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Quark-gluon tagging: Machine learning vs detector
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Abstract

Distinguishing quarks from gluons based on low-level detector output is one of the most
challenging applications of multi-variate and machine learning techniques at the LHC.
We first show the performance of our 4-vector-based LoLa tagger without and after
considering detector effects. We then discuss two benchmark applications, mono-jet
searches with a gluon-rich signal and di-jet resonances with a quark-rich signal. In both
cases an immediate benefit compared to the standard event-level analysis exists.
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1 Introduction

Since the start of the LHC our view of jets as analysis objects has fundamentally changed.
While jets with reconstructed 4-momenta matching hard partons still serve as the key objects
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of essentially all analyses, their internal structure can now be exploited systematically. In that
sense, jets merely define the boundary between event-level observables and subjet observables.
The subjet aspect is currently undergoing a paradigm change: rather than defining high-level
kinematic observables for the jet constituents and analyzing them using multivariate methods,
we can use modern machine learning approaches to analyze low-level detector outputs like the
measured 4-vectors entries directly [1]. For this low-level input we employ modern machine
learning techniques, usually advertized with the term deep learning.

Theoretically and experimentally well-controlled applications of machine learning in subjet
physics include hadronic W/Z-jets [2–10], Higgs jets [11, 12], top jets [13–20], or model-
independent searches for hard new physics in jets [21] quark–gluon discrimination has a long
history [22–31] and is used at the LHC [32–34]. However, distinguishing quark and gluon jets
poses serious theoretical and simulational challenges, like, that they are not defined in QCD
beyond tree level [35–44]. Nevertheless, efficient machine learning approaches have been
devised to separate ‘quark jets’ from ‘gluon jets’ [45, 46, 48–54]. One way we can overcome
the fundamental problems in defining quark and gluon jets is to instead ask for a well-defined
hypotheses in terms of LHC signatures, involving mostly gluons vs gluons in the signal and
background processes [55–58].

Before we employ modern machine learning to separate processes with mostly hard quarks
from those with mostly hard gluons we review the known high-level variables. Unlike for
many other subjet analyses these observables rely on tracking information with its excellent
resolution, and cannot be considered infrared-safe observables or easily interpretable in per-
turbative QCD [35–42]. When we switch to low-level inputs this means that we cannot hope
for the calorimeter resolution to provide a generous binning and to render us insensitive to
additional detector effects. Moreover, any promising network architecture needs to combine
standard calorimeter images and tracking information with its vastly better angular resolu-
tion [45]. We will use our 4-vector-based LOLA framework developed for top tagging including
calorimeter and tracking information [16] to extract the necessary information from measured
particle-flow objects and to quantify the sensitivity to soft tracks in the detector. The latter is
especially relevant when we benchmark the machine learning approach compared to a multi-
variate analysis of the traditional quark–gluon variables. In Sec. 2 we analyze idealistic, pure
quark and gluon samples to benchmark our tagger in the presence of detector effects [46],
to compare its performance to the classic quark–gluon variables, and to study the correlation
with the jet momentum.

Finally, we will establish realistic and relevant benchmark analysis for quark–gluon tagging
at the LHC. Unfortunately, it is already known that quark–gluon tagging does not significantly
improve weak-boson-fusion analyses at the LHC [57]. Two often-discussed candidate analyses
for quark-gluon tagging in LHC searches are

1. mono-jet dark matter searches with a gluon-dominated signal, Sec. 3, and

2. di-jet resonance searches with a quark-dominated signal, Sec. 4.

For both cases we motivate the use of quark–gluon tagging, show how our LOLA tagger helps
extract the signal, and discuss the limitations in a realistic analysis setup.

2 Ideal world

In spite of the fact that a parton-level definition of quark and gluons becomes ambiguous
beyond leading-order QCD, we start with an analysis of jets coming from hard quarks and
gluons at tree-level and based on Monte Carlo truth. The impact of this simplification should
eventually be tested including higher-order effects. At this point it will allow us to identify
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the leading subjet properties of such jets and to compare our deep learning approach with
established approaches.

