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Abstract

We study the robustness of 3D intrinsic topogical order under external perturbations
by investigating the paradigmatic microscopic model, the 3D toric code in an external
magnetic field. Exact dualities as well as variational calculations reveal a ground-state
phase diagram with first and second-order quantum phase transitions. The variational
approach can be applied without further approximations only for certain field directions.
In the general field case, an approximative scheme based on an expansion of the varia-
tional energy in orders of the variational parameters is developed. For the breakdown of
the 3D intrinsic topological order, it is found that the (im-)mobility of the quasiparticle
excitations is crucial in contrast to their fractional statistics.
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1 Introduction

The search for undiscovered quantum facets of nature is one of the most active and fascinat-
ing lines of research in modern physics, both from the perspective of fundamental research as
well as technology. This is evident in strongly correlated quantum matter displaying intrinsic
topological order [1–3]. Such quantum phases display intriguing quantum phenomena like
long-range entanglement and degeneracy of the ground state, depending on the genus of the
bulk topology. Additionally in two dimensions, they feature exotic point-like quasiparticles,
so-called anyons [4,5], having fractional particle statistics different from fermions or bosons.
Therefore, the concept of intrinsic topological order carries on our understanding of nature’s
secrets beyond the theories of Landau and Goldstone, which are based on spontaneous symme-
try breaking and dominated condensed matter physics for several decades. Furthermore, these
physical properties are exploited in proposals to employ such phases as topological quantum
memories or topological quantum computers [6,7].

Experimentally accessible, intrinsic topological order causes the two-dimensional frac-
tional quantum Hall effect at certain filling fractions [8,9] with strongly correlated electronic
degrees of freedom. Intrinsic topological order is also expected for quantum magnets in so-
called quantum spin liquid phases [10,11], which might be of importance for high-temperature
superconductivity [12, 13]. In this context, Mott insulators with strong spin-orbit interaction
like the layered iridates [14,15] as well as α-RuCl3 [16–18] have been investigated intensely
in recent years. These quantum materials are potentially approximate instances of the two-
dimensional Kitaev’s honeycomb model [19], which is known to possess topologically ordered
ground states. Kitaev’s honeycomb model features three different kinds of Ising interactions.
When one kind of interaction is much stronger than the other two, the 2D toric code [6] arises
perturbatively as an effective low-energy model in fourth-order of the two weak interaction
strengths [19–22] while higher orders induce attractive interactions between its quasiparticle
excitations, but do not alter the topological ordering [20–22].

The 2D toric code was proposed by Kitaev in 2003 as a topologically protected, self-
correcting quantum memory. It represents an exactly solvable paradigmatic microscopic model
for intrinsic topological order featuring all its relevant aspects like anyonic quasiparticle exci-
tations. As a consequence, there have been many studies using the 2D toric code as starting
point for investigating the physical properties of intrinsic topological order, e.g., its robustness
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under external perturbations [23–34], the (in-)stability under thermal fluctuations [35–37],
the properties of entanglement measures [38, 39], the calculation of dynamical correlation
functions [40] as well as non-equilibrium properties [41,42]. A first step towards experimen-
tally implementing the 2D toric code and its exotic excitations was taken by the realization
of the highly-entangled ground state of the 2D toric code in quantum simulators. These ex-
periments were proposed for quantum simulators utilizing trapped ions, photons and NMR in
2007 [43]. 2D photonic experiments were conducted successfully in 2009 [44, 45], as well
as 2D NMR experiments in 2007 [46] and 2012 [47]. Furthermore, it was proposed how to
realize the toric code Hamiltonian in systems of ultracold atoms [48], polar molecules in opti-
cal lattices [49], and with lattices of superconducting circuits [50]. Further realizations of the
2D toric code Hamiltonian exist in NMR systems [51] as well as with laser-excited Rydberg
atoms [52].

Much less is known for systems with intrinsic topological order in three dimensions. One
major difference to 2D is the nature of the elementary excitations, since point-like excitations
with exotic particle statistics are absent according to the spin-statistics theorem. However,
apart from point-like bosonic or fermionic degrees of freedom, typically there exist extended
excitations on loops or membranes with anyonic statistics. The 3D version of the toric code
[53, 54] is a microscopic model which hosts such extended excitations but also point-like ex-
citations having non-trivial mutual statistics. The toric code can in principle be realized in
3D quantum simulator setups, like particles in 3D optical lattices, 3D magnetic trap arrays or
laser-excited Rydberg atoms [52]. Beside that there exist 3D versions of Mott insulators with
strong spin-orbit interactions [55] for which the 3D toric code potentially emerges as an ef-
fective low-energy model from 3D Kitaev models analogous to the 2D case. Other but similar
approaches to realize the 3D toric code have been suggested recently [56,57]. Another differ-
ent class of 3D topological order are so-called fracton phases [58–63], which have come into
focus recently. One advantage of fracton phases are their potential stability against thermal
fluctuations, in contrast to the instability of the toric code in lower than 4 dimensions [35,36]
which therefore cannot be used as a topologically-protected quantum memory in practice.

In this work we present a theoretical investigation of the robustness and quantum phase
transitions of 3D intrinsic topological order under external perturbations, by taking the exam-
ple of the 3D toric code. The main motivation is that its quasiparticles feature exotic mutual
statistics of point-like and spatially extended loop-like quasiparticles [64] in contrast to their
2D point-like counterparts. More specifically, we explore the effect of the statistics on the
robustness and quantum phase transitions of the 3D toric code, when the quasiparticles be-
come dynamical due to an external homogeneous magnetic field. Overall, we find that the
(im-)mobility of the quasiparticle excitations in contrast to their fractional statistics is crucial
for the breakdown of the 3D intrinsic topological order. Furthermore, there are several other
reasons which motivate the investigation of the perturbed 3D toric code from a theoretical
perspective: i) the perturbing magnetic field induces generic quantum fluctuations, which are
ubiquitous due to Heisenberg’s uncertainty principle. ii) The unperturbed toric code is exactly
soluble, can be classified in terms of tensor categories and can be explained physically by the
mechanisms of string-net condensation [65]. iii) Its low-energy physics can be described by
topological field theories [66], which are well understood in 2D, but far less in 3D. iv) The
2D as well as the 3D toric code can be described by different powerful mathematical theo-
ries [11,66–69]. v) Like the 2D version, the 3D toric code represents the paradigmatic model
for investigating physical properties of 3D intrinsic topological order.

The paper is organized as follows. In Sect. 2 we comprehensively review the properties of
the unperturbed 3D toric code including the ground states and the nature of the elementary
excitations. Furthermore, we discuss the leading effects of a homogeneous magnetic field on
these excitations. Next the exact duality transformations for single-field cases are explained in
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Figure 1: Lattice, degrees of freedom and interactions of the 3D toric code consid-
ered in this post. Left: the lattice is defined by the basis vectors bx , by and bz . The
spin − 1/2 degrees of freedom are depicted as spheres located on the links of the
lattice; for better visibility, only the spins of one elementary cube are shown. The
color coding indicates the different x-y-planes and the dots the translationally invari-
ant thermodynamic limit. Right: three kinds of plaquette operators depicted in blue
and a star operator depicted in red, as described in the main text. For clarity only
one star and one of each kind of plaquette operators are shown. The illustration is
adapted from [71].

Sect. 3. In Sect. 4, all the technical aspects of the variational approaches to approximate the
ground states are presented. The overall results for the quantum phase diagram are contained
in Sect. 5. We conclude the work and give a short outlook in Sect. 6.

2 3D toric code and magnetic fields

In the following we first describe the properties of the unperturbed 3D toric code, which is
not as known as its 2D counterpart [11, 70]. Afterwards we consider the 3D toric code in a
uniform magnetic field and discuss leading effects of the field on the topological properties.

