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Abstract

We present a global analysis of the Higgs and electroweak sector based on LHC Run II
and electroweak precision observables. We show which measurements provide the lead-
ing constraints on Higgs-related operators, and how the achieved LHC precision makes
it necessary to combine rate measurements with electroweak precision observables. The
SFitter framework allows us to include kinematic distributions beyond pre-defined AT-
LAS and CMS observables, independently study correlations, and avoid Gaussian as-
sumptions for theory uncertainties. These Run II results are a step towards a precision
physics program at the LHC, interpreted in terms of effective operators.
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1 Introduction

After the discovery of a light, likely fundamental Higgs boson largely compatible with the
Standard Model [1-3], the LHC has focused on precision studies of electroweak symmetry
breaking [4,5]. From a theoretical as well as from an experimental perspective, the appropri-
ate interpretation framework for such LHC precision analyses are effective Lagrangians [6-16].
They require us to fix the (propagating) particle content and the underlying symmetry struc-
ture. For the former, experimental observations point to the Standard Model content, possibly
extended by a dark matter agent coupling to the Higgs sector. Concerning the interactions, we
can assume the Higgs doublet structure of the Standard Model, which intertwines the Higgs
sector and the electroweak gauge sector [ 17-20]. The corresponding analyses based on Run I
data [21-39] and first analyses based on Run II data [40,41] prove that the LHC has success-
fully transitioned to a precision physics experiment.

In the effective theory version of the Standard Model [16] we assume that departures of
Higgs or gauge boson interactions from their SM predictions are characterized by a new energy
scale A. It is crucial that this energy scale is not kinematically accessible at the LHC, which
means that the corresponding new particles never appear on their mass shell. This condition
defines the validity of the EFT approach [42,43]. Because the range of energies accessible in
the kinematic regime of the LHC does not guarantee a strong hierarchy of scales [44], we can
then think of an effective Lagrangian representing classes of new physics models [45-52].

One of the great advantages of the SMEFT framework is that it allows for global analyses
of LHC measurements not only in the Higgs and electroweak gauge sectors, but also in the
QCD sector [53-59], the top sector [60-65], or the flavor sector [66]. For LHC Run I there
exist analyses combining Higgs measurements with LEP data [67-71] or, even better, di-boson
production at the LHC searching for anomalous triple gauge vertices [23,72-77]. At this point
we find that in the effective Lagrangian framework the LHC limits are surpassing the LEP limits,
because effective operators with a momentum dependence can be tested either through high
precision or through large momentum flow [78,79]. Similarly, at the level of Run II precision
we should not hard-code the electroweak precision constraints into our operator basis [80-85].
Fermionic operators affect electroweak precision data and LHC data in different combinations
with the usual bosonic operators, and this correlation generally weakens the constraints on
operators contributing to Higgs physics only. This brings the number of SMEFT operators
considered in our global Higgs analysis to 20, plus invisible decays. Two of these operators
turn out to be successfully constrained by non-Higgs observables, so they do not have to be
considered in the actual analysis.

In this paper we present an SFITTER analysis of the Higgs and gauge sector at the LHC
and electroweak precision data. As usual, we do not rely on pre-defined results from ATLAS
and CMS, but evaluate event counts in total rate measurements and kinematic distributions
using our in-house framework whenever available [86-88]. This allows us to correlate sys-
tematic uncertainties, define our own treatment of theoretical uncertainties, and account for
non-Gaussian constraints. We start by defining our relevant operator basis in Sec. 2 and 3. We
then compare possible Higgs-sector constraints on operators measured in other LHC analyses
in Sec. 4. With this operator basis we then report on a global LHC analysis, starting with a
comparison of Run I and Run II results, adding electroweak precision observables, and dis-
cussing the interplay of the two kinds of operators in detail in Sec. 6. Our final result brings
us a significant step closer to a global SFITTER SMEFT analysis.
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2 Higgs and gauge sector

The linear effective Lagrangian is an SU(3). ® SU(2); ® U(1)y-symmetric extension of the
renormalizable Standard model, but with the SM field content. It is ordered by inverse powers
of the new physics scale [6-13,17-20],