We generate quark and gluon jet samples using di-jet events with SHERPA2.2.1 [59] at
14 TeV. We do not simulate any multiple interactions and any effects from pile up could be
dealt with by using established techniques as well as recently proposed tools [60–63]. For
quark jets we extract the subprocesses g g/qq̄ → qq̄ and qq → qq, for the gluon jets we keep
the subprocesses g g/qq̄ → g g. We pass these events through DELPHES3.3.2 [64], using the
standard ATLAS card. Finally, we cluster the particle flow objects [65] into anti-kT [66] jets
of radius R = 0.4 using FASTJET3.1.3 [67, 68]. All jet constituents have to be central in the
detector, with |η|< 2.5 and pT > 1 GeV. Unless explicitly mentioned, our jets have

pT, j = 200 ... 220 GeV . (1)

This setup closely follows Ref. [45], with an additional fast detector simulation. We do, how-
ever, find that switching from PYTHIA to SHERPA makes quark–gluon discrimination generally
a little harder [42].

2.1 Standard observables

Distinguishing quark jets from gluon jets exploits two features [69]: first, radiating a gluon
off a hard gluon versus off a hard quark comes with a ratio of color factors CA/CF = 9/4.
This leads to a higher particle multiplicity (nPF) and a broader radiation distribution or girth
(wPF) [70, 71] for hard gluons; second, the splitting functions P̂g g(z) and P̂qq(z) differ in the
soft limits. The harder fragmentation for quarks makes quark jet constituents carry a larger
average fraction of the jet energy, tracked by the variable pT D [34]. In addition, the two-point
energy correlator C0.2 separates quarks and gluons with an optimized power of ∆Ri j [72].
This allows us to define the four established observables

nPF =
∑

i

1 wPF =

∑

i pT,i∆Ri,jet
∑

i pT,i

pT D =

q
∑

i p2
T,i

∑

i pT,i
C0.2 =

∑

i j ET,i ET, j(∆Ri j)0.2

∑

i E2
T,i

. (2)

In addition, we evaluate the highest fraction of pT,jet contained in a single jet constituent [73],
and the minimum number of constituents which contain 95% of pT,jet [74],

xmax and N95 . (3)

The latter is obviously correlated with the number of constituents nPF. All jet constituents
summed over are defined as Delphes E-flow objects, combining both the calorimeter and the
tracking information.

Distributions of all these observables for pure quark and gluon samples are shown in Fig. 1,
both in an ideal setup and at the level of particle flow object after fast detector simulation.
The IR-sensitive and theoretically challenging observable nPF shows large differences because
LHC detectors rapidly lose sensitivity for soft constituents. The pT D distribution is similarly
sensitive. When we add a soft constituent we find that the numerator and denominator change
differently,

pT D ∼

q

p2
T + ε2p2

T

pT + εpT
≈

1+ ε2/2
1+ ε

. (4)

3

https://scipost.org
https://scipost.org/SciPostPhys.6.6.069


SciPost Phys. 6, 069 (2019)

0 20 40 60
nPF

0.00

0.02

0.04

0.06

quark
gluon
dashed: Delphes
solid: particle

0 0.1 0.2 0.3 0.4 0.5
wPF

0

5

10

15

0 0.2 0.4 0.6 0.8 1
pTD

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1
C0.2

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
xmax

0

1

2

3

4

5

0 10 20 30 40 50
N95

0.00

0.02

0.04

0.06

0.08

0.10

Figure 1: Normalized distributions for the subjet variables described in the text for
pure quark and pure gluon jets, with and without detector effects. Jets are selected
with pT = 200 ... 220 GeV.

This way pT D shifts towards smaller values, which do not survive a detector simulations, as
seen in Fig. 1. The situation is more stable for the pT -weighted wPF and for C0.2.

The individual performance of these six observables in tagging pure quark and gluon jets
without detector effects is illustrated in the left panel of Fig. 2. Each of the observables indeed
contributes to quark-gluon discrimination. The number of constituents nPF is the most pow-
erful single variable, with almost identical performance to N95. This confirms the findings of
Ref. [45] in the absence of detector effects. To maximize their separation power we combine all
six of them into a boosted decision tree (BDT), implemented in SCIKIT-LEARN using a gradient
boosting classifier with 50 estimators, a maximum tree depth of 4, a sub-sampling fraction of
0.9 and a learning rate of 1. The classifier is trained on a sample of 500k quark and gluon jets,
5% of which are set aside as a test sample. The corresponding ROC curves are also shown in
Fig. 2, showing a small improvement over the most powerful, but poorly defined variable nPF.
In the right panel of Fig. 2 we compare the ROC curves with and without detector simulation.
From Fig. 1 we know that for all variables the detector affects the quark and gluon distribu-
tions systematically, both shifting and broadening the features. We can quantify the detector
effect for instance by comparing the gluon tagging efficiencies with and without DELPHES as
a function of the quark efficiency in the right panel of Fig. 2. The result suffers from numer-
ical fluctuations for extremely small εq < 0.01, but for the bulk of the ROC curves for each
observable the detector effect are within 10% of the ideal curve. Interestingly, the simplest
observables nPF and N95 turn out the most stable in distinguishing quarks from gluons. This
suggest that they offer sizeable quark-gluon separation power already in phase space regions
which are not affected by detector effects.