2.1 Unperturbed 3D toric code

The toric code can be defined for spins (qubits) located on the links of different lattices, e.g.,
the square lattice, the honeycomb lattice, as well as other trivalent lattices in 2D and 3D like
those considered in [55]. All methods of this post can be applied to the toric code on different
lattices. Here we consider the cubic lattice, see Fig. 1 left. The 3D toric code is defined by the
Hamiltonian

H := −
1
2

∑

stars
s

As −
1
2

∑

plaquettes
p

Bp ; As :=

�

∏

j∈s

σx
j

�

, Bp :=

�

∏

j∈p

σz
j

�

, (1)

where σx
j ,σ y

j and σz
j are the usual Pauli matrices acting on the spin j of the system. The

star operators As act on the spins in a “star" s around a vertex and plaquette operators Bp on
the spins in a plaquette p of the lattice as shown in Fig. 1. The star and plaquette operators
commute, i.e.,

[As, As′] = [Bp, Bp′] = [As, Bp] = 0 ∀s, s′, p, p′, (2)

as the star and plaquette operators either act on none or two common spins. Consequently,
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Figure 2: Loop soup and membrane soup picture of the ground state of the 3D toric
code. Left: the spins located at crossings of the blue lines and the cubic lattice links
are flipped with respect to the σx -basis. Analogously right, the spins located at the
crossings of the red lines (corners of polyhedrons) and the cubic lattice links are
flipped with respect to the σz-basis.

the eigenvalues of star and plaquette operators are conserved and equal to

as = ±1 , bp = ±1 ∀s, p , (3)

due to the star and plaquette operators squaring to the identity. Thus the model is exactly
soluble and the ground state is constrained by the condition as = +1, bp = +1 ∀s, p. In the
σx -basis (σx |→〉= |→〉 ,σx |←〉= −|←〉), this can be ensured by the construction

∏

s

1+ As

2

∏

p

1+ Bp

2
|→→ · · · →〉=

∏

p

1+ Bp

2
|→→ · · · →〉=

=
1

23N

�

1+
∑

p

Bp +
∑

p, p′ 6=p

BpBp′ + . . .
�

|→→ · · · →〉 ,
(4)

where N is the number of unit cells. This amounts to an equal-weight superposition of all states
with loops of flipped spins and is a 3D generalization of the loop soup ground state of the 2D
toric code. One state in this superposition is pictorially represented in the left part of Fig. 2. In
contrast, in the picture of the σz-basis (σz |↑〉= |↑〉 ,σz |↓〉= −|↓〉), the same projection of the
state |↑↑ . . . ↑〉 results in a “membrane soup", as star operators flip spins on closed membranes,
illustrated in Fig. 2 right. Equivalently, one could start with any other product state |~h~h . . . ~h〉
where all spins point in the direction of a magnetic field ~h.

Ground-state entanglement and degeneracy – Due to this structure of the ground state
which contains arbitrarily large loops and membranes, it is long-range entangled and satisfies
an area law for the entanglement entropy [72], modified by a universal non-trivial topological
entanglement entropy of γ = 2 ln(2) [71], equal to that of the 2D toric code.1 In contrast to
γ2D = 0 for the 2D case at T > 0, one has

γ=











2ln(2) for T = 0 ,

ln(2) for 0< T ≤ Tc = 1.313346(3) J (here J = 1
2) ,

0 for T > Tc .

(5)

1The definitions of the topological entanglement entropy by [73] and [74] differ by a factor of 2; here the
latter definition was chosen.
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Table 1: Constraints of the 3D toric code as described in the main text; plane
α ∈ {x y, xz, yz}.

name # independent form reformulation

“volume" 1
∏

s
As = 1 ⇒ As =

∏

s′, s′ 6=s
As′

“cube" N − 1
∏

p∈ cube c
Bp = 1 ⇒ Bp =

∏

p′∈c, p′ 6=p
Bp′

(not N , as)
∏

p∈c
Bp =

∏

c′, c′ 6=c

∏

p∈c′
Bp

“plane" 3
∏

p∈plane α
Bp = 1 ⇒ Bp =

∏

p′∈α, p′ 6=p
Bp′

(not more, as)
∏

p∈α
Bp =

∏

p′∈c
Bp′

∏

p∈α
Bp, etc.

This coincides with non-analyticities of the canonical partition function Z , which indicates
finite-temperature phase transitions. Still, the 3D toric code with periodic boundary condi-
tions (PBC) at finite temperature is not a model for a thermally-stable fault-tolerant quantum
memory, because it can only store a probabilistic bit [37,71].

At zero temperature, the 3D toric code features non-local, topologically-protected logical
qubits, which will be shown in the following. The 3D toric code on the cubic lattice with N
cubes and PBC possesses 3N spins, N stars, 3N plaquettes and the constraints listed in Tab. 1.2

These constraints are illustrated in Fig. 3. The products of plaquette operators forming closed
membranes equal the identity, too. But they are not independent of the N − 1 “cube con-
straints", as they can be constructed from products of the latter. Similarly, only 3 of the “plane
constraints" are independent, because the planes can be deformed by multiplication with cube
constraints. Consequently, the ground-state degeneracy is

2Nspins

dim(EH)
=

2Nspins

2Nstars+Nplaquettes−Nconstraints
=

23N

2N+3N−1−(N−1)−3
= 23, (6)

where EH denotes the eigenspace of the Hamiltonian. The different ground-state sectors can
be discriminated by the conserved eigenvalues of three topologically different non-local, non-
contractible, commuting closed membrane operators

W m
α :=

∏

j∈Pm
α

σx
j , [W m

α , As] = [W
m
α , Bp] = 0 ∀s, p , (7)

where α ∈ {x y, xz, yz}. The planes Pm
α are defined as

Pm
x y := { jp,q =

1
2

bx +
1
2

p(bx + by) +
1
2

q(bx − by) +
�

nz +
1
2

�

bz | p, q ∈ Z} , (8)

with some arbitrary fixed nz ∈ Z and the basis vectors bβ in β-direction of Fig. 1, β ∈ {x , y, z}:

bx = (1,0, 0) , by = (0,1, 0) , bz = (0,0, 1) . (9)

The planes Pm
xz/yz are constructed analogously. One such membrane operator is illustrated in

the left part of Fig. 4. These operators measure the parity of the number of loops whose spins

2This depends on the considered lattice, but the counting approach can also be applied to other lattices. In
the case of open boundary conditions, relevant for small-scale experimental implementations of the 3D toric code,
the ratios of the number of spins, stars and plaquettes depend on the systems’ sizes and kinds of boundaries,
analogously to 2D called “smooth" and “rough" boundaries [75,76]. Only the N −1 closed-cell constraints survive.
Like in 2D, it is possible to construct systems with a non-trivial ground-state degeneracy.
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point left, winding in the direction perpendicular to the membrane around the 3-torus. In
order to create such loops, one can employ a set of non-local, non-contractible loop operators

W e
β :=

∏

j∈Le
β

σz
j ; [W e

β , As] = [W
e
β , Bp] = 0 ∀s, p , (10)

where β ∈ {x , y, z} and the loops Le
β

are defined as

Le
x := { jn =

�

n+
1
2

�

bx + ny by + nz bz |n ∈ Z} , (11)

with some fixed nx , ny ∈ Z, Le
y/z analogously. The operators W e

β
toggle between the different

ground-state sectors, as

W e
x/y/zW m

yz/xz/x y = −W m
yz/xz/x yW e

x/y/z . (12)

These three different kinds of loops and loop operators are illustrated in the right part of Fig. 4.
In the membrane-soup picture of theσz-basis, the sets of operators W m

α and W e
β

change roles of
discriminant and toggle between the different ground-state sectors. One can show in general
that the ground-state degeneracy is 2b1 on a manifold with first Betti number b1, which is the
number of topologically different non-contractible loops or membranes to each of which we
can associate a loop/membrane operator as above. For example the 3D toric code on the solid
2-torus with a “smooth" boundary [75, 76] has one topologically different non-contractible
loop and thus a two-fold degenerate ground state.

Excitations – If some eigenvalues of As or Bp equal −1, the 3D toric code is in an excited
state.3 The excitations, called e for as = −1 and m for bp = −1, can be created by

Le
s,s′ :=

∏

j∈Le
s,s′

σz
j , M m

∂P :=
∏

j∈Pm

σx
j , (13)

where the open string Le
s,s′ is defined as Le

x by a composition of links, with end vertices s and
s′. The open membrane Pm is constructed out of faces whose midpoints are the spin locations
and whose normal vectors are parallel to the respective link, as illustrated in Fig. 5. Like e-
quasiparticles (QP) of the 2D toric code, the e-excitations, which are their own antiparticles,
are created, moved and annihilated at the endpoints of the open string. They are hardcore-
bosonic point particles. The smallest possible membranes, centered at only one spin j, define
the operator

M m
∂P j

:= σx
j , (14)

which, applied to the ground state, creates four m-excitations, as shown in the left part of
Fig. 5. This configuration of excitations along the closed loop ∂P j will be called 4-m-loop.
In general, m-excitations can only be created, annihilated and moved in loops of 4, 6,8, and
higher even numbers of m-excitations; thus it is appropriate to interpret m-excitations rather
as spatially extended excitations than as point particles. For convenience, a single m-excitation
will be called an m-quasiparticle, too. The creation of single m-excitations is impossible, but
the physical wave function of a 1-m-state can be written down as

|mp〉 :=
1− Bp

2

∏

p′, p′ 6=p

1+ Bp′

2
|→→ · · · →〉 . (15)

3The following paragraph can also be viewed, in the light of quantum codes, as the dynamics of uncorrected
errors.
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Figure 3: First line left: a cube constraint of the 3D toric code; right: equivalent con-
straint resulting from the product of all but one cube constraints. Second line left:
x-y-plane constraint; right: equivalent constraint resulting from the product of an-
other x-y-plane constraint and all adjacent cube constraints. Third line left: y-z-plane
constraint; right: plane constraint deformed by multiplication with a cube constraint.
Fourth line left: x-z-plane constraint; right: star constraint resulting from the prod-
uct of all star operators. Dots indicate the translationally invariant continuation of
the configuration.