=Z%O>«- $

Neglecting lepton number violation at dimension five the first order of new physics effects is di-
mension six, with 59 baryon-number conserving operators, barring flavor structure and Hermi-
tian conjugation [9-13]. We follow the definition of the relevant operator basis of Ref. [24,25]:
first, we restrict the initial set to P-even and C—even operators®. We then use the equations
of motion to rotate to a basis where there are no blind directions linked to electroweak preci-
sion data. We then neglect all operators that cannot be studied at the LHC yet or which are
strongly constrained from other LHC measurements. This includes the HHH vertex [91-96],
the Higgs interactions with light-generation fermions, and some operators discussed in Sec. 4.
We are left with 18 dimension-6 operators, ten of which do not influence electroweak precision
observables at tree level [24,25],

Ogc = ¢ G;,GH” Oww = ¢ W, WH¢ Opp = ¢ "By, B¢

Ow = (Duqb)TW“v(DvdJ) Op = (D, ) B*"(D,¢)

O = 50" $)5,(8) Oy =T (WP W) @
Oe¢,33 = ¢V'r¢ is‘i’eR,s Ou¢>,33 = S‘bT(;b Q3q§uR,3 Od¢,33 = ¢T¢ Q3¢dR,3 .

The covariant derivative acting on the Higgs is D, = J, + ig/ B,/2 + igaaWIf /2, and the
field strengths are Buv =ig’ B,,/2 and Wuv = igan!j‘V/ 2. This ad-hoc rescaling of the field
strength can be motivated through our expectations from known UV-completions, but it has no
effect on our analysis or its interpretation. The effective Lagrangian which we use to interpret
Higgs and triple-gauge vertex (TGV) measurements at the LHC is

a f f f
Legr D — Py XzG Og + " —5 Oww + 2 > Oss
f
fWOW+fBOB+ 0¢2+fvj\VgWOWWW
f;A O 33+ fbmb ft/r\nt Oy 33 + invisible decays . 3)

For invisible Higgs decays we do not include a term in the Lagrangian and consequently de-
scribe it in terms of an invisible partial width. It is best constrained through WBF Higgs pro-
duction [97-99]. All operators except for Oy contribute to Higgs interactions. Their con-
tributions to the several Higgs vertices, including non-SM Lorentz structures, are described in
Ref. [21,22,100].

Some of the operators in Eq. (2) contribute to the self-interactions of the electroweak gauge
bosons. They can be linked to specific deviations in the Lorentz structures entering the WW Z
and WWy interactions, historically written as x.,x, glz , 8)1/ , Ay, and A5 [101]. After using

*“Before trying to prove for example CP-violation through a global fit we advocate dedicated CP tests for the
Higgs and gauge sector [89,90].
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electromagnetic gauge invariance to fix g{ =1, the shifts are defined by
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where e = gs,, and g, = gc,. The two notational conventions are equivalent for gauge-
invariant models and linked as

g2y 2,
g

K, =1 8A2(fW+fB) Ky =1+ 8W(sz s2f5)

Z _ g’ T — — 3g°m

g1_1+8c§vA2fW g =1 Ay =Az= A2 fWWW (5)

The three Wilson coefficients relevant for our analysis of di-boson production are f3, f;y and
fwww, plus the operators influencing electroweak precision data discussed in Section 3. To
get a very rough idea what kind of new physics scales we can probe in the electroweak gauge
and Higgs sector we quote the typical range from the global Run I analyses,

A
—— 2300 ... 500 GeV (Higgs-gauge analysis at Run I [23]). (6)

VIf1

We note that already the Run I di-boson measurements clearly outperform the corresponding
LEP measurements evaluated in the effective operator basis of Eq.(3).

If we deviate from this scenario and consider instead the more generic non-linear or chiral
effective Lagrangian [102-105], the parametrization would be extended. In the most generic
scenario, the TGV couplings defined above depend on a larger number of parameters and the
correlations from gauge dependence are lost. Furthermore, the deviations generated by non-
linear operators in the TGVs could be completely de-correlated to the deviations generated in
the Higgs interactions. For the Higgs sector alone, the linear and non-linear analyses can be
trivially mapped onto each other [21,22].