Given that our six jet observables are an ad-hoc collection and do not form any kind of basis
in a space of correlators, it is neither guaranteed that they include all available information
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Figure 2: Left: ROC curves for the six quark–gluon observables discussed in the
text, including a combination through a BDT, without detector effects. Right: de-
tector effect illustrated as ratios of single-observable ROC curves, shown as the ratio
εDELPHES

g /ε
particles
g .

nor that they form a minimal set. The first question can be answered when we eventually
compare their separation power to our deep-learning tagger. To tackle the second question we
plot the feature importance of each input variable in Fig. 3. For a variable x we want to look
at individual nodes t making up a tree and how often x is used for a split st . For each split
we first compute the probability p(t) for a sample to reach the node t and define the purity of
each node by the Gini index

i(t) = 1−
∑

outcomes j

p2
j (t) = 2 p1(t)p2(t)<

1
2

, (5)

where the last step holds for two classification hypotheses and gives twice the probability of
choosing a data point of category j at node t, multiplied by the probability of mis-labeling it.
It reaches its maximum for even probabilities and tends to zero if all the samples in a node are
of the same category. In that sense it is a measure of the purity or impurity of the sample at
node t. Next, we compute the change in purity of the node t when we define a split st in terms
of the variable x , defining ∆i(st , t). This allows us to quantify the importance of a variable x
as

Imp(x)∝
∑

trees

∑

nodes

p(t)∆i(t, x) , (6)

modulo a normalization constant. A decision tree is essentially a series of nodes which splits
the samples such that the decrease in impurity is maximized, hence more important features
are more often used to split the samples. Because cutting on a one-dimensional distribution
as shown in Fig. 2 masks correlations, the importance allows us to define the feature that
best separates the data whilst being least correlated with other variables. We show the results
in Fig. 3 and find a start constrast to the single-variable results of Fig. 2. The most power-
ful single observables nPF and N95 are strongly correlated with the leading variable wPF and
therefore contribute little to the multi-variate analysis. Instead, the two-point correlation C0.2,
which carries extra information than the other (first-order moment) variables, is the most im-
portant additional feature. Amusingly, these two leading observables wPF and C0.2 are also
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Figure 3: Feature importance of each variable in the BDT, after a DELPHES simulation,
normalized to the most important feature.

IR-safe [72]. All other observables constribute to the quark-gluon separation, but with differ-
ent impact.

We close with a word of caution. The subjet observables given in Eq.(2) are not theo-
retically well-defined observables which we can compute based on QCD. Instead, they are
statistical descriptions of jet constituents, including two-object correlators, in some cases IR-
modified by an appropriate energy scaling. Relying on not consistently IR-safe observables
complicates quark-gluon separation at the LHC, but does not make it impossible [35–42,44].
The main problem is that we cannot define quark or gluon jets in perturbative QCD or in
Monte-Carlo simulations beyond leading order in QCD. Clearly, these observables as well as
low-level observables cannot be directly used to study QCD properties of subjets. On the other
hand. IR-safety does not have to be an issue for data-to-data analyses, like quark-gluon tag-
ging trained on observed jets. All we need to do is define the quark and gluon labels in relation
to a hard process which predicts mostly quarks or mostly gluons, rather than jet by jet [43].
This way we can use the potentially powerful soft and collinear subjet information as long as
we do not attempt to interpret these measurements in terms of QCD.

