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Abstract

Among the different platforms to engineer Majorana fermions in one-dimensional topo-
logical superconductors, topological insulator nanowires remain a promising option.
Threading an odd number of flux quanta through these wires induces an odd number
of surface channels, which can then be gapped with proximity induced pairing. Because
of the flux and depending on energetics, the phase of this surface pairing may or may
not wind around the wire in the form of a vortex. Here we show that for wires with dis-
crete rotational symmetry, this vortex is necessary to produce a fully gapped topological
superconductor with localized Majorana end states. Without a vortex the proximitized
wire remains gapless, and it is only if the symmetry is broken by disorder that a gap
develops, which is much smaller than the one obtained with a vortex. These results
are explained with the help of a continuum model and validated numerically with a
tight binding model, and highlight the benefit of a vortex for reliable use of Majorana
fermions in this platform.
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1 Introduction

The physical realization and manipulation of non-Abelian anyons, exotic quasiparticles with
neither fermionic nor bosonic statistics, has remained a challenging endeavor in condensed
matter physics for decades [1]. Their search continues motivated both by the fundamental
aim of discovering new phases of matter and by promising applications in topological quan-
tum computation. The simplest of these quasiparticles, localized Majorana bound states, can
appear in defects or on boundaries of topological superconductors [2–5]. These systems are
however rare because they require unconventional pairing, but the more recent realization that
they can be engineered artificially from more standard components has triggered a renewed
effort to find them.

Currently, the most developed proposals are based on one dimensional (1D) superconduc-
tors which host Majorana bound states at their ends [6–8], engineered by coupling a metallic
1D system with an odd number of channels at the Fermi level with a superconductor via the
proximity effect [9]. The realization of this proposal with semiconductor wires has provided
compelling experimental evidence of Majorana bound states (see Ref. [10] and references
therein), but several alternative realizations remain promising as well [11–13] .

One particularly interesting system that remains relatively unexplored is based on three
dimensional topological insulator (TI) nanowires. When the Fermi level lies in the bulk gap,
the only transport modes are those derived from the topological surface Dirac fermion [14,15]
which wraps around the surface of the wire. When a flux of h/2e (half of the Aharonov-Bohm
flux quantum h/e) is threaded through the wire cross section, there is an odd number of modes
at the Fermi level for any value of the chemical potential, and one of them is perfectly transmit-
ted in the presence of time-reversal symmetry [16–22]. These wires were proposed to realize
a topological superconductor in the presence of proximity effect [23,24] and this proposal has
been since studied extensively [25–28]. In particular, the advantages of TI nanowires to build
a Majorana qubit architecture for quantum computation were emphasized in a recent pro-
posal [29]. Experimentally, TI nanowires have been realized in several compounds [30–38],
where Aharonov-Bohm oscillations of the conductivity reveal that good surface transport has
been achieved. The recent observation of Andreev reflection from the surface modes in a
nanowire Josephson junction made with TI BiSbSeTe2 [39,40] further supports the idea that
topological superconductivity in this system should be within reach.

A key aspect of the proximity effect in wires is that the induced pairing field may acquire
an azimuthal phase dependence when the magnetic field is applied, as illustrated in Fig. 1.
If the intrinsic superconductor surrounds the wire as in Fig. 1(a), an azimuthal supercurrent
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will develop upon flux threading, with a tendency to screen the applied flux. As the flux
increases, it will become energetically favorable to switch to a state with an azimuthal vortex
in the order parameter and no supercurrent, which should be most stable for an applied flux
of h/2e. The proximity induced pairing will naturally inherit this phase profile. However, if
the intrinsic superconductor is a thin film contacting one face of the wire as in Fig. 1(b), in the
simplest approximation the phase profile of the order parameter and induced pairing field may
be assumed constant at any flux. In a realistic setup, the vortex may or may not be present
depending on flux, the device, and on material details, and the impact of the vortex on the
resulting proximitized state is not sufficiently understood.

As emphasized in Ref. [26], the low energy surface Dirac model necessarily predicts that
the vortex is required to produce a topological superconductor. This is because at any finite
flux, the lowest energy electron mode has angular momentum of l = 1/2 and simply cannot
be gapped out with its hole partner of l = −1/2 if the pairing field is constant and angu-
lar momentum is conserved. The vortex is required to compensate the mismatch in angular
momentum and open a gap. In the absence of a vortex, the spectrum remains gapless and
localized Majorana bound states cannot be defined. This conclusion is at odds with bulk tight
binding simulations, which predict that a gapped state can be achieved without a vortex [24].
Another work with a more realistic account of the proximity effect observed both gapped and
gapless regions in the absence of the vortex [27]. A better understanding of this problem is
thus clearly needed.

In this work, we show with both a low energy model and tight binding calculations that in
the presence of any rotation axis Cn parallel to the field, which requires angular momentum
conservation modulo n, the superconducting state without a vortex must indeed be either
trivial or gapless, regardless of the proximity induced pairing strength. We then show how
breaking the rotation symmetry may still lead to a gapped topological state in the absence of
a vortex. However, the gap magnitude in this case is determined by the symmetry breaking
mechanism and is generally much smaller than the magnitude of the pairing strength. In the
presence of a vortex, on the contrary, the gap remains of the order of the pairing strength,
so the topological superconducting phase is in practice much more robust in this case. We
illustrate these points in detail by computing phase diagrams of the gaps and topological phase
transitions for several types of wires and pairing potentials, also taking into account the effect
of disorder.

The rest of this work is organized as follows. In Sec. 2 we describe the surface effective
model from which all our main conclusions can be derived. In Sec. 3 we confirm these results
with a lattice tight binding model with proximity effect, considering a number of scenarios.
Finally in Sec. 4 we discuss our results and present some conclusions. Several technical deriva-
tions are left for the Appendix.

2 Continuum model for TI nanowire surface states

Topological insulators are guaranteed to possess a Dirac fermion surface state [14]which dom-
inates their transport properties when the chemical potential µ is in the bulk band gap Eg . This
surface state decays into the bulk within a length scale vF/Eg which is of the order of a sev-
eral nm, so for bulk insulating wires of sizes much larger than this length, a surface model is
enough to account for all transport properties. This model takes the form of a Dirac Hamilto-
nian in the corresponding surface geometry [16–18, 24, 26]. To discuss superconductivity in
wires, we consider a cylindrical sample of radius R and cross section A= πR2 oriented along
the x direction. The surface of the wire is parametrized in cylindrical coordinates (x ,θ ). The
wire is in the presence of a magnetic field ~B = (B‖, 0, 0) which threads a dimensionless flux
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Figure 1: Two simplified setups used to induce the proximity effect in wires in the
presence of a magnetic field. In a), the wire is surrounded by a superconducting
cylinder, which must itself host a vortex when the flux is h/2e. The TI then inherits
the vortex profile in proximity-induced pairing field. In b), the wire is only partially
contacted by the bulk superconductor. In the limit where the superconductor is a
thin film no vortices are expected, and the induced pairing in the wire will be ap-
proximately constant.

