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Abstract

We compute the phase shift of a highly energetic particle traveling in the background of
an asymptotically AdS black hole. In the dual CFT, the phase shift is related to a four
point function in the Regge limit. The black hole mass is translated to the ratio between
the conformal dimension of a heavy operator and the central charge. This ratio serves
as a useful expansion parameter; its power measures the number of stress tensors ap-
pearing in the intermediate channel. We compute the leading term in the phase shift
in a holographic CFT of arbitrary dimensionality using Conformal Regge Theory and ob-
serve complete agreement with the gravity result. In a two-dimensional CFT with a large
central charge the heavy-heavy-light-light Virasoro vacuum block reproduces the gravity
phase shift to all orders in the expansion parameter. We show that the leading order
phase shift is related to the anomalous dimensions of certain double trace operators
and verify this agreement using known results for the latter. We also perform a sepa-
rate gravity calculation of these anomalous dimensions to second order in the expansion
parameter and compare with the phase shift expansion.
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1 Introduction and summary

The AdS/CFT correspondence [1,2,22] is an extremely rich subject. Following the impressive
success of the conformal bootstrap [3,31], there was a renewed interest in CFT techniques (see
[4–6] for recent reviews). As a result, a number of theoretical instruments, useful for exploring
the mechanisms of AdS/CFT in detail were developed. The basic objects on the gravity side of
the AdS/CFT correspondence are Witten diagrams [2], which admit a simple decomposition
in terms of CFT conformal blocks [63]. In particular, a tree-level Witten diagram with a single
graviton exchange gives rise to conformal blocks of spin-two double trace operators, in addition
to the stress-tensor conformal block.

Ref. [7] defined a holographic CFT as a CFT with a large central charge and a large gap
in the spectrum of operator dimensions for operators with spin greater than two. It turns out
that considering a certain kinematical limit of four-point functions in such CFTs, (the Regge
limit), leads to a set of interesting results. In particular, refs. [56–59] showed that four-point
functions in the Regge limit are related to high energy scattering of two particles in AdS.
The eikonal approximation to scattering, valid in the Regge limit, gives rise to a phase shift
which is proportional to the propagator in the transverse plane (Hd−1 for the AdSd+1 case). As
explained in [10, 11], the alternative description of scattering in the Regge limit is provided
by considering a highly energetic particle propagating in a shock wave background. The time
delay times the lightcone momentum is precisely the eikonal phase shift.

In [8] it was shown that when one of the particles is a graviton, once generic higher deriva-
tive terms are added to the Einstein action, there is always a polarization choice which leads to
time advance, as opposed to time delay. One can also use Conformal Regge Theory [58] to see
how in holographic CFTs the phase shift becomes negative, and unitarity gets violated, unless
the three-point couplings of the stress tensor satisfy two linear constraints (which reduce to
the “a = c" condition in d = 4 superconformal field theories). This was done in [9,52,60–62].1

Note that we now have a definition of the phase shift entirely in terms of a CFT object (the
Fourier transform of a four-point function).

1These strong constraints in holographic CFTs are obtained in the limit of small impact parameter. In the
opposite limit of large impact parameter, Hofman-Maldacena [12] and related constraints are recovered [13–21,
32,33,41–43,47].
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In this paper we consider a four-point function of scalar operators in holographic CFTs. We
take two operators, OH , to be heavy: their conformal dimension scales with the central charge
∆H ∼ CT and the ratio µ ∼ ∆H/CT provides an important parameter. The remaining two
operators, OL , have conformal dimension of order one. We compute the phase shift to leading
order in µ in a d−dimensional CFT and show that it is related to the time delay and angular
deflection, which an energetic particle experiences when traveling in the background of an
asymptotically AdS black hole. The parameter µ is proportional to the mass of the black hole.
In gravity we compute the phase shift to all orders in µ – for a generic spacetime dimension it
remains to be seen whether the CFT result agrees with that. (Terms proportional to µk with
k > 1 are technically more difficult to compute in the CFT since they require summation over
an infinite number of conformal families which schematically correspond to (Tµν)k operators.)
However in the d = 2 case the CFT result can be obtained to all orders in µ. It is provided by
the Virasoro vacuum block, and the result precisely matches the phase shift experienced by a
particle traveling in the AdS3 background with a conical deficit.

The rest of the paper is organized as follows. In the next Section we analyze the trajectory
of a highly energetic particle, traveling along a null geodesic in the AdS-Schwarzschild back-
ground. We compute the time delay and the angular deflection, order by order in the black
hole mass µ. In d = 2 it is easy to write down the result to all orders; in higher dimensions
the answer is more involved, but still manageable.

In Section 3 we use Conformal Regge Theory to compute the phase shift in a holographic
CFT to leading order in µ and observe precise agreement with the gravity result. We show
that the double-trace operators (of the type OL∂µ∂νOL and OH∂µ∂νOH) do not contribute to
the phase shift.

In Section 4 we use the heavy-heavy-light-light Virasoro vacuum block in a two-
dimensional CFT to compute the phase shift to all orders in µ – the result is a precise match
to the gravity calculation.

In Section 5 we show that to leading order in µ, the anomalous dimensions of the double-
twist operators in the cross (S-) channel are related to the phase shift. We verify this relation
by comparing the O(µ) term in the phase shift with the known anomalous dimensions of
the OH∂

`∂ 2nOL operators. Such anomalous dimensions are known exactly in d = 2 and in
the lightcone limit ` � n � 1 in general d. We observe exact agreement. The agreement
does not have to extend beyond O(µ) and indeed, in d = 2 the correspondence between the
anomalous dimensions and the phase shift appears to break down at higher orders in µ (the
overall coefficients are not the same).

In Section 6 we compute the anomalous dimensions of the double twist operators
OH∂

`∂ 2nOL to order µ2 in the lightcone limit. This is done by computing the shift in the
energies of the corresponding states in the background of the asymptotically AdS black hole.
The resulting behavior [eq. (6.42)] has the same scaling as the corresponding term in the
phase shift, but a different numerical coefficient.

In Section 7 we discuss our results and some open problems. Appendices contain some
technical details needed in the main text.

2 Phase shift calculation in gravity

2.1 Setting up the problem

Consider an asymptotically AdS black hole in (d + 1)-dimension (with AdS radius R):

ds2 = − f d t2 + f −1dr2 + r2dΩ2, (1)
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where

dΩ2 = dϕ2 + sin2ϕ dΩ2
d−2 , (2)

and

f = 1+
r2

R2
−

µ

rd−2
, µ≡

�

d − 1
16π

Ωd−1

�−1

GN M . (3)

The Hawking temperature TH is [45]

TH =
dr2

H + (d − 2)R2

4πR2rH
, (4)

where rH denotes the position of the horizon:

f (r = rH) = 0 . (5)

The two Killing vectors, ∂t and ∂ϕ, of 1 allow one to define quantities conserved along the
geodesics, i.e., the energy and angular momentum:

pt =

�

1+
r2

R2
−

µ

rd−2

�

∂ t
∂ λ

, pϕ = r2 ∂ ϕ

∂ λ
, (6)

with λ denoting an affine parameter. The equation describing null geodesics becomes

1
2

�

∂ r
∂ λ

�2

+ Ve f f (r) =
1
2
(pt)2 , (7)

where

Ve f f (r) =
(pϕ)2

2r2
f (r) . (8)

A light ray starting from the boundary, traversing the bulk and reemerging on the boundary,
will experience both a time delay and a deflection given by

∆t = 2

∫ ∞

r0

dr

f
Ç

1− α2

r2 f
,

∆ϕ = 2α

∫ ∞

r0

dr

r2
Ç

1− α2

r2 f
. (9)

Here, α = pϕ/pt and r0 denotes the turning point of the geodesic, whose existence ensures
that the light ray will reach the boundary. It is the minimum point of the trajectory, given by
the loci of real and positive r for which ṙ = 0:

1−
α2

r2
0

f (r0) = −
�

α

r0

�2
�

−
r2
0

b2
+ 1−

µ

rd−2
0

�

= 0 . (10)

Note that in the second equality we used b to denote

b =

�

(pt)2

(pϕ)2
−

1
R2

�− 1
2

, (11)
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which corresponds to the impact parameter in pure AdS, as can be easily seen from 10 by
setting µ = 0. Clearly b reduces to the familiar flat space expression, b ≈ pϕ

pt , for large R (or
small pϕ/pt) whereas it diverges in the limit pϕ/pt → R.

It will be convenient in the following to use the parameterization b = R sinhL, stemming
from the standard parametrization of the global AdS metric:

ds2
AdS = R2

�

−cosh2 Ld t2 + d L2 + sinh2 LdΩ2
�

. (12)

Note that 11 implies the following relation between L and pϕ, pt :

e2L =
p+

p−
, p± = pt ±

pϕ

R
, (13)

or, equivalently,

coshL =
1
2

p+ + p−
p

−p2
, p2 = −p+p−. (14)

These relations, between the impact parameter and the momentum of the particle, will be
important for the CFT calculations in the following sections.

In this note we are interested in the bulk phase shift. For a particle described by a plane
wave, the bulk phase shift is:

δ ≡ −p · (∆x) = pt(∆t)− pϕ (∆ϕ) , (15)

with pt,ϕ denoting the momenta of the particle traversing the geometry. Combining 15 with
9 yields:

δ(
Æ

−p2, L) = 2
Æ

−p2 coshL

∫ ∞

r0

dr

Ç

1− f (r) R2

r2 tanh2 L

f (r)
. (16)

In pure AdS, the bulk phase shift takes the form:

δAdS = πR
Æ

−p2 e−L , (17)

while ∆t = R (∆ϕ) = Rπ: all null geodesics converge at the same point.
The main objective of this section is to compute corrections to the bulk phase shift away

from pure AdS, due to the presence of the black hole. We will thus expand and evaluate 15
order by order in µ, in terms of the energy

p

−p2 and the impact parameter L of the particle.