3 Electroweak precision sector

While the Lagrangian in Eq.(3) does not include tree-level contributions to electroweak preci-
sion observables, we know that at the level of 13 TeV data the corresponding operators should
not be neglected [40,41,80-85]. This means that we need to add two bosonic operators

Op1= (D) 9" (D), Opw = ¢'B,, W9, )
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Table 1: List of operators affecting electroweak precision observables and their effect
on fermionic couplings testable at the LHC.

operator|Hff Zqq Wgqq ZII Wiy

X X X
X X X

0451 X

X X X X X X

which affect gauge and Higgs interactions. In addition we consider the fermionic Higgs-gauge
operators

= - L - O
O = ¢ (1D, ) Qr" Q). 0% ;= #'6D%$) QA" 22Q),
i = . _ o
04 =" (D)L Ly), oY) = ¢ (D) Lir" S L),
05513,17 = ¢"(iD, ) (iig 1"t ), Orr1r = (L1yuLs) (Loy*Ly),

O) = $7(iD, $)(dr, 7" dr ),
04 = ¢T(ID,d) e er ),

Ofﬁlzzd,ij = ¢"(iD,¢)(iig 7" dr ) (8)

The operator (’);)13 dij contains the charged current iigy*dy [41,106-108]. Given that it does
not interfere with the Standard Model and the known flavor physics constraints we will ignore
it in our analysis, the same way we exclude for example dipole operators.

The first eight operators generate anomalous weak boson couplings to fermions, while they
do not affect the Higgs coupling to fermions, see Tab. 1. They do modify the Higgs couplings
to weak bosons and fermions, for instance introducing point-like HV f f interactions. We also
include the 4-lepton operator O;;;; as it induces a shift in the Fermi constant. For our study we

assume diagonal and generation independent Wilson coefficients for the fermionic operators
affecting the electroweak currents. Further, we will eliminate the leptonic operators OE;L) i

(3) . . .
and O oLii USINg the equations of motion:
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Assuming a universal flavor structure this leaves us with the additional contributions to our
effective Lagrangian,

$1 faw friie
Leg D+ Az Op1 + A2 Opw + A2 OLi1L
(1 (1) (1 (1) 3)
f f f f
PQ (1) ¢d (1) U~ e » PQ ~(3)
+AZO¢Q+ A20¢d+A20¢u+Azo¢e+A20¢Q' (10)

Together with Eq.(3) this defines the operator basis for our global analysis, altogether 18 op-
erators plus the invisible Higgs branching ratio. While the additional operators affect many
of our LHC measurements, they are also strongly constrained by electroweak precision ob-
servables. The challenge is that the bosonic operators in Eq.(7) and the fermionic operators
in Eq.(8) not only contribute to electroweak precision physics, but also to di-boson or Higgs
production at an observable level, where they are included e.g. in our study of triple gauge
vertices. Because the two data sets combine very different combinations of operators, we have
to combine our Run II analysis with a set of electroweak precision observables. We follow
Ref. [81] and review this approach briefly. Our Z-pole observables are

{ry, 02, A(zPh), RO, A(SLD), Aps, RO, R, A., Ay, A%, A% (SLD/LEPT)} (11)

with measurements and correlations taken from Ref [109]. We also include the W-observables
{mw, Tw, BROW = 10}, (12)

with values taken from Ref. [110]. The SM predictions for these observables are taken from
Ref. [111]. We note that for the SM prediction of the W-mass this includes the full one- and
two-loop EW and two-loop QCD corrections of O(aa,) as well as some 3-loop contributions.
The contributions of our dimension-6 operators can be found in Ref. [81], where we limit our-
selves to linear contributions from the higher-dimensional operators considered in our fit. This
approximation is justified as long as the dimension-6 corrections are small, i.e. f m% /N2 <1
assuming that the typical energy scale of electroweak precision data is around m . The stan-
dard analyses of electroweak precision data indeed give individual limits of the kind

A
——24...10TeV (electroweak precision data [111]). 13)

VIfI

These limits significantly exceeds the expected sensitivity of the global LHC analysis from
Eq.(6), which naively suggests that it is not necessary to combine the two sectors. In the
discussion of our global fit in Section 6 we will see how the fermionic Higgs-gauge operators
nevertheless lead to visible effects at the LHC.

4 QCD and top sectors

An operator which should be added to any basis confronted with LHC data is the anomalous
triple gluon coupling

. 8sfc
Og = fabc G2, G, GL, with  LegD ? Og (14)

with GF” = a° Gy—20 YGE —ig f.pcGPP G”. It contributes to any gluon-induced LHC process,
for instance Higgs production with a hard jet. While it only affects kinematic distributions
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Figure 1: Interactions through the chromo-magnetic top operator. The vertices scal-
ing with p” come from the derivative in the field strength, while those scaling with
v are generated by the commutator component of the field strength.

with an additional hard parton, it needs to be taken into account when we use the same
distribution to separate 0,4 33 effects from Ogg. On the other hand, it can be constrained by
ATLAS multi-jet data at 13 TeV, giving the 95% CL limits [59]

A
——>5.2(5.8) TeV observed (expected) from multi-jets. (15)

Vs

This limits the possible effects on Higgs production rates beyond anything a global Higgs anal-
ysis would be sensitive to in the absence of a dedicated enhancement mechanism in Higgs
rates.

