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Abstract

Two-dimensional rational CFT are characterised by an integer `, related to the number of
zeroes of the Wronskian of the characters. For two-character RCFT’s with ` < 6 there is a
finite number of theories and most of these are classified. Recently it has been shown that
for `≥ 6, there are infinitely many admissible characters that could potentially describe
CFT’s. In this note we examine the ` = 6 case, whose central charges lie between 24
and 32, and propose a classification method based on cosets of meromorphic CFT’s. We
illustrate the method using theories on Kervaire lattices with complete root systems. In
the process we construct the first known two-character RCFT’s beyond `= 2.
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1 Introduction and Review

The organisation of rational conformal field theories by their number of characters is interest-
ing for both physics and mathematics. A classification method for such theories was first pro-
posed in [1] and much progress has been made in recent years, both in the physics [2–5] and
mathematics [6–10] literature. This method is based on the following facts: the partition func-
tion Z(τ, τ̄) of a CFT is modular-invariant but not holomorphic, while the characters χi(τ) are
holomorphic (except at infinity) but not modular-invariant – they transform as vector-valued
modular functions. However there is a modular linear differential equation (MLDE) satisfied
by the characters, that is both holomorphic and modular invariant. This is highly constraining
and can be used to classify those MLDE that give rise to “admissible” characters – holomorphic
vector-valued modular functions of q = e2πiτ that have non-negative integer coefficients in
their q-expansion.

From the physical point of view, the number of characters (minus 1) is equal to the number
of non-trivial critical exponents, so if we want to study critical systems with just one or two
exponents then we can focus on two- or three-character theories and study all of them together.
One can, for example, identify classes of theories that have no marginal deformations – these
are sometimes called “perfect metals” [11] and examples can be found in [3, 4]. In contrast,
traditional classifications through minimal series of extended chiral algebras [12, 13] have
rapidly growing numbers of characters and most often, only the first few members of the
series are physically interesting.

From the mathematical point of view, single-character (“meromorphic”) theories are im-
portant due to their close relation to even, self-dual lattices and automorphic forms. They
necessarily have central charge c = 8n for integer n. The case of c = 24 is particularly inter-
esting because here there are infinitely many admissible characters but only 71 RCFT’s [14].
Of these, 24 are related to even, self-dual lattices while the remaining are extensions involv-
ing orbifolding and other field-theoretic constructions. One such CFT, the celebrated Monster
Module, conjectured to be the unique meromorphic CFT at c = 24 without currents, has as its
automorphism group the Monster – the largest simple sporadic finite group. With more than
one character, we have vector-valued modular functions. These are less well-studied in the
mathematical literature but there is a growing body of work based on MLDE in the case of two
and three characters [6–10].

Let us very briefly review classification method and some new results which will be relevant
for our discussion. A detailed review with several new results can be found in [15]. The
characters being vector-valued modular function can be written as the independent solutions
of a modular invariant differential equation. Such a differential equation can be built using
the modular covariant differential operator D = 1

2πi∂τ −
k

12 E2(τ). Here, k is the weight of the
object on which the operator is acting and E2(τ) is the second Eisenstein series. Note that this
differential operator augments the weight by 2. In the case of two-characters (which will be
the main focus for the rest of the paper), the MLDE takes the form

�

D2 +φ2(τ)D+φ4(τ)
�

χ = 0. (1)

For the above equation to be modular, we see that φ2 and φ4 must transform with weights 2
and 4 respectively. These functions can be given in terms of the Wronskians of the MLDE as
follows
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W1

W
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W0

W
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. (2)
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The functions φ2 and φ4 need not be holomorphic, but can be any rational combination
of E4(τ) and E6(τ) of the correct weight. Since the characters themselves are holomorphic,
we see from the above equations that the only singularities of φ2 and φ4 arise from the zeroes
of W . The nature of solutions of the MLDE depends significantly on the singular behaviour of
these functions, which is in turn determined by the zeroes of W . Let the number of zeroes be
equal to `

6 with ` taking the values 0, 2,3, 4, · · · . The fractional nature of zeroes is due to the

presence of two orbifold points τ = i, e
2πi
3 in the torus moduli space where the functions are

allowed to vanish with degrees 1
2 and 1

3 respectively. This parameter ` satisfies an important
relation with the central charge and conformal dimensions, coming from the Riemann-Roch
theorem [1]:

α0 +α1 +
`

6
= −

c
12
+ h+

`

6
=

1
6

, (3)

where α0 = −
c

24 ,α1 = −
c

24 + h. To classify a theory one fixes a value of `, writes the most
general MLDE for this `. The value of ` determines the form of φ2 and φ4. Since these
are rational combinations of the standard Eisenstein series, they will contain a finite number
of arbitrary parameters. One then solves the q-series as a function of the parameters of the
equation, and tunes the parameters so that the q-series has integer coefficients upto a high
order. There are various checks to ensure that the candidate characters found in this way are
genuinely admissible (i.e. they have non-negative integral coefficients to all orders). Finally,
one tries to reconstruct the CFT corresponding to these characters, if it exists [16].