2.2 Small mass expansion of the bulk phase shift

In this section we study the phase shift perturbatively in µ. We will focus on the linear and
quadratic terms in the mass and then generalise our results to any order in µ. To appreciate
the importance of the small mass expansion, consider for instance d = 4 and notice that

r2
H

R2
∼
µ

R2
∼
`3

pM

R2
∼
∆H

CT
, (18)

where we used R3/`2
p ∼ CT and ∆H = M R. From 18 we deduce that in terms of the dual CFT,

the µ-expansion is an expansion in powers of∆H/CT , where∆H corresponds to the conformal
dimension of the heavy operator effectively producing a thermal state and CT is the coefficient
of the stress tensor two-point function. Similar arguments hold for general d.
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To address the small µ-expansion of the bulk phase shift, it is convenient to set R= 1 and
define a new variable of integration y = r0

r . Next, one would like to eliminate the dependence
of the integral on r0 in favour of µ using 10. It turns out that it is easier to do the opposite, i.e.,
to eliminate the dependence of the integral on µ in favour of r0 instead. With a bit of algebra
one can show that the bulk phase shift can be expressed as:

δ = 2
Æ

−p2 b

∫ 1

0

d y

p

1− y2
r

1− v2
0

1−yd

1−y2

(y2 + b2)
�

1− v2
0

yd+b2

y2+b2

� , (19)

where the natural expansion parameter is now

v2
0 ≡ 1−

r2
0

b2
. (20)

To see this recall that in pure AdS where µ = 0, r0 = b and thus v0 vanishes as well. To
compute the first order term, we take into account that

v2
0 =

∞
∑

k=1

ckµ
k , (21)

which follows trivially from 10. The coefficients ck are computable to any order in µ and take
the form:

ck =
1
k!

b−k(d−2) Γ
�

k d
2 − 1

�

Γ
�

k d
2 − k

� . (22)

The first and second order terms for instance, are:

c1 = b−(d−2), c2 =
d − 2

2
b−2(d−2) . (23)

With the help of 21, 23 and 19 the leading order correction reads:

δ1 = c1
∂ δ

∂ v2
0

�

�

�

�

�

v2
0=0

= µ
Æ

−p2 b3−d

∫ 1

0

d y
yd(−2+ y2 − b2) + y2 − b2 + 2b2 y2

p

1− y2(y2 + b2)2
. (24)

Notice that certain terms are total derivatives

y2 − b2 + 2b2 y2

p

1− y2(y2 + b2)2
= −

d
d y

y
p

1− y2

(y2 + b2)
,

y(−2− b2 + y2)
p

1− y2(y2 + b2)2
=

d
d y

p

1− y2

(y2 + b2)
, (25)

allowing us to express 24 as

δ1 = µ
Æ

−p2 b3−d

¨

�

y
p

1− y2

y2 + b2
+ yd−1

p

1− y2

y2 + b2

�y=1

y=0

− (d − 1)

∫ 1

0

d y
yd−2

p

1− y2

y2 + b2

«

=

= µ
Æ

−p2 d − 1
2

B
�

d − 1
2

,
3
2

�

b1−d
2F1[1,

d − 1
2

,
d
2
+ 1,−

1
b2
] .

(26)
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Here B [x , y] denotes the Beta function B[x , y] ≡ Γ (x)Γ (y)
Γ (x+y) . Using the following identity for

hypergeometric functions,

2F1[a1, a2, a1 − a2 + 1, w] = (1−w)−a1
2F1

�

a1

2
,

a1 + 1
2
− a2, a1 − a2 + 1,−

4w
(1−w)2

�

,

(27)

with w = e−2L and a1 = d − 1, a2 =
d
2 − 1, and setting b = sinhL, leads to the more familiar

form [56,57] 2

δ1 = µ
Æ

−p2 d − 1
2

B
�

d − 1
2

,
3
2

�

2d−1 e−(d−1)L
2F1

�

d − 1,
d
2
− 1,

d
2
+ 1, e−2L

�

=⇒ δ1 = µ (d − 1)
π

d
2

Γ [ d
2 ]

Æ

−p2Πd−1;d−1(L) , (29)

whereΠ∆−1;d−1 denotes the Euclidean hyperbolic space Hd−1 propagator for a massive particle
of mass-square equal to (∆− 1)2, defined as

Π∆−1;d−1(x) =
π1− d

2 Γ (∆− 1)

2Γ (∆− d−2
2 )

e−(∆−1)x
2F1(

d
2
− 1,∆− 1,∆−

d
2
+ 1, e−2x) . (30)

Moving on to the second order term in µ, we write:

δ2 = µ
2 1

2

Æ

−p2



2c2
∂ δ

∂ v2
0

�

�

�

�

�

v2
0=0

+ c2
1
∂ 2δ

∂ (v2
0 )2

�

�

�

�

�

v2
0=0



 , (31)

and evaluate the derivatives using 19. The resulting integrand is given by a rather lengthy
expression, but one can still evaluate the integral by splitting it into two parts: a total derivative
term and another one which coincides with the representation of a certain hypergeometric
function (the interested reader may consult Appendix A for details). The final result for the
quadratic term in µ can be expressed as follows:

δ2 = µ
2 (2d − 3)(2d − 1)

4
πd−1

Γ [d − 1]

Æ

−p2Π2d−3,2d−3(L) . (32)

It is instructive to notice that the quadratic result is not proportional to the hyperbolic space
propagator in Hd−1 but rather in H2d−3, as if the dimensionality of the space is 2(d−1) instead
of d. It is possible to evaluate the bulk phase shift to arbitrary order in the µ-expansion. Having
checked several higher order terms in the µ expansion, we deduce that the bulk phase shift
can be written as:

δ(
Æ

−p2, L)=
∞
∑

k=0

δk(
Æ

−p2, L)=

=
∞
∑

k=0

µk

k!

2Γ
� dk+1

2

�

Γ
�

k(d−2)+1
2

�

π
k(d−2)+2

2

Γ [ k(d−2)+2
2 ]

Æ

−p2 Πk(d−2)+1,k(d−2)+1(L) . (33)

2To arrive at the last line we used the identity:

Γ

�

x −
1
2

�

= 22−2xπ
1
2
Γ [2x − 1]
Γ [x]

(28)
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In other words the k-th order term in the bulk phase shift is proportional to the propagator
of a massive particle of mass-square m2 = k(d − 1) − (k − 1) in a hyperbolic space of the
same dimensionality, k(d − 1) − (k − 1). Furthermore, in d = 4, a closed form solution for
the phase shift can be found in terms of either elliptic integrals or Appell F1 functions. Precise
expressions can be found in Appendix B.

2.3 Exact solution in d = 2

The case of d = 2 is special, since the last term in f (r) in 3 is r−independent. In fact, for µ < 1
there is no horizon and the geometry is just AdS3 space with a conical deficit. The metric 1
can be written as the AdS3 metric (we set R= 1)

ds2 = −
�

1+ r̃2
�

d t̃2 +
�

1+ r̃2
�−1

d r̃2 + r̃2dϕ̃2, (34)

where

ϕ̃ =
p

1−µ ϕ, t̃ =
p

1−µ t, r̃ =
r

p

1−µ
. (35)

A null geodesic which starts from the boundary at ϕ̃ = 0, t̃ = 0 arrives back to the boundary
at ϕ̃ = π and t̃ = π. We can now translate this to the original coordinates ϕ, t to obtain the
time delay and the angular deflection of the particle’s trajectory:

∆t =

�

1
p

1−µ
− 1

�

π, ∆ϕ =

�

1
p

1−µ
− 1

�

π, (36)

which gives

∆x+ = 2π

�

1
p

1−µ
− 1

�

, ∆x− = 0 . (37)

The phase shift is given by

δ =
1
2

p−∆x+ = π
Æ

−p2e−L

�

1
p

1−µ
− 1

�

, (38)

where we used 13. It is instructive to expand 38 in powers of µ:

δ = π
Æ

−p2e−L

�

µ

2
+

3µ2

8
+

5µ3

16
+ . . .

�

. (39)

It agrees with eq. 33 upon the substitution of d = 2 in the latter. Note that the d = 2 case is
special, as for µ < 1 the geometry is described by a defect as opposed to a black hole. In the
BTZ case (µ > 1), the null geodesics discussed above do not return to the boundary. This is
related to the divergence of 38 as µ→ 1. The meaning of 38 when analytically continued to
µ > 1 deserves further exploration.

3 CFT calculation of the phase shift

3.1 Kinematics

The main object of study is the four-point function on the cylinder parameterized by time τ
and a point on the d − 1-dimensional unit sphere, (n̂):

〈Oc y l
H (τ4, n̂4)O

c y l
L (τ3, n̂3)O

c y l
L (τ2, n̂2)O

c y l
H (τ1, n̂1)〉, (40)
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∆t = π
OL(x3)

x0

ϕ

OL(x2)

Figure 1: Positions of the light operators on the cylinder. The states at both ends of
the cylinder are created by the heavy operators OH .

where Oc y l
H is a heavy operator whose dimension ∆H ∼ CT and Oc y l

L is a light opera-
tor with dimension ∆L which scales as ∆L ∼ O(1).3 The heavy operators are inserted at
τ1 = −∞,τ4 =∞; via the operator-state correspondence, they correspond to heavy states.

Note that with the superscripts ‘cyl’, these are operators on the cylinders. The map between
the operators on the cylinder and on the plane is

Oplane(x) = e−τ∆OOc y l(τ, n̂) , x2 = e2τ . (41)

We will keep these superscripts in some instances, but in order to avoid cluttering of notations
we will drop them whenever their meanings are clear or insignificant in the context.

The other two operators (i.e. the light operators) are inserted close to two reference points
P2 and P3 on the cylinder. The reference points P2 and P3 differ by δt = π in the Lorentzian
time (related to the Euclidean time by the usual Wick rotation, t = iτ). In addition, the
sphere coordinates of P2 and P3 are diametrically opposite: n̂(P2) = −n̂(P3). Note that P2 and
P3 define Poincare patches centered over them. The coordinates of insertions on the cylinder
x = (x0, n̂) relative to P2 and P3 are precisely the x-coordinates we need to Fourier transform
over. We will use the translational symmetry in τ together with the rotational symmetry of
Sd−1 to fix the position of O(τ2, n̂2) =O(P2). The position of O(τ3, n̂3) is parameterized by4

τ3 = τ2 − iδt, δt = π+ x0 ; x0 ≥ 0 (42)

and n̂3 = n̂. The kinematics are summarized in Fig. 1. The cylinder correlator 40 can now
be transformed to the plane Rd via the usual map from the euclidean time on the cylinder to
the radial polar coordinate r = eτ. We can now use this to go from τ1 = −∞,τ4 = +∞ to

3For a recent discussion of four-point function in a similar context see e.g. [53].
4Note that x0 ≥ 0 implies that O(τ3, n̂3) is future-time-like with respect to O(P2).
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x1 = 0, x4 =∞ and write

〈Oc y l
H |O

c y l
L Oc y l

L |O
c y l
H 〉= (r2r3)

∆L lim
x4→∞

(x2
4)
∆H 〈Oplane

H (x4)O
plane
L (x3)O

plane
L (x2)O

plane
H (0)〉 ,

(43)

where the factor (r2r3)∆L appears due to the conformal transformation from the cylinder to
Rd . This can be further written as

A(x)≡ 〈Oc y l
H |O

c y l
L (x3)O

c y l
L (x2)|O

c y l
H 〉= (r2r3)

∆L ×
A(u,υ)

x2∆L
32

, (44)

where we have defined the partial amplitude A(u,υ) which only depends on cross-ratios and
can be expanded in conformal blocks. In our conventions and setup, the cross-ratios are

zz̄ = u=
x2

2

x2
3

= e2(τ2−τ3) = e2iδt = e2i x0
(45)

and

(1− z)(1− z̄) = υ=
x2

32

x2
3

= 1+ e2(τ2−τ3) − 2eτ2−τ3 n̂3 · n̂2 = 1+ e2iδt + 2eiδt cosϕ, (46)

where ϕ is the angle between n̂(P3) = −n̂2 and n̂. Substituting 42 this becomes

(1− z)(1− z̄) = 1+ e2i x0
− 2ei x0

cosϕ. (47)

We can solve 45 and 47 to obtain

z = ei x+ , z̄ = ei x− , (48)

where x+ = x0+ϕ, x− = x0−ϕ. We would like to study the Lorentzian correlator in the limit
where x± are small – this is the Regge limit discused in [56,57].