η = B‖A/(h/e) through the cross section. The magnetic field is described with the vector po-
tential ~A = B‖(0,−z/2, y/2), so that translational invariance is preserved in the x direction.
The effect of the Zeeman coupling is not essential and will be discussed in Sec. 4. The effective
Dirac equation for the surface states is Hψ= Eψ with Hamiltonian

H = −iσx∂x +
1
Rσy(−i∂θ +η), (1)

where σi are Pauli matrices acting on the effective spin degree of freedom of the surface
states, and we set ħh = 1 and the Fermi velocity vF = 1. In these units, 1/R is the natural
energy unit for the problem. The wave functions satisfy antiperiodic boundary conditions in
θ due to the curvature-induced π Berry phase [17, 18]. There are different approaches to
to derive this Hamiltonian [16–18, 24, 26], but in all cases coordinate transformations and
spin rotations can be used to bring the Hamiltonian into this form, even for a smooth cross
section different from a circle. The different approaches and their relation are summarized
in Appendix A.1. This model has an effective full rotational symmetry around the wire axis
θ → θ + θ ′ for any θ ′. The Hamiltonian can be diagonalized by Fourier transforming the
spinor ψ(x ,θ ) =

∫

d x
∑

n eikx eilθψk,l , where l is half-integer, l = ±1
2 ,±3

2 . . ., because of the
antiperiodic boundary conditions. The l-th block of the transformed Hamiltonian is

Hl = σx k+ 1
R(l −η)σy . (2)

When η = 1/2, which corresponds to half of a flux quantum threaded through the wire, the
l = 1/2 mode is gapless, linearly dispersing, and perfectly transmitted [20], while the rest of
the modes are doubly degenerate and gapped.

2.1 Superconductivity in the continuum model

Since l = 1/2 is the only non-degenerate mode at η= 1/2, the number of channels is odd for
any chemical potential, and including superconducting pairing through the proximity effect
should result in a topological superconductor according to Kitaev [9], as long as the resulting
spectrum becomes gapped by the pairing. To see whether the spectrum becomes gapped we
model superconductivity with a BdG Hamiltonian H = 1

2Ψ
†HΨ written in terms of Nambu

spinors Ψ =
�

ψ

−iσy (ψ†)T
�

and

H =
�

−iσx∂x +
1
Rσy(−i∂θ +η τz)−µ

�

τz +τxRe[∆(x ,θ )] +τy Im[∆(x ,θ )], (3)
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where τi are Pauli matrices in the Nambu space (see Appendix A.2). By the BdG construc-
tion, this Hamiltonian has a particle-hole symmetry H = −UC H∗U†

C , with the unitary part
UC = σyτy . The complex pairing function ∆(x ,θ ) depends on the way the proximity effect
is realized. In particular, as discussed in Fig. 1, ∆(x ,θ ) may have a phase winding around the
perimeter of the wire. If the wire is surrounded by a superconducting shell, it is natural that
this shell develops a phase winding at certain values of the flux, which is transferred to the
induced pairing ∆(x ,θ ) =∆0einvθ , with nv the number of vortices. In the geometry of a wire
lying on top of a flat, bulk superconductor, one may rather expect a roughly homogeneous
order parameter which can be approximated by a constant ∆(x ,θ ) =∆, so nv = 0.

The Hamiltonian in Eq. (3) appears to break rotation symmetry because of the θ depen-
dence of the pairing term with generic nv , but this symmetry is explicitly recovered by making
the gauge transformation Ψ→ e−iτz nvθ/2Ψ, which results in the Hamiltonian

H ′ =
�

−iσx∂x +
1
Rσy(−i∂θ + (η−

nv
2 ) τz)−µ

�

τz +τx∆0. (4)

Crucially, this gauge transformation preserves the antiperiodic boundary condition for even
nv , while it changes it to periodic boundary conditions for odd nv . The Fourier transformed
Hamiltonian takes the form

H ′l =
�

σx k+ 1
R(l − (η−

nv
2 )τz)σy −µ

�

τz +τx∆0, (5)

where l = ±1
2 ,±3

2 . . . if nv is even, while l = 0,±1, . . . if nv is odd. After the Fourier trans-
form, particle-hole symmetry takes the form Hk,l = −U†

C H∗−k,−l UC , i.e., it reverses the angular
momentum. When nv is odd, the l = 0 sector is special because it maps into itself under
particle-hole symmetry.

This surface Hamiltonian has an inversion symmetry Hk,l = U†
I H−k,l UI with UI = σy ,

which will be present if the original bulk model has inversion symmetry. In addition, for the
special value of the flux η = nv/2, this Hamiltonian has an effective time-reversal symmetry
Hk,l = U†

T H∗−k,−l U with UT = iσy . The combination of these two symmetries when η = nv/2
enforces that all pairs of bands with angular momentum ±l are degenerate for all k, except
for the l = 0 band when it is present.

The critical role of the vortex in this problem is best illustrated with the simplest example
considered in Ref. [26] when only one mode is occupied. When ∆0 = 0, the spectra of the
Hamiltonian in Eq. (5) do not depend on nv , while the angular momentum labels l of each
band do. An example spectra for η = 1/2, for a chemical potential where only the first mode
is occupied is shown in Fig. 2(a). When pairing is included, however, the spectra are markedly
different for nv = 0 and nv = 1. For nv = 0 the spectrum remains gapless, because the electron
branch at the Fermi level has l = 1/2, while the hole branch has the different angular momen-
tum l = −1/2, and different angular momentum sub-blocks in the Hamiltonian cannot be
mixed by the constant pairing, which preserves rotation symmetry. This is shown in Fig. 2(b).
For nv = 1, however, the electron and hole branches at the Fermi level are particle-hole con-
jugates with l = 0, and the pairing can gap them out, as shown in Fig. 2(c). In essence, the
vortex has provided the extra unit of angular momentum to compensate the mismatch in the
absence of the vortex.