For two-character theories, ` is known to be even. For `= 0 there is one free parameter in
the MLDE, and it was shown in [1] that there are precisely 10 values of it such that the solutions
are admissible as characters. Each of them was subsequently identified (with some caveats
relating to non-unitarity and/or degeneracy of the vacuum1) with a CFT of a definite central
charge in the range 0 < c ≤ 8, most of which are level-1 Wess-Zumino-Witten models that
contain the integrable primaries of the corresponding Kac-Moody algebra. The corresponding
Lie algebras belong to the Deligne series [17].

For `= 2, the analysis of [2,3,18] showed that again the MLDE has a single parameter and
there are admissible characters for precisely 10 values, corresponding to central charges in the
range 16≤ c < 24. Most of these theories have a Kac-Moody algebra but do not correspond to
WZW models. Their characters can be understood as very special combinations of Kac-Moody
characters which could not have been easily discovered by searching for them directly. An
important step in identifying them as actual RCFT’s was taken in [3] where it was shown that
they are cosets of meromorphic CFT’s at c = 24 by the `= 0 theories. This explains their range
of central charges, and also sets up relationships between families of RCFT’s with different `
that uses meromorphic theories with c = 8n as an intermediate step. An important outcome
of the above investigations is that for `= 0 and 2, every pair of admissible characters actually
leads to a CFT, modulo the caveats mentioned above.

The case of ` = 4, discussed in [15] is somewhat enigmatic: there are precisely three
admissible pairs of characters but no concrete construction of a corresponding CFT is known
so far2. The case of `≥ 6 presents interesting new features. Here, results of [15] (and related,
earlier work of Harvey-Wu [5]) show how to construct, for the first time, an infinite number
of admissible pairs of characters. In [15] it was proved that this classification is complete for
all `. Below, we will focus on ` = 6 and give an explicit construction in this case. This then
paves the way to address the question of which among the infinite set of admissible characters

1These are carefully explained in [15].
2Two of the three ` = 4 character pairs were noted in [19]. In this reference the term “extremal” was used to

refer to CFT’s with ` < 6. With that definition, we are studying the existence of “non-extremal” two-character CFT
in this work, for the first time as far as we know.
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correspond to actual RCFT’s.
Recall that for the analogous problem with one character, which first arises at c = 24 [14],

a straightforward family of CFT’s can be constructed using free boson theories on even self-
dual lattices. Then one considers generalisations such as orbifolds of these CFT’s and more
exotic constructions. In this sense, the problem addressed in the present work may be seen as
a two-character analogue of that in [14]. We will follow an approach inspired by that of [3],
namely to try and define ` = 6 CFT as cosets of meromorphic theories. Thereafter, for over
a hundred examples, we will be able to associate definite RCFT’s with given pairs of ` = 6
characters. To our knowledge these are the first known irreducible (i.e. not direct-product)
two-character RCFT’s beyond `= 2.

2 Admissible characters for `= 6

We now briefly review how admissible characters for `= 6 are found. It was proposed in [15]
that the natural category of objects to study is not admissible characters, but “quasi-characters”
– which have the same holomorphic and modular properties as characters, but are allowed to
have negative integer coefficients in their q-series. Clearly, admissible characters are a subset
of quasi-characters. Some key observations for the case of two characters are:

(i) A complete set of quasi-characters is known for `= 0,2, 4,

(ii) Quasi-characters can be added to each other preserving holomorphicity, modularity and
integrality, as long as their central charges differ by a multiple of 24,

(iii) Adding quasi-characters augments the ` value by multiples of 6.

The table below gives the full set of values at which the quasi-characters occur for the `= 0
MLDE. These are classified by their fusion rule class. There are four fusion classes: LY denotes
the fusion class of the Lee-Yang minimal model, A1,A2 and D4 denote the fusion classes of the
respective WZW models at level 1. From this data, the quasi-characters themselves are easily
constructed from the MLDE.

Table 1: Complete list of quasi-characters for `= 0

Class c h n values

LY 2
5(6n+ 1) n+1

5 n 6= 4 mod 5

A1 6n+ 1 2n+1
4 n ∈ N

A2 4n+ 2 n+1
3 n 6= 2 mod 3

D4 12n+ 4 2n+1
2 n ∈ N

To illustrate the points (ii) and (iii) from above, let us consider a simple example. Consider
two quasi-character solutions in the A1 class, one at n = 0 and the other at n = 4. The
n = 0 case gives us the familiar characters of A1,1 WZW model. The n = 4 case [15] however
has a negative coefficient at level 1, though all of its coefficients are integers. The central
charges of the two cases being c = 1 and c = 25 respectively, differ by 24. A general feature
of quasi-characters in Table 1 is that whenever central charges differ by 24, they transform
identically under modular transformations. Our n= 0 and n= 4 cases have the same modular
transformations and they can be added without destroying the modularity:

χn=4
i + N1χ

n=0
i . (4)
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Here N1 is an integer parameter, and i = 0 and i = 1 represent the vacuum and primary
characters of the new solution. Let us determine the ` value of this new solution given by
addition of two `= 0 quasi-characters. To do this we need to determine the critical exponents
of this new solution and use the Riemann-Roch equation given in Eq. (3). Recall that for
the n = 0 case, α0 = −