The configuration in question is reached by starting from the correlator where O3 and O2
are inserted close to each other on a spatial circle and at the same time. This corresponds
to x+ ≈ −2π. To reach the configuration where O3 is inserted close to P3, we need to shift
x+→ x++2πwhich corresponds to z→ e2πiz. Note that in 48 we could have had the opposite
assignments of z, z̄ – there is a complete symmetry of the correlator, before the analytic con-
tinuation. Now we can define the phase shift δ(p) via the Fourier transform of the correlator
A(x) in 44 in the Regge limit where x± are small:5

B(p) =
∫

dd xA(x)e−ipx '
∫

dd xe−ipx A(x)
(−x2 − iεx0)∆L

≡ B0(p) e
iδ, (49)

where B0(p) denotes the Fourier transform of the disconnected correlator (the contribution
from the identity operator),

B0(p)≡
∫

dd xe−ipx 1
(−x2 − iεx0)∆L

= θ (p0)θ (−p2)eiπ∆L C(∆L)(−p2)∆L−
d
2 , (50)

with

C(∆)≡
2d+1−2∆π1+ d

2

Γ (∆L)Γ
�

∆L −
d
2 + 1

� . (51)

The iε-prescription is inherited from the ordering of the operators, which translates into send-
ing δt = t3− t2→ δt− iε/2 with ε > 0. This then becomes x2→ x2+ iεx0. Finally, note that
in writing 49 we have assumed that the phase shift exponentiates.

5Note that our x here differs by a minus sign from that in [52].
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3.2 Phase shift to O(µ) : conformal Regge theory

To compute the phase shift to leading order in µ, it is convenient to parametrise (z, z̄) in terms
of the variables (σ,ρ) defined via:

1− z = σeρ, 1− z̄ = σe−ρ . (52)

Expanding 48 to first order in x± leads to

σ = e−
iπ
2

p

−x2, coshρ =
1
2

x+ + x−
p
−x2

. (53)

Note that σ here is purely imaginary, while ρ is real. It is convenient to set xν =
p
−x2eν with

e2 = −1, and use this to express coshρ in 53 as follows:

coshρ = −e · ē . (54)

Here ē denotes a fixed vector with all components set to zero except for ē0 = 1. The leading
connected contribution to the correlator can be computed using conformal Regge theory [58].

In the limit σ→ 0, assuming that the leading Regge contribution comes from an operator
of dimension ∆ and spin j

A= 1− 2πi

∫ +∞

−∞
dν r[∆( j(ν)), j(ν)]α(ν) σ1− j(ν)Ωiν(ρ) + . . . , (55)

where

α(ν)≡ −
π

d
2−14 j(ν)+1e−iπ j(ν)/2

2sin
�

π j(ν)
2

� β(ν)Γ

�

2∆L + j(ν)− d
2 + iν

2

�

Γ

�

2∆L + j(ν)− d
2 − iν

2

�

,

β ≡
π

4ν
j′(ν),

(56)

and

Ωiν(ρ) =
iν
2π

�

Πiν+ d
2−1 −Π−iν+ d

2−1

�

. (57)

Here Πiν+ d
2−1 ≡ Πiν+ d

2−1,d−1 is the propagator in the Euclidean hyperbolic space Hd−1 de-
fined in 30. Finally, r[∆( j(ν)), j(ν)] denotes the analytic continuation in spin and conformal
dimension of

r[∆, J]≡ λOLOLOλOHOHO
eK∆,J (∆L) , (58)

with

eK∆,J ≡
Γ (∆+ J)Γ (∆− d

2 + 1)(∆− 1)J

4J−1Γ (∆+J
2 )4Γ (

2∆L−∆+J
2 )Γ (2∆L+∆+J−d

2 )
(59)

and λOLOLO,λOHOHO the respective OPE coefficients.
Here we are interested in holographic CFTs, i.e. large CT CFTs, with a large gap ∆gap in

the spectrum of operators. In this case, j(ν) can be approximated by (see e.g. [52])

j(ν) = 2− 2
ν2 + d2

4

∆2
gap

+ . . . . (60)
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The integral in 55 can then be computed by closing the contour in the lower half plane and
picking up the poles of 56, which correspond to the exchange of the stress tensor operator
(ν= −id/2), and the double trace operators composed out of OL – schematically denoted by
OL∂µ1

. . .∂µ`∂
2nOL . Comparing eqs. 55, 56 and 59 with the analogous expressions defining

α(ν) in [52] where the four-point function of two pairs of light operators was considered,
one notices the absence of factors with poles at the conformal dimensions of the double-trace
operators OH∂µ1

. . .∂µ`∂
2nOH . This is a direct consequence of the limit ∆H ∼ CT � n,`,∆L

that we are interested in. In this limit, terms involving ∆H cancel out and the poles coming
from the double-trace operators built out of OH disappear. Evaluating the integral, yields the
half-geodesic graviton exchange Witten diagram [63] where the geodesic sits in the center of
AdS and corresponds to the heavy state. It should be emphasized that this description is only
valid when considering the O(µ) contribution to the correlator; higher orders in µ correspond
to exchanges of multiple gravitons (for details see the discussion in section 4). We will now
perform the Fourier transform with respect to x to compute the phase shift δ(p) to O(µ).
According to the previous section, we are interested in the Fourier transform:

∫

dd xe−ipx A(x)
(−x2 − iεx0)∆L

= B0(p)
�

1+ iδ1 +O(µ2)
�

, (61)

with A(x) given to leading order in the Regge limit by 55. The Fourier transform can be
computed in a manner similar to the one in e.g. [52].

We will first derive the following identity:

21−aeiπa/2

π(d−2)/2

∫

M+
dd p

eipx

(−p2)
d−a

2

Ωiν(ω · ē) =
Γ
�

a− d−2
2 +iν
2

�

Γ
�

a− d−2
2 −iν
2

�

(−x2)
a
2

Ωiν(e · ē) , (62)

where M+ denotes the upper Milne wedge defined by
�

p2 < 0, p0 > 0
�

. We start by writing

eiπa/2

∫

M+
dd p

eipx

(−p2)
d−a

2

Ωiν(ω · ē) =
∫

Hd−1

dω
Γ (a)
(−ω.x)a

Ωiν(ω.ē) , (63)

and then use

21−a

π
d−2

2

1
(−e.ω)a

=

∫ ∞

−∞
dν′
Γ
�

a− d−2
2 +iν
2

�

Γ
�

a− d−2
2 −iν
2

�

Γ (a)
Ωiν′(e.ω) , (64)

to express 63 as

21−aeiπa/2

π(d−2)/2

∫

M+
dd p

eipx

(−p2)
d−a

2

Ωiν(ω · ē) =

=

∫ ∞

−∞
dν′
Γ
�

a− d−2
2 +iν
2

�

Γ
�

a− d−2
2 −iν
2

�

(−x2)
a
2

∫

Hd−1

dωΩiν(ω · ē)Ωiν′(ω · e) . (65)

Using the hyperbolic space identity:
∫

Hd−1

dωΩiν(ω · ē)Ωiν′(ω · e) =
1
2

�

δ(ν− ν′) +δ(ν+ ν′)
�

(66)

we arrive at 626.
662 is the analog of eq. (3.25) in [52], first derived in [58, 59]. The Fourier transform there is taken over the

positions of two pairs of operators, while here the positions of the pair of heavy operators are fixed at ±∞ and
are not integrated over.
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We now use the identity 62 with a = 2∆L + j(ν)−1, combined with 55, 56, 60 and 62, to
compute the Fourier transform 61 and read off the O(µ) term in the phase shift. We find that

δ1 = −
πd+124−2∆L+d

C(∆L)

∫ +∞

−∞
dν r̃[∆( j(ν)), j(ν)]

2 j(ν)eiπ j(ν)/2β(ν)

sin
�

π j(ν)
2

� (−p2)
j(ν)−1

2 Ωiν(ω · ē), (67)

with

ω · ē = −
p+ + p−

2
p

−p2
= −coshL. (68)

The integral in 67 can be computed by closing the contour in the lower half-plane and pick-
ing up the contribution from the stress-tensor pole. The poles corresponding to double trace
operators disappeared after the Fourier transform. The result is

δ1 =
λOLOL TλOHOH T

∆L
×





8(d − 1)dπ
d
2 Γ (d + 2)

Γ
� d

2 + 1
�3



×
Æ

−p2 ×Πd−1;d−1(L) . (69)

Note however that

λOLOLOλOHOHO∆
−1
L =

�

d
d − 1

�2 ∆H

CT
=

2d2π1− d
2 Γ
� d

2

�3

(d − 1)Γ (d + 2)
GN∆H

Rd−1
=

µ

Rd−2

Γ
� d

2 + 1
�2

Γ (d + 2)
, (70)

where we used the AdSd+1/CFTd dictionary

CT =
π

d
2−1Γ (d + 2)

2(d − 1)Γ
� d

2

�3

Rd−1

GN
(71)

and the relation [45]

µ≡
�

d − 1
16π

Ωd−1

�−1

GN M =
8π1− d

2 Γ
� d

2

�

d − 1
GN∆H

R
. (72)

Substituting into 70 leads to

δ1 = µ

�

(d − 1)πd/2

Γ
� d

2

�

�

×
Æ

−p2 ×Πd−1;d−1(L), (73)

where we set the AdS radius R to unity. The final answer for 69 is exactly the same as 29. For
later comparison, it will be useful to determine the behavior of δ1 in the lightcone limit, which
in the variables defined above is given by L� 1 . It is easy to see that:

δ1 ≈ µ

�

πΓ (d)

Γ
� d

2 + 1
�

Γ
� d

2

�

�

Æ

−p2e−(d−1)L . (74)

4 The case of CFT2

We will start by using the exact result for the heavy-heavy-light-light Virasoro vacuum block
to obtain the time delay to all orders in µ. We will then proceed to analyze the expansion in
powers of µ. This will be useful for understanding the higher order terms in higher dimensions.
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4.1 Phase shift to all orders in µ

In the d = 2 case we have much better control.
The solution to the cross-ratios is given by 48, where x0 and ϕ are coordinates on a flat

two-dimensional cylinder. In d = 2 we can make use of the Virasoro heavy-heavy-light-light
vacuum block [64–66], which incorporates contributions from an infinite number of quasi-
primaries. The result for the correlator is a product of holomorphic and anti-holomorphic
parts:

A(x) = 〈OH |O(x3)O(x2)|OH〉 ' e∆ f (z)e∆ f (z̄), (75)

where z, z̄ are related to the positions of the operators by 48, as before. Note that the correlator
factorizes and exponentiates. We have denoted O ≡OL and∆≡∆L to simplify the notations.
It will be convenient for us to write the function f (z) as [64,66]

f (z) = −
1
2

log z − log
�

−2 sinh
�

ᾱ

2
log z

��

+ log ᾱ, (76)

where ᾱ=
p

1−µ. Hence the Euclidean correlator, up to an unimportant constant, is

〈OH |O(x3)O(x2)|OH〉 '
1

�

sinh
�

ᾱ
2 log z

��∆ �
sinh

�

ᾱ
2 log z̄

��∆
, (77)

where a factor of z−∆/2 has been taken care of by the conformal factor which we earned
transforming from the plane to the cylinder.