The general case for arbitrary l, η, and nv is as follows. The energies depend on these
parameters only through the combination (l − (η− nv/2))2. Consider first the case η = nv/2
with effective time-reversal symmetry. If nv is even, l is half integer and all electron states come
in degenerate pairs of angular momentum ±l. When adding superconductivity, the hole states
have angular momentum ∓l, and because of the exact degeneracy imposed by time reversal
and inversion symmetries, electron and hole states of angular momentum l cross exactly at the
Fermi level, and so do electron and hole states of −l. Therefore, infinitesimal pairing is able to
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Figure 2: Spectra of topological insulator nanowires obtained from the effective
Hamiltonians in Eq. (5) with µR = 0.3, when a flux of η = 1/2 is applied. a) In the
absence of pairing, ∆0R = 0, the spectrum is gapless with an odd number of modes
at any E. Electron and hole modes are shown with full and dashed lines, respectively.
b) In the presence of a paring field with nv = 0, the spectrum remains gapless due to
angular momentum conservation. c) In the presence of a vortex nv = 1, the spectrum
becomes gapped. In b) and c) ∆0R= 0.15.

gap out both pairs. The resulting state is always gapped and trivial. If nv is odd, however, l is
an integer and now the non-degenerate mode l = 0 is allowed while the rest of integers come
in degenerate pairs ±l. The mentioned degeneracy allows every |l| ≤ 1 mode to be gapped out
(and l = 0 can always gap out as its hole partner has also l = 0) and since the total number
of modes is always odd, the resulting state is always topological and gapped for any chemical
potential.

As we move away from η= nv/2, the ±l states split in energy and the ability to gap them
out with their corresponding holes depends on the strength of the pairing. For sufficiently
large η−nv/2, a transition to a gapless state always occurs. The first conclusion of the effective
model is thus clear: an odd number of vortices is needed for superconductivity to gap out the
system for half-integer flux η. In particular, note that this means that if nv = 0, it is impossible
to get a topological state in the presence of rotation symmetry.

2.2 Computation of topological invariant

In the previous section we used Kitaev’s weak-coupling mode-counting argument to decide
when the system was in a topological phase. We now determine this explicitly by computing
the Pfaffian topological invariant ν, sometimes called the Kitaev or Majorana number [9]. This
invariant is formally defined only for lattice systems with a full gap throughout the Brillouin
Zone, and can be computed from the Hamiltonian matrix in the following way. First, a unitary
transformation is used to express the Hamiltonian in the basis where particle-hole symmetry
operation takes the simple form H(k) = −H∗(−k), known as the Majorana basis. In this basis,
H is purely imaginary and antisymmetric at the particle-hole invariant momenta k = 0 and
k = π. The invariant is then computed as the product of Pfaffians

ν= sign [Pf[iH(0)]Pf[iH(π)]] . (6)

This invariant can only change when there is a gap closing at either k = 0 or k = π.
For lattice Hamiltonians modeling bulk 1D systems, this invariant can only be non-trivial

when time-reversal symmetry is broken (formally in Hamiltonians of class D [4]). Since time-
reversal invariance enforces Kramers degeneneracies at k = 0,π in a 1D lattice system, the
bands must connect these degeneracies such that there are always an even number of Fermi
points between k = 0 and k = π and superconductivity is trivial. The only way to have an odd
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number of Fermi points with time reversal symmetry in a 1D system is when this is not a bulk
1D system but the 1D boundary of a higher dimensional lattice, as in the well known example of
the helical edge state of a 2D topological insulator [41]. In this case, a time-reversal invariant
1D continuum Hamiltonian can be found with a single Fermi point, and superconductivity in
this system is indeed topological and features Majorana edge modes.

The continuum model for the surface states of a TI nanowire assumes that any bands
at k = π are far away in energy and are never involved in superconductivity, and therefore
changes in the topological invariant can be tracked by computing the Pfaffian at k = 0. One
may thus wonder how the Pfaffian can be non-trivial in the presence of time-reversal symmetry
when η= nv/2. The reason is the same as in the case of the 2D TI edge: the 1D system under
consideration is not a bulk 1D lattice, but the edge of a higher dimensional system, and it is
allowed to have a single Fermi point.

We now proceed to compute the Pfaffian invariant. For any particle-hole invariant block
diagonal Hamiltonian, the Pfaffian can be decomposed as the product of the Pfaffians for each
block. We consider first the case with nv = 0. The Hamiltonian in Eq. (5) is block diagonal
in angular momentum l, but particle hole symmetry maps blocks with angular momentum ±l
into each other, so the smallest block to compute the Pfaffian must include both ±l subblocks.
Defining Pauli matrices αi that act on this degree of freedom, a doubled Hamiltonian for a
given |l| can be written as

H|l| =
�

σx k+ 1
R(lαz −ητz)σy −µ

�

τz +τx∆0 (7)

and particle-hole symmetry is implemented as H|l|(k) = −UC H∗|l|(−k)U†
C with Uc = σyτyαx .

To switch to the Majorana basis, we employ a unitary transformation HM = UM HU†
M con-

structed such that UM UC U T
M = 1, so that particle-hole symmetry becomes HM

|l| (k) = −HM∗
|l| (−k)

as required. This matrix is UM = U ⊗U ′ where U acts on spin and particle-hole indices and is
given by

U =
1
p

2

�

I −iσy
−iI σy

�

, (8)

with I the identity matrix and

U ′ = 1/2[(1+ i)I + (1− i)αx]. (9)

In this basis, the Hamiltonian is

HM
|l| = σx k− 1

R lαyσyτy −ησy +µτy +σyτx∆0. (10)

The Pfaffian at k = 0 is

Pf[iHM
|l| (0)] = [η

2 − R2(∆2
0 +µ

2)]2/R4 + [l4 − 2l2(η2 + R2(−∆2
0 +µ

2))]/R4, (11)

and the Majorana number is

ν= sign





∏

l=1/2,3/2,...