This state belongs to a different superselection sector of the Hilbert space with respect to all
local and non-local observables. There does not exist an analogon of the non-local operator
Le

s,∞(13) of an open string going to infinity, creating or annihilating a single e.
The precise form of the strings of Le

s,s′ (membranes of M m
∂P) above are irrelevant as (long

as) we can deform them by application of Bp with bp = +1 (As with as = +1). Moving an
e-QP at s via a suitable loop operator Le

s,s in a closed path through a loop of m-excitations or
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Figure 4: Non-contractible closed membrane operators W m
x y (left) and loop operators

W e
x , W e

y , W e
z (right). For clarity only the involved spins of the red colored plane Pm

x y
(left) and blue colored loops Le

x , Le
y , Le

z(right) are shown, as well as only one kind
of membrane operator. Red (blue) coloring of spheres means that Pauli matrices σx
(σz) are applied to the spins. Dots indicate that the membrane and loops span the
whole system.

Figure 5: Left: open membrane operators M m
∂P (first and second left) and loop oper-

ators Le
s,s′ (third left). For clarity only the involved spins and some parts of the cubic

lattice are shown. Red (blue) coloring of spheres means that Pauli matrices σx (σz)
are applied to the spins. A filled parallelogram (star) indicates that an m-excitation
(e-excitation) is present at the corresponding location. Right: exotic mutual statistics
of a 4-m-loop (four filled blue plaquettes) and an e-QP (red star). The operator mov-
ing the e along the closed blue loop equals the product of the two indicated plaquette
operators, which yield a phase factor of −1, see Eq. (16).

moving a loop of m-excitations at ∂P via a suitable closed-membrane operator M m
∂P ′=; in a

closed path over an e-QP results in a phase factor of −1: closed-loop operators Le
s,s detect the

presence of m-QP inside the loop and closed-membrane operators M m
∂P ′=; detect the presence

of e-QP inside the membrane, as

Le
s,s =

∏

p∈P e:
∂P e=Le

s,s

Bp , M m
∂P ′=; =

∏

s∈Vm:
∂Vm=P ′m

As , (16)

where the membrane P e consists of faces of the original cubic lattice and the volume Vm is
constructed from elementary cubes centered around the stars (vertices) of the original cubic
lattice. This is illustrated in the right part of Fig. 5. Consequently, if the wordline of e-QP and
m-loop form a linked knot, a phase factor of −1 occurs; if they are unlinked, the phase factor
is trivially +1. Alternatively, one can show this by the anticommutation of the Pauli matrices
acting on the spin colored both red and blue in the right part of Fig. 5. This exotic mutual
statistics of point and spatially extended particles emerging in a system of spins (hardcore
bosons) is beyond bosonic or fermionic statistics in 3D. It is a macroscopic non-local quantum
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effect: it even occurs when e-QP and m-loop are braided in a linked knot of macroscopic size.
In the quasiparticle picture introduced above, the non-contractible loop operators W e

β
(10)

discriminating (toggling) between the different ground states can be interpreted as creating
a pair of e-quasiparticles, moving them in a non-contractible loop in bβ -direction around the
torus and annihilating them again. This shows that ground-state degeneracy and deconfined
anyonic excitations of phases with topological quantum order are interlinked.

Altogether, the 3D toric code shows all the signature properties of topological quantum
order: topological ground-state degeneracy, absence of local order parameters, long-range,
area-law entanglement entropy modified by a non-zero universal topological entanglement
entropy and deconfined fractional excitations.

2.2 3D toric code in a uniform magnetic field

As the last subsection showed, the QP of the unperturbed toric code are static and non-
interacting. However, due to perturbations and quantum fluctuations, the QP gain dynamics,
become dressed and start to interact, which finally leads to the breakdown of the topological
order for finite values of the perturbation. Here we consider the simplest possible perturbation
of the 3D toric code in the form of a uniform magnetic field:

HTCF = −
1
2

∑

s

As −
1
2

∑

p

Bp − ~h ·
∑

spins j

~σ j , (17)

where ~σ j denotes the vector of Pauli matrices ~σ j := (σx
j ,σ y

j ,σz
j ) and ~h := (hx , hy , hz) encodes

the direction and strength of the magnetic field. Clearly, in the limiting case of an infinitely
strong magnetic field, the ground state is a product state of all spins polarized in the magnetic
field direction. Thus strong magnetic fields lead to a non-topological paramagnetic phase and
a quantum phase transition must occur between this phase and the intrinsic topological order
of the 3D toric code.

In order to qualitatively investigate the QP-dynamics, we calculate the sub-leading order
effects of the magnetic field perturbatively using the framework of perturbative continuous
unitary transformations (pCUT) [77, 78] along the same lines as for the 2D toric code in a
magnetic field [26,27,31]. Note that here we do not aim at a high-order linked-cluster expan-
sion which can be used to pinpoint potential second-order quantum phase transitions, but we
want to describe the main effects of the magnetic field and its direction on the dynamics and
interactions of QP.

The application of pCUT demands an equidistant spectrum of the unperturbed part of the
considered Hamiltonian bounded from below, which is indeed the case for the unperturbed 3D
toric code (1). As a consequence, one can introduce an operator Q counting the total number
of QP, and rewrite the unperturbed Hamiltonian as

H = E0 +Q , (18)

where E0 is the bare ground-state energy, E0 = −2N for the 3D toric code with N the number of
cubes. The perturbing magnetic field term is split into operators Tn which change the number
of energy quanta with respect to Q by n where for the 3D toric code n ∈ {0,±2,±4,±6}. One
can therefore express the 3D toric code in a uniform magnetic field as

HTCF = E0 +Q+
3
∑

j=−3

1
2 j

T2 j . (19)

The pCUT allows to map the Hamiltonian with perturbation written in the form of Eq. (19),
order by order in the perturbation ~h exactly, to an effective QP-number-conserving Hamiltonian
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Heff so that [Heff,Q] = 0. Up to second order in the perturbation parameters hx , hy and hz ,
the effective Hamiltonian of the 3D toric code reads

Heff = E0 +Q+ T0 +
3
∑

j=1

[T2 j , T−2 j] . (20)

Higher orders add more terms to this effective Hamiltonian. Normal-ordering Heff allows to
extract the QP-conserving effective Hamiltonians in the thermodynamic limit in various QP-
sectors. Here we have focused on the 0QP-, 1e-, 1m-, 1e-1m-, 2e- and 2m-sectors up to the
second order in the perturbation. The results are listed in Tab. 2 and will be discussed briefly
in the following.