2.2 Charging LoLa

Given our result for the multi-variate analysis of high-level substructure variables, it is natural
to ask what happens when we attempt to capture all available information from low-level
observables using a deep neural network. To combine information from the calorimeter and
the tracker with its different resolution, a promising approach is the LOLA architecture applied
to particle flow objects, developed for the DEEPTOPLOLA tagger [16]. The input to the network
are the N jet constituent 4-vectors sorted by pT ,

(kµ,i) =







k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N






. (7)

Since N varies from jet to jet, we zero-pad jets with fewer than N constituents, and increase
N until the tagging performance is saturated, for most physics scenarios giving N = 25 ... 30.
Above this the soft jet constituents carry too little information to compensate for the increasing
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computation time. Inspired by the structure of recombination jet algorithms, we multiply the
original 4-vectors with a trainable matrix Ci j , defining a combination layer (CoLa)

kµ,i
CoLa
−→ ekµ, j = kµ,i Ci j

with C =





1 1 · · · 0 χ1 · · · 0 C1,N+2 · · · C1,M...
. . . . . .

...
. . .

...
1 0 · · · 1 0 · · · χN CN ,N+2 · · · CN ,M



 . (8)

This increases the number of inputs from N to M , where M is a tunable hyper-parameter of
the network. The entry χ j is new for the quark–gluon implementation and encodes the infor-
mation if a particles is charged or not, χ j = 0, 1 [45]. For most of the phase space considered
in this paper, we will find that the tagging performance for our specific applications hardly im-
proves, but obviously this result should not be generalized. To make it easier for the network
to learn the mathematical structure of Lorentz transformations we pass the CoLa output to a
Lorentz layer (LoLa)

k̃ j
LoLa
−→ k̂ j =



















[c]m2(k̃ j)
pT (k̃ j)

pT (k̃ j)∆R j,jet

w(E)jm E(k̃m)

w(d)jm d2
jm

ET (k̃ j)ET (k̃m)(∆R jm)0.2



















, (9)

with d2
jm = (k̃ j − k̃m)2. To adapt this layer to quark–gluon separation we augment it with the

third and the last entries. They follow the definition of the the subjet variables wPF and C in
Eq.(2), with the sum over constituents stripped off so that they are defined per constituent.
The first three k̂ j map individual 4-momenta k̃ j onto their invariant mass and transverse mo-

mentum. The fourth entry is a linear combination of all energies with trainable weights w(E)jm ,

while the fifth entry sums over the Minkowski distance between k̃ j and all other 4-momenta

k̃m, again weighted by w(d)jm which is updated after each training epoch. For the lower three

entries we can either sum over or minimize over m while keeping j fixed. For w(E)jm we choose

the sum over the internal index; for w(d)jm we include four copies with independently trainable
weights, two summing and two minimizing over the internal index; for the last entry we use
two copies, one with a sum and one with a minimum. However, it turns out that the new LOLA

observables have limited impact on the quark–gluon separation, independent of the options
applied to the last the last entry in Eq.(9).

After the LOLA stage, the inputs are passed through ReLU-activated dense layers with 100
and 50 units and dropout rate 0.2 and 0.1, respectively. Both dense layers have an additional
L2 regularization of 5×10−4 and are initialized with He-normal functions. A final dense layer
converts the weights into a normalized score with SoftMax activation. All training is done
using KERAS [75] with the THEANO [76] back-end on a GPU cluster. The hyper-parameters
are optimized with ADAM [77], using a learning rate of 10−5 and a batch size of 128. We
have checked that both, for the size of the training sample and for the number of constituents
our performance reaches safe plateaus. Throughout this paper we use N = 80 constituents,
significantly above where we would expect the soft activity to be universal.

Turning to the performance, we plot the ROC curves for our best-performing LOLA archi-
tecture in the left panel of Fig. 4, compared to the 6-observable BDT,

�

nPF, wPF, pT D, C0.2, xmax, N95

	

. (10)
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Figure 4: ROC and significance improvement curves for the LOLA tagger trained and
tested on pure samples, with and without detector simulation. We compare to a BDT
analysis of the full set of of observables, Eq.(10), and to a reduced set of observables,
Eq.(11).

In the right panel we also show the increase in signal significance as a function of the signal
efficiency, to help us optimize the impact of the tagger as an analysis tool for instance in terms
of SI = εg/

p

εq. With our LOLA network we reproduce the performance of the enhanced
images setup of Ref. [45] without detector simulation and after accounting for the move from
PYTHIA to SHERPA. Our agreement is at the level that different trainings of our LOLA tagger
on the framework of Ref. [45] shower a stronger variation than the agreement between the
LOLA and the CNN performance. Different architectures without detector effects are studied
in detail in Ref. [44]. They are very close in performance, including convolutional networks
like that of Ref. [45], and we have good reason to assume that this pattern will not change
once we include detector effects.