Pf[iHM
|l| (0)]



 . (12)

In the case where nv = 1/2 is odd, l is an integer and the l = 0 block has to be consid-
ered separately because it transforms into itself under particle-hole symmetry. For l 6= 0 the
Hamiltonian and the Pfaffian are the same as before except η→ η− 1

2 and l is an integer so

H|l|6=0 =
�

σx k+ 1
R(lαz − (η−

1
2)τz)σy −µ

�

τz +τx∆0 (13)
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Figure 3: (a) Topological invariant (upper subpanels) and gap estimate δR (lower
subpanels) obtained from the continuum model, with a vortex absent (left subpanels)
or present (right subpanels). The pairing potential is ∆0R = 0.1. (b) is the same as
a) but with ∆0R= 0.2.

and

Pf[iHM
|l|6=0(0)] =[(η− 1/2)2 − R2(∆2

0 +µ
2)]2/R4

+ [l4 − 2l2((η− 1/2)2 + R2(−∆2
0 +µ

2))]/R4. (14)

The Hamiltonian for l = 0 is transformed with Eq. (8) alone and gives

HM
0 = σx k− (η− 1/2)σy +µτy +σyτx∆0, (15)

and the Pfaffian is

Pf[iHM
0 (k = 0)] = −∆2

0 −µ
2 + (η− 1/2)2/R2, (16)

which is always negative if η= 1/2. The Majorana number is

ν= sign



Pf[iHM
0 (0)]

∏

|l|6=0

Pf[iHM
|l|6=0(0)]



 . (17)

2.3 Phase diagrams from continuum model

With the analytical expressions for the Pfaffian at k = 0, given in Eq. (12) (with no vortex)
and Eq. (17) (with vortex) we can now map out phase diagrams as a function of different
model parameters showing the topological and trivial regions. To do this, we note that at
the point ∆0 = η = 0, the system is a non-superconducting insulator which must have trivial
Majorana number. As we move through the phase diagram, the Majorana number will become
non-trivial when the Pfaffian at k = 0 changes sign compared to that point.

To address the problem of whether the superconducting state is gapless, it is useful to
display phase diagrams showing both the topological invariant and the gap δ induced by su-
perconductivity. The numerical computation of the gap is complicated by the fact that it is
not efficient to sweep over k to find the minimum separation between bands above and be-
low zero, especially so once we consider lattice models with many bands in the next section.
Because of this, we consider an alternative method to estimate the gap based on the transfer
matrix approach, explained in detail in Appendix A.3, which rather computes the values of
the momentum k for all modes at zero energy (at the Fermi level). Modes that do not cross

8

https://scipost.org
https://scipost.org/SciPostPhys.6.5.060


SciPost Phys. 6, 060 (2019)

the Fermi level are evanescent and have a complex momentum k = κ+ iδ, and the imaginary
part δ for a given mode can be taken as an estimate of its gap (note vF = 1). Numerically, for
a given point in the phase diagram we compute δ for all modes and take the smallest δ as an
estimate of the true gap.

With this procedure, we compute phase diagrams as a function of flux η and chemical
potential µ, which are displayed in Fig. 3 for two values of ∆. A first main result is that
the topological invariant, taken at face value, is not very different between the cases with
and without vortex. This is in agreement with previous work [24]. However, a side by side
comparison of the gap and topological invariant clearly shows that, in the absence of a vortex,
all regions where the topological invariant is formally nontrivial are in fact gapless. It is only
when the vortex is present that a region centered around η= 1/2 appears in the phase diagram
which has both a nontrivial Majorana number and a finite gap. This gapped region, as well as
the one centered around η= 0 for nv = 0, extends to arbitrary chemical potential, as discussed
in the previous section.

3 Topological superconductivity in a tight binding model

The results presented in the previous section are ultimately rooted in the full rotational in-
variance of the low-energy effective Hamiltonian. However, real lattice systems hosting a TI
state might have at most a discrete n−fold rotation symmetry, with n = 2, 3,4, 6 depending
on the lattice point group. Even if the microscopic lattice has this symmetry, the actual device
geometry or the presence of disorder might also break it. One might thus wonder to what
extent the continuum model results apply to real systems.

The effect of a discrete n−fold axis is that it enforces angular momentum conservation
only modulo n. This constraint is weaker than that induced but full rotations, but it can still
be enough to enforce a gapless superconducting state. Consider the example of the previous
section where only the lowest mode is occupied at η= 1/2, nv = 0. Since the angular momen-
tum mismatch between electron and hole state is 1, even a twofold axis (enforcing angular
momentum conservation modulo 2) is enough to prevent the mixing of these two bands. If we
thread a flux of η = 3/2, electron and hole branches at the Fermi level have angular momen-
tum of l = ±3/2, with a mismatch of 3, and again any twofold axis prevents a gap opening.
Notably, however, a threefold axis would not prevent a gap opening in this case, as angular
momentum is conserved only modulo 3. The general logic is clear: for an even-fold rotation
axis, the lowest energy mode at half-integer flux can never be gapped out by superconductivity
without a vortex.

When all relevant symmetries are broken, superconductivity is allowed to generate a fully
gapped state. There remains however the practical matter of how large the gap can be in
this case. To illustrate the symmetry constraints and to study the effects of symmetry break-
ing quantitatively, we now consider a lattice model for a proximitized TI nanowire in several
geometries. We consider the model in Ref. [23], with BdG Hamiltonian

Hk =[ε− 2t(cos kx + cos ky + cos kz)]ρxτz +λzρyτz sin kz

+λρzτz(sy sin kx − sx sin ky) +τxRe∆+τy Im∆−µτz , (18)

where ρ, s,τ denote Pauli matrices for orbital, physical spin and particle-hole degrees of free-
dom. This model has an inversion symmetry generated by UI = ρx and ~k→−~k, and a mirror
symmetry generated by UMz

= ρxσz and kz →−kz . The mirror symmetry will play the same
role as inversion in the 1D geometry, and is preserved for any cross section of the wire such
as a triangular one. The parameters ε, t,λz represent hopping amplitudes, λ is a spin-orbit
coupling strength, ∆ is the pairing potential and µ is the chemical potential. We measure all
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Figure 4: Spectra of the triangular topological insulator nanowire shown in the inset
to c), obtained in the tight binding model with∆= µ= 0, in the presence of magnetic
flux at a) zero flux and b) η = 0.6 where it becomes gapless. The flux required for
closing the gap is larger than 0.5 due to finite size effects. c) Gap as a function of flux
for the same triangular wire, showing several zeros. d) Gap as a function of flux for
a square wire with Nx = Ny = 10, showing zeros at different positions due to finite
size effects.

quantities with dimensions of energy in units of the hopping t, and we take λ = 1, λz = 1.8
and ε = 4, which realizes a topological insulator state [23]. We take a geometry where the x
and y directions are finite, extending Nx and Ny sites in each direction (note in this section
we take a rotated coordinate system where the wire is aligned in the z direction). Denoting
the site number with a discrete pair of indices i, j, the matrix elements of the Hamiltonian are