In the vacuum sector of the 3D as well as the 2D toric code only vacuum fluctuations can
occur, due to QP-conserving combinations of creation and annihilation processes of second and
higher perturbation orders. Their effect is to shift the ground-state energy. When one e-QP is
present, it modifies these fluctuations, and when hz 6= 0, it can hop to star supersites up to n
links apart according to nth-order perturbation theory. In the 2e-sector one can observe that –
starting in second order of the perturbation parameter hy – there exist short-ranged, weakly
attractive interactions between e-QP due to the following mechanism: When the two e-QP
neighbor each other, their energy due to vacuum fluctuations is lower than in the case they
do not. Still for hz 6= 0, they can lower their energy by delocalizing, which hints at a second-
order phase transition at a finite magnetic field strength hz due to some kind of Bose-Einstein
condensation, in the cases when the e-QP drive the quantum phase transition rather than the
m-QP. Both, hopping of e-QP due to hz 6= 0 only and attractive interaction between them due
to the transverse field hy 6= 0, occur also in the perturbed 2D toric code [26,27,31]. We want
to qualitatively compare our results for the 2e-sector of the perturbed 3D toric code in more
detail to the 2D toric code in a transverse field hy which has been investigated in Ref. [27]:

As the unperturbed 2D toric code is symmetric under the exchange σx ↔ σz , its m-
QP-dynamics due to hx 6= 0 is identical to its e-QP-dynamics due to hz 6= 0 as well as the
dynamics of e- and m-QP due to hy 6= 0. For ~h = (0, hy , 0), single QP cannot hop and are
thus static due to selection rules: the parities of the numbers of QP along diagonals and
anti-diagonals (mx , my) with sites (x , y) ∈ {mx bx + my by + n · (bx + by)/2|n ∈ Z} and
(x , y) ∈ {mx bx +my by + n · (bx − by)/2|n ∈ Z}, respectively, are symmetries and thus con-
served. The presence of one QP only modifies the vacuum fluctuations. The 2QP-sector of the
effective Hamiltonians resulting from pCUT can be further subdivided in the following way:
the 1e-1m-sector is not connected to the sector of two e-QP and the sector of two m-QP, as the
perturbation σ y and any product thereof cannot change the parities of the overall numbers of
e-QP and m-QP. In the former sector, the states of the two QP being located on one diagonal
or anti-diagonal, as defined above, have lower energies than states where this is not the case.
The reason is that when only two (anti-)diagonal parities are odd, one-dimensional correlated
hopping of the QP-pair along this (anti-)diagonal direction is possible. This is an example of
the phenomenon of dimensional reduction. Furthermore, the closer the QP are, the stronger
is the modification of the vacuum fluctuations, the lower is the perturbation order in which
correlated hopping appears and thus the lower are the energies of their states. Beside these
processes, the sector of two e-QP and the sector of two m-QP features another process: trans-
mutations of two e-QP to two m-QP and vice versa, conserving all parities described above.
The lowest perturbation order for the transmutation depends on the distance of the QP, too.
Both correlated hopping and transmutation imply a short-ranged attractive interaction which
leads to the formation of bound states.

In contrast to that, the 2e-sector of the perturbed 3D toric code is not connected to its
2m-sector, because such a transmutation is not possible due to the differences in the star and
plaquette operators and the lattices of e-QP- and m-QP-supersites. One-dimensional corre-
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Table 2: Effective Hamiltonians of the 3D toric code resulting from pCUT up to sec-
ond order in the perturbations hx , hy and hz . E(2)0 /N is the ground-state energy
per unit cell. The state |(e/m); i〉 denotes the state where a (e/m-)QP is located at
(star/plaquette) supersite i and the label e/m is omitted if it can be inferred from
the considered sector. The notation < i, j >(2) means that supersites i and j are one
(two) link(s) apart. When an e- and an m-QP share two common spins, their state
is denoted as | f 〉. When two m-QP share a common spin s, their state is denoted as
|2m; s, 1〉 or for the sake of brevity as |s, 1〉, if the context implies that it is a state of
two m-QP. The complementary configuration of two m-QP sharing the same common
spin s, obtained from |s, 1〉 via the application of σx

s , is denoted by |s, 2〉 := σx
s |s, 1〉.

The factor pi j(l) denotes the number of physical paths between supersites i and j,
which could depend on whether supersite l is occupied or not. All results beside the
ground-state energy of the 0QP-sector are measured with respect to the ground-state
energy E(2)0 .

QP-sector Hamiltonian of pCUT up to second order in hx , hy and hz

0QP
E(2)0
N = −4− 3 · (h2

x
4 +

h2
y

6 +
h2

z
2 )

1e H(2)1e = 1+ 6
h2

y
6 − 6

h2
y

4 + 6
h2

z
2

−hz
∑

<i, j>
|i〉 〈 j| − h2

z
2 pi j

∑

<i, j>2

|i〉 〈 j|+ h.c.

1m H(2)1m = 1+ 4
h2

x
4 − 4

h2
x

2 + 4
h2

y
6 − 4

h2
y

4

2e H(2)2e = 2+
h2

z
2 + 11

h2
z

2
−hz

∑

<i, j>,l 6=i, j

�

|i, l〉 〈 j, l|+ |l, i〉 〈l, j|
�

+ h.c.

−h2
z

2 pi jl
∑

<i, j>2,l 6=i, j

�

|i, l〉 〈 j, l|+ |l, i〉 〈l, j|
�

+ h.c.

+
�

−
h2

y
2 − 10

h2
y

4 + 11
h2

y
6

�

·
∑

<i, j>
|i, j〉 〈i, j|

+
�

− 12
h2

y
4 + 12

h2
y

6

�

·
�

1−
∑

<i, j>
|i, j〉 〈i, j|

�

2m H(2)2m = 2− hx
∑

s
|s, 1〉 〈s, 2|+ h.c.

+
�

− 6
h2

x
2 + 7

h2
x

4 −
h2

y
2 − 6

h2
y

4 + 7
h2

y
6

�

·
∑

s;c=1,2
|s, c〉 〈s, c|

+
�

− 8
h2

x
2 + 8

h2
x

4 − 8
h2

y
4 + 8

h2
y

6

�

·
�

1−
∑

s;c=1,2
|s, c〉 〈s, c|

�

1e-1m H(2)1e,1m = 2+ 4
h2

x
4 − 4

h2
x

2 + 6
h2

z
2

−hz
∑

<i, j>
|e; i〉 〈e; j| − h2

z
2 pi j

∑

<i, j>2

|e; i〉 〈e; j|+ h.c.

+
�

− 2
h2

y
2 − 6

h2
y

4 + 8
h2

y
6

�

·
∑

f
| f 〉 〈 f |

+
�

− 8
h2

y
4 + 8

h2
y

6

�

·
�

1−
∑

f
| f 〉 〈 f |

�

lated hopping due to hy 6= 0 is not occurring in first- and second-order pCUT, either, since
this would create additional m-QP and is hence forbidden by QP-number conservation. The
exchange σx ↔ σz is not a symmetry of the 3D toric code and, unlike e-QP of the perturbed
3D toric code, a single m-QP cannot move by any perturbation, while the motion of single QP
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of the 2D toric code due to hy 6= 0 is forbidden only by a selection rule. For a perturbation of
the 3D toric code with non-zero hx and hy , only the vacuum fluctuations are modified. The
reason is that each state with an m-QP localized at a different position belongs to a different
superselection sector, as discussed for m-QP of the 3D toric code above. Such immobility of
a QP in a translationally invariant system is unusual, as normally disorder causes localization
while breaking translational invariance. Two m-QP cannot move either, if they do not neigh-
bor each other (share a common spin s), but if they do, perturbations by hx 6= 0 can toggle
between the complementary configurations of two m-QP around the spin s. Additionally, such
states have a lower energy than two isolated m-QP due to the vacuum fluctuations, analogous
to the case of two e-QP. As a consequence, the lowest-energy states of the 2m-sector are su-
perpositions of the two complimentary configurations of a pair of m-QP localized around a
spin s. The smallest mobile m-QP-configuration is the 4m-loop, beginning to move in the sec-
ond order of the perturbation hx 6= 0. This immobility of a single m-QP as well as the reduced
mobility in all pure m-QP sectors in a translationally invariant system is shared by and is a
defining property of so-called fracton phases, a topic currently much under investigation and
discussion, e.g., see [62, 63, 79]. Therefore we have investigated all m-QP-sectors up to the
4m-sector in the following way: we computed and diagonalized the effective Hamiltonian re-
sulting from second-order pCUT for each sector. Then we have compared the respective lowest
energy level of these sectors with each other for perturbation strengths up to the exact phase
transition point ~h= (0,0, 1/2), see Sect. 3, as well as up to the approximative phase transition
points according to the variational calculation introduced in Sect. 4 and presented in Sect. 5.
It turned out that the resulting energy levels lie higher than the lowest energy levels of the
1m- and 2m-sectors in this parameter regime. On this basis these sectors of larger numbers
of m-QP seem to be irrelevant for the phase transitions; we suspect that this remains true
for higher-order pCUT and based our qualitative interpretation of the results in Sect. 5 on it.
This suggests that m-QP drive a first-order phase transition via some kind of nucleation of a
finite density of m-QP. The mechanism could be the same as for the first-order phase transition
of the 2D toric code in a transverse field, because in both cases single QP are immobile and
two neighboring QP can toggle between different configurations, but the 2D toric code in a
transverse field additionally features correlated hopping [27].