1
24 and α1 =

5
24 , and for the n = 4 case, we see from Table 1 that

α0 = −
25
24 and α1 =

29
24 . The new vacuum character in Eq. (4) starts with q−

25
24 but the new

primary character starts with q
5
24 . Thus the new critical exponents are α0 = −

25
24 , α1 =

5
24 and

c = 25,h= 6
5 . In other words, the central charge increased by 24 and the conformal dimension

increased by 1. Using Eq. (3), we immediately see that by adding two ` = 0 quasi-characters,
we generated a ` = 6 solution. We can tune the integer parameter N1 in Eq. (4) such that
the new solution has all positive integer coefficiens, i.e., is admissible. Thus, the addition of
quasi-characters is a useful technique to construct admissible characters. In particular, ` = 0
quasi-characters (of Type I, as defined in [15]) generate infinite sets of admissible characters
at `= 6m for every positive integer m.

Section 5.2 of [15] provided a set of some of the admissible characters with ` = 6 that
are produced by adding a pair of quasi-characters with ` = 0. The full set of ` = 6 admissible
characters obtained as linear combinations of quasi-characters is given here in Table 2, where
we display the values of c and the primary dimension h, as well as the combination of quasi-
characters that they represent. Like quasi-characters, these too are labelled by their fusion rule
class.

Notice that only two distinct quasi-characters are being added (if we added a third one,
` would increase to 12). Also in each case, the second quasi-character in the sum is actually
a valid character (lying in the Deligne series), while the first one has a single negative term
in its q-expansion. As a consequence, the central charge values in this table differ by 24 from
those of the Deligne series. The addition leads to a change in the sign of this negative term if
the free integer N1 is chosen to be greater than some minimum value in each case3.

Table 2: `= 6 pairs obtained by addition of quasi-characters

No. c h Character sum

1 122
5

6
5 χn=10

LY + N1χ
n=0
LY

2 25 5
4 χn=4

A1
+ N1χ

n=0
A1

3 26 4
3 χn=6

A2
+ N1χ

n=0
A2

4 134
5

7
5 χn=11

LY + N1χ
n=1
LY

5 28 3
2 χn=2

D4
+ N1χ

n=0
D4

6 146
5

8
5 χn=12

LY + N1χ
n=2
LY

7 30 5
3 χn=7

A2
+ N1χ

n=1
A2

8 31 7
4 χn=5

A1
+ N1χ

n=1
A1

9 158
5

9
5 χn=13

LY + N1χ
n=3
LY

3As explained in [15], to get the most general admissible characters one can take N1 to be integer and then
change the overall normalisation to get a non-degenerate ground state whenever possible. Alternatively one can
take rational linear combinations, chosen so that the sum again has integral coefficients. Here we follow the first
approach.
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It is amusing that the actual ` = 6 MLDE played no role in constructing Table 2. Our
process of adding quasi-characters with ` = 0 automatically augments the value of ` while
preserving the modular transformations and integrality. In view of the general completeness
proof in [15], this procedure exhausts all admissible `= 6 characters. We will find it useful to
explicitly exhibit how this completeness operates in the specific class of examples of interest
here, namely `= 6.

The steps in the proof are as follows. The fusion categories for two-character theories are
completely classified [20,21], and in [15] we have found, in particular, `= 0 quasi-characters
for every allowed value of the central charge compatible with these fusion rules (see Table 1).
But in fact the fusion category classification applies to all values of ` since it only uses the fact
of having two characters. Thus, the allowed central charges for ` = 6 must lie in the same
list. Now adding `= 0 quasi-characters always augments ` by multiples of 6. Thus, the set of
` = 0 quasi-characters can be thought of as a basis for the characters with any value of ` that
is divisible by 6.

Next, by looking at the q-series, it is easily verified that the only way to produce ` = 6
solutions using this basis is to add precisely two quasi-characters – and the values of their
central charge must differ by 24. Additionally if the result is to be admissible, then any negative
signs in the quasi-characters being added must turn positive after addition. Now suppose the
sum is of the form χ c+24 + N1χ

c . Let us focus on the negative signs in the individual terms
in this sum. Suppose first that χ c is admissible, thus it has all non-negative terms and also
0 < c ≤ 8. In that case χ c+24 has a central charge in the range 24 < c ≤ 32. In [15] we have
noted that Type I quasi-characters in this range have a single negative sign, which moreover
occurs at the first level above the ground state in the identity character, i.e. in the term of
order q−

c
24 . In the sum, the leading term of χ c contributes precisely to the same power of q.

Therefore a suitable choice of N1 will make the sum admissible.
Finally, supposing χ c is not itself admissible, then both χ c and χ c+24 contain negative

terms in their q-series. One can verify from the q-coefficients that no value of N1 will turn
all the negative terms positive. Thus, as claimed, the above classification of ` = 6 admissible
characters is complete.