H(i, j),(i, j) = [ε− 2t cos kz]ρxτz +λzρyτz sin kz +τxRe∆i, j +τy Im∆i, j −µτz , (19)

H(i, j),(i+1, j) = (−tρxτz + iλ/2ρzsyτz)e
iτzφ j , (20)

H(i, j),(i, j+1) = (−tρxτz − iλ/2ρzsxτz)e
iτzφi . (21)

The wire is threaded by a flux described by a vector potential ~A= B‖/2(y − y0,−(x − x0), 0),
where the origin is chosen to respect the fourfold axis of the lattice. For even Nx and Ny , the ori-
gin (x0, y0) is chosen in the middle of the central plaquette. The phases φi and φ j implement
the Peierls phase for this vector potential. The pairing strength ∆i, j =∆0einvarctan(y−y0)/(x−x0)

is complex and may contain any number of vortices. This Hamiltonian has particle hole sym-
metry given by UcH

∗(−k)U†
c = −H(k), with Uc = syτy .

In the absence of pairing this model correctly produces a bulk insulator with a Dirac fermion
surface state [24], and its lowest energy modes respond to the flux in the same way as in the
effective low energy model, with the caveat that the physical value of the flux that produces
a gapless spectrum might deviate somewhat from 1/2 due to the penetration depth of the
surface state into the bulk. These finite size effects are also observed in more realistic ab-initio
calculations of topological insulator nanowires [42]. As an example illustrating these features,
in Figs. 4(a,b) we present the spectrum of a triangular wire with shape depicted in the inset to
Fig. 4(c), at η= 0 and η= 0.6 where the gap closes. The spectrum indeed reproduces that of
the effective model, in particular the degeneracies with effective time-reversal symmetry. We

10

https://scipost.org
https://scipost.org/SciPostPhys.6.5.060


SciPost Phys. 6, 060 (2019)

have chosen this triangular wire as an example with no rotation axis. The same spectrum is
obtained for square wires (not shown). Figs. 4(c,d) show the minimum gap between the lowest
energy bands at k = 0 for the triangular wire and a square wire for comparison, emphasizing
that gap closings occur periodically as in the effective model, but at fluxes that depend on the
wire details.

We now produce the same type of phase diagrams as for the continuum model for compar-
ison. To compute the Kitaev number we again need to express H in the Majorana basis, which
is achieved by a unitary transformation HM = UHU†, with U now given by

U =
1
p

2

�

I −isy
−iI sy

�

. (22)

After this transformation the Hamiltonian is

Hk =− [ε− 2t(cos kx + cos ky + cos kz)]ρxτy −λzρyτy sin kz −λρzsyτy sin kx

−λρzsx sin ky + syτxRe∆+ syτzIm∆+τyµ (23)

and the matrix elements are

H(i, j),(i, j) = −[ε− 2t cos kz]ρxτy −λzρyτy sin kz + syτxRe∆i, j + syτzIm∆i, j +µτy , (24)

H(i, j),(i+1, j) = (tρxτy − iλ/2ρzsyτy)e
−iτyφ j , (25)

H(i, j),(i, j+1) = (tρxτy − iλ/2ρzsx)e
−iτyφi . (26)

In this basis iH is a real antisymmetric matrix at k = 0,π, and the Kitaev number is given by
Eq. (6).

3.1 Phase diagrams

We now consider a number of wire geometries and setups, and present phase diagrams for
these showing the topological invariant and the estimate of the gap computed from the trans-
fer matrix as described in the previous section. Fig. 5 shows phase diagrams arranged in the
same way as in Fig. 3 for the continuum model, where the left subcolumn of each panel con-
siders pairing without a vortex, while the right subcolumn considers pairing with a vortex. In
Fig. 5(a) we consider a square wire with Nx = Ny = 10, which has fourfold rotation symmetry.
We see that the results match almost identically to the continuum model results in Fig. 3 for
both subcolumns. In particular, for nv = 1 we do get a gapped topological state for arbitrary
values of the chemical potential, and for nv = 0, the only gapped states occur around zero flux
and are trivial. The presence of a fourfold axis in this case is enough to enforce gaplessness
around η= 1/2 as in the continuum model, where the topological region was expected. These
results are in contrast with a previous lattice calculation of essentially the same geometry [24],
which did find some gapped, non-trivial regions.

Considering possible explanations for the discrepancy, in Fig. 5(b) we present the same
calculation where the origin of the vector potential (x0, y0) is displaced away from the central
plaquette, keeping the phase of the pairing profile unchanged. If∆0 = 0, this is just a choice of
gauge and makes no difference in the spectrum. However, in the presence of a general pairing
∆(x) = ∆0(x)eiφ(x), this choice has physical consequences as the physical supercurrent is
proportional to ~JSC ∼ ~A+ 2~∂ φ. Keeping the same ∆(x) but shifting ~A leads to a different
supercurrent, and in particular to one that breaks the original fourfold symmetry. While we
make this choice as an example, physically the supercurrent and vector potential would have
to be solved for self-consistently and will depend on the applied flux. The supercurrent pattern
will have more structure than our simple choice, but there is no reason to expect that it would
spontaneously break the original symmetry of the problem.
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Figure 5: Phase diagram and gap obtained from the tight binding model in the pres-
ence of flux, with pairing ∆0 = 0.02. Subpanels are arranged in the same way as in
Fig. 3 where analytical results are shown. a) Results for a clean, square wire with
Nx = Ny = 10. b) Results in the presence of an asymmetric supercurrent profile,
which is modeled by choosing the origin of the gauge potential offset from the center
of the wire (x0 = 2.25) . c) Results for a disordered wire with W = 0.1. d) Results
for a disordered wire with W = 0.4.

Using this vector potential, we observe that in the absence of a vortex, we now get gapped,
topological regions around η = 1/2, which is only possible when the fourfold axis is broken.
This reveals the importance of choosing both the vector potential and the superconducting
phase in such a way that the original symmetries of the problem are respected. An oversight
in this choice could be one possible explanation of the discrepancy of Ref. [24] with both
the effective model and our own tight binding simulations. In practice, a supercurrent that
breaks the fourfold axis can only be expected if this symmetry is already broken structurally,
for example because of the presence of a substrate. A realistic simulation of the supercurrent
profile induced by proximity effect in the presence of a field is beyond the scope of this paper.