In the 1e-1m-sector, no new phenomena beside the vacuum fluctuations, the hopping of
the e-QP, the immobility of the m-QP and short-ranged, weakly attractive interactions between
e-QP and m-QP due to hy 6= 0 occur, analogous to the interactions between e-QP and to the QP-
dynamics of the perturbed 2D toric code [27,31], but no one-dimensional correlated hopping
of neighboring 1e-1m pairs occurs. The 1e-4m-sector is interesting, because it is the sector with
the smallest number of QP such that the exotic mutual braiding statistics featured by the 3D
toric code can play a role. To account for the phase of −1 resulting from the anticommutation
of Pauli matrices applied to the spin in the center of the loop, one can simply change the
effective amplitude t for hoppings through the loop to −t. We have studied finite systems at
hx = 0, hz 6= 0 using exact diagonalization, but the results showed that the difference in the
eigenenergies and -states of the system with and without 4m-loop and exotic mutual statistics
diminishes for increasing system sizes. We expect that in the thermodynamic limit differences
could arise only if the density of 4m-loops is finite, which is not the case for a low-energy
state. For hx 6= 0, the 4m-loop can move, but the hopping resulting from the second and third
order of the perturbation is not affected by the mutual statistics; only some hopping processes
emerging in fourth and higher orders are modified by it.

Beside this effect of the statistics irrelevant for the phase transitions, it will modify certain
effective hopping and vacuum fluctuation amplitudes in sectors of lower QP-numbers in higher-
order perturbation theory, as soon as the respective order allows processes like (1) the creation
of a 4m-loop in combination with (2) motion of an e-QP in a closed path through the loop back
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Table 3: Summary of the physical implications of the results of second-order pertur-
bation theory applied to the 3D toric code in a uniform magnetic field.

QP-sector qualitative processes interpretation

0QP vacuum fluctuations
1e hopping, fluctuations Bose-Einstein condensation

→ 2nd-order phase transition
1m immobility, fluctuations superselection sectors
2e as for 1e, and short-ranged, gas of interacting hardcore bosons

weakly attractive interaction
2m superpositions, fluctuations, bound states, dominate over 1m

attractive interaction → 1st order transition (nucleation)
1e-1m as for 1e and 1m, and short-ranged, no bound states for N →∞

weakly attractive interaction
1e-4m hopping (of 4m-loop for order ≥ 4), irrelevant for phase transitions

mutual statistics

to its initial position and (3) annihilation of the loop (minimal order: 6). The above discussion
of the physical implications of the results of second-order perturbation theory is summarized
in Tab. 3. In the case of the 2D toric code in a uniform magnetic field, it has been found that
the regions of the phase diagram with first-order phase transitions and those with second-
order phase transitions can roughly be characterized by the criterion whether to the lowest
relevant orders in perturbation theory attractive interactions dominate over the kinetic energy
(resulting in bound states) or vice versa. This guidance translates to the 3D toric code in the
following way: for hy 6= 0, hx = hz = 0 there is no kinetic energy and the induced interactions
are always attractice; this is true in the whole hx -hy plane in the regime relevant for the phase
transitions and hence we expect first-order phase transitions. For hz 6= 0, hx = hy = 0 there is
only kinetic energy and thus we expect a second-order phase transition. These limiting cases
are separated by the surface for which the elementary energy gaps of the 1e-sector, ε(2)1e,hz ,Γ ,

and of the 1m-sector, E(2)1m, equal each other, i.e.,4

ε
(2)
1e,hz ,Γ = 1− 6hz − 12h2

z
!
= E(2)1m = 1− h2

x −
h2

y

3
. (21)

This surface will help us to roughly distinguish regions of first- and second-order quantum
phase transitions in the quantum phase diagram for the 3D toric code in a uniform magnetic
field discussed in Sect. 5.

Similar to the case of the 2D toric code in a uniform magnetic field, the quantum phase transi-
tions of the perturbed 3D toric code might be driven by the e-QP and 4m-loops, which become
dynamical due to the magnetic field, as discussed above. For a general field direction, the
investigation of the quantum phase transition requires the application of numerical methods.
In [80], Monte Carlo simulations are applied to investigate the phase diagram of the 3D toric
code perturbed by ferromagnetic nearest-neighbor Ising interactions. The problem posed by the
3D toric code in a uniform magnetic field (17) has not been addressed before in the literature to
the best of our knowledge. The quantitative phase diagram of the 2D toric code in a uniform
magnetic field, presented comprehensively in [31], has been determined by a combination
of various numerical methods, for example quantum Monte-Carlo simulations [23, 29, 30],

4In the following, the symbol "
!
=" denotes an assumption in contrast to an identity.
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(a) (b)

Figure 6: Duality transformations of the perturbed 3D toric code in the cases (a)
~h= (hx , 0, 0) and (b) ~h = (0,0, hz). The left and and right parts of (a) and (b) show
the degrees of freedom and interactions before and after the duality transformation,
respectively. The red (blue) points depict the action of a Pauli matrix σx

j or τx
j̃

(σz
j

or τz
j̃
) due to the magnetic field. The squares represent plaquette operators, the

stars star operators, and the triangle a nearest-neighbor Ising interaction τx
k̃
τx

l̃
. The

dashed lines indicate interactions between the degrees of freedom induced by the
magnetic fields in the original toric code picture.

high-order linked-cluster expansions [26,27,31], exact diagonalization [25,27,31,32], tensor
network approaches like iPEPS [31] or other variational methods [81]. For the 3D toric code in
a generic field, quantum Monte-Carlo simulations are problematic due to the sign problem, ex-
act diagonalizations are limited due to finite cluster sizes, tensor network approaches become
challenging in 3D, and linked-cluster expansions are challenging when first- and second-order
quantum phase transitions are present in the quantum phase diagram. As a consequence, we
combine exact dualities and variational approaches to tackle this problem.

3 Exact duality relations

Similarly to the 2D toric code in a uniform magnetic field, it is possible to find exact duality
relations in the 3D case for specific field directions. This allows to pinpoint the location and the
order of the quantum phase transition in some cases exactly. In addition, one can benchmark
the quality of our variational approach discussed in Sect. 4.

Duality transformation for ~h = (hx , 0, 0). – For this magnetic field direction, the star op-
erators As commute with the Hamiltonian and therefore label different Hilbert space sectors.
Thus to investigate the physics at low energies, one can set their eigenvalues to as = +1 ∀s.
The Hamiltonian of this low-energy sector reads

H x (hx ;σ) := −
N
2
−

1
2

∑

p

Bp − hx

∑

j

σx
j . (22)

In the following we use λx := 2hx and denote the center of the plaquettes p to be the sites j̃
of the dual lattice. The original and dual lattice are identical, but shifted by a constant vector.
Notice that the application of a Pauli matrix σx

j flips the eigenvalues of the four plaquette
operators Bp, p = 1, 2,3, 4 surrounding any spin j (see Fig. 6 (a)). Hence we define new
variables

τx
j̃

:= Bp ⇒ σx
j =

4
∏

j̃=1

τz
j̃
=: Bp̃ , (23)

which obey the same (anti-)commutator relations as the operatorsσx
j and Bp. The dual Hamil-
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tonian in the new variables turns out to be the same as in the original variables:

H x
dual (λx ;σ) = −

N
2
−

1
2

∑

j̃

τx
j̃
−
λx

2

∑

p̃

Bp̃ = λx H x (λ−1
x ;τ) ,

E(λx) = λx E(λ−1
x ) ,

(24)

i.e., the Hamiltonian is self-dual. If there exists only a unique phase transition point – which is
physically reasonable – of the Hamiltonian H x (λx ;σ) at λc

x = 2hc
x , H x

dual (λ
−1
x ;τ) must have

one phase transition point at (λc
x)
−1. The uniqueness can only hold for λc

x = 1, which implies

hc
x =

1
2

. (25)

Furthermore, it can be shown that the effective Hamiltonian H x is equivalent to the self-dual
four-dimensional version of Wegner’s lattice gauge theory [82]. This model exhibits a single
first-order phase transition [83, 84] and therefore the phase transition of the 3D toric code
perturbed by hx is known to be of first order.