A critical feature of Higgs analyses is the combination of direct and indirect measurements
of the top-Higgs coupling in gluon fusion and associated Higgs-top production [112,113]. The
chromo-magnetic top operator

O = Qo' Thug) H G, (16)

will, in principle, affect these observables [40] and has been studied extensively in top-EFT
analyses [65]. The interaction vertices induced by O, are shown in Fig. 1. The first two
diagrams contribute to top pair production, the second set to ttH production. In each case
one of the interactions is proportional to the momentum flowing through the vertex.

To constrain f,; in a Higgs fit we can consider gluon fusion and ttH production with
additional jets. However, extra hard gluons in the final state are a typical higher-order effect
and likely suppressed. Alternatively, we can use momentum-dependent distributions in ttH
production. The third vertex in Fig. 1 appears to allow for such effects as it only includes
a single gluon, however this momentum dependence as well as the triple gluon vertex of
the SM will be compensated by an additional propagator in the amplitude resulting in no
additional growth with momentum. This lack of growth with momentum is demonstrated in
Figure 2 below which shows the shape of the H; distribution does not change dramatically
with increasing f;;-.

We can estimate the extent to which this operator can be constrained. The most promising
distribution currently available is the H; distribution in the all-hadronic

pp — ttH — tt bb 7

signature released by CMS [114]. In Fig. 2 we reproduce their H distribution as well as the
distribution in the presence of two benchmark values of f,;. We generate the relevant ttH
process merged with one additional jet using MADGRAPH5 [115] and PYTHIA8 [116], combined
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; —— CMS background ;
107 g tTH SM 3
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Figure 2: H; distributions for ttH production for the Standard Model,
A/ |figl =1 TeV corresponding to the top physics limit, and A/+/|f:g| = 320 GeV
corresponding to the Higgs physics limit. The background estimate and the data
points are from Ref. [114].

with DELPHES3 [117]. The two benchmarks each correspond to

A

| = 1TeV (top sector [65]),
tG

>

2 320 GeV (Higgs sector [40]). (18)

T

|fea

From Fig. 2 we see that our expected sensitivity is comparable to the Higgs study and not
competitive with the top-sector constraints. This comes as no surprise: the ttH cross section is
phase space suppressed relative to tt production and its cross section at the LHC is measured
to be approximately three orders of magnitude below that of tt production [118,119]. In
addition, ttH production is plagued by large backgrounds. This implies statistical limitations
on measuring f,¢ in ttH, so indeed O,; and O can both be neglected in global Higgs analyses
in the near future. There are projections, however, that for the 14 TeV LHC with a luminosity
of 3/ab that constraints on O, from ttH will exceed those of tt [112].

5 SFitter framework

In SFITTER analyses we prefer not to rely on the pre-processed rate modifiers by ATLAS and
CMS whenever possible. Instead, we extract the signal and background rates from the ex-
perimental publications and apply our own uncertainty treatment. This includes correlated
and uncorrelated systematic uncertainties as well as a flat likelihood within the allowed band
by theoretical uncertainties. For analyses using multivariate analysis techniques, where the
number of events in each signal region is only illustrated after simple cuts rather than the full
analysis, we implement the signal strength modifiers but separate for example the theory un-
certainties. All signal efficiencies and higher-order effects we extract as the difference between
our simulation and the numbers quoted by ATLAS and CMS.