We next consider disorder, a more physical mechanism that might lead to a topological
superconductor without a vortex by breaking rotation symmetries. As the simplest example,
we consider a wire with a potential that is constant along the wire, but which fluctuates across
the wire cross section. That is, in Eq. (24) we take µ → µ + δµi, j where δµi, j is a random
number uniformly distributed in the range [−W, W ]. Figs. 5(c,d) show two phase diagrams
for two strengths of disorder W . We see that weak disorder in Fig. 5(c) again enables gapped
topological regions in the absence of a vortex, but with a magnitude of the gap that is much
smaller than the pairing strength. Strong disorder, shown in Fig. 5(d), allows gapped regions
to emerge everywhere in the phase diagram.

We next consider further examples of the effect of symmetry breaking, now only in the
absence of a vortex. Fig 6(a) shows the square wire again for reference, with an enlarged
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Figure 6: Topological invariant and gap for different ways of breaking the C4 rota-
tion, in the absence of a vortex in the order parameter. The top row shows the wire
geometry: from left to right, the C4 invariant square wire for reference; a rectangu-
lar wire with Nx = 10, Ny = 7 and only C2 rotational symmetry; the triangular wire
from Fig. 5, where all symmetries are lost; and a square wire where the proximity
effect is finite only for sites with Nx > 7, representing the situation described in Fig 1.
Second row is the Kitaev number, and third row the gap estimate. The fourth row
zooms in on the dashed lines in the third row.

range of flux. Around an effective η = 2 certain gapped states appear, while these do not
occur in the continuum model. At this flux, the electron states with angular momentum l and
−l+4 are doubly degenerate, and the corresponding hole states have −l and l−4. Since now
angular momentum is conserved only modulo 4, states with l and l − 4 can pair and so can
−l and −l + 4, so gapped states are allowed. Fig. 6(b) shows a rectangular wire with only
a twofold rotation symmetry. In this case, we observe another gapped region around η = 1,
where the lowest two degenerate bands have an angular momentum mismatch of 2. These
extra gapped regions in Figs. Fig 6(a,b) are topologically trivial. Furthermore, they only occur
for a small range of chemical potentials. The reason for this is that we are rather far away
from η = nv = 0, and the effective time reversal symmetry is broken, so the degeneracies we
mentioned are accidental and splittings must occur at higher chemical potentials.

Fig. 6(c) shows the same phase diagram for a triangular wire with has no rotation sym-
metries, where we observe that a very small gap is opened for all values of the flux. Finally,
Fig. 6(d) represents a more realistic account of the situation in Fig. 1(b), where the proximity
effect is only induced in the few layers closest to the bulk superconductor, and again no sym-
metries remain. In this case a small gap again opens for every value of the flux. The lowest
row of plots show a cut of the estimated gap for a given chemical potential, emphasizing that
with no rotation symmetry the gap is always finite but small.
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4 Discussion and conclusions

The main conclusion to be drawn from this work is that a topological superconducting state
can be engineered with topological insulator nanowires in magnetic fields, but the magnitude
of the induced superconducting gap is strongly dependent on the device geometry, and in par-
ticular on whether there is a superconducting vortex winding around the perimeter of the wire.
In the absence of such vortex, discrete rotation symmetries may enforce a gapless state, and if
these symmetries are broken only weakly, the gap will be correspondingly very small. In the
case where there is a vortex, however, an effective time-reversal symmetry at η= nv/2= 1/2
enables a fully gapped, topological region for an arbitrary value of the chemical potential. We
have illustrated these point with an effective model for a TI with C4 symmetry, by breaking the
symmetry in different ways.

For actual devices made of the prototypical TI Bi2Se3 [15,43], with point group D3d , similar
conclusions will apply. Wires with well defined facets grown along the crystallographic c axis
will have a threefold symmetry if their cross section is triangular or hexagonal, while wires
grown along the a axis will have twofold symmetry if their cross section is rectangular [15].
This symmetries might be broken depending on the way the superconductor layer is grown.
Quantitative predictions for these systems can be made with more realistic sp3 tight binding
models [44,45] and a more microscopic account of the proximity effect as in Ref. [27].

The effective time-reversal symmetry at η= nv/2 can be broken in actual wires by several
mechanisms, which include the Zeeman coupling and the finite extent of surface wavefunc-
tions into the bulk which leads to orbital effects. The Zeeman coupling to the parallel field
results in an extra contribution to η [23], with the only effect that the value of the flux where
the perfectly transmitted mode appears deviates from 1/2. The Zeeman g factor in these sys-
tems has been measured to be in the range 6-18 [46]. The Zeeman energy scale for the fields
required to make a topological superconductor with this value is of the order of a few meV
and its effect is expected to be small in any case. Orbital effects in realistic wires will also be
small as the decay length of the surface modes is only a few nm for Bi2Se3.

It is also interesting to note the very different implications of effective time-reversal symme-
try in our system compared with the recent proposal [47] for a topological superconductor in
full-shell Rasbha-split semiconductor nanowires, recently realized experimentally [48]. In the
hollow cylinder approximation, the Hamiltonian maps to the original model in Refs. [6,7], and
the effect of the magnetic field comes only through the Aharonov-Bohm phase, so at η= nv/2
there is also an effective time-reversal symmetry. However, since this is a bulk 1D system, it is
a general constraint that one cannot get a class D topological superconductor in the presence
of time reversal symmetry. While the effective model for those wires is apparently similar to
the one used here, gapped topological regions in Ref. [47] appear only away from η = nv/2
and tend to become gapless in the presence of several occupied modes, while in our case the
region η= nv/2 is optimal for topological superconductivity as it extends for arbitrary values
of the chemical potential within the bulk gap. Time-reversal symmetry does not prevent the
effective model we use from becoming a topological superconductor because the model does
not represent a bulk 1D system but rather the boundary of a 3D system. Gapless supercon-
ductivity was also predicted in a related coupled wire model with threefold symmetry, which
become gapped once this symmetry is broken [49].

In a transport experiment, topological superconductvity can be detected via perfect An-
dreev reflection in a normal-superconductor junction [26], but again it should be noted that
this requires a fully gapped state. If the superconductor is gapless, quasiparticle transport con-
tributes in addition to Andreev reflection. A fully gapped state is also required in any proposal
that aims at implementing any type of braiding experiments.