The correlator contains an infinite number of poles at

ᾱ log z = 2πn . (78)

These simply correspond to null particles propagating in the bulk of AdS3 with a conical defect
(the corresponding anti-holomorphic part describes null particles propagating in the opposite
direction on the spatial circle). The x± coordinates defined in the previous section measure
the distance from the spacetime point P3; this involves the analytic continuation z → e2πiz,
which yields with the help of 48 (again, up to an unimportant numerical constant)

1
�

sinh
�

ᾱ
2 log z

��∆
→

1
�

sinh
�

πiᾱ+ ᾱ
2 log z

��∆
=

1
�

sin
�

ᾱπ+ ᾱ
2 x+

��∆
. (79)

This implies that the correlator has a pole at the value of x+ = x+∗ where the sine vanishes,
i.e., where its argument is equal to πn (with integer n).

Note that we must pick the n= 1 solution to recover x+∗ = 0 in the ᾱ→ 1 limit, hence

πᾱ+
ᾱ

2
x+∗ = π . (80)

In other words, we reproduce the expected result: the amplitude has a pole at

x+∗ = 2π

�

1
p

1−µ
− 1

�

, (81)

and x−∗ = 0. This is of course the expected time delay combined with the angular shift of the
null geodesic in the conical defect background 37.
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In other words, we successfully reproduced the gravity result for the time delay and angular
deflection. The phase shift is obtained by multiplying the expression in 81 by p−. This is
consistent with

∫

d2 x e
1
2 ip−x+ e

1
2 ip+x− 〈OH |O(x3)O(x2)|OH〉 ≈ B0(p) e

iδ , (82)

where δ is given precisely by 38 and B0(p),

B0(p) = C(∆L)θ (p
−)θ (p+)eiπ∆L (p+p−)∆L−1 , (83)

represents the contribution from the disconnected piece. The approximation in 82 is valid in
the limit p2� 1; the integral simply picks up the pole given by 81.

The other poles of the correlator 79 correspond to null geodesics in the bulk which bounce
from the boundary into the bulk, and reemerge later. We are not interested in them – among
other things, the phase shift associated with these poles is larger than the one which corre-
sponds to the geodesic with no bounce (n = 1 solution discussed above). Besides, the n = 1
solution is the only one which is perturbative in µ – it is this perturbative expansion we aim
to eventually reproduce in the higher dimensional setting.

4.2 Expansion of the correlator in powers of µ

As explained in the previous section, the correlator of heavy-heavy-light-light operators is a
product of a holomorphic and an anti-holomorphic part, each of which exponentiates, i.e. can
be written as e∆ f (z)e∆ f (z̄), with f (z) defined in 76. The function f (z) has a simple expansion
in terms of µ,

f (z) = f1(z) + f2(z) + . . . , (84)

where fk(z) contains a factor of µk. The precise expansion is given by (here w= 1− z):

f (w) = − ln w+µ
�

−
1
2
+

4(w− 2) ln (1−w)
w

�

+µ2

�

−
(w− 1) ln2 (1−w)

8w2
+
(w− 2) ln (1−w)

16w
−

1
4

�

+µ3

�

−
(w− 1)(w− 2) ln3 (1−w)

48w3
−
(w− 1) ln2 (1−w)

16w2
+
(w− 2) ln (1−w)

32w
−

1
6

�

+µ4

�

−
(w− 1)((w− 6)w+ 6) log4(1−w)

384w4
−
(w− 2)(w− 1) log3(1−w)

64w3

−
5(w− 1) log2(1−w)

128w2
+

5(w− 2) log(1−w)
256w

−
1
8

�

+ · · · . (85)

Interestingly, each term in the µ expansion is a sum of all the possible terms made out of
products of holomorphic, global blocks satisfying the following requirements7:

• the leading behavior for small w of each product should be equal to that of the stress-
tensor block to the k-th power.

• the sum of the dimensions/spins of the blocks in each product is equal to (2k), where k
indicates the k-th term in the µ-expansion.

7This is actually the generalization of an observation which appeared in Appendix D2 of [72].
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To be explicit, the order µ,µ2,µ3,µ4-terms in brackets in 85 can be written as:

O(µ) : (w2
2F1[2, 2,4, w])

O(µ2) :−
�

w2
2F1[2, 2,4, w]

�2
+

6
5
(w3

2F1[3, 3,6, w])(w 2F1[1,1, 2, w])

O(µ3) :
4
3

�

w2
2F1[2,2, 4, w]

�3 −
14
5
(w2

2F1[2, 2,4, w])(w3
2F1[3, 3,6, w])(w 2F1[1,1, 2, w])+

+
2× 27

35
(w4

2F1[4, 4,8, w])(w 2F1[1,1, 2, w])2

O(µ4) :− 2
�

w2
2F1[2, 2,4, w]

�4

+
59
10
(w2

2F1[2,2, 4, w])2(w3
2F1[3,3, 6, w])(w 2F1[1,1, 2, w])−

−
297
70
(w2

2F1[2,2, 4, w])(w4
2F1[4,4, 8, w])(w 2F1[1, 1,2, w])2−

−
42
25
(w3

2F1[3,3, 6, w])2(w 2F1[1,1, 2, w])2

+
72
5
(w5

2F1[5,5, 10, w])(w 2F1[1, 1,2, w])3 . (86)

It would be interesting to determine the numeric coefficients in front of each term. The coeffi-
cient in front of the stress-tensor block to the n-th power appears to be equal to (−1)n−12n−1 1

n .
Naturally, the (holomorphic part of) the correlator has an expansion in powers of µ as well:

e∆ f (z) = 1+ (∆ f1) +
�

1
2
(∆ f1)

2 +∆ f2

�

+ . . . . (87)

The first and the second terms in this expansion are contributions of the identity and the
stress tensor global blocks. The third term contains contributions from all double-trace
operators composed out of the stress-tensor operator, which schematically have the form
T (z)∂ . . .∂ T (z) ≡ T∂ sT . This is because the OPE coefficients of two heavy operators
OH and these double-trace operators scale like ∆2

H ; divided by the two-point function
〈(T (z)∂ sT (z)) (T (0)∂ sT (0))〉 ∼ C2

T this produces a factor of µ2. The sum over the infinite
number of such operators with appropriate OPE coefficients, gives rise to the ln2(1−w) terms
in 85 which would not be obtained otherwise [72].

Let us briefly review how this works. The exact expressions for quasi-primaries at levels 4
(denoted by Λ) and level 6 (denoted by O(1,2)

6 ) can be found in appendix B of [71]:

Λ= L2
−2 −

3
5

L−4, O(1)6 = −
20
63

L−6 −
8
9

L−4 L−2 +
5
9

L−3 L−3 . (88)

Another quasi-primary at level 6 corresponds to a triple-trace operator. As expected, the nor-
malization of these operators scales like C2

T at large CT and the OPE coefficient with a scalar
operator of dimension ∆ behaves like a∆2 + b∆, where a, b are some numbers. The appear-
ance of the term proportional to ∆ (as opposed to ∆2) is due to a piece which is linear in T ,
∂ sT (z). These operators, as well as double trace operators at higher levels, contribute to the
O(µ2) terms in the expansion 87. Note that O(∆2) term corresponds to 1/2(∆ f1)2, which
comes from the exponentiation and is related to the phase shift at O(µ). This exponentia-
tion has been observed in [72], where it was pointed out that the large-spin behavior of the
OPE coefficients of two operators O and a double trace operator of spin s (discussed above) is
known from the bootstrap:

λOO[T∂ s T]λOHOH [T∂ s T] ' 2−2ss−
3
2
�

λOOTλOHOH T

�2 ' µ2 2−2ss−
3
2∆2. (89)
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At the same time, the small z (w→ 1) behavior of conformal blocks in the T-channel contains
a log term:

glog =
Γ (2s)(1−w)s

Γ (s)2
ln(1−w)≈

22sps
2
p
π
(1−w)s ln(1−w), (90)

where the approximation is valid at large s. Multiplying 89 by 90 and integrating over s leads
to a term of the form µ2∆2 log2(1−w), which corresponds to the µ2∆2 f 2

1 term in 87 and comes
from the exponentiation. Note that this exercise does not say anything about the µ2∆ f2 term;
indeed, this term vanishes as w→ 1, as evident from the second line of 85.

Let us now consider the phase shift and see how the expansion in powers of µ works, term
by term. In Section 2 we showed that the phase shift at O(µ) is determined by the stress-tensor
conformal block. We also observed above that the vacuum Virasoro block yields the expression
to all orders in µwhich is exactly the same as the one from the gravity calculation. Now we will
reproduce the O(µ2) term in the phase shift from the O(µ2) correction to the C F T2 correlator.
This will be useful when dealing with higher dimensional CFTs. It is important to keep in
mind the relation 48 between x± and z, z̄, and also to include the conformal factor which
arises when the cylinder is mapped to the plane.

Let us see how the pole can be expanded in powers of µ, and integrated term by term:

1
(x+−∆x+)∆

=
1

(x+)∆

�

1+
π∆µ

x+
+

�

∆(1+∆)π2

2(x+)2
+

3π∆
4x+

�

µ2+

+

�

∆(1+3
2∆+

1
2∆

2)π3

3(x+)3
+

3∆(1+∆)π2

4(x+)2
+

5∆π
8(x+)

�

µ3+O(µ4)

�

. (91)

After performing the Fourier transform, term by term, we arrive at
∫

d x+
e

1
2 ip−x+

(x+−∆x+ − iε)∆
=

21−∆π

Γ (∆)
θ (p−)e

i
2π∆(p−)∆−1

×
�

1+
iπ
2

p−µ+

�

−
π2(p−)2

8
+

3πip−

8

�

µ2 + . . .

�

. (92)

Note that all factors of ∆ inside the square bracket disappear and we recover 81 expanded to
O(µ2). This pattern continues to higher orders in µ.

5 Phase shift and anomalous dimensions

For the case of a four-point correlator of two pairs of light operators O1,O2, the phase shift
in the Regge limit can be related to the anomalous dimensions of the double twist operators
- schematically O1∂µ1

. . .∂µ`∂
2nO2 - exchanged in the S-channel expansion of the same corre-

lator [57] (see also Appendix C of [52] for a review). In this Section we repeat the analysis
in the case where one of the operators (say O1 = OH) is very heavy while the other operator
O2 =OL is light.