As a confirmation, let us note that the MLDE for ` = 6 initially has four free parameters.
It can be parametrised as follows:

�

D2 +µ2

E2
4 E6

E3
4 +µ1∆

D+
(µ3E3

4 +µ4∆)E4

E3
4 +µ1∆

�

χ = 0 (5)

and we see that the coefficient functions have a “movable” pole at E3
4 +µ1∆ = 0. Clearly the

location of this pole is determined by µ1. Now the Riemann-Roch theorem fixes µ2 = 1, and
µ3 is determined by the central charge. This leaves the parameters µ1,µ4. Next we require
that the solution is not logarithmic around the free pole, which turns out to relate µ1 and µ4.
That finally leaves one free parameter in addition to the central charge. A sum of the form
χ c+24 + N1χ

c also has one free parameter, N1, in addition to the central charge (for purposes
of this argument we can treat N1 as a real number rather than an integer, since the sum solves
the MLDE for any real N1). Thus the number of parameters in our proposed general solution
is equal to the number in the MLDE, consistent with our solutions being complete. Such a
parameter count can actually be done for higher values of ` that are multiples of 6, but we
leave that for a future investigation.

The question to which we now turn is, how do we identify some (or all) of these admissible
characters with actual CFT’s?

6
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3 Coset construction for `= 6 CFT’s

In order to identify CFT’s for these ` = 6 characters, we will use the novel coset construction
first used in [3] to identify ` = 2 CFT’s. Let us briefly recall this construction. Say we have
a meromorphic theory H having a Kac-Moody algebra, as well as possible higher-spin chiral
algebras. If D is an affine theory (i.e. a diagonal invariant) of a Kac-Moody algebra which
in turn is a direct summand of the algebra of H, then we can construct the coset C = H/D
as explained in [3]. The decomposition of the character of H in terms of the characters of D
determines the characters of C via the following relation:

χH
0 = χ

D
0 .χC

0 +
n−1
∑

i=1

Mi χ
D
i .χC

i , (6)

where the integers Mi are multiplicities. Notice that this bilinear relation is completely holo-
morphic. From this we immediately have relations among central charges and conformal
dimensions: cH = cD + cC and hC

i + hD
i ∈ N.

The central charges, conformal dimensions and `-values of a coset pair are known [3] to
satisfy:

`+ ˜̀= 2+ 1
2(c + c̃)− 6(h+ h̃) . (7)

From this we see that ` = 0 and ˜̀ = 6 characters pair up such that c + c̃ = 32 and h+ h̃ = 2.
Moreover from their modular properties we find they satisfy the bilinear relation:

χ0(τ)χ̃0(τ) +Mχ1(τ)χ̃1(τ) = j
1
3 (τ) ( j(τ) +N ) . (8)

The integer M counts the multiplicity with which the non-identity primary occurs. On the
RHS, we have the character of a potential c = 32 meromorphic theory, which depends on an
integer parameter N . From the q-expansion of the RHS:

j
1
3 (τ) ( j(τ) +N ) = q−

4
3 (1+ (N + 992)q+ · · · ) . (9)

We see that such a theory, if it exists, has N + 992 spin-1 currents. This imposes a bound
N ≥ −992. Since the spin-1 currents form a Kac-Moody algebra, which contributes to the
central charge via the Sugawara construction, N cannot be arbitrarily large or else c would
exceed 32. The upper bound on N is achieved when the currents form a D32,1 Kac-Moody
algebra, for which N + 992 = 2016. Thus, −992 ≤ N ≤ 1024. Since the N + 992 currents
come from the currents of the `= 0 and `= 6 characters that form a coset pair, one can relate
N to the integer N1 appearing in Table 2, placing bounds on the latter (the precise bound for
N1 will vary by fusion category).

We have established that our `= 6 characters are cosets of c = 32 meromorphic characters
by ` = 0 theories. If now we can show that the meromorphic character in question really
corresponds to a CFT, then it follows that the ` = 6 characters also describe a genuine CFT.
Thus we need to identify c = 32 meromorphic theories whose chiral algebra contains any of
the Kac-Moody algebras arising in `= 0 theories as a direct summand.

Meromorphic CFT’s with c = 32 are far from being classified, unlike the cases of c = 8, 16
and 24 where they are completely classified. As noted above, the simplest constructions for
such CFT’s are based on even unimodular lattices. Such lattices have three important proper-
ties in dimensions 8, 16, 24 which were crucial for the classification problem in these dimen-
sions [22–24]:

(i) The root system (set of points of norm 2) of these lattices is either empty, or has rank
equal to the dimension of the lattice. Moreover there is a unique lattice for each root
system.

7
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(ii) If the root lattice is a sum of several irreducible components, then all the components
have the same Coxeter number.

(iii) The number of lattices for dimension ≤ 24 is small, namely (1,2, 24) for dimension
(8, 16,24) respectively. This property actually follows from the two above.

Lattices whose root systems have rank equal to the dimension of the lattice are said to have
a complete root system. Thus, all even unimodular lattices with dimension less than or equal
to 24 have a complete root system, except for the Leech lattice which has none.