In summary, in this work we have presented a detailed account of the influence of an
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azimuthal vortex in the order parameter of proximitized TI nanowires. We believe that the
results presented in this work can serve as a guide to a more realistic implementation of Majo-
rana fermion networks made of topological insulators, and may stimulate further experimental
developments.
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A Appendix

A.1 Dirac equation in curved space

In this appendix we review the derivation of the effective Hamiltonian for the surface states
of a TI nanowire with an arbitrary cross section, with an emphasis on unifying previous for-
malisms used for the problem. We consider a surface parametrized by two coordinates yα

with α = 1,2, living in three dimensional space described by coordinates x i with i = 1, 2,3.
Greek indices α,β , · · · will denote surface coordinates, while latin indices i, j, · · · will denote
flat space coordinates. The two basis vectors normal to the surface at every point, ~e1 and ~e2,
are given by ei

α = ∂ x i/∂ yα. The unit normal to the surface is ~n= ~e1 × ~e2/|~e1 × ~e2|.
A general effective Hamiltonian valid for any curved surface was first derived in the sup-

plement of Ref. [16]. This is obtained from a 3D massive Dirac fermion model for the bulk
by solving for an interface with normal ~n and then making ~n position dependent. Setting
ħh= vF = 1, the Hamiltonian H =ψ†Hψ is given by

H =
~∇ · ~n

2
−

i
2

�

~n · ~σ× ~∇+ ~σ× ~∇ · ~n
�

, (27)

where ~∇= (∂x ,∂y ,∂z) and ~σ = (σx ,σy ,σz). Since ~∇× ~n= 0, this can be written as

H =
~∇ · ~n

2
− i~n · ~σ× ~∇. (28)

This is also the model used in Refs. [23,24]. Since ψ only depends on the surface coordinates
yα, the gradient acts as ∇iψ = ∂ yα/∂ x i∂αψ = eαi ∂αψ. The inverse basis vector eαi ∂α is
defined with α as an upper index by convention. This inverse or conjugate basis satisfies
~eα~eβ = δαβ . In the Hamiltonian in Eq. (28), the spin is defined with respect to the flat space,
constant coordinate system given by x̂ , ŷ , ẑ as usual. If we were to include the Zeeman coupling
with respect to external field, it would take the usual form

H =
~∇ · ~n

2
− i~n · ~σ× ~∇+

µB

2
g ~σ · ~B. (29)

This Hamiltonian is not written in the standard form of a Dirac Hamiltonian in curved
space, which was derived in Ref. [17]. To put it in this form, we can rotate the spin basis by
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π/2 around the normal at each point,ψ→ Uψwith U = ei ~σ~n2
π
2 = 1p

2
(1+i ~σ·~n). The derivative

term transforms as

−iU†(~n · ~∇× ~σ)U = −i ~σ · ~∇+
1
2

�

−i ~σ · ~n ~∇ · ~n− ~∇ · ~n
�

,

where we have used 2ni ~∇ni = ~∇(~n2) = 0 and ~∇× ~n= 0. This gives the Hamiltonian

H = −i
�

~σ · ~∇+
1
2
~σ · ~n ~∇ · ~n

�

. (30)

Remembering that∇iψ= eµi ∂µψ and defining curved space Dirac matrices αµ = ~eµ ~σ, Eq. (30)
takes the form of a Dirac Hamiltonian in curved space

H = −iαµ(∂µ + Γµ), (31)

with
αµΓµ =

1
2
~σ · ~n ~∇ · ~n. (32)

This form of the Dirac equation was used in Ref. [17]. There, the spin connection Γµ was
defined in terms of the normal Pauli matrix β = ~σ · ~n as Γµ = −

1
2β∂µβ . With this definition

we have

αµΓµ = ~σ~e
µ(−

1
2
β∂µβ) =

1
2
β ~σ~eµ∂µβ =

1
2
β ~σ ~∇β =

1
2
~σ · ~n ~∇ · ~n, (33)

which indeed reproduces Eq. (30). If a general Zeeman term had been included, it would have
become position dependent due to the rotation U .

The curved space Dirac Hamiltonian is actually much simpler for a surface that has no
intrinsic curvature. For our purposes, we now consider the specific surface of a straight wire,
parallel to the z direction and with arbitrary cross section in the x-y plane given by the function
r(θ ) (for a cylinder of unit radius we would take r(θ ) = 1). Because this surface has no
intrinsic (Riemann) curvature, there is a coordinate system where this equation looks like the
Dirac equation in flat space, which we now find explicitly. The basis vectors for this surface
are

~e1 = ẑ, (34)

~e2 =
∂ x
∂ θ

x̂ +
∂ y
∂ θ

ŷ = (r ′ cosθ − r sinθ ) x̂ + (r ′ sinθ + r cosθ ) ŷ , (35)

with r ′ = ∂θ r. The conjugate (upper index) basis satisfying ~ei~e j = δi
j is

~e1 = ẑ, (36)

~e2 =
r ′ cosθ − r sinθ

r ′2 + r2
x̂ +

r ′ sinθ + r cosθ
r ′2 + r2

ŷ . (37)

The normal to the surface is

~n= −
(r ′ sinθ + r cosθ )
p

r ′2 + r2
x̂ +
(r ′ cosθ − r sinθ )
p

r ′2 + r2
ŷ . (38)

Defining φ = arctan r ′/r we have

α1 = σz , (39)

α2 =
sin(φ − θ )
p

r ′2 + r2
σx +

cos(φ − θ )
p

r ′2 + r2
σy , (40)
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and the normal Pauli matrix

β = ~n~σ = − cos(φ − θ )σx − sin(φ − θ )σy . (41)

The spin connection is

Γ1 = 0, (42)

Γ2 = −
1
2
β∂θβ =

i
2
(1− ∂θφ)σz . (43)

This leaves a final Dirac equation

H = −i
h

σz∂z +
sin(φ−θ )σx+cos(φ−θ )σyp

r ′2+r2

�

∂θ +
i
2(1− ∂θφ)σz

�

i

. (44)

Now we rotate the Pauli matrices to make them coincide locally with the basis vectors. This is
done with the transformation Ũ = eiσz(θ−φ)/2, which leads to

H = −i
�

σz∂z +
σy

p
r ′2 + r2

∂θ

�

. (45)

This generalizes the transformation used in Ref. [17] to an arbitrary shape. As this work
notes, it is key to realize that Ũ changes the boundary conditions in θ to antiperiodic because
U(θ = 2π) = −1. Finally, we make the coordinate change

s =

∫ θ

0

dθ ′
Æ

r ′2(θ ′) + r2(θ ′), (46)

∂ s
∂ θ
=
Æ

r ′2(θ ′) + r2(θ ), (47)

which indeed leads to the Hamiltonian in the flat space form

H = −i
�

σz∂z +σy∂s

�

. (48)

The coordinate change that brings the equation to flat appearance is an integral equation
which in general has no analytic solution except for a few simple cases. But the knowledge of
this coordinate change is not needed unless other position dependent terms are to be included
in the Hamiltonian.