We claim that the correlator 44 admits the following impact parameter representation

〈OH |OL(x2)OL(x3)|OH〉=
∫ ∞

0

dξ

∫ ξ

0

dξ̄Iξ,ξ̄ eiδ(ξ,ξ̄), (93)

where

Iξ,ξ̄(z, z̄) = 4C(∆L)

∫

M+

dd p
(2π)d

(−p2)∆L−
d
2 eip·x ξξ̄(ξ2 − ξ̄2)δ

�

p.ē+ ξ2 + ξ̄2
�

δ

�

p2

4
+ ξ2ξ̄2

�

,

(94)
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where C(∆L) is defined in 51 and δ(ξ, ξ̄) is the phase shift8.
For simplicity, we consider the d = 2 case below, but the final formula is valid to leading

order in µ in any number of dimensions. Let us consider the leading order O(µ0) term in 93,
which corresponds to setting δ(ξ, ξ̄) = 0. This term should reproduce the contribution of the
identity operator in the T-channel. One can use the identity

δ
�

p.ē+ ξ2 + ξ̄2
�

δ

�

p2

4
+ ξ2ξ̄2

�

=
1

|ξ2 − ξ̄2|

�

δ

�

p+

2
− ξ2

�

δ

�

p−

2
− ξ̄2

�

+ (p+↔ p−)
�

(95)

to perform the integration over p+, p−. Substituting the result back into 93, using 48 and 94,
and setting d = 2, leads to

∫ ∞

0

dξ

∫

dξ̄Iξ,ξ̄(z, z̄) =
4

Γ (∆L)2

∫ ∞

0

dξ

∫ ξ

0

dξ̄ (ξξ̄)2∆L−1z−ξ
2
z̄−ξ̄

2
+ (z↔ z̄) . (96)

At the same time, the contribution of the identity operator in the cross channel can be
computed directly using the known expressions for the cross-channel conformal blocks

g
∆OHO ,−∆OHO
∆=∆n,s ,J=`

= (zz̄)−
∆n,s−`

2
�

z`2F1(∆L + n+ `,∆L + n+ `,∆H +∆L + 2n+ 2`, 1/z)×

2F1(∆L + n,∆L + n,∆H +∆L + 2n, z̄) + (z↔ z̄)] , (97)

and the generalised free field theory OPE coefficients (eq. 43 in [70]). In the limit ∆H →∞,
the blocks take a very simple form

g
∆OHO ,−∆OHO
∆=∆n,s ,J=`

≈ z−
∆H+∆L+2n+2`

2 z̄−
∆H+∆L+2n

2 + (z↔ z̄) , (98)

and the same is true about the OPE coefficients:

λ2
n,` ≈

n∆L−1(n+ `)∆L−1

Γ (∆L)2
. (99)

Hence, the contribution of the identity operator in the correlator can be written as the following
sum in the S-channel

〈OH |OL(x3)OL(x2)|OH〉=
1

Γ (∆L)2
∑

n,`�1

n∆L−1(n+ `)∆L−1z−n−`z̄−n + (z↔ z̄) +O(µ) .

(100)

In the Regge limit, where both n,`� 1, the sum can be replaced by an integral, allowing us
to express the right hand side of 100 as

1
Γ (∆L)2

∑

n,`�1

n∆L−1(n+ `)∆L−1z−n−`z̄−n + (z↔ z̄)

=
1

Γ (∆L)2

∫ ∞

0

dξ

∫ ξ

0

dξ̄ n∆L−1(n+ `)∆L−1z−n−`z̄−n ∂ n
∂ ξ

∂ `

∂ ξ̄
+ (z↔ z̄) . (101)

Note that the two expressions, 96 and 101 are identical, provided we perform the identi-
fication

ξ2 = n+ `, ξ̄2 = n . (102)

8This is a straightforward generalization of the corresponding impact parameter representation introduced
in [57]. Here we use (ξ, ξ̄) in place of their (h, h̄) for reasons which will become clear momentarily.
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Moreover, the integral

∫ ∞

0

dξdξ̄ Iξ,ξ̄ '
1

(−x2)∆L
(103)

reproduces the expected answer for the generalized free theory in the Regge limit.
We can now use the impact parameter representation 94 to write 93 in the form

〈OH |OL(x3)OL(x2)|OH〉=
∫

M+

dd p
(2π)d

(−p2)∆L−
d
2 eipx eiδ(ξ(p),ξ̄(p)) . (104)

This expression represents the Fourier transform of 49, as long as we identify δ(ξ, ξ̄) with the
phase shift which appears in 93. In 104 ξ and ξ̄ are related to p via

−
p2

4
= ξ2ξ̄2,

p+ + p−

2
p

−p2
=

1
2

�

ξ

ξ̄
+
ξ̄

ξ

�

. (105)

The second identity in 105 can also be written as

ξ̄

ξ
= e−L , (106)

where we used 68. Another way to rewrite 105 is

p− = n, p+ = n+ ` . (107)

In the dual language (see [56,57,73]) this is simply saying that the O(µ) correction to the
energy of the bound state of a particle with momentum ` and radial excitation n is δ. Let us
see why. The O(µ) correction to the free result 100 comes from the anomalous dimensions of
the double trace operators:

〈OH |OL(x3)OL(x2)|OH〉=

=
1

Γ (∆L)2

∫ ∞

0

dξdξ̄ n∆L−1(n+ `)∆L−1z−n−`z̄−n ∂ n
∂ ξ

∂ `

∂ ξ̄

�

1− iπγ(ξ, ξ̄) + . . .
�

. (108)

The appearance of −iπγ(ξ, ξ̄) in the brackets is due to the analytic continuation (z→ e2πiz).
From the discussion above it is clear that this results in

〈OH |OL(x3)OL(x2)|OH〉=
∫

dd p
(2π)2

(−p2)∆−
d
2 eipx

�

1− iπγ(ξ(p), ξ̄(p)) + . . .
�

. (109)

Hence, to leading order in µ, the anomalous dimension and the phase shift are related

γ1(n,`) = −
δ1(p)
π

, (110)

where the parameters are related by 107.
Let us now verify this relation for the phase shift computed in Section 2. As explained

in [64], in two spacetime dimensions one can find the anomalous dimensions of the double
trace operators OH∂µ1

. . .∂µ`∂
2nOL by studying the eigenfunctions of the Hamiltonian in the

AdS3 spacetime with a conical defect 34. The result is

γ(n,`) = (∆L + 2n)
�p

1−µ− 1
�

. (111)
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Note that in the Regge limit (n�∆L) the O(µ) term in the anomalous dimension becomes

γ1 ≈ −µn . (112)

Using the identification 105 and the result for the phase shift 39 we recover 110.
Consider now d = 4. In this case, the leading behavior of the phase shift 73 (or, equiva-

lently, 26) is given by

δ1 ' µ
Æ

−p2 e−2L

sinhL
= µ

n2

`
. (113)

At the same time, the lightcone limit of the anomalous dimensions can be obtained from a
gravity calculation [64,67]. In [64,67] there was a subtlety which involved the decomposition
of the O1∂µ1

. . .∂µ`∂
2nO2 primary operator (with O1,O2 being light) into descendants. The

result there was the dominance of the descendants of the type ∂µ1
. . .∂µ`/2O1,2. When one of

the operators is heavy, the sum is dominated by descendants of the type ∂µ1
. . .∂µ`∂

2nOL . The
result is then

γ1 ' µ
n

d
2

`
d−2

2

, (114)

which agrees with 112 in the d = 2 case and with 113 in the d = 4 case. (Note that while
114 was computed in the lightcone limit, ` � n � 1, eq. 113 is valid in the Regge limit,
`∼ n� 1).

In fact, it is very easy to see that in the lightcone limit 114 is equal to the phase shift in
any d: it is sufficient to take the lightcone limit of 29:

δ1 ' µ
p

p+p− e−(d−1)L ≈ µ
n

d
2

`
d−2

2

, (115)

which is the same as 114.
This should be contrasted with the familiar story where the O(1/CT ) anomalous dimen-

sions of the O1∂µ1
. . .∂µ`∂

2nO2 operators (with O1,O2 being light) are related to the phase
shift observed in the scattering of two highly energetic particles [57]. The phase shift in this
case is given by

δ '
1

CT

Æ

p2 p̄2 Πd−1;d−1(L) . (116)

In the Regge limit the identification for the light operators is (we use the superscript "LL"
below)

hLL = n+ `, h̄LL = n (117)

and

16(hLL)2(h̄LL)2 = p2 p̄2, e−L =
h̄LL

hLL
. (118)

In d = 4 this recovers

δLL
1 '

n4

`(`+ 2n)
, (119)

which can also be obtained using conformal bootstrap [68,69] (see also [34–40]).
Finally, let us observe that in d = 2, the anomalous dimension in 111 is not the same as

the phase shift in 37 at second order and higher. In fact, in the next section, we will perform
a second-order calculation of the anomalous dimension to show that this is also the case for
general d ≥ 2.
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6 Anomalous dimensions of heavy-light double trace operators
from gravity

The objective of this section is to obtain the anomalous dimensions of double-twist operators,
schematically denoted by [OHOL]n,`, with conformal dimensions∆n,` =∆H+∆L+2n+`+γn,`.
We will follow the approach of [64,67]where the anomalous dimensions of double-twist oper-
ators built out of light operators, [OLOL]n,`. For the case of heavy-light double-twist operators,
we will focus on the limit, ∆H � `� n� 1, i.e., the analogue of the lightcone limit for a very
heavy operator.

Consider a generic double-twist primary of the form [48,70]

[OHOL]n,` =
∑

`1+`2=n;n1+n2=n

s`1,n1,`2,n2

�

∂µ1
. . .∂µ`1 (∂

2)n1OH

��

∂µ2
. . .∂µ`2 (∂

2)n2OL

�

. (120)

Notice that the dominant contribution in the sum, in the limit∆H � 1, comes from `1 = n1 = 0
and n2 = n, `2 = `. In other words, the tensor-products of the descendants of the light
operator with OH form a primary9. To see this, consider the case n = n1 = n2 = 0. The
coefficients s`1,0,`2,0 ≡ s`1,`2

in the heavy limit can be computed using the results of [48,70]:

s`1,`2
∼ e∆H∆

−∆H−`1+
1
2

H . (121)

Clearly, the non-zero `1 is power-law suppressed (in 1/∆H) compared to the `1 = 0 term10.
In short, since the primary double-twist operator is [OHOL]n,` in the heavy limit is given by
tensoring OH with a descendant ∂µ . . .∂µ`(∂

2)nOL , we may compute the anomalous dimensions
of such primaries by studying corrections to the energies of the descendants. In the gravity dual
language, one should study corrections to the energy of the “descendants” of a free massive
scalar field Φ in the AdSd+1-Schwarzschild background. In this context, Φ is dual to the light
operator OL while the background is dual to the state created by the heavy operator OH .

To compute the corrections to the energy, we write the Hamiltonian in the form H = H0+V
with H0 the Hamiltonian for a free massive scalar field in pure AdS and V given by

V =
∑

k≥1

µkV (k), (122)

where for k = 1

V (1) = −
1
2

∫

dd x r
�

1
(r2 + 1)2

(∂tΦ)
2 + (∂rΦ)

2
�

, (123)

while for k ≥ 2

V (k) = −
k
2

∫

dd x rd−1 1
(r2 + 1)k+1rk(d−2)

(Φ̇)2. (124)

We refer the reader to Appendix C for more details on the derivation of these expressions.
In the rest of the section we will employ standard perturbation theory techniques and obtain
O(µ) and O(µ2), i.e. the first and second order, corrections to the energy.

9Note that in the setup of [48, 70], one needs to match the number of derivatives ` to the actual angular
momentum of the dual primary double-twist operator. Here the situation is simpler as can be seen from this
discussion.