We also note an overall improvement with respect to our 6-observable BDT. The fact that
the deep network does not hugely outperform the multi-variate analysis on the subjet level is
not unexpected. The difference between the LOLA network and the BDT becomes smaller once
we include detector effects. This points to the deep network finding additional information
which even the theoretically poorly defined observables do not capture. As a test of stability
we also show BDT results with a reduced and less IR-sensitive set of observables,

�

pT D, C0.2, xmax, N95

	

. (11)

As we can see in Fig. 4 this reduces the over-all performance of the BDT, but does not improve
the stability with respect to detector effects.

Finally, we need to test if the quark–gluon network correctly captures the information we
know exists at the subjet level [78,79]. Because we have access to Monte Carlo truth we can,
for instance, plot the distributions of our six observables for quark jets identified as quarks
and for gluon jets identified as gluons. We can compare these distributions between the LOLA

network, the BDT, and the truth information, all including detector effects. In Fig. 5 we plot
all observables introduced in Sec. 2.1, at truth-level and after selecting the 30% best-identified
jets. For gluon jets the classifier favors slightly lower values of pT D and xmax, and larger values
of C , N95 and nPF. A significant sculpting of these distributions relative to truth indicates a
challenge in separating the two hypotheses. The observables where LOLA best matches the
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Figure 5: Distributions for the sub-jet observables. The black curves show the truth
from Fig. 1. The red dotted curves are the 30% most gluon-like or quark-like jets
from LOLA, the green curves from the BDT.

truth are wPF and C0.2. These are also the two most important observables in the BDT in
Fig. 2, indicating that the BDT and LOLA indeed rely on similar information.

Table 1: Areas under the ROC curve for the LOLA tagger trained and tested on pure
samples sliced in pT, j . The uncertainty on each entry is one to two units on the last
shown digit.

Train Test

200-210 210-220 220-230 230-240 240-250

200-210 0.812 0.812 0.812 0.818 0.816
210-220 0.812 0.813 0.812 0.819 0.817
220-230 0.804 0.805 0.810 0.811 0.808
230-240 0.803 0.804 0.801 0.814 0.809
240-250 0.810 0.811 0.811 0.820 0.818

Train Test

200-250 300-350 400-450 500 - 550 600-650

200-250 0.813 0.818 0.805 0.782 0.74
300-350 0.811 0.825 0.823 0.818 0.80
400-450 0.809 0.824 0.834 0.838 0.80
600-650 0.807 0.816 0.830 0.840 0.841
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2.3 Jet kinematics

One dangerous sources of systematic uncertainties in subjet physics and elsewhere is mis-
measuring the momentum of the jet [80]. Because the structure of parton splittings is sensitive
to the range of energies described by the splitting history, we do not want to remove this
information for example through an adversarial network. Instead, we want to include pT, j in
the information available to the tagger. Before we do so, we need to understand at what level
the quark–gluon network is sensitive to the transverse momentum of the jet [45,46].

To this end we train and test individual LOLA networks in different slices of pT, j , again
with detector effects, and test them on over a range of transverse momenta. We show the
AUC values for different combinations of training and testing samples in Tab. 1. The left table
shows the performance of the network for a small step size ∆pT = 10 GeV. On the diagonal
we see that the performance of the network slightly increases towards higher momenta. This
can be understood through the larger number of constituents radiated off initial partons with
higher momentum. For the off-diagonal entries there is also a small generic trend that using
a network on somewhat higher-pT jets than it was trained for does not reduce its efficiency.
Because the differences between quarks and gluons are more subtle for softer jets, a network
trained on these subtle differences may also be applied to harder jets. However, in the other
direction the network trained on the more obvious hard jets will slightly deteriorate for softer
jets. In the right table we test a wider range of transverse momenta. We observe the same
trend, but for networks trained between 200 and 350 GeV the performance seriously suffers
when we compare it to pT > 600 GeV.

We only show central values in both of these tables, but we have estimated uncertainties
on the performance measures in two ways. The larger error bar comes from using a trained
network on different test samples, it gives typical uncertainties of ∆AUC ≈ 0.002 for most of
the entries, increasing to∆AUC≈ 0.01 for the larger separations in pT . The error we find from
using different trainings on the same test sample is, in our case, about an order of magnitude
smaller.

For the pT, j slices in Tab. 1 we can compute the ROC curves for the LOLA quark–gluon
discrimination. In the left panel of Fig. 6 we see how the performance of the tagger is stable,
with a slight increase in performance towards higher jet momenta.