This derivation appears to show that if the surface has no intrinsic curvature, then the
effective Hamiltonian in an appropriate basis has full rotational invariance in the new variable
s, regardless of the initial cross section. This statement is of course only true to the extent
that the linear model is valid. Real wires will only have discrete rotation symmetries, which
are apparent when higher order powers or k are included in the continuum Hamiltonian. The
cylindrical model is therefore appropriate only up to the energy cutoff given by the coefficient
of the quadratic corrections.

In summary, the effective Hamiltonian for a wire of any cross section takes the form of a
standard Dirac Hamiltonian in flat space, with antiperiodic boundary conditions. By making
the spin basis rotate to follow the basis vectors, we have introduced an extra π phase that is
often described as the "curvature induced" Berry phase. This is the model used in Ref. [26].

A.2 Effective Hamiltonian with superconductivity

Given we have presented several different normal Hamiltonians related by local spin rotations,
one may wonder whether the formulation of superconductivity still takes its standard form.
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In this section we spell out the Bogoliubov-de Gennes formulation explicitly to show that this
is the case. In second quantized form, an s-wave pairing term takes the form

H∆ =∆ψ↑ψ↓ −∆∗ψ∗↑ψ∗↓ =
1
2

�

∆ψT iσyψ−∆∗ψ†iσy(ψ
†)T
�

, (49)

with ψ =
�

ψ↑
ψ↓

�

and ψ† = (ψ∗↑,ψ
∗
↓). This type of term is added to the normal Hamiltonian

H = ψ†Hψ to model superconductivity. The different normal Hamiltonians in the previous
section are related by spin transformations of the form ψ→ Uψ with U = ei ~σ~α/2 where ~α are
position dependent variables. The Hamiltonian for s-wave pairing in Eq. (49) is not affected
by such transformations because

ψT iσyψ→ (Uψ)T iσy Uψ=ψT ei ~σ∗ ~α/2iσy ei ~σ~α/2ψ=ψT iσy e−i ~σ~α/2ei ~σ~α/2ψ=ψT iσyψ,

and the same occurs for the complex conjugate term. This is expected since s-wave pairing
forms a spin singlet which is rotationally invariant. The total Hamiltonian H +H∆ can be
rewritten in matrix form in terms of a Nambu spinor Ψ =

�

ψ

(ψ†)T

�

as

H+H∆ =
1
2
Ψ†

�

H −iσy∆
∗

iσy∆ −HT

�

Ψ. (50)

This is the BdG formulation used in Refs. [23, 24]. This problem can also be described with

an alternative basis where Ψ =
�

ψ

−iσy (ψ†)T
�

which means the hole operators are time reversed
electron operators. In this basis, the Hamiltonian is

H+H∆ =
1
2
Ψ†

�

H ∆∗

∆ −σy H∗σy

�

Ψ. (51)

This is the formulation used in this work. Both formulations satisfy particle hole symmetry,
U†

C H∗UC = −H, with UC = τx for the first and U = σyτy for the second, where τ are Pauli
matrices in Nambu space.

A.3 Transfer matrix method

Here we describe the method used to compute the estimate for the gap δ efficiently. Since we
are only interested in states near the Fermi level, we would like to find all values of k (real or
complex) for which there is a solution of

[H(k)−µ]ψk = 0. (52)

If all solutions to this equation are complex, this means there is no propagating state at the
Fermi level and the Hamiltonian is gapped. If a real solution is found, then it is gapless. An
efficient way to compute k numerically is via the transfer matrix T of the system [50]. The
T matrix of a general 1D tight-binding chain with N orbitals per site and nearest neighbor
hoppings (with lattice constant a = 1) is defined as follows. If the Hamiltonian of the chain is

H = u+ eik t + e−ik t†, (53)

where u and t are NxN matrices describing all the on-site and nearest neighbour terms, re-
spectively (and it is assumed that t is invertible), the transfer matrix at energy ε is then defined
as

T =

�

(t†)−1(ε− u) (t†)−1

−t 0

�

. (54)
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An eigenvalue λ of T with eigenvector ψλ satisfies

(T −λI)ψλ = 0 (55)

and can be found by solving det(T − λI) = 0. To see the relation with the eigenstates of H,
we multiply Eq. (55) by the following matrix

M =

�

t† λ−1I
0 t†

�

(56)

and obtain

M(T −λI)ψλ =
�

ε− u−λt† −λ−1 t 0
−t† t −λt†

�

ψλ = 0. (57)

This equation implies that

det(t†)2 det(T −λI) = det(ε− u−λt† −λ−1 t)det(−λt†). (58)

Since t† is invertible, if λ is an eigenvalue of T we must have

det(ε− u−λt† −λ−1 t) = 0, (59)

which is the condition for an eigenvalue of H if λ= e−ik (with k real or complex). Therefore,
the momenta of all propagating and evanescent modes at energy ε can be obtained from the
transfer matrix eigenvalues as

k = i logλ. (60)

Moreover, by writing ψλ in terms of its block components ψλ = (ψ1,λ,ψ2,λ)T , the first row of
Eq. (57) then implies that

(ε− u−λt† −λ−1 t)ψ1,λ = 0 (61)

so that ψ1,λ is the eigenvector corresponding to the momentum k = i logλ.
To apply this method to the tight binding Hamiltonian defined in the main text in Eq. (18),

we Fourier transform the z direction back to real space, where

ψ†
k cos kzψk→

1
2
(ψ†

iψi+1 +ψ
†
i+1ψi) (62)

and

ψ†
k sin kzψk→

i
2
(ψ†

iψi+1 −ψ
†
i+1ψi), (63)

where i denotes the i-th site along z. These become hopping terms that enter the matrix t in
Eq. (53).

To apply this method to a continuum Hamiltonian such as the one in Eq. (3), we need
to find a lattice Hamiltonian that reproduces the continuum Hamiltonian in the low energy
limit. To do this, we simply replace ψ†

kkzψk → ψ
†
k sin kzψk and then Fourier transform back

to real space as before. Note this replacement introduces a second low-energy Dirac fermion
at k = π but this poses no problem for our purposes: eigenstates of the continuum model can
be obtained from those of T by selecting those with Re[k] ≤ Λ with Λ a momentum cutoff
above which the Dirac model is no longer applicable.
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