10For general n 6= 0, it should be possible to prove a similar statement using the results of [48,70] but we shall
not pursue it here.
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6.1 First-order correction

Here we compute the O(µ) correction to the anomalous dimensions in the lightcone limit, i.e.,
` � n � 1. We thus focus on the k = 1 term of the potential. Note that the calculation in
this case is similar to the one in [67] for double-twist operators build out of two light oper-
ators. In that case, [67] observed that γ(1)n,` ∼ nd/2/`(d−2)/2. The n-dependence was deduced
using numerical computations. Below we reproduce the respective result for heavy-light twist
operators analytically (including the prefactor), by taking the large ` limit in a careful way in
some intermediate step. This allows us to estimate the behavior of higher order terms, which
is useful for the second-order calculation in the next section, where we compute γ(2)n,` in the
light-cone limit.

Consider the energy correction in first-order perturbation theory

γ
(1)
n,` = 〈n,`, j|V (1)|n,`, j〉, (125)

which in position space is given by

γ
(1)
n,` = −

1
2

∫

dr

∫

dΩ r〈n,`, j|
�

1
(r2 + 1)2

(∂tΦ)(∂tΦ) + (∂rΦ)(∂rΦ)
�

|n,`, j〉. (126)

From [64,67] we know that the leading ` behavior comes from the first term (i.e. (∂tΦ)(∂tΦ)
term).11 Writing Φ in terms of the complete set of states ψn,`, j (see Appendix C for more
details), allows us to rewrite 126 as

γ
(1)
n,` = −

∫

dr

∫

dΩ
r

(r2 + 1)2
(∂tψ

∗
n,`, j)(∂tψn,`, j) . (127)

Performing the spherical integral - which gives unity - leads to

E1 = −
E2

n,`

N2
∆L ,n,`

∫ ∞

0

r1+2`

(r2 + 1)2+∆L+` 2F1

�

−n,∆L + `+ n,`+
d
2

,
r2

r2 + 1

�2

, (128)

where En,` and N∆L ,n,` denote the energies and the normalisation coefficients of the unper-
turbed wavefunctions. Substituting their explicit expressions (see Appendix C) yields

E1 = −
(∆L + 2n+ `)2Γ (n+ `+ d

2 )Γ (∆L + n+ `)

n!Γ (`+ (d/2))2Γ (∆L + n− d−2
2 )

×

×
∫ ∞

0

r1+2`

(r2 + 1)2+∆L+` 2F1

�

−n,∆L + `+ n,`+
d
2

,
r2

r2 + 1

�2

. (129)

The prefactor in the lightcone limit `� n� 1 becomes

−
(∆L + 2n+ `)2Γ (n+ `+ d

2 )Γ (∆L + n+ `)

n!Γ (`+ (d/2))2Γ (∆L + n− d−2
2 )

≈ −
e2n`−

d
2+∆L+2n+2n

d
2−∆L−2n−1

(2π)
. (130)

Understanding the behavior of the integral

I0 ≡
∫ ∞

0

r1+2`

(r2 + 1)2+∆L+` 2F1

�

−n,∆L + `+ n,`+
d
2

,
r2

r2 + 1

�2

, (131)

11One can show that the (∂rΦ)2 term in the large ` limit scales like `−d/2 which is subleading compared to the
(∂rΦ)2 term which scales like `1−d/2. This can be shown explicitly by taking the large ` limit of the hypergeometric
function in ψn,`, j .
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requires a careful analysis. Naively, one may simply expand the hypergeometric function in
the integrand for large ` to obtain

2F1

�

−n,∆L + `+ n,`+
d
2

,
r2

r2 + 1

�

≈
�

r2 + 1
�−n
+O(`−1). (132)

However, a careful look at the higher order terms of this expansion, shows that certain higher-
order terms in the large ` expansion of 2F1 contribute to the same order in ` after integration.
These terms look like

�

r2 + 1
�−n

�

r2

`

�a

(133)

for a ≥ 0. Their contribution to the integral is

∫ ∞

0

r1+2`

(r2 + 1)2+∆L+`

�

r2 + 1
�−2n

�

r2

`

�a1+a2

=

= `−a1−a2
Γ (a1 + a2 + `+ 1)Γ (−a1 − a2 + 2n+∆L + 1)

2Γ (`+ 2n+∆L + 2)
, (134)

which for large ` becomes

1
2
`−∆L−2n−1Γ (−a1 − a2 + 2n+∆L + 1) . (135)

Notice that the power of ` is independent of a1 and a2.
If we were only interested in the ` dependence, at this point we would conclude that at

large `

E1 ∼
1

`
d−2

2

. (136)

To compute the n-dependence however, we need to keep track of the coefficients of all the
terms in Eq. 133. In practice, we need the following approximate expression

2F1

�

−n,∆φ + `+ n,`+
d
2

,
r2

r2 + 1

�

≈
�

r2 + 1
�−n

n
∑

s=0

Γ (n+ 1)Γ
� d

2 + s− n−∆
�

Γ (s+ 1)Γ (−s+ n+ 1)Γ
�1

2(d − 2(n+∆))
�

�

r2

`

�s

. (137)

Substituting 137 in 131 leads to

I0 '
n
∑

s1,s2=0

Γ (n+ 1)Γ
� d

2 + s1 − n−∆
�

Γ (s1 + 1)Γ (−s1 + n+ 1)Γ
�1

2(d − 2(n+∆))
�

×
Γ (n+ 1)Γ

� d
2 + s2 − n−∆

�

Γ (s2 + 1)Γ (−s2 + n+ 1)Γ
�1

2(d − 2(n+∆))
� ×

∫ ∞

0

r1+2`

(r2 + 1)2+∆L+`+2n

�

r2

`

�s1+s2

≈ `−∆L−2n−1 Γ (n+ 1)2

2Γ
�1

2(d − 2n− 2∆)
�2×

×
n
∑

s1,s2=0

Γ
� d

2 + s1 − n−∆
�

Γ
� d

2 + s2 − n−∆
�

Γ (2n− s1 − s2 +∆L + 1)

Γ (s1 + 1)Γ (s2 + 1)Γ (−s1 + n+ 1)Γ (−s2 + n+ 1)
, (138)
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where we first preformed the integral and then took the large ` limit. Now, let us sum over
the s1, to obtain

I0 ≈ (−1)n+1π

2
`−∆L−2n−1 Γ (n+ 1)

Γ
�1

2 (d − 2 (n+∆L))
�×

×
n
∑

s2=0

Γ
� d

2 + n− s2 + 1
�

csc (π (∆L + 2n− s2)) Γ
� d

2 − n+ s2 −∆L

�

Γ (s2 + 1) Γ
� d

2 − s2 + 1
�

Γ (n− s2 + 1) Γ (−n+ s2 −∆L)
, (139)

which can be shown to be equal to

I0 =
1
2
`−∆L−2n−1

Γ
� d

2 + n+ 1
�

Γ (n+∆L + 1)

Γ
� d

2 + 1
�

× 3F2

�

−
d
2

,−n,
d
2
− n−∆L;−

d
2
− n,−n−∆L; 1

�

. (140)

The large n limit of the 3F2 is

3F2

�

−
d
2

,−n,
d
2
− n−∆L;−

d
2
− n,−n−∆L; 1

�

≈
2n−

d
2 Γ (d)

Γ
� d

2

� (141)

and so

I0 '
4πe−2nΓ (d)n∆L+2n+1

dΓ
� d

2

�2 . (142)

Combining with the prefactor results in

γ
(1)
n,` ' −

�

Γ (d)

Γ ( d
2 + 1)Γ

� d
2

�

�

n
d
2

`
d−2

2

, (143)

which as expected agrees with the expression for the anomalous dimensions of the light-light
twist-two operators in the lightcone limit given in [67].

6.2 Second-order correction

To second-order in µ, there are two types of contributions to the energy:

γ
(2)
n,` = 〈n,`|V (2)|n,`〉+

∑

En1,`1, j1 6=En,`, j

|〈n1,`1|V (1)|n,`〉|2

En,` − En1,`1

, (144)

i.e. there is a first-order-type correction from V (2) (since the coefficient is µ2) and there is a
second order correction from V (1). In Appendix C, we show that the first term is subleading
in ` for large ` to any order (not just quadratic in µ). To be precise, we show that the kth-
order contribution to the energy from V (k) behaves like 1/`(dk−2)/2 and is always subleading
compared to the kth-order contribution from V (1) which behaves like 1/`(d−2)k/2. With that
in mind, we will drop the first term in Eq. 144 and focus on

γ
(2)
n,` '

∑

En1,`1, j1 6=En,`, j

|〈n1,`1|V (1)|n,`〉|2

En,` − En1,`1

. (145)
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Similarly to the first order calculation, the leading large ` contribution comes from the (∂tΦ)2

term in H1. We thus need the matrix element:

〈n1,`1, j1|V (1)|n,`, j〉 ' −
∫

dr

∫

dΩ
r

(r2 + 1)2
(∂tψn,`, j)(∂tψ

∗
n1,`1, j1

) , (146)

which due to the spherical integral picks up the Kronecker-δ contributions, (δ`,`1
δ j, j1). As a

result we can write:

γ
(2)
n,` '`�1

∑

n1 6=n

|〈n1,`|V (1)|n,`〉|2

2(n− n1)
. (147)

Let us evaluate the matrix element in the numerator:

〈n1,`|V (1)|n,`〉

= −e−i(En−En1
)t

EnE∗n1

N∆L ,nN∆L ,n1

×
∫ ∞

0

dr

�

r2`+1

(r2 + 1)2+∆L+`
×

2F1

�

−n,∆L + `+ n,`+
d
2

,
r2

r2 + 1

�

2F1

�

−n1,∆L + `+ n1,`+
d
2

,
r2

r2 + 1

��

. (148)

Similarly to the first order case, the large ` dependence can be found by considering the large
` limit of the hypergeometric function, which is equal to (r2 + 1)−n. Evaluating the integral
using the large ` behavior of the hypergeometric function and taking again the large ` limit
after performing the integration, gives:

∫ ∞

0

dr
r2`+1

(r2 + 1)2+∆L+`
(2F1)(2F1)∼ `−∆L−n−n1−1 . (149)

We should of course consider the `-dependence from the normalization prefactors as well:

EnE∗n1

N∆L ,nN∆L ,n1

' `−(d/2)+∆L+n+n1+2

×
(−1)n1+n

q

Γ (n+ 1)Γ (n1 + 1) Γ
�

− d
2 + n+∆L + 1

�

Γ
�

− d
2 +∆L + n1 + 1

�

. (150)

Combining 150 and 149 we deduce that matrix element behaves in the large ` limit as follows

〈n1,`|V (1)|n,`〉 ∼ `−
d−2

2 , (151)

which leads to the large ` dependence of the anomalous dimensions, i.e.,

γ
(2)
n,` ∼

1

`2× d−2
2

. (152)

Before moving on to discuss the n-dependence of γ(2)n,`, let us make a side comment on
higher order contributions. It is easy to estimate, given the calculations above, the large `
dependence of the k-order term contribution from V (1). Assuming that in the large `-limit

γ
(k)
n,` ∼ 〈n,`|V (1)|n1,`〉〈n1,`|V (1)|n2,`〉 . . . 〈nk,`|V (1)|n,`〉 , (153)

leads to

γ
(k)
n,` ∼

1

`k d−2
2

. (154)
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It is plausible, based on the computation of the second order energy correction, that this is
indeed the full leading contribution at order k. We have not pursued a rigorous general argu-
ment to order k ≥ 3, but it is likely to be correct12 .