For Higgs and di-boson signals we use MADGRAPH5 [115] for the event generation,
PYTHIA6 [116] for parton shower and hadronization, and DELPHES3 [117] for the detector
simulation. Branching ratios including dimension-6 effects are given by the extended version
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Table 2: List of Run I Higgs measurements included in our analysis. For the my;, dis-
tribution our highest-momentum bin with observed events starts at my, = 990 GeV
and 1.2 TeV for the 0¢ and 1£ final states.

production decay | ATLAS CMS
h— WW [120,121] [122-124]
h— 2727 [121,125] [123,124,126,127]
h—yy [128] [129]
h— 11 [121] [123,124,130]
h— Zy [131] [132]

WBF h — inv [133]

WBF h— 7 [130]

Vh h — bb [134] [135]

Vh h—-7tt [136]

Vh h — inv [137] [138]

Vh h — bb (myy) [139]

tth h—yy [118] [129]

tth h—ZZ — 4L [118] [126,127]

tth h>WW,ZZ, 77 | [121] [123,124]

tth h — bb [140] [141]

of HDECAY [142]. For new physics effects in the production process we use the same tool
chain as for the Standard Model, combined with our FEYNRULES [143] implementation of the
dimension-6 operators and assume that detector effects as well as higher-order corrections
scale with the SM case in the fiducial volume of the SM-like measurement. For total rate
measurements using the bulk of the phase space this approximation is obviously justified. For
our kinematic distributions this is less clear, so we have checked that our approach is approx-
imately correct [80-85, 144]. Corrections to diboson production have been calculated and
should eventually be included [145].

As usual for our SFITTER analysis we allow for the modification of the production ampli-
tude through dimension-6 operators including the interference with the SM amplitude and the
squared term in the Wilson coefficient. The latter becomes relevant whenever the interference
with the Standard Model is suppressed. Given the estimates of Eq.(6) and Eq.(13) we simplify
our analysis by neglecting diagrams which are modified by bosonic and fermionic operators at
the same time and interfere with the SM amplitude. In our discussion of the results we will see
that indeed large effects from the fermionic operators do not appear in this topology. Finally,
we neglect dimension-6 squared contributions of the fermionic operators to the gauge boson
branching ratios, because they will be strongly suppressed following Eq.(13) with a typical
energy scale my in the gauge boson decays. For the same reason we neglect the effects of the
fermionic operators on the decays of gauge bosons coming from Higgs decays. The hierar-
chy of scales combined with the well-defined external energy scale E < my; will render them
numerically irrelevant.

For Higgs and di-boson we start with the set of Run I measurements discussed in Refs [21-
23]. We add the Run II Higgs measurements shown in Tab. 2 and the Run II di-boson measure-
ments shown in Tab. 3. Because the dimension-6 Lagrangian introduces new Lorentz structures
and hence predicts significantly different event kinematics from the Standard Model, kinematic

9


https://scipost.org
https://scipost.org/SciPostPhys.6.6.064

Scil SciPost Phys. 6, 064 (2019)

distributions scaling with energy are especially powerful. An attractive case is a myy distri-
bution from an ATLAS resonance search [139], which we include for the zero-lepton and one-
lepton final states. We re-bin the reported result such that the most relevant high bins include
a statistically meaningful number of events, giving us measurements exceeding my = 1 TeV.'
The other side of the kinematics medal is that differential measurements from H — 4{ decays
can be safely neglected in a global analysis. The reason is that the momentum flow through
the Higgs decay vertex is cut off by the on-shell condition, so any measurement in VH or WBF
production will surpass their impact on a global analysis [146].

Based on all measurements we first construct a multi-dimensional, full exclusive likelihood
map. As long as we are only interested in small deviations from the Standard Model, a key
assumption to be able to use an effective field theory approach, we can assume that local
SM-like minima are also the global minima in this likelihood map. There exist three stan-
dard ways to explore the log-likelihood distribution around the minimum: first, we can use
a naive, MINUIT-like approach, approximating the functional form around the minimum by a
quadratic function. This assumption is not appropriate once we allow for non-Gaussian errors,
for example a flat shape covering the theoretical error bar. Second, we can construct a Markov
chain over the parameter space. Here the problem is that different directions in the space of
Wilson coefficients behave differently, which makes it hard to define a universal and efficient
proposal function. Nevertheless, we check our results against such a Markov chain analysis
and usually find encouraging agreement. For our numerical analysis we define 10.000 toy
measurements, modeling the Poisson, Gaussian or flat input distributions. For each toy exper-
iment we determine the best-fitting point in the space of Wilson coefficients, combine these
values to a histogram, effectively profile over the remaining parameters, and determine the
68% and 95% ranges around the SM-like central value. For the error bands we require the
log-likelihood values at the lower and upper ends to be identical.

