NL
∼=NR ⊂MR (where ∼= denotes an isomorphism)

would imply a smaller entanglement entropy between MR and M′
R than between NR and N ′R.

This however is not the relevant quantity, since the left algebra is given by ML , not M′
R. In

other words, the above reasoning fails because the total system size (i.e., the total exterior
algebra) has increased: both A and the formerly-complementary region Ā have grown, but in
such a manner as to overlap. What is now Ā then occupies a smaller relative volume; i.e., the
set of operators which commutes with the exterior right algebra has shrunk.

However, since the bulk entropy term is higher-order in the 1/N expansion, the change in
the area term (60) dominates over (61), and hence the change in the boundary entropy (59)
is negative,

δS∂ b = δSBH +δSb < 0 . (62)

Our interpretation of this result is as follows: initially, tracing over the left CFT resulted in an
exactly thermal state, i.e.,

S∂ b
NR
= −tr(ρNR

lnρNR
) , with ρNR

= trN ′Rρ = Z−1
βN

e−βN H , (63)

where, on the boundary, ρ = |T F D〉 〈T F D|. After the deformation however, the bulk over-
lap MR ∩ML = C implies that we trace out less than half the total operator content of the
boundary, i.e.,

S∂ b
MR
= −tr(ρMR

lnρMR
) , with ρMR

= trM′
R
ρ . (64)

The density matrix ρMR
is therefore not quite thermal, so the entropy S∂ b has decreased.

To make contact with the discussion in sec. 4, let us consider the change in the mutual
information between the two sides. Since ML∩MR 6= ;, this is most cleanly quantified by the
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information between the commutants, which are disjoint for both N and M. Hence, working
in the bulk, we have

δI b = I b(M′
R,M′

L)− I b(N ′R,N ′L) , (65)

where the mutual information between A and B is

I(A, B) = SA+ SB − SA∪B ≡ S(ρA) + S(ρB)− S(ρAB) . (66)

By symmetry, NL,R is isomorphic to its commutant, so

I b(N ′R,N ′L) = Sb
NR
+ Sb

NL
− Sb

NR∪NL
= 2Sb

NR
, (67)

where the last step follows by left-right symmetry, and the fact that the total state is pure (i.e.,
SNL∪NR

= 0). While this symmetry is broken for the M algebras, purity still enables us to
identify the entropy of the algebra with its commutant, and hence

I b(M′
R,M′

L) = Sb
MR
+ Sb

ML
− Sb

M′
R∪M

′
L
= 2Sb

MR
− SC , (68)

where the last step follows from the fact that tracing out C is equivalent – again by purity – to
tracing out both M′

L and M′
R. Substituting (68) and (67) into (65) then yields

δI b = 2δSb − Sb
C , (69)

via (61). Note that if we had instead examined the change in the mutual information between
the algebra and its commutant, we would obtain simply

I b(MR,M′
R)− I b(NR,N ′R) = 2δSb > 0 . (70)

In other words, if we didn’t create the overlapping region C, we would conclude that the change
in the bulk mutual information is simply due to the change in the entropy. Instead however,
the change between the two sides, as measured by (69), is smaller due to the fact that the
enlargement mentioned above goes into creating the region C, whose information cannot be
uniquely localized to either side. Of course, we can run the same story on the boundary, which
leads to

δI∂ b = 2δS∂ b − S∂ b
C . (71)

Since S∂ b
C is positive, the decrease in boundary entropy (62) then implies that the boundary

mutual information likewise decreases.
While one might have anticipated this last conclusion from considerations of scrambling

– in particular, that the double-trace insertion disrupts the fine-grained correlations in the
(highly atypical) TFD state – it is at first glance rather surprising, particularly in the context
of the emergent spacetime picture in sec. 4. To see why, observe that we can apply the same
analysis as above to the SS-type shocks which move the bulk exterior regions apart. In that
case, we would find precisely the opposite of the above: namely, that the entropy and mutual
information in the bulk decrease, but the corresponding quantities on the boundary increase—
the latter from the simple fact that the boundary quantities are dominated by the leading-order
area term, cf. (58), and the SS-type shocks increase the size of the black hole. The fact that
the boundary mutual information moves in opposite directions from that suggested by fig. 3
thus seems at odds with both van Raamsdonk’s heuristic picture of increasing separation under
SS-type shocks [53] as well as the analysis in [88], who explicitly computed the decrease in
mutual information between boundary regions.

However, the mutual information considered herein differs from that considered in the
aforementioned works, both of which considered the mutual information between subregions
A and B on either boundary. In contrast, we consider the mutual information between the
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exterior algebras of CFT operators, whose spatial support covers the entire boundary. Fur-
thermore, it is unclear whether these algebras contain the heavy operators whose two-point
correlators exhibit the unambiguous exponential fall-off with geodesic distance through the
bulk, which underlied the heuristic argument for increased spacetime separation in [53]. The
second key difference is that [88] considered the increase in said mutual information under
time evolution.30 In this case, for sufficiently large regions, the term SA∪B which joins the two
regions through the wormhole contains a time-dependent contribution; for positive-energy
shockwaves, this term eventually kills the mutual information after a time of order the scram-
bling time t∗. In contrast, taking the subsystems to comprise the entire boundary implies that
this term is absent in our treatment, which furthermore regards the initial and final states as
static geometries (one can consider evaluating the mutual information after the system has
returned to equilibrium). Therefore, in the present case the difference is purely determined
by the difference in the horizon areas, and in this sense δI∂ b is a less refined probe of bulk
dynamics. Hence for both of these reasons – namely the exclusion of heavy states, and the
fact that the mutual information only receives contributions from the (static) horizon area –
we suggest that the bulk mutual information δI b may provide a better diagnostic of space-
time connectivity in this context, to wit: it is the mutual information between the algebras of
exterior operators that yields ground to the formerly-interior spacetime region C. More gen-
erally, we hope that the considerations herein will motivate a more careful treatment of these
issues, in order to identify the precise criteria on the boundary that herald the emergence (or
disentangling) of spacetime in the bulk.
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