In the right panel of Fig. 6 we repeat the same exercise, but including the charge informa-
tion discussed in Eq.(8). Indeed, the performance is unchanged for this specific change in the
LOLA setup, at least up to pT, j < 600 GeV and once we include detector effects.

3 Mono-jets

To see at what level quark–gluon discrimination really helps at the LHC we need benchmark
applications. For WBF jets we have unfortunately seen that the substructure of the tagging jets
can alleviate the pressure on global observables like a central jet veto, but that the signal vs
background system is already over-constrained by event-level kinematic information and jet
substructure [57]. We therefore turn to the simplest jet analyses with the fewest number of
established handles to control the background.

Our first candidate is the mono-jet signature probing invisible decays of a SM-like Higgs
boson. Here, the transverse momentum of the tagging jet is essentially the only kinematic vari-
able used in standard analyses. Far from the expected performance of the leading WBF and
V H channels for invisible SM-like Higgs decays, this mono-jet channel is extremely versatile
when we search for dark matter or want to learn more about the nature of an invisible Higgs
signal. For a Higgs-like mediator it provides us with a benchmark process for a tagger extract-
ing a gluon-dominated signal from a quark-dominated background [81,82]. Obviously, all our
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Figure 6: Left: ROC and SI curves for the pure quark and gluon samples in non-
overlapping jet pT ranges. Right: ROC and SI curves for the pure quark gluon samples
including charge information.

findings can be generalized to searches for (pseudo-)scalar mediators at the LHC. For those the
relative importance of the electroweak WBF and V H channels compared to the gluon-induced
mono-jet channel can obviously be completely altered.

The key feature of mono-jet searches with scalar mediators is that the signal jet is almost
always gluon-initiated, while for the Z+jets background it is mostly quark-initiated, as illus-
trated in Fig. 7. Increasing pT j pushes the events kinematics towards larger proton momentum
fractions and enhances the quark contribution, slowly reducing the gluon purity of the Higgs
signal. Observing such a signal in mono-jet events requires exquisite control of the large back-
grounds from V+jets production. While the largest background is Z(→ νν)+jets, there exists
a sizeable irreducible contribution from W (→ lν)+jets, where the lepton either fakes a jet
or escapes undetected [83]. Due to the rather inclusive signature of a high-pT jet with large
missing transverse energy, there is little to cut on other than either pT, j of /ET . In practice, a
cut of at least /ET ≥ 100 GeV is typically required at the trigger level.

We generate the H+jets signal events, including the finite top mass effects with SHERPA2.2.1
[59] and OPENLOOPS [84] at a collider energy of 14 TeV. For the Z+jets background we also use
SHERPA2.2.1 [59] with the COMIX for matrix element generation [85], and we employ CKKW-L
merging [86–88] with up to two jets in the matrix element for both H+jets and Z+jets. As in
the case of the pure samples, we use ∆R= 0.4 anti-kT jets with all visible final-state particles
of |η| < 2.5 as constituents [67, 68]. As long as we stick to leading-order simulation we can
extract the parton content for example of the hardest jet from Monte Carlo truth.

To illustrate the challenge in observing this signal, we plot some kinematic distributions
for the signal and background in Fig. 8. Note that following the discussion in Sec. 2.1 we do
not distinguish gluon jets from quark jets, but the Higgs plus jets signal from the Z plus jets
background. First, the expected signal-to-background ratio even assuming an invisible Higgs
branching ratio of formally 100% is at the per-mille level. Second, the leading jet kinematics

11

https://scipost.org
https://scipost.org/SciPostPhys.6.6.069


SciPost Phys. 6, 069 (2019)

g

g

H

g

t

t

t

t

q

g q

Z

0.2

0.4

0.6

0.8

gl
u

on
fr

ac
ti

on

H+jets

Z+jets

200 400 600 800 1000
pminT,j [GeV]

2

4

6
H+jets/Z+jets
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T, j with gluon-
initiated leading jets in H+jets events (red) and quark-initiated jets in Z+jets events
(blue) as a function of pT, j . The bottom panel shows the ratio of the two gluon
fractions.

for the signal and background is essentially identical, while the second jet is actually softer
in the signal. A cut-and-count analysis above a stringent /ET requirement is not an optimal
analysis strategy, because the small difference between the Higgs and Z masses hardly affects
the kinematics. Of course, if the mono-jet signal is due to a light mediator, the signal pT -
spectrum will be harder.