Because our approach gives us full control over the log-likelihood distribution we can com-
pare these limits with a dual Gaussian fit to the log-likelihood in one dimension. We find good
agreement for all Wilson coefficients, even though Fig. 3 shows that for example the profile
likelihood for f, does not have a symmetric Gaussian shape. Obviously, the shape for the in-
visible Higgs width is distorted, because it does not allow for negative branching ratios. While
we quote the error bars for the non-Gaussian analysis we quote the results from the Gaussian
fit whenever we give a best-fit point for a Wilson coefficient. For additional details on the
SFITTER framework we refer to Refs. [86-88].

Table 3: List of Run I and Run II di-boson measurements included in our analysis.
The maximum value in GeV indicates the lower end of the highest-momentum bin
we consider.

channel | distribution #bins max [GeV]

WW — (0~ + Fr (0j) | leading pr, 4 350 20.3 fb™1 [147]
ey WW- e~ 4 Fr (05) | mygo 7 575 19.4 fb~! [148]

WZ — (g (* mW? 6 450 20.3 fb! [149]

WZ = 0 (% g, pZ=t 8 350 19.6 b~ [150]
13TeV WZ — Hg—¢* | m? 7 675 36.1 fb* [151]

"We would happily thank ATLAS for help with this analysis result and we are grateful to the actual authors
communicating with us. However, our EFT analysis was officially considered as no appropriate re-casting of a VH
resonance search, so there is nothing we can thank ATLAS for.
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Figure 3: Distributions of the toy experiments for the operators O, Oy, and Oy
as well as the invisible Higgs branching ratio, based on the full LHC data set. The
lines show the 95% CL limits from the histogram (black) and the double-Gaussian fit
(red).

One caveat applies to all analyses based on effective Lagrangians: we consider the
dimension-6 Lagrangian of Eq.(3) and Eq.(10) the appropriate description of the physics ef-
fects beyond the Standard Model. Note that this statement by no means implies that for exam-
ple the dimension-6-squared contributions have to be smaller than those from the dimension-6
interference with the Standard Model [152]. There exist many physics reasons why this could
be a valid physics effect, and the discrepancy between the generic LHC reach given by Eq.(6)
and the generic reach of electroweak precision data in Eq.(13) will be discussed as an example
for such effects in the next section. Instead, we simply need to ensure that no particle of the UV-
completions which we approximate with our effective Lagrangian contributes as a propagating
degree of freedom on its mass shell [42,43]. To this end, computing the effects of dimension-8
operators can give useful hints about the validity of the dimension-6 truncation [153], but it
does not have to.

Finally, in the spirit of the effective field theory we only consider SM-like scenarios, which
means that we neglect all secondary solutions for example with switched signs of Yukawa
couplings. Assuming weakly interacting new physics such effects require scales A ~ my, so
we expect these models to be best tested in direct LHC searches rather than a global analysis. In
any case, the observation of a sign switch for example in a Yukawa coupling as part of a global
analysis would signal a breakdown of the renormalizable Standard Model and its symmetry
structure and would prompt us to modify our SMEFT hypothesis. Of course, when it comes to
searching for effects in kinematic distributions, these two search strategies are closely related,
for example when we directly search for mass peaks in the same distributions that we indirectly
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test for shoulders (as an early sign of a mass peak appearing in data) [42,43].

6 Global analysis

Before we attempt a proper global analysis of the Higgs and electroweak gauge sector we can
ask what the impact of the additional 13 TeV data given in Tabs. 2 and 3 is. Aside from a
generic improvement in many of the standard measurements, we expect a significant impact
from the new ttH measurements, the significant observation of fermionic Higgs decays, and
from the re-casted my distribution to very large energies. In Fig. 4 we indeed see that the
limits on f;, f; and f, have improved by more than a factor of two. Obviously, the top Yukawa
measurement directly affects the Higgs coupling to gluons, O, because it can only be ex-
tracted after we subtract the measured top loop contribution. Because Oy, leads to a Higgs
wave function renormalization and O;, modifies the total Higgs width, they are strongly cor-
related in the global analysis. After Run II they are not only well determined, both of them
also show symmetric Gaussian log-likelihood distributions. We also see a very significant im-
provement in the limit on fy, and fg, which is driven by associated VH production. However,
from Fig. 3 we know that the error bar on f}; is by no means symmetric and Gaussian due to
the relative size of the linear and quadratic terms of the EFT, the parametrization of the the-
ory prediction and further effects. The operators showing the least improvement compared to
Run I are Oy, and Ogg, reflecting the lack of high-impact kinematic WBF measurements in
the Run II data set. Moreover, Oy, only affects the gauge sector, and in Tab. 3 we see that
the analysis is still dominated by a broad set of extremely successful kinematic measurements
at Run I in view of a global gauge analysis.
Finally, our global limit on the Higgs branching ratio to invisible particles is