Back to second order computations. Now that we have obtained the large `-dependence,
we focus on finding the large n dependence. To do so, we need to compute the matrix element
in more detail,

〈n1,`|V (1)|n,`〉

' −
1

2`
d−2

2

e−i(En−En1
)t (−1)n+n1

q

n!Γ
�

− d
2 + n+∆L + 1

�

q

n1!Γ
�

− d
2 + n1 +∆L + 1

�

× (155)

n1
∑

s1=0

n
∑

s=0

Γ (n− s+ n1 − s1 +∆L + 1) Γ (n+ 1)Γ
�

d
2 + s− n−∆

�

Γ (n1 + 1)Γ
�

d
2 + s1 − n1 −∆

�

Γ (s+ 1)Γ (−s+ n+ 1)Γ
�

1
2 (d − 2(n+∆))

�

Γ (s1 + 1)Γ (−s1 + n1 + 1)Γ
�

1
2 (d − 2(n1 +∆))

� .

The sum in 155 is nothing but a hypergeometric function, i.e.,

n1
∑

s1=0

n
∑

s=0

Γ (n− s+ n1 − s1 +∆L + 1) Γ (n+ 1)Γ
�

d
2 + s− n−∆

�

Γ (n1 + 1)Γ
�

d
2 + s1 − n1 −∆

�

Γ (s+ 1)Γ (−s+ n+ 1)Γ
�

1
2 (d − 2(n+∆))

�

Γ (s1 + 1)Γ (−s1 + n1 + 1)Γ
�

1
2 (d − 2(n1 +∆))

�

=
Γ
�

d
2 + n+ 1

�

Γ (n+∆L + 1)

Γ
�

d
2 + n− n1 + 1

� × 3F2

�

−n,−
d
2
− n+ n1,

d
2
− n−∆L;−

d
2
− n,−n−∆L; 1

�

.

(156)

For even d, the 1/Γ
� d

2 + n− n1 + 1
�

factor in the double sum, implies that the only non-zero
terms are those for which n1−n≥ −(d/2). The same conclusion can be reached by considering
the 3F2 hypergeometric; it is non-zero only when n1 − n≤ d/2. Hence,

γ
(2)
n,` '

'
1

8`d−2

∑

−d/2≤n1≤d/2

Γ
� d

2 + n+ 1
�2
Γ (n+∆L + 1)2

n!n1!Γ
�

− d
2 + n+∆L + 1

�

Γ
�

− d
2 + n1 +∆L + 1

�

Γ
� d

2 + n− n1 + 1
�2

×
1

(n− n1)

�

3F2

�

−n,−
d
2
− n+ n1,

d
2
− n−∆L;−

d
2
− n,−n−∆L; 1

��2

. (157)

Notice that for fixed even d, this can be computed exactly in n. The answer is

d = 2 : γ(2)n,` = −
1
8
(∆L + 2n),

d = 4 : γ(2)n,` = −
1

8`2
(∆L + 2n− 1)

�

34n2 ++34n (∆L − 1) +∆L (4∆L + 1)
�

,

d = 6 : γ(2)n,` = −
1

8`4
(∆L + 2n− 2)

�

786n4 + 1572(∆L − 2)n3 + (6∆L(164∆L − 591) + 4046)n2

+2(∆L − 2)(3∆L(33∆L − 67) + 451)n+ (∆L − 1)∆L

�

9∆2
L + 2

��

, (158)

which for large n gives

d = 2 : γ(2)n,` = −
1
4

n,

d = 4 : γ(2)n,` = −
17
2

n3

`2
,

d = 6 : γ(2)n,` = −
393

2
n5

`4
. (159)

12Observe that the anomalous dimensions would then have the same large ` scaling as the phase shift computed
in gravity, which at order k behaves like δk ∼ `−k(d−2)/2.
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For general d, we observe that the large n behavior for fixed a = n1 − n+ (d/2) is
�

3F2

�

−n,−
d
2
− n+ n1,

d
2
− n−∆L;−

d
2
− n,−n−∆L; 1

��2

≈
�

nd−a d!
a!

�2 �

1−
(d − a)(a+∆+ 1)

n
+O(n−2)

�

, (160)

which together with the prefactor (which we need to keep to first subleading order in n) yields

γ
(2)
n,` ' −

nd−1

`d−2

dΓ (d + 1)2

8

(d−2)/2
∑

a=0

1
Γ (a+ 1)2Γ (−a+ d + 1)2

= −
nd−1

`d−2

dΓ (d + 1)2

8





Γ (2d + 1)
Γ (d + 1)4

− 3F2

�

1,− d
2 ,− d

2 ; d
2 + 1, d

2 + 1;1
�

Γ
� d+2

2

�4



 . (161)

It is interesting to note that anomalous dimensions and phase shift agree up to a numerical
factor in the lightcone limit.

7 Discussion

In this paper we consider the phase shift which a highly energetic scalar probe particle acquires
as it travels near an asymptotically anti de Sitter black hole. The result has an expansion in
powers of the black hole mass µ. All terms in this expansion can be computed analytically.
The dual, CFT interpretation of the phase shift involves the Fourier transform of a four-point
function with two heavy operators, describing the black hole, and two light scalar operators,
describing the probe particle. The expansion parameter µ corresponds to the ratio between
the conformal dimension of the heavy operator and the central charge of the CFT, µ∼∆H/CT .
The µk term in the expansion of the phase shift is related to the exchange of operators made
out of k copies of the stress tensor (with derivatives added).

The leading, O(µ) phase shift, can be computed in a d-dimensional CFT using conformal
Regge theory: the only contribution comes from the stress tensor. Generally, double-trace
operators made out of the light scalar operator, also contribute to the four point function. The
phase shift in the limit of high energies is insensitive to these contributions. We show that the
CFT result exactly matches the gravity result.

In the case of a two-dimensional CFT we have more control over the CFT computation. We
show that the vacuum Virasoro block in a CFT with a large central charge completely repro-
duces the phase shift to all orders in µ. This should be contrasted with previous discussions
of the heavy-heavy-light-light Virasoro block [64,66] (and also [74], where the entanglement
entropy was computed in a heavy state and [78] ). In our setting we do not need to take the
additional large temperature limit to observe the thermalization of the heavy state (see [75]
for a recent discussion of thermalization in CFT). For us, it is sufficient for the CFT to be holo-
graphic. Presumably this is related to the fact that we focus on an observable which is not
sensitive to the double trace operators in the T-channel (while the full four-point function is
necessarily sensitive to their contributions). We observe that at least for one such observable
(the phase shift) the answer is universal and completely matches the one predicted by the dual
gravity.

The two-dimensional case is quite instructive, because it explicitly shows that generally
an infinite number of multiple-trace operators must be summed and then the result should be
analytically continued. It also shows that the Virasoro vacuum block reproduces the gravity
phase shift to all orders in µ (of course we have known that the double trace operators made
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out of the light scalars do not contribute to the phase shift at leading order in µ). It would be
interesting to see if this remains true in higher dimensions.

The two-dimensional case also provides us with an example where the phase shift and
anomalous dimensions of double trace operators differ beyond O(µ) (we explain why they
must be the same at O(µ) in Section 5). Note that the functional behavior of the anomalous
dimensions matches the one inferred from the phase shift, at least in the light cone limit where
we computed anomalous dimensions to O(µ2). For example, in d = 4, γ2 ∼ µ2n3/`2, which
is what one would infer from δ2 using 107. The numerical coefficients are different beyond
O(µ); it would be interesting to relate the anomalous dimensions and the phase shift directly
uring the conformal bootstrap approach13.

In our discussion of the two-dimensional CFT we observed thatO(µk) term in the correlator
has a simple structure 86. Namely, theO(µ2) term is a combination of the product of spin-1 and
spin-3 global blocks and the square of the spin-2 global block. The structure is similar at higher
orders. Unfortunately we could not efficiently guess the structure of the correlator in higher
dimensions. In fact, it is probably sensitive to the three-point function of the stress tensor. On
the other hand, in holographic theories this three-point function is uniquely determined by
unitarity. It would be interesting to directly sum over the multiple stress tensor contributions
and see if the answer is universal (and reproduces the black hole result). We do need the
corresponding OPE coefficients – perhaps the methods of [76,77] will be helpful here.

More generally, the setup of this paper, where µ ∼ ∆H/CT is fixed in the limit of large
central charge, identifies an interesting scaling limit in holography, where a subset of loop
diagrams in the bulk survives. There are still Witten diagrams which are suppressed as we take
the large central charge limit. The phase shift calculation computes one useful observable in
this scaling limit. It would be interesting to find other observables of this type; it remains to
be seen whether this can teach us something about quantum gravity in the bulk.

It would also be interesting to relate the results of this paper to various other developments.
For example, in the setup of this paper one should be able to see how the phase shift ceases to
be real, as the test particle falls into a black hole. This is presumably related to inelastic high-
energy scattering studied e.g. in [23–30]. It would also be interesting to explore the relation
of our work, where a heavy state exhibits features of a black hole, to the fuzzball proposal (see
e.g. [80–82]).
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A Integrals: the bulk phase shift in gravity

We start by computing the quadratic µ-term for the phase shift.As explained in the main text,
we have :

δ2 = µ
2 1

2

Æ

−p2



2c2
∂ δ

∂ v2
0

�

�

�

�

�

v2
0=0

+ c2
1
∂ 2δ

∂ (v2
0 )2

�

�

�

�

�

v2
0=0



=

= −µ2 1
2

Æ

−p2 b−2d+5×

×
∫ 1

0

d y

�

(1− yd)(b2 + yd)
p

1− y2(b2 + y2)
−
p

1− y2(b2 + yd)
(b2 + y2)3

(d(b2 + y2) + 2(yd − y2))+

+
(1− yd)(2(d − 2)(1− y2) + (1− yd))

4(1− y2)
3
2 (b2 + y2)

«

. (162)

It is convenient to express the integrand, i.e., the terms within the curly brackets, as:

{· · · }=
∂Q(y)
∂ y

−
1
4
(2d − 3)(2d − 1) y2(d−2)

Æ

1− y2(b2 + y2)−1, (163)

where

Q(y)≡
−y
p

1− y2(1− yd)
4(y2 + b2)

�

2d(b2 + yd)−
1− yd−2

1− y2
(b2 + y2) + 2(d − 1)(y2 + b2 yd−2)

�

.