Duality transformation for ~h = (0, 0, hz). – In this case, the plaquette operators Bp com-
mute with the Hamiltonian. Analogously to the case before, the physics at low energies takes
place in the sector where bp = +1 ∀p and the Hamiltonian reduces to

Hz (hz;σ) := −
3N
2
−

1
2

∑

s

As − hz

∑

j

σz
j . (26)

We define new variables

τz
j̃
:= As ⇒ σz

j = τ
x
k̃
τx

l̃
⇒ τx

k̃
=
∏

n∈N0

σz
k̃+(2n+1)bβ/2

, λz := 2hz , (27)

where the indices j̃, k̃, l̃ label centers of stars as illustrated in Fig. 6 (b). In contrast to the case
of a non-zero hx , the original and the dual lattice, which is simple cubic, are not identical. The
subscript j̃ + (2n+ 1)bβ/2 ∈ Λ, with bβ as in Eq. (9) and β ∈ {x , y, z}, denotes spin sites of
the original lattice Λ forming a string which starts at site j̃ + bβ/2 and goes to infinity in the
freely chosen β-direction. This amounts to a non-local (topological) transformation. The new
variables satisfy the same (anti-)commutation relations as the original operators σz

j and As.
Thus the dual Hamiltonian [85] is given by

Hz
dual (λz;σ) = −

3N
2
−
∑

j̃

τz
j̃
−λz

∑

<k̃,l̃>

τx
k̃
τx

l̃
, (28)

which describes the ferromagnetic 3D transverse-field Ising model (3D TFIM). The 3D TFIM is
not exactly solvable, but various publications, e.g., [86,87], determined the zero-temperature
quantum critical point numerically to be

λc
z ≈ 0.194 ⇔ hc

z ≈ 0.097 (29)

via series expansion techniques. These results were confirmed by other methods, like (Quan-
tum) Monte Carlo techniques in [88, 89]. The quantum phase transition between the Ising-
ordered low-field and the paramagnetic high-field phase is of second order. It belongs to the
(3 + 1)D-Ising universality class and has mean-field critical exponents. The corresponding
quantum criticality in the dual picture, i.e., for the 3D toric code in a uniform magnetic field
hz , is then (3+ 1)D-Ising* [90].
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Figure 7: Different spatial configurations of star interactions (tetrahedra) in the case
~h= (0,0, hz) (26) (left) and ~h= (0, hy , 0) (31) (right). In the left case tetrahedra
can share spins at corners; in the right case tetrahedra can share spins at common
corners or edges.

Duality transformation for ~h= (0, hy , 0). – This field configuration is also called the toric
code in a transverse field. Here neither the star nor the plaquette operators commute with
the Hamiltonian. Hence one cannot simplify the Hamiltonian as in the two previous cases.
Nevertheless, a duality transformation determined by the variables

τz
j̃s

:= As , τz
j̃p

:= Bp ⇒ σ
y
j =

2
∏

j̃s: j∈ j̃s

τx
j̃s

4
∏

j̃p: j∈ j̃p

τx
j̃p
=: As̃ , λy := 2hy , (30)

allows to obtain the dual Hamiltonian5

H y(λy ;σ) = −
1
2

∑

j̃

τz
j̃
−
λy

2

∑

s̃

As̃ . (31)

Hamiltonian (31) is a generalization of the 2D Xu-Moore model [91,92] to 3D. To the best of
our knowledge, no information on the location and the order of the phase transition are known
and therefore the exact duality relation does not provide any insights into the breakdown of
the topological phase in this case. However, a first-order phase transition might be expected,
as also deduced variationally in Sect. 4.

Still, we can check whether the 3D toric code in a transverse field is self-dual, since this
implies that the coefficients of a perturbative expansion of the ground-state energy around
λ−1

y = 0 and λy = 0 match each other order-by-order, see Eq. (52) in App. A. One finds

for λy > λ
c
y :

E(λy)

N
= −

3
2
−

1
6

�

−
1

2λy

�2
−

3
4

�

−
1

2λy

�2
+O

� 1
λ3

y

�

= −
3
2
−

11
48

1
λ2

y
+O

� 1
λ3

y

�

,

for λy < λ
c
y :

E(λy)

N
= −2−

h2
y

2
O(λ3

y) = −2− 2λ2
y +O(λ3

y) ,

⇒ E(λy) 6= λ E(λ−1
y ) .

(32)

5(subscripts s and p will be dropped in the following for the sake of brevity)
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So self-duality is absent in this field direction. In the expression for λy > λ
c
y , the first term is

the energy of the unperturbed Hamiltonian, first-order corrections are absent and in second or-
der, vacuum fluctuations due to the star interactions (second term) and plaquette interactions
(third term) occur. The physical reason for the model being not self-dual is that the dynamics
and fluctuations of e-QP and m-QP due to the magnetic field is different from the magnons’
dynamics due to the star and plaquette operators, because e-QP and m-QP and magnons hop
on different lattices of supersites.

Altogether, the nature of the quantum phase transition between the 3D topologically-ordered
and the polarized phase depends on the field direction. For ~h = (hx , 0, 0), a first-order phase
transition takes place exactly at hc

x = 0.5 due to self-duality. In contrast, the transition is of
second order in the (3+1)D-Ising* universality class for ~h= (0,0, hz)with hc

z ≈ 0.097 [86,87].

4 Variational approaches

We use a variational approach to determine the quantum phase diagram of the perturbed 3D
toric code as presented in Sect. 5. Inspired by Ref. [81], the following ansatz for the ground-
state wave function of the 3D toric code in a uniform magnetic field with variational parameters
α,β is chosen:

|α,β〉 :=N (α,β)
∏

s

(1+αAs)
∏

p

(1+ βBp) |~h~h . . . ~h〉 , α,β ∈ [0,1] , (33)

where N (α,β) ≡ N is a normalization constant. The ket |~h~h . . . ~h〉 denotes the state of all
spins pointing in the direction of the magnetic field. For the sake of brevity, the notation
|~h〉 ≡ |~h~h . . . ~h〉, |α〉 ≡ |α,β = 1〉, |β〉 ≡ |α= 1,β〉 and N (α) ≡ N (α,β = 1),
N (β)≡N (α= 1,β) is used in the remainder of this post. Most importantly, the two lim-
iting cases α = β = 1 and α = β = 0 are exactly equal to the toric code ground state (4)
for |~h| = 0 and to the polarized ground state |~h〉 for |~h| =∞, respectively. For α = β = 1,
the normalization is known to be N (1, 1) = 2−4N , where N is the number of unit cells, and
N (0, 0) = 1.

Transferring the ideas of [93] to the 3D toric code in a uniform magnetic field,
ansatz (33) can be reformulated: Let Pm label closed membranes of spins in the state σx |~h〉,
i.e., generated by products of As, and let Le label closed loops of spins in the state σz |~h〉 as
shown in Fig. 2 of SubSect. 2.1. Then

|α,β〉=N
�

1+α
∑

s1

As1
+ β

∑

p1

Bp1
+α2

∑

s1,s2, s1 6=s2

As1
As2
+αβ

∑

s1,p1

As1
Bp1
+ . . .

�

|~h〉

=N
∑

Pm,Le closed

(α1/6)A(P
m)(β1/4)L(L

e) |Pm,Le〉 ,
(34)

where A(Pm) (L(Le)) is a function which represents the area (length) of membranes Pm (loops
Le). So one can think of α1/6 (β1/4) as the inverse of some kind of surface (string) tension
competing for example with some kind of kinetic energy. Consequently, the amplitudes of the
states in the superposition forming the ground state |α,β〉 are weighted according to the area
(length) of their membranes (loops).

In the specific single-field case ~h = (0, 0, hz) with β = 1, the variational ansatz (33) turns
out to be of mean-field character in the sense that for any set of n stars Sn

〈
∏

s∈Sn

As〉α := 〈α|
∏

s∈Sn

As |α〉= ηn =
�

〈As〉α
�n

, (35)
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where η := 2α/(1+ α2). In contrast to the perturbed 2D toric code [81], this is not true for
~h = (hx , 0, 0) and other field configurations, since for a set of n plaquettes Pn, irrespective of
being linked or not, one has

〈
∏

p∈Pn

Bp〉β := 〈β |
∏

p∈Pn

Bp |β〉=N 2(β)(1+β2)3N 〈⇒|
∏

p∈Pn

(ζ1+ Bp)
∏

p′ /∈Pn

(1+ ζBp′)| ⇒〉 , (36)

with N the number of unit cells; defining ζ := 2β/(1+ β2) and |⇒〉 := |→→ · · · →〉. This is
not necessarily equal to (〈Bp〉β)n = ζn, for instance when the set of plaquettes Pn forms an
elementary cube or any other closed membrane such that the product of plaquette operators
is the identity. General configurations ~h = (hx , hy , hz) with α,β 6= 1 also lead to certain
products of star and plaquette operators proportional to the identity. Therefore the variational
ansatz (33) goes beyond mean-field theory.