BR;, <38%  at 95% CL, (19)

with a best-fit point of BR;,, = 14%. This is significantly weaker than the limits quoted for
example by CMS [133], because our global analysis does not assume the underlying Higgs pro-
duction rates to be SM-like. Indeed, we observe a strong correlation of the invisible branching
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Figure 5: Invariant mass distribution m;y normalized to the Standard Model. The
dashed lines correspond to positive Wilson coefficients, while the solid lines corre-
spond to the negative values of the Wilson coefficients with the same magnitude.

Figure 6: Dimension-6 contribution to ZH production. We show sample diagrams for
the usual bosonic corrections, the small fermionic corrections from a 3-point vertex,
and the large fermionic corrections from a 4-point interaction.

ratio with O, and its universal Higgs wave function renormalization. If rather than profiling
over it we fix fy, = 0, our limit becomes BRy,, < 26% in agreement with the experimental
results. Altogether, we find that Run II systematically probes energy scales A//f between
400 GeV and 800 GeV through Higgs measurement.

The large improvement of the limits on Oy at Run II forces us to consider the interplay
with the fermionic operators from Eq.(10) and their limits from electroweak precision data,
Eq.(13). From a scale separation point of view it is seems counter-intuitive that (’);}3 or O(%,

for which A/+/f is constrained around one order of magnitude more strongly than for O, and
much more strongly for all other operators shown in Fig. 4, should have any effect on the LHC
analysis [80-85]. In Fig. 5 we see how the fermionic and bosonic operators affect for example
ZH production. The key observation is that the fermionic operator contributes via the 3-point
qqZ and the 4-point qqgH Z vertices, whereas the bosonic operators require the same s-channel
Z-propagator we see in the Standard Model. We show the corresponding Feynman diagrams
in Fig. 6. From the structure of the dimension-6 operator we can infer the scalings

gfpq Vv’ gfpqV
i(; (qq2) versus 9Q

The m,y distribution shown in Fig. 5 is one of our most powerful observables. We have
confirmed that for the fermionic operator it is entirely dominated by the 4-point interaction,
even though the 3-point interaction does interfere with the Standard Model. This is due to
the suppression of the amplitudes with propagating Zs due to the off-shell Z which leads to a

(qqZH). (20)
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Figure 7: Correlations between the fermionic and bosonic operators (top row), and
between the usual bosonic operators (bottom row). For the latter we show the purely

LHC results (left) and the results after including the additional fermionic operators.

suppression going as ~ 1/ (m%H -M g) < 1 as well as the energy scaling in Eq.(20) as well as
which will eventually also lead to unitarity violation [81].

It is interesting to see how two operators with an apparently very different new physics
scale contribute to the m;; distribution at around the same rate. This can be understood by the
definitions of the operators which include a factor of the gauge coupling for each field strength
tensor. While the 4-point contribution from (’)((;3 lacks a second power of the gauge coupling
g’ the definition of O adds two powers of the gauge coupling to the 3-point vertex. Over
most of the parameter range shown in Fig. 5 the dimension-6-squared contribution dominates,
giving us a mis-match of four powers of the coupling just from the definitions of the Wilson
coefficients.

We confirm these findings in Fig. 7, where we show the resulting correlations in our global
analysis, once we include the full Lagrangian of Egs.(3) and (10). We see a clear correlation
between fz and fqgi) from ZH production, as well as between f};, and fd()rg from WH production.
This correlation relates very different values of the new physics scales for the fermionic and
bosonic operators. In the lower panels we see how this weakens the limits on the bosonic
operators fz and fy, after profiling over the fermionic Wilson coefficients, and how it re-induces

a correlation between them.