The above three properties can be translated into properties of meromorphic CFT’s with
c ≤ 24. For a lattice CFT, spin-1 currents arise from the roots of the lattice as well as Cartan
generators of the form ∂ X i where i runs over the dimension of the lattice. The first property
above says that either there are no roots, in which case the abelian currents form a U(1)c

algebra, or there are roots which combine with the Cartan generators to form a semi-simple
Kac-Moody algebra (direct sum of non-abelian factors) with a Sugawara central charge c.
The second case will be referred to as a complete Kac-Moody algebra because in this case the
structure of the non-abelian algebra (integrable primaries, null vectors etc.) determines the
CFT. In the first case the situation is less clear, as the abelian algebra alone does not tell us
enough about the theory.

Going beyond lattice theories, the situation becomes more complex. For example, we
encounter non-simply-laced factors in the Kac-Moody algebra and the total rank of this algebra
can be < 24. Nonetheless, we refer to such Kac-Moody algebras as complete if they are semi-
simple and their central charge is equal to the total central charge of the theory. With this
definition, the only incomplete Kac-Moody algebras at c = 24 are the Leech lattice CFT with
U(1)24 and the Monster CFT, obtained by orbifolding the Leech lattice CFT to remove the 24
abelian currents.

The second property of such lattices listed above, applied to a meromorphic CFT with
c ≤ 24, says that if its Kac-Moody algebra is a direct sum of irreducible components, then the
dual Coxeter number ȟ is the same for each component. If we go beyond lattice CFT’s then a
more general version of the result holds, namely the ratio of ȟ to the level k is the same for
each of the components [14].

The third property listed above for lattices in dimension ≤ 24 – that their number is small
– is also related to, though does not immediately imply, a comparably small number of mero-
morphic CFT’s with c ≤ 24. The actual number turns out to be (1, 2,71) for c = (8, 16,24).

None of these restrictive properties is applicable once we go above c = 24, making the
classification there very difficult. To start with, in 32 dimensions the lower bound on the
number of even unimodular lattices is itself of order 109, as shown in [25]. Quite contrary
to the cases in ≤ 24 dimensions, the root systems of these 32 dimensional lattices have all
possible ranks, ranging from 0 (empty root system), 1, 2, · · · , 31, 32 (complete root system).
In fact, the vast majority of these lattices have incomplete root systems. If the rank of the
root system is r < 32, the corresponding CFT has an additional U(1)32−r factor in its spin-1
algebra and by our definition its Kac-Moody algebra is incomplete. If we go beyond lattices
and construct more general c = 32 meromorphic CFT by methods parallel to those of [14], the
total rank of abelian and non-abelian algebras together will typically fall below 32 and one
will encounter both complete and incomplete cases.

Things become much more manageable if we start out by restricting ourselves to lattices
with complete root systems. There are only 132 (out of more than a billion!) such indecompos-
able lattices, and they were classified by Kervaire in [26]. There are 119 distinct rank 32 root
systems, all simply laced, corresponding to these lattices (unlike in c ≤ 24, a few inequivalent
lattices have the same root system). The simplest examples of c = 32 meromorphic CFT’s can
be now constructed from these 132 lattices, and all of them will have a complete Kac-Moody

8
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algebra at level 1 with rank 32 and a Sugawara central charge equal to 32.
We can now return to our initial problem. We pick any of the above CFT’s which have a

Kac-Moody algebra containing an `= 0 affine theory as a direct summand, and take the coset
to get an ` = 6 theory. Since all the Kervaire lattices have simply laced root systems, the Kac-
Moody algebras only have simply laced Lie components. Hence these cases have very similar
properties to the cosets considered in [3]4. Thus, for a sizable number of 32-dimensional
lattices with complete root systems, the coset theory is completely well-defined as a CFT.

The list of ` = 6 CFT’s obtained as cosets of these theories is given below in Table 3. The
last column links to lists in Appendix A of the possible Kac-Moody algebras realised in this way.
As was the case for ` = 2 theories [3], here too we see that there are several distinct CFT’s
with different Kac-Moody algebras at each value of the central charge.

Table 3: `= 6 coset duals for simply laced algebras

`= 0 ˜̀= 6

No. c h Algebra c̃ h̃ Algebras

2 1 1
4 A1,1 31 7

4 A.5

3 2 1
3 A2,1 30 5

3 A.4

5 4 1
2 D4,1 28 3

2 A.3

7 6 2
3 E6,1 26 4

3 A.2

8 7 3
4 E7,1 25 5

4 A.1

An example in detail

Let us illustrate the construction of our ` = 6 two-character CFT’s via the above coset con-
struction in some detail using a simple example. Consider a 32-dimensional lattice having the
complete root system A16

2 . The root lattice of A16
2 is itself not unimodular, but one can construct

an even unimodular lattice which contains this as a sublattice. To do this we need to add in
a few vectors from the dual lattice of A16

2 such that one obtains a unimodular lattice. This
filling (or “gluing") set, as given in [26] is the span of eight vectors which form the rows of the
8×16 matrix (I8, H8), where I8 is the 8×8 identity matrix and H8 is a certain 8×8 Hadamard
matrix. The resulting lattice is unique, coming from a unique self-dual ternary code. In turn
this lattice defines a unique c = 32 meromorphic CFT which has A16

2,1 as its Kac-Moody algebra.
The number of spin-1 currents is simply the dimension of the algebra, which is 128. From the
q-expansion of the single character Eq. (9), we see that N = −864.