A subjet feature, which is not exploited in the event-level analysis is that the hardest back-
ground jet is quark-initiated in 80% of events, while the leading signal jet is usually gluon-
initiated. From Fig. 7 we expect the quark–gluon tagger to be most useful at low to inter-
mediate pT j . To study this question quantitatively, we generate mono-jet samples in non-
overlapping slices of pT, j and train and test LOLA on all combinations of the above samples.
The performance of each combination, given by the area under the curve (AUC), is shown in
Tab. 2. These numbers can be directly compared to their counterparts for pure samples in
Tab. 1. We see that the diagonal entries, corresponding to networks trained and tested in the
same pT range, show the best performance, and the performance gradually decreasing with
pT , reflecting the drop in quark vs gluon purity shown in Fig. 7.

Table 2: Areas under the ROC curve for the LOLA tagger trained and tested on mono-
jet samples sliced in pT, j . The uncertainty on each entry is one to two units on the
last shown digit.

Train Test

200-210 210-220 220-230 230-240 240-250

200-210 0.692 0.692 0.691 0.692 0.687
210-220 0.692 0.692 0.692 0.692 0.687
220-230 0.692 0.692 0.692 0.692 0.688
230-240 0.692 0.692 0.692 0.692 0.688
240-250 0.692 0.692 0.692 0.692 0.688

Train Test

200-250 250-300 300-350 600-650

200-250 0.691 0.683 0.674 0.604
250-300 0.691 0.685 0.677 0.605
300-350 0.687 0.683 0.677 0.614
600-650 0.630 0.638 0.646 0.631
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Figure 8: Kinematic distributions for the H+jets signal (red) and leading Z+jets
background (black), along with the signal-to-background ratio. We show the leading
pT, j , the second pT, j , /ET , the pseudorapidity of the leading jet,∆φ of the leading two
jet, and the jet multiplicity.

The ROC curves corresponding to the diagonal train and test combinations of Tab. 2, and
their corresponding SI curves, are shown in Fig. 9. All curves show the same behavior, with the
drop in performance for high-pT jets visible for the 600 ... 650 GeV slice. For the actual mono-
jet analysis this implies that quark–gluon discrimination is least efficient when the analysis
focuses on the kinematic regime with the largest missing energy. However, from Fig. 8 we know
that for heavy mediators like a SM-like Higgs this kinematic range is not the most promising.
Instead, we typically analyze the entire pT, j distribution and extract a signal significance from
a shape analysis in the presence of large systematic uncertainties. This is the reason why we
cannot quote a simple significance improvement for the mono-jet analysis from quark–gluon
tagging. Also for lighter mediators, the bulk of the /ET distribution is what allows us to control
the backgrounds at the required level [83], and here a systematic application of quark–gluon
tagging may improve our limited event-level understanding of signal vs background features.
On the other hand, at this level it should be clear that for quark-gluon discrimination in the
presence of detector effects the mono-jet channel does not provide a useful benchmark.
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Figure 9: ROC curves for the mono-jet samples in non-overlapping jet pT ranges.

4 Di-jet resonances

As a second application, we study resonances decaying to two jets. These signal decay jets
are usually quark-initiated, while for relatively light resonances the background will be multi-
gluon production. An interesting aspect of this analysis is that we could, in principle, use
this quark–gluon information already at the trigger level to enhance the LHC reach in di-jet
resonance searches.

We consider an axial vector Z ′ with a democratic coupling to all quarks, ignoring the ob-
vious problems with a UV completion [89–94]. This resonance might or might not be a dark
matter mediator — in this study we only consider its decay to quarks described by the La-
grangian [95]

LZ ′ = gZ ′

∑

q

Z ′µ qγµγ5q+ · · · . (12)

The decay to quarks has the benefit that the entire signal only depends on one kind of coupling,
and exactly the coupling we eventually need to quantitatively analyze mono-jet signals when
the new resonance is a dark matter mediator. We consider two benchmark point for the Z ′

mass, namely mZ ′ = 450 GeV and mZ ′ = 750 GeV, combined with gZ ′ = 0.1, and simulate the
signal and the background with SHERPA2.2.1 [59] to leading order. The selection criteria for
a standard LHC search are at least two jets with [96]

pT, j1 > 220(185) GeV pT, j2 > 85 GeV |η j|< 2.8 , (13)

combined with the resonance-inspired requirements

|y∗|=
|y j1 − y j2 |

2
< 0.6(0.3) and

pT, j1 + pT, j2

2
= (0.6 ... 1.4) pT, j1 . (14)