In practice, one computes the variational ground-state energy per spin e(α,β) := 〈H〉α,β/(rN)
for this variational ansatz with r = 3 the number of spins per unit cell. Then one minimizes
the energy with respect to the variational parameters α and β in order to identify different
phases. In the following we discuss first the specific single-field cases in hx -, hy -, and hz-
direction, where we were able to obtain the analytical solution of the variational calculation.
Afterwards, an approximative approach to the general-field case is presented.

4.1 Single-field cases

4.1.1 hz-field

In this field direction ~h= (0,0, hz), ansatz (33) simplifies to

|α〉=N (α)
∏

s

(1+αAs) |⇑〉 , (37)

as the plaquette operators Bp commute with the Hamiltonian (26). Thus β = 1 ensures that the
product wave function |⇑〉 := |↑↑ . . . ↑〉 is projected onto the low-energy Hilbert space sector
with bp = +1 ∀p. The variational energy per spin, as derived in App. B, is minimal at

η= α= 1 for hz <
1

12
, η=

1
12hz

for hz ≥
1
12

, (38)

with the limiting case α = 0 for the fully polarized phase at hz →∞. The minimal energies
for these two cases are

e(η= 1) = −
2
3

, e(η=
1

12hz
) = −

1
144hz

−
1
2
− hz , (39)

which match at hc
z = 1/12 without a kink. This indicates a second-order quantum phase

transition at the point hc
z =

1
12 , which is 14% off the preciser point hc

z ≈ 0.097 for the second-
order phase transition of the 3D TFIM [86], as discussed in the last Sect. 3.

4.1.2 hx -field

For ~h= (hx , 0, 0) one can simplify ansatz (33) to

|β〉=N (β)
∏

p

(1+ βBp) |⇒〉 , (40)
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as the star operators As commute with the Hamiltonian (22) and thus α = 1 ensures that the
product wave function |⇒〉 is projected onto the low-energy Hilbert space sector as = +1 ∀s.
The normalization constant equals

〈β |β〉
N 2(β)(1+ β2)3N

= 〈⇒|
∏

p

(1+ ζBp) |⇒〉=

= 〈⇒|1+ ζ6
∑

C6

∏

p∈C6

Bp + ζ
10
∑

C10

∏

p∈C10

Bp + ζ
12
∑

C2
6

∏

p∈C2
6

Bp + ζ
14
∑

C14

∏

p∈C14

Bp + . . . |⇒〉=

= 1+ Nζ6 + 6Nζ10 + N(N − 7)ζ12 + 10 · 6Nζ14 + . . .
!
= 1 ,

(41)

where Cn is the (product of) closed cube constraints in Tab. (1) with n faces and all other
terms not proportional to the identity cancel due to orthogonality of the different states. The
constraints can be thought of as constituted of elementary cubes C6 of plaquette operators,
illustrated in Fig. (3) of SubSect. 2.1. Consequently, the sum over all cubes C6 contains N
terms, where N is the number of unit cells. The notation Cm

n denotes m unconnected cubes,
each with n faces. For the coefficients of the terms of higher orders in ζ, one has to count the
number of positions to place the respective combinations of cube constraints in the system.
The variational energy per spin can be obtained by calculating the expectation values of star,
plaquette and spin operators. For a star operator it is:

as := 〈β |As|β〉= 1 , (42)

and the expectation value of a plaquette operator yields:

bp(β) := 〈β |Bp|β〉=N 2(β) (1+ β2)3N 〈⇒| (ζ1+ Bp)
∏

p′, p′ 6=p

(1+ ζBp′) |⇒〉=

(41)
=
ζ(1+ (N − 2)ζ6 + (6N − 10)ζ10 + . . . ) + (1/ζ)(2ζ6 + 10ζ10 + . . . )

1+ Nζ6 + 6Nζ10 + N(N − 7)ζ12 + 10 · 6Nζ14 + . . .
=

= ζ+
ζ(−2ζ6 − 10ζ10 + . . . ) + (1/ζ)(2ζ6 + 10ζ10 + . . . )
1+ Nζ6 + 6Nζ10 + N(N − 7)ζ12 + 10 · 6Nζ14 + . . .

.

(43)

Fig. 8 (a) illustrates why in the second line of the formula above in the first bracket of the
numerator the second term equals (N − 2)ζ6: two out of N cubes are not contained in the
sum over cubes C6 due to the missing plaquette in the product

∏

p′,p′ 6=p(1+ ζBp′), indicated
in the illustration by the large green crosses. The other parts (b) to (e) illustrate the higher-
order coefficients. The first term in the second bracket is in turn explained by Fig. 9 (a), as
the elementary cube must contain plaquette p; otherwise the product of 6 plaquettes does not
equal the identity. The contribution to the variational energy per spin in the thermodynamic
limit is

∑

p 〈β |Bp|β〉

3N
= bp(β)

N→∞
−→ ζ , (44)

and the second term in the result of (43) vanishes, as the orders of N in the terms of the
denominator dominate over the respective terms of the numerator. The expectation value for
the magnetic field term (σx

j ) can be computed similarly:

s j(β) := 〈β |σx
j |β〉=N 2(β) (1+ β2)3N−4(1− β2)4 〈⇒|σx

j

∏

p, p 6=p1,...,p4

(1+ ζBp) |⇒〉=

(41)
= (1− ζ2)2

1+ (N − 4)ζ6 + (6N − 20)ζ10 + . . .
1+ Nζ6 + 6Nζ10 + N(N − 7)ζ12 + 10 · 6Nζ14 + . . .

=

= (1− ζ2)2 + (1− ζ2)2
−4ζ6 − 20ζ10 + . . .

1+ Nζ6 + 6Nζ10 + N(N − 7)ζ12 + 10 · 6Nζ14 + . . .
N→∞
−→ (1− ζ2)2 ,

(45)
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N-2 possibilities

1st: 10 possibilities

2nd: 5 possibilities

1st: N-12 possibilities

2nd: 6 possibilities

1st: 10 possibilities

2nd: N-8 possibilities

1st: N-12 possibilities

2nd: N-9 possibilities

1st: 
1st: 

2nd: 

1st: 

2nd: 

2nd: 

1st: 
1st: 

2nd: 

(b)(a) (c)

(d) (e)

Figure 8: Number of possible positions of products of cube constraints (blue) as
discussed in the main text. Here the positions are counted by subsequently placing
the "1st" and then the "2nd" cube. The large green cross indicates which face cannot
be used to form cube constraints.

where the reasoning and illustrations are similar to before, like Fig. 10 (a) illustrates the second
term (N − 4)ζ6 in the numerator. The variational energy per spin in the thermodynamic limit
is given by

e(β) = −
�

1
6
+

2β
2(1+ β2)

�

− hx

�

1− β2

1+ β2

�4

. (46)

The minimum of the variational energy e(β) for a given magnetic field strength hx was deter-
mined numerically using the function roots of NumPy. As result we find a first-order phase
transition at hx ≈ 0.422 with a jump in the variational parameter β (upper part of plot in
Fig. 11) and an energy level crossing (lower part) between the solution for the topological
phase (green) and for the paramagnetic phase (blue). The result is approximately 15.6% off
the self-dual point hx = 0.5 found in the last Sect. 3.

4.1.3 hy -field

As the star and plaquette operators commute with respect to each other for ~h = (0, hy , 0),
the calculations for this case are simply a combination of those for the two cases before. The
resulting variational energy is given by

e(α,β) = −
�

2α
3 · 2(1+α2)

+
2β

2(1+ β2)

�

− hy

�

1−α2

1+α2

�2�
1− β2

1+ β2

�4

. (47)
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2 possibilities

1st: 2 possibilities

2nd: 6 possibilities

1st: 2 possibilities

2nd: N-7 possibilities

1st: 1st: 1st: 

2nd: 

2nd: 

(b)(a) (c)

Figure 9: Number of possible positions of products of cube constraints (blue) as
discussed in the main text. The labelling is like in Fig. 8, except that the large green
cross indicates which face need to be included in the cube constraints.