We can write the single character of this theory as a non-diagonal modular invariant combi-
nation of the affine characters of A16

2,1. These are of the form χ p
0χ

16−p
1 where χ0,χ1 are the A2,1

characters. They have conformal dimensions in the range 0, 1
3 , 2

3 , 1, · · · , 14
3 , 5, 16

3 . Denote these
by χmi

where mi take the above values. The modular invariant (upto a phase) combination of
these characters is easily found to be:

χ(τ) = χ0 + 224χ2 + 2720χ3 + 3360χ4 + 256χ5 = j(τ)
1
3 ( j(τ)− 864). (10)

4This is certainly the case when the lattice is unique for a given root system. The few cases where it is not
unique may require additional information.
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In fact, the weight enumerator polynomial of the self-dual code constructed from the Hadamard
matrix H8 is (1+224y6+2720y9+3360y12+256y15). This exemplifies a more general phe-
nomenon: the weight enumerator of a self-dual code determines the Kac-Moody character
expansion for the CFT based on the associated lattice [24].

Since this c = 32 meromorphic theory has A2,1 as one of its direct summands, we can coset
it by the ` = 0 two-character A2,1 affine theory, to get a new ` = 6 two-character CFT. The
bilinear pairing tells us that c + c̃ = 32, and h+ h̃ = 2. Since c = 2, and h = 1

3 , we find that
the `= 6 theory has c̃ = 30 and conformal dimension h̃= 5

3 . We can say more, since we know
that the new theory has a Kac-Moody algebra A15

2,1. This determines the integer N1 in line 7
of Table 2 to be 378. Using the known q-expansions of the quasi-characters, the characters of
our theory are:

χ̃0(τ) = (χ
n=7
A2
)0 + 378(χn=1

A2
)0

= q−
5
4 (1+ 120q+ 109035q2 + 32870380q3 + 2612623965q4 + · · · ),

χ̃1(τ) = (χ
n=7
A2
)1 + 378(χn=1

A2
)1

= q
5
12 (10206+ 5988735q+ 669491730q2 + 32140359765q3 + · · · ).

(11)

These characters can be expressed in terms of the characters of A15
2,1 as follows. The latter are

of the form χ
p
0χ

15−p
1 and have conformal dimensions 0, 1

3 , 2
3 , 1, · · · , 14

3 , 5. Analogous to what
we did previously, we now label these as χmi

where the mi take the above values (to avoid
confusion, we stress that these χmi

are not the same as the ones in Eq. (10)). It is then easily
verified that:

χ̃0(τ) = χ0 + 140χ2 + 1190χ3 + 840χ4 + 16χ5,

χ̃1(τ) = 42χ 5
3
+ 765χ 8

3
+ 1260χ 11

3
+ 120χ 14

3
.

(12)

In this way the coset theory is precisely established as a non-diagonal Kac-Moody invariant.
The c = 30 two-character CFT constructed here is unique. However one can construct

other two-character c = 30 CFT’s having different Kac-Moody algebras by starting with a
different Kervaire lattice. For example we can find an ` = 6 CFT with algebra A12

2,1 ⊕ E6,1

having the same central charge 30 and conformal dimension 5
3 as the previous one. A list of

complete Kac-Moody algebras for `= 6 two-character CFT’s is given in Appendix A. Restricting
just to cosets of lattice meromorphic CFT, this is the full list of possible algebras. However there
will surely be more general (non-lattice) meromorphic CFT, still having complete Kac-Moody
algebras.

4 CFT’s with an incomplete Kac-Moody algebra

Here we consider meromorphic c = 32 CFT with an incomplete Kac-Moody algebra and discuss
the possibility of taking their cosets. Because of the difficulty of this problem, our discussion
will be briefer and less conclusive than the previous section. Let us first classify the possible
types of situations. Leaving out lattice theories with complete root systems, which we have
already discussed, the landscape of the remaining even, self-dual lattices is as follows. It
includes lattices with root systems of every rank from 0 to 31. Of these, the number of lattices
in rank 0 alone is bounded below by 1.096× 107 [25]. For rank 1 ≤ r ≤ 31, there is a total
of 13,099 distinct root systems. Each one can have a very large number of distinct lattices
associated to it.

Given such a daunting number of cases, we cannot carry out a general discussion but will
instead try to highlight a few interesting examples. The most extreme example of an incom-
plete root system is to have no root system at all. A famous lattice with this property is the
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Barnes-Wall lattice BW32, which has an automorphism group of order 231.35.52.7.17.31. The
fact that it has no root system is simply the statement that the minimum (length)2 of any vector
in the lattice is greater than 2. Thus, as we have seen, there can be no non-abelian currents, but
there are 32 U(1) currents of the form ∂ X i , i = 1, 2, · · ·32. Because it has a very large automor-
phism group, this lattice can be thought of as a close analogue of the 24-dimensional Leech
lattice, whose automorphisms form the Conway group Co0 of order 222.39.54.72.11.13.23.
Moreover, there is an orbifold of the CFT based on BW32 that removes even the abelian cur-
rent algebra, and the resulting VOA has a larger automorphism group studied in [27]. We
may think of this as being analogous in some ways to the Monster CFT at c = 24. Following
the mathematical literature we will refer to any CFT (or even admissible character) having no
Kac-Moody algebra as being of “OZ type” where OZ stands for “one zero” and denotes that the
level-1 degeneracy for the identity character is zero [28]. In this notation, the Monster CFT
and the CFT of [27] are meromorphic theories of OZ type.