In the left panel of Fig. 10 we first analyze the leading jet for the low-mass case and both jets
for the heavy-mass case. In both cases we use the pre-trained networks from the pure samples.
We find that the quark–gluon tagging works slightly better for lower-mass resonances or lower
typical pT, j . This has nothing to do with the signal and is driven by the purity of the QCD
background in this phase space region. The second jet from the light resonance is comparably
soft, which makes it hard to separate it from QCD radiation without strongly shaping the
background.
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Figure 10: Left: ROC and SI curves for a 250 ... 300 GeV jet from a 450 GeV Z ′

resonance and for 300 ... 400 GeV jets from a 750 GeV Z ′ resonance, using the model
trained on pure samples. Right: performance improvement from considering both
decay jets from a 750 GeV Z ′ resonance, based on a dedicated training.

We also see that, for mZ ′ = 750 GeV the harder jet has more sensitivity for high signal
efficiencies, whereas the second hardest jet has more sensitivity for lower signal efficiencies.
Consequently, in the right panel of Fig. 10 we show the performance of a dedicated two-
jet LOLA network, combining the network output from the two jets into an additional set of
layers and then producing the standard di-jet tagging output. As expected, the signal and
the background independently predict two quarks and two gluons, so the combined network
efficiency receives a significant boost. On the other hand, it is well known that there exist a
wealth of observables which are sensitive to the quark vs gluon nature of jets at the event level,
like additional jet activity. This kind of information is fully correlated with the quark-gluon
tagging of the di-jets, and it is unlikely that the jet tagging significantly improves the LHC reach
once all event-level observables are considered [57]. On the other hand, these event-level
observables are non-trivial to control, so adding quark-gluon tagging should help controlling
the backgrounds. In that sense, just as for the mono-jet case, our simple significance estimate
is not the whole story. Resonance searches are only partly limited by statistical significance.
Enriching the signal samples with quarks at an early stage will generally suppress multi-jet
backgrounds. Because trained neural networks are fast, they could be used already at the
trigger level to provide an improved event sample and to allow for searches in tough phase
space regions.
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5 Summary

Quark–gluon separation is one of the hardest problems in contemporary LHC physics. Tech-
nically, is has received a huge boots from machine learning on low-level observables. Also on
the theory side, the general move towards likelihood-free analyses just comparing fully sim-
ulated and observed events at the detector level circumvents some of the fundamental QCD
problems. In combination, these developments call for a realistic study of these methods using
benchmark signal processes.

We have extended our LOLA tagger, previously used for top tagging, to statistically separate
quarks from gluons. For the ideal case of pure quark and gluon jets we find that detector effects
lead to a degradation of the machine learning results, to a point where a classic BDT analysis
becomes competitive. However, we also remind ourselves that the standard observables enter-
ing the BDT are neither theoretically nor experimentally preferable and also show non-trivial
correlations. Including charge information in LOLA can be useful for hard jets. Finally, we
have shown that training and testing the network on sliced of pT, j leads to surprisingly stable
results.

Our first benchmark channel is mono-jet production with a gluon-rich signal. Subjet infor-
mation can be added to an otherwise very limited number of event-level observables. It has the
potential to improve the LHC reach, especially when we use it to understand and control the
entire pT, j distribution. The impact of pT -dependent training on the systematic uncertainties
should be easily controllable.

The second benchmark channel are di-jet resonances with their quark-rich signal. We find
that applying a network trained on pure samples already improves the reach for relatively light
Z ′ bosons just using their couplings to quarks. Using our LOLA setup we find that for hadron-
ically decaying Z ′ bosons with masses below the TeV range the quark–gluon discrimination
can be useful.

Altogether, we have shown that quark–gluon tagging is a theoretical and experimental
challenge, that deep learning provides competitive taggers, and that their tagging performance
is significantly affected by detector effects. At the LHC, there exists a range of applications,
both with quark-rich and gluon-rich signals, for which it would be interesting to see how
quark–gluon tagging affects triggering, background systematics, or the signal extraction in a
properly described experimental setup. Unfortunately, just like weak boson fusion [57] neither
mono-jet searches nor di-jet resonance searches are obvious benchmarks to estimate the impact
of quark-gluon tagging on the LHC reach.
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