(164)

It is easy to see that the total derivative term evaluates to zero and we are left with

δ2 = µ
2
Æ

−p2 b−2d+5 1
8
(2d − 3)(2d − 1)

∫ 1

0

d y y2(d−2)
Æ

1− y2(b2 + y2)−1 =

= µ2
Æ

−p2 b−2d+3 1
8
(2d − 3)(2d − 1) B

�

2d − 3
2

,
3
2

�

2F1[1,
2d − 3

2
, d,−

1
b2
], (165)

which is proportional to the propagator for a particle of mass-squared equal to (2d − 3) in a
hyperbolic space of the same dimensionality. To see this, one needs to use once more 27 but
now set a1 = 2d − 3, a2 = d − 2. The result is:

δ2 = µ
2
Æ

−p2 1
8
(2d − 3)(2d − 1) B

�

2d − 3
2

,
3
2

�

22d−3 e−(2d−3)L
2F1[2d − 3, d − 2, d, e−2L]

=⇒ δ2 = µ
2 (2d − 3)(2d − 1)

4
πd−1

Γ [d − 1]

Æ

−p2Π2d−3,2d−3(L) .

(166)

Evaluating a few higher order terms in the µ expansion reveals a pattern which allows us
to write:

δ(
Æ

−p2, L) =
∞
∑

k=0

µk

k!

2Γ
� dk+1

2

�

Γ
�

k(d−2)+1
2

�

π
k(d−2)+2

2

Γ [ k(d−2)+2
2 ]

Æ

−p2 Πk(d−2)+1,k(d−2)+1(L) =

= 2 b
Æ

−p2

∫ 1

0

d y

p

1− y2

y2 + b2

¨∞
∑

k=0

�

µk

k!

Γ [ dk+1
2 ]

Γ [ dk+1
2 − k]

b−k(d−2)

�

yk(d−2)

«

, (167)

where the integral expression follows from an integral representation of the hypergeometric
functions 2F1. We have explicitly checked that 167 leads to the correct result in a number of
dimensions and orders.
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B Closed form result for the phase shift in d = 4

For the sake of completeness, we add here the closed form expression for the bulk phase shift
in d = 4 dimensions. The final result is first found in terms of Appell F1 hypergeometric
functions, and then expressed in terms of elliptic integrals.
Method 1: Appell F1 functions. Let us start from the expression for the phase shift as given in
19 and substitute d = 4.

δ =
Æ

−p2
2b
q

1− v2
0

v2
0

∫ 1

0

d y

p

1− y2
p

1−my2

(y2 − y2
1 )(y2 − y2

2 )
, (168)

where we set

κ=
v2

0

1− v2
0

=

�

b2

2µ
(1+

√

√

1−
4µ
b2
)− 1

�−1

, (169)

and defined y1,2 are as solutions of the following algebraic equation:

y4
1,2 −

y2
1,2

v2
0

−
b2

κ
= 0,

y2
1,2 =

1±
q

1+ 4b2v2
0 (1− v2

0 )

2v2
0

=
b2

4µ
(1+

√

√

1−
4µ
b2
)(1±

p

1+ 4µ) . (170)

Using the method of “partial fractions”

1

(y2 − y2
1 )(y2 − y2

2 )
=

1

y2
1 − y2

2

�

1

y2 − y2
1

−
1

y2 − y2
2

�

, (171)

we can split the integral into two integrals of the form:

I =

∫ 1

0

d y (1− y2)
1
2 (1−κy2)

1
2

�

1−
y2

y2
1,2

�−1

, (172)

which are integral representations of the hypergeometric with two variables (AppellF1). Pre-
cisely we obtain:

δ =
Æ

−p2
b
q

1− v2
0

v2
0

π

2
1

y2
1 y2

2

�

1
y2

1
F1[

1
2 ;−1

2 , 1; 2;κ, 1
y2

1
]− 1

y2
2

F1[
1
2 ;−1

2 , 1; 2;κ, 1
y2

2
]
�

1
y2

1
− 1

y2
2

, (173)

with F1 the Appell F1 function.
Method 2: Elliptic integrals
In this case, it is easier to separately compute the time delay and deflection. Starting from 9
and eliminating µ in favor of v2

0 defined in 20, we can write the time delay as:

∆t = −
2b2

q

1− v2
0

v2
0

p
1+ b2

b

∫ 1

0

d y

(y2 − y2
1 )(y2 − y2

2 )
p

(1− y2)(1− κy2)
, (174)

where y1,2 are defined as solutions of the following algebraic equation:

y4
1,2 −

y2
1,2

v2
0

+ b2(1−
1

v2
0

) = 0,

y2
1,2 =

1±
q

1+ 4b2v2
0 (1− v2

0 )

2v2
0

, (175)
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where again

κ=
v2

0

1− v2
0

. (176)

Using the fact that

1

(y2 − y2
1 )(y2 − y2

2 )
=

1

y2
1 − y2

2

�

1

y2 − y2
1

−
1

y2 − y2
2

�

, (177)

it is easy to see that 174 can be expressed as the difference of two complete elliptic integrals
of the third kind:

∆t = −
p

1+ b2

b
q

1− v2
0

×







�

1−
q

1+ 4b2v2
0 (1− v2

0 )
�

Π




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0
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0

1− v2
0



−

(1+
q

1+ 4b2v2
0 (1− v2

0 ))Π





2v2
0

1−
q

1+ 4b2v2
0 (1− v2

0 )
,

v2
0

1− v2
0











,

(178)

with the complete elliptic integral of the third kind defined as:

Π[κ̃,κ] =

∫ 1

0

d t

(1− κ̃t2)
p

1−κt2
p

1− t2
. (179)

Let us turn to the integral defining the deflection of the particle in four dimensions which
can be expressed as:

∆φ =
2

q

1− v2
0

∫ 2

0

d y
p

1− y2
p

1− κy2
=

2
q

1− v2
0

K[κ], (180)

with κ defined in 176 and K[κ] the complete elliptic integral of the second kind.

C Details on anomalous dimension calculation in the bulk

C.1 Perturbations of Hamiltonian

Let us begin with the scalar action:

I =

∫

dd+1 x
p

−g L =

∫

dd+1 x
p

−g
�

−
1
2

gµν∂µΦ∂νΦ−
1
2

m2Φ2
�

=
∑

k=0

µk

∫

dd+1 x rd−1 Lk.

(181)

Expanding the metric in Eq. 1 in powers of µ leads to

L =
∑

k=0

µk

∫

dd+1 x rd−1 Lk, (182)

where L0 is the Lagrangian of the scalar field in AdS

L0 =
1
2

1
r2 + 1

(∂tΦ)
2 −

1
2
(r2 + 1)(∂rΦ)

2 −
1

2r2
γi j∂iΦ∂ jΦ−

1
2

m2Φ2 , (183)
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while

L1 =
1
2

1
rd−2

�

1
(r2 + 1)2

(∂tΦ)
2 + (∂rΦ)

2
�

, (184)

and for k ≥ 2

Lk ≡
1
2

1
r(d−2)k(r2 + 1)k+1

(∂tΦ)
2. (185)

Next, we compute the Hamiltonian to every order in k.
The scalar field’s stress tensor is

T (Φ)µν = ∂µΦ∂νΦ+ gµνL (186)

and so the conserved energy is

H =

∫

dd x
p

hnt T (Φ)t t =

∫

dd x rd−1
�

f −1Φ̇2 − L
�

, (187)

where h is the induced metric while n is the normal vector nµ∂µ = (1/
p

−gt t)∂t . In canonical
quantization, we define the conjugate momentum at a constant time slice by

Πφ ≡
δL
δΦ̇
= f −1Φ̇. (188)

So the Hamiltonian can be expressed as

H =

∫

dd x rd−1
�

ΠΦΦ̇− L
�

. (189)

We now substitute L = L0+
∑∞

k=1µ
k Lk and rewrite the Hamiltonian in terms of the canon-

ical momenta

H =

∫

dd x rd−1
�

1
2
(ΠΦ)

2(r2 + 1) +
1
2
(r2 + 1)(∂rΦ)

2 +
1
2

m2Φ2 +
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−
∞
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µk Lk −
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2
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(ΠΦ)
2

�

. (190)

Observe that the first line is simply the Hamiltonian on pure AdS, which we denote as the
unperturbed Hamiltonian, H0. Hence, H = H0 + V where

V = −
∫

dd x rd−1

�∞
∑

k=1

µk Lk +
1
2
µ2 1
(r2 + 1)r2(d−2)

(ΠΦ)
2

�

. (191)

More explicitly,

V =
∑

k≥1

µkV (k), (192)

where for k = 1

V (1) = −
1
2

∫

dd x r
�

1
(r2 + 1)2

(∂tΦ)
2 + (∂rΦ)

2
�

, (193)

while for k ≥ 2

V (k) = −
k
2

∫

dd x rd−1 1
(r2 + 1)k+1rk(d−2)

(Φ̇)2. (194)
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C.2 Unperturbed states

The unperturbed wave functions are [49,50];

ψn,`, j(t, r,Ω) = N−1
∆L ,n,`e

−iEn,` t YL, j(Ω)
r`

(1+ r2)
∆L+`

2
2F1

�

−n,∆L + `+ n,`+
d
2

,
r2

r2 + 1

�

, (195)

where

En,` =∆L + 2n+ ` , (196)

and

N∆,n,` = (−1)n
�

n!Γ (`+ (d/2))2Γ (∆+ n− d−2
2 )

Γ (n+ `+ d
2 )Γ (∆+ n+ `)

�1/2

. (197)

The eigenstates are defined as

|n,`, j〉 ≡ a†
n,`, j|0〉, (198)

with the position space representation

ψn,`, j(t, r,Ω) = 〈x |n,`, j〉. (199)

A general state in position space is then

Φ=
∑

n,`, j

�

a†
n,`, jψn,`, j + an,`, jψ

∗
n,`, j

�

. (200)

We will also need to define the composite operator Φ(x)2 (and various versions of this operator
with derivatives). Using the normal-ordered product, we may write

Φ2 ≡
∑

n,`, j;n′,`′, j′

�

a†
n,`, ja

†
n′,`′, j′ψn,`, jψn′,`′, j′ + a†

n′,`′, j′an,`, jψ
∗
n,`, jψn′,`′, j′

+a†
n,`, jan′,`′, j′ψn,`, jψ

∗
n′,`′, j′ + an,`, jan′,`′, j′ψ

∗
n,`, jψ

∗
n′,`′, j′

�

. (201)

As a result we see for instance, that:

〈n,`, j|(∂tΦ)
2|n1,`, j〉= 2(∂tψ

∗
n1,`, j)(∂tψn,`, j). (202)

C.3 Order µk term from V (k)

Let us focus on the k ≥ 2 term coming purely from V (k). The contribution to the energy at
order k from this term is

〈n,`, j|V (k)|n,`, j〉= −
k
2

E2
n,`

N2
∆φ ,n,`

∫ ∞

0

rd(1− j)+2k−1+2`

(r2 + 1)k+1+∆φ+` 2F1

�

−n,∆φ + `+ n,`+
d
2

,
r2

r2 + 1

�2

.

(203)

As explained in Sec. 6.1, the large ` dependence of the hypergeometric function is proportional
to (r2 + 1)−n. Performing the integration and taking the large ` limit leads to

〈n,`, j|V (k)|n,`, j〉 ∼
1

`
dk−2

2

=
1

`
k(d−2)

2

×
1
`k−1

. (204)

As discussed in Sec 6.2 around Eq. 153, the V (1) term at order k behaves like `−k d−2
2 at large

`, hence the 〈n,`, j|V (k)|n,`, j〉 yields a subdominant contribution in the large ` limit.
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