In [4] the possibility of OZ-type coset pairs was considered. The cases considered there had
two or three characters and low values of `, and the coset pairs combined to give the unique
c = 24 meromorphic CFT of OZ type, namely the Monster CFT. Unfortunately for the case
of two characters the coset dual of the c = −22

5 minimal was actually not admissible, indeed
it had mostly negative coefficients – thus falling in the category of “type II quasi-character”
[15]. However, an admissible example was uncovered in the three-character case: the Baby
Monster CFT, dual to the Ising model. Due to the OZ nature of the numerator (Monster) and
denominator (Ising), one has no Kac-Moody algebra to help in defining the coset. Nevertheless,
the existence of the coset dual as a VOA has been established by other means [29, 30] and
consistency of its correlation functions was shown in [31]. Very recently [32] other OZ coset
pairs have been found, and the duals have large sporadic groups as their automorphisms.

Encouraged by this, we may wonder if there is an ` = 6 two-character CFT obtained by
taking the coset of the BW32 orbifold by some ` = 0 CFT of OZ type. Unfortunately this
does not work, for the same reason as in [4]. For example, an ` = 6 dual of the Lee-Yang
minimal model would have c = 182

5 . But this is not in Table 2, and we have verified that it is a
quasi-character of type II. We may instead start with admissible OZ-type `= 6 characters and
look for their ` = 0 duals, for example consider the character in line 1 of Table 2 which has
(c, h) = (122

5 , 6
5), and choose N1 = 244, the value that removes the degeneracy of the first state

above the identity. The ` = 0 theory that pairs up with it c = 38
5 , h = 4

5 which is precisely the
E7.5 theory, identified in [33] as an intermediate vertex operator algebra (IVOA). However,
this latter theory is not OZ, as it has a spin-1 algebra of dimension 190, a number that sits
between 133 and 248 (the dimensions of E7 and E8) and famously fills a gap in the Deligne
series [34]. We have verified that no OZ coset pairs of two-character theories with ` = 0 and
` = 6 exist. Past experience strongly suggests, however, that such pairs may exist from three
characters onwards.

Better examples are found by considering each of the entries in Table 2 and first choosing N1
so that they become of OZ type. As explained above, their `= 0 coset duals are not of OZ type,
in fact they are Deligne series CFT’s having a simple level-1 Kac-Moody algebra. This suggests
that we look for c = 32 meromorphic theories with a simple level-1 Kac-Moody algebra, and
coset them by a Deligne series CFT. From Table 1 of [25] we see that there are indeed lattices
having A1, A2, D4, E6 as their root systems (but curiously not E7). The CFT on these lattices will
have an extra U(1)32−r symmetry. Assuming this can be removed by orbifolding, one would
find the right kind of meromorphic CFT such that, when quotiented by a simply-laced CFT in
the Deligne series (and excluding E7), we will recover our desired `= 6 CFT of OZ type.

We have looked at just a few special cases of cosets of meromorphic CFT with incomplete
Kac-Moody algebras. We identified a few concrete possible examples but did not give a precise
proof of the existence of any of these coset CFT’s. It should be possible to construct them using
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VOA techniques, as was done for the Baby Monster in [29,30]. Also many more examples can
be found, and we leave this subject for future investigation.

5 Discussion

In this work we proposed a procedure to classify `= 6 two-character CFT’s as cosets of mero-
morphic CFT with central charge 32. We identified a number of cases where the Kac-Moody
algebra suffices to define the coset precisely, just like the cases originally discussed in [3]. One
important conclusion of our investigation is that there is potentially an enormity of `= 6 two-
character CFT that mirrors the enormous number (more than a billion) of meromorphic CFT
at c = 32.

Given that the task of completely classifying even, unimodular lattices in 32 dimensions is
already considered too daunting by mathematicians, it would seem quite hopeless to try and
list out all `= 6 CFT. This is true even before considering orbifolds of lattice theories and other
constructions as in [14], which would only expand the list further. Still, it is satisfying to know
that two-character CFT’s exist in a comparable profusion to meromorphic ones, something that
was not previously clear.

Our investigation leaves much to be done. We suggested a way to look for OZ-type theories,
and precise constructions of these would be useful. This would involve defining the c = 32
orbifold CFT associated to specific lattices that we described in the previous section. It would
be nice to construct at least one ` = 6 CFT with a complete but non-simply-laced Kac-Moody
algebra. One may want to look at lattices with a root system of rank 31, the closest to being
complete, and see if coset VOA’s can be defined. Finally one should try to understand the
landscape of ` > 6 two-character theories, as well as the barely explored world of higher-
character theories with ` > 0.
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A List of possible complete Kac-Moody algebras for `= 6

Below are lists of complete Kac-Moody algebras of `= 6 two-character CFT’s. All the algebras
are at level 1.