All of this discussion clearly defines a new challenge for global Higgs analyses once
we reach Run II levels of precision: we need to include the additional operators shown in
Eq.(10) [40,41,80-85]. As argued above, this is at least in part due to a relative enhance-
ment of the fermionic Higgs-gauge operators through their 4-point interactions. We show the
result of our global analyses in Fig. 8, both at the 68% and 95% confidence levels. As LHC ob-
servables we consider the same measurements as Fig. 4, but now combined with electroweak
precision observables and including an extended set of operators. While the triple-gluon op-
erator O and the chromo-magnetic operator O, appear in a global Higgs analysis, we have
shown in Sec. 4 that their best limits come from dedicated studies and after considering these
limits their effects on the Higgs observables will not be visible. We therefore include them in
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Figure 8: Allowed 68% and 95% CL ranges for individual Wilson coefficients f, /A?
from a one-dimensional profile likelihood. All results include the Run II measure-
ments combined with electroweak precision data. We quote the best results for
O [59] and O, [65] from non-Higgs analyses.

the SMEFT-like result shown in Fig. 8, but quote the constraints from non-Higgs analyses.

First, we see that the 68% and 95% confidence limits scale like we would expect from
Gaussian uncertainties. Directly comparing the results for the bosonic operators without and
with the fermionic operators we see that as expected from Fig. 7 the results on f5 are roughly a
factor of two weaker once we profile over the fermionic Wilson coefficients. We also see weaker
limits on fi, and f4,, which propagate through the entire effective Lagrangian describing the
global analysis.

The constraints from our global analysis on the fermionic Higgs-gauge operators are typi-
cally a factor 10 to 100 stronger than for the bosonic operators. With f ) and f W) the global
fit also constrains operators which are relatively poorly probed by electroweak precision ob-
servables alone. These limits are in the range of A/+/f ~ 3 TeV at 68% CL, indicating that
LHC observables can also be especially sensitive to these operators. Again, for these results it
is crucial that our global Higgs analysis covers Higgs observables and di-boson observables at
the LHC, combined with electroweak precision data.

7 Summary

We have presented a global analysis of the LHC Run I and Run IT measurements related to Higgs
and di-boson measurements in the framework of an effective Lagrangian to dimension six.
The increasingly strong constraints from Run II and especially the developing LHC sensitivity
to anomalous gauge boson couplings to quarks require a combination of the LHC analysis
with electroweak precision data. In our global Higgs and electroweak analysis we include
18 bosonic and fermionic dimension-6 operators. For two more operators we quote limits
from other analyses, after confirming that they are more constraining than our Higgs analysis.
Finally, we include invisible Higgs decays through their branching ratio. This set of operators
defines a significant step towards a global SMEFT analysis in the LHC era and towards a global
precision analysis of LHC data.
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In the SFITTER framework we directly analyze ATLAS and CMS measurements rather than
pre-defined pseudo-observables, include correlations for systematic and theoretical uncertain-
ties, and exploit kinematic distributions to large momentum transfer. For LHC data alone we
find that all limits from Run I are consistently improved by Run II, especially in the Yukawa sec-
tor and from the kinematic measurements of VH production. At 95% CL the typical Run II lim-
its range around A/+/f = 400 ... 800 GeV. Through new 4-point vertices fermionic Higgs-gauge
operators have an anomalously large effect on associated Higgs production. This induces
strong correlations between fermionic operators and fg y, in spite of stringent constraints
from electroweak precision data. Profiling over the fermionic Wilson coefficients weakens the
limits on fg by a factor two. At the same time, LHC observables allow us to constrain fermionic
operators like fd(ii)
teraction between the two sectors of our global fit is mutual. For several bosonic operators our
analysis probes A/+/f values up to the TeV range, while the fermionic Higgs-gauge operators
are consistently constrained to 5 ... 10 TeV.

far beyond the reach of electroweak precision data, indicating that the in-
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A Constraints on fermionic operators from EWPD and the LHC

In Section 6, we have seen that the additional, mostly fermionic, operators of Eq.(10) have
a non-negligible impact on the limits of the Wilson coefficients on the bosonic operators in
Eq.(3). We have explicitly studied the effect of the fermionic Higgs-gauge operators on the
limits on f3, see also Fig. 5 and Fig. 7. The interplay between electroweak precision data
and LHC observables is mutual in the sense that limits on operators constrained by EWPD also
receive important contribution from LHC data. We demonstrate the impact of LHC observables
on the operators in Eq.(10) in Fig. 9, where we compare the limits resulting from a fit of EWPD
only with a combined fit of EWPD with LHC Run I+II observables. The limits on the Wilson
coefficients, especially on those of fermionic Higgs-gauge operators, are consistently improved
by the inclusion of LHC data and asymmetries of the limits are reduced. This highlights the
relevance of LHC measurements for the precise determination of the couplings of gauge bosons
to fermions.
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