A.1 c = 25, h= 7
4

No. N Kac-Moody algebra

1 224 A1
21D4

2 272 A1
9D4

4

3 320 A1
3D4

4D6

4 344 A5
3D4E6

5 368 A1
3D4D6

3

6 368 A1A3A7
2D7

7 392 A3A5A11D6

8 416 A1D4D6
2D8

9 464 A2A9A14

10 464 A5A11D9

11 464 A9
2E7

No. N Kac-Moody algebra

12 536 A8A17

13 464 D6
3E7

14 536 A3A15E7

15 512 A1
2D8

2E7

16 512 A1D6D8D10

17 716 A2A23

18 608 D6D12E7

19 560 D4E7
3

20 704 A1D10D14

21 896 D18E7

A.2 c = 26, h= 4
3

No. N Kac-Moody algebra

1 236 A2
10E6

2 326 A2A8
3

3 344 A5
3D4E7

4 416 A5
2D10E6

5 512 A3A11D12

6 476 A11A15

7 566 A6A20

8 656 A11D15

9 806 A26
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A.3 c = 28, h= 3
2

No. N Kac-Moody algebra

1 112 A1
28

2 128 A1
24D4

3 160 A1
22D6

4 144 A1
20D4

2

5 224 A1
21E7

6 176 A1
18D4D6

7 160 A1
16D4

3

8 224 A1
16D4D8

9 192 A1
14D4

2D6

10 176 A1
12D4

4

11 176 A3
8D4

12 192 A1
8D4

5

13 224 A1
12D4D6

2

14 208 A1
10D4

3D6

15 200 A2
4A5

4

16 272 A1
9D4

3E7

17 256 A1
8D4

3D8

18 240 A1
8D4

2D6
2

19 224 A1
6D4

4D6

20 224 D4
8

No. N Kac-Moody algebra

21 320 A1
6D4

4D10

22 288 A1
6D4

3D6D8

23 272 A1
6D4

2D6
3

24 256 A1
4D4

4D6
2

25 320 A1
4D4

2D6
2D8

26 304 A1
4D4D6

4

27 320 A1
3D4

4D6E7

28 288 A1
2D4

3D6
3

29 344 A5
3D4E6E7

30 416 D4
5D12

31 352 D4
4D8

2

32 320 D4
2D6

4

33 368 A1
3D4D6

3E7

34 384 A1
2D4

2D6
2D10

35 352 A1
2D4D6

3D8

36 416 D4
2D8

3

37 416 A1D4D6
2D8E7

38 544 D4D8
2D12

39 560 D4E7
4

A.4 c = 30, h= 5
3

No. N Kac-Moody algebra

1 128 A2
15

2 182 A2
12E6

3 236 A2
9E6

2

4 200 A2
3A5

4D4

5 332 A2A3
2A11

2

6 344 A2
3E6

4

No. N Kac-Moody algebra

7 326 A8
3E6

8 368 A2A11
2D6

9 446 A5A8A17

10 464 A2A14
2

11 464 A9A14E7

12 716 A23E7
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A.5 c = 31, h= 5
4

No. N Kac-Moody algebra

1 96 A1
31

2 112 A1
27D4

3 144 A1
25D6

4 128 A1
23D4

2

5 192 A1
23D8

6 160 A1
21D4D6

7 144 A1
19D4

3

8 144 A1
7A3

8

9 256 A1
21D10

10 224 A1
20D4E7

11 192 A1
19D6

2

12 176 A1
17D4

2D6

13 160 A1
15D4

4

14 224 A1
15D4

2D8

15 192 A1
13D4

3D6

16 176 A1
12D4

5

17 192 A1
7D4

6

18 224 A1
11D4

2D6
2

19 208 A1
9D4

4D6

20 272 A1
8D4

4E7

21 256 A1
7D4

4D8

22 240 A1
6D4

3D6
2

23 224 A1
5D4

5D6

24 272 A1
3A5

4D8

25 288 A1
7D6

4

26 320 A1
5D4

4D10

27 288 A1
5D4

3D6D8

No. N Kac-Moody algebra

28 272 A1
5D4

2D6
3

29 256 A1
3D4

4D6
2

30 264 A1
3A7

4

31 320 A1
3D4

2D6
2D8

32 304 A1
3D4D6

4

33 320 A1
2D4

4D6E7

34 288 A1D4
3D6

3

35 352 A1A3
2A7

2D10

36 342 A6
3A13

37 384 A1
3D6

2D8
2

38 368 A1
2D4D6

3E7

39 336 A1D6
5

40 384 A1D4
2D6

2D10

41 352 A1D4D6
3D8

42 368 A3A7
2D7E7

43 416 A5A11D5D10

44 480 A1A9
2D12

45 480 A1D6
3D12

46 448 A1D6
2D8D10

47 516 A1A15
2

48 416 D4D6
2D8E7

49 512 A1D8
2E7

2

50 576 A1D10
3

51 512 D6D8D10E7

52 704 A17D14

53 704 D10D14E7

54 1026 A31
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