Its minimization yields a result similar to Fig. 11 for the case ~h = (hx , 0, 0): a level crossing
and thus a first-order phase transition at hy ≈ 0.615.

4.2 General case - perturbative variational calculations

For the calculations in the general case, it is convenient to work in the basis {|~h〉 , |−~h〉}. In
order to do so, the transformations of Pauli matrices and their eigenstates from the commonly
used basis {|↑〉 , |↓〉} to the basis {|~h〉 , |−~h〉} are needed. These transformations are conve-
niently parametrized by the spherical coordinates ϑ,ϕ of the Bloch sphere; they are displayed
in App. C. The result is that in general all Pauli matricesσx ,σ y ,σz in the original basis contain
a non-zero component proportional to the Pauli matrix σz

~h
in the rotated basis. This means

that not only plaquette operator products which yield the identity, but also other operators
contribute to the expectation values, i.e.,

〈~h|σαi |~h〉 6= 0, 〈~h|As|~h〉 6= 0, 〈~h|Bp|~h〉 6= 0 ∀i, s, p; α ∈ {x , y, z}.

This renders the calculation of the variational energy as above intractable, because one has
to consider many different configurations contributing differently. Their number increases
rapidly with the order of the variational parameters η and ζ, as illustrated in Fig. 13 of
App. D: in first order only configurations marked with “1" are relevant; in second order already
all displayed ones. Thus only the terms to lowest orders in η and ζ can be calculated by hand.

But this obstacle can be turned into a strategy: the quantum phase transition in some
magnetic field directions occurs at a discontinuous jump of the variational parameters η,ζ
from small values close to 0 to large values close or equal to 1. Then it is reasonable to assume
that the lowest-order terms – which can be calculated by hand – approximate the variational
energy well for the paramagnetic phase and that this approximation of the ground state energy
can be compared to the exact ground state energy etop = −2/3 of the unperturbed toric code.
The calculations in SubsubSect. 4.1.2 and 4.1.3 revealed that for example the first-order phase
transitions in (hx , 0, 0)- and (0, hy , 0)-directions are of this nature, respectively; see Fig. 11.
This amounts to a certain kind of expansion of the variational energy around the high-field
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N-4 possibilities

1st: 

1st: 16 possibilities

2nd: 5 possibilities

1st: N-20 possibilities

2nd: 6 possibilities

1st: N-20 possibilities

2nd: N-11 possibilities

1st: 

1st: 

1st: 

2nd:

2nd:

2nd:

(b)(a)

(c) (d)

Figure 10: Number of possible positions of products of cube constraints (blue) as
discussed in the main text. The labelling is like in Fig. 8.

limit and of the normalization, which is needed to calculate the former:

1
!
= 〈α,β |α,β〉 ≈N 2(α,β)(1+α2)N (1+ β2)3N 〈~h|1+η

∑

s

As + ζ
∑

p

Bp + . . . |~h〉 ,

〈α,β |As|α,β〉
N 2(α,β)

≈ (1+α2)N (1+ β2)3N 〈~h|(η1+ As)(1+η
∑

s′,s′ 6=s

As′ + ζ
∑

p

Bp + . . . )|~h〉 ,

〈α,β |σ y
j |α,β〉

N 2(α,β)
≈
(1−α2)2

(1+α2)2−N

(1− β2)4

(1+ β2)4−3N
〈~h|σ y

j (1+η
∑

s 6=s1,s2

As + ζ
∑

p 6=p1,...,p4

Bp + . . . )|~h〉 .

All other terms needed for the variational energy have to be treated in the same fashion.
App. D summarizes the results for these expansions of the normalization constant and the
expectation values 〈As〉, 〈Bp〉, 〈σx

i 〉, 〈σ
y
i 〉 and 〈σz

i 〉 up to first order as well as to second order
in η and ζ. Another advantage of this approach is that one can compute the expansion of the
variational energy of the toric code for unspecified lattice coordination numbers and adapt
the result afterwards to the specific lattice and dimension. Putting all pieces together yields
an expression for the variational energy depending on the lattice coordination numbers, the
magnetic field direction (ϑ,ϕ), the number of unit cells N , the magnetic field strength h≡ |~h|
and the variational parameters η and ζ.

The next step is to perform the thermodynamic limit N →∞. This needs additional care
for the single-field cases, as discussed in App. D, too. The result for the variational energy in
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Figure 11: First-order phase transition between the topological phase and the para-
magnetic phase in the special case ~h = (hx , 0, 0). The upper part of the plot shows
– in green for the topological phase and in blue for the paramagnetic phase – the
different values of the variational parameter minimizing the variational energy for
a given hx . The lower part shows in the same color coding the two lowest local
minima e1(hx), e2(hx) of the variational energy. Below hx ≈ 0.325 only the solution
corresponding to the topological phase exists. The dashed line emphasizes the phase
transition at hx ≈ 0.422.

the thermodynamic limit up to second order in η and ζ is

e(η,ζ;~h) =

�

−
rs

2
·
�

x2nsη+ r xns znpζ
�

−
rp

2
·
�

xns znpη+ rz2npζ
�

− (1− ζ2)2 hx ·
�

xns+1η+ r xznpζ
�

−
rs

r
(1−η2)(1− ζ2)2 hy ·

�

xns yη+ r yznpζ
�

− (1−η2) hz ·
�

xnsη+ rznp+1ζ
�

�

/
�

xnsη+ rznpζ
�

= − rs xns − rpznp − (1− ζ2)2 hx2 − (1−η2)(1− ζ2)2 hy2 − (1−η2) hz2,

(48)

where r denotes the ratio of the number of stars to the number of unit cells, rs is that of the
number of stars to the number of spins, rp is the number of plaquettes divided by the number
of spins, ns is the number of spins in (stars neighboring) a star and np is the number of spins
in a plaquette (for the 3D toric code r = 3, rs = 3, rp = 1, ns = 6 and np = 4). We introduced
the abbreviations x := sin (ϑ) cos (ϕ), y := cos (ϑ) sin (ϕ) and z := cos (ϑ). In the single-field
cases the same procedure yields

for (hx , 0, 0) : e(η,ζ; hx) = −
1
2r
−

1
2
ζ−

rs

r
(1− ζ2)2 h,

for (0, hy , 0) : e(η,ζ; hy) = −
1
2r
η−

1
2
ζ−

rs

r
(1−η2)(1− ζ2)2 h,

for (0,0, hz) : e(η,ζ; hz) = −
1
2r
η−

1
2
−

rs

r
(1−η2) h,

(49)

which are identical to the variational energies of the full variational ansatz in the special cases
discussed in SubSect. 4.1. For a general field direction, the expansion up to second order yields
results all identical to that of the first order.
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In order to obtain the approximative phase diagram for the general case, i.e., to find for all
directions of the magnetic field its critical strength where the phase transition occurs, the
following steps were executed by a Mathematica script (which rasterizes all magnetic field
directions in 90× 90 points):

1. Evaluate e(η,ζ;~h) in Eq. (48) and (49) for a chosen direction (ϑ,ϕ)→ e(η,ζ; h).

2. Equate the result e(η,ζ; h) of step 1 with the exact ground state energy etop = −
2
3 of the

unperturbed toric code and solve for the magnetic field strength h→ h(η,ζ).

3. Find the minimum hmin of the field strength h(η,ζ) of step 2 w. r. t. η,ζ in the region
0≤ η≤ 1∧ 0≤ ζ≤ 1→ (hc

x , hc
y , hc

z).

4. Choose another direction (ϑ,ϕ) and redo steps 1 to 4, until you have acquired the desired
number of points to approximate the general phase diagram.

For a given magnetic field direction this amounts to searching for the minimal field strength
hmin where the variational energy in the thermodynamic limit for some parameters η0,ζ0
crosses the exact energy etop = −

2
3 . Another possible procedure, which has not been imple-

mented, would be to perform instead of steps 2, 3 and 4:

2’. Evaluate the result e(η,ζ; h) of step 1 at a chosen field strength h→ e(η,ζ).

3’. Find the minimum of the result e(η,ζ) of step 2’ in the region 0≤ η,ζ≤ 1→ emin.

4’. Redo steps 2’ and 3’ until you find the minimal field strength where the found minimum
emin crosses the exact energy etop = −

2
3 → (h

c
x , hc

y , hc
z).

The consequence would be a considerably higher computational effort, inversely proportional
to the distance between two neighboring grid points of field strength values for which the
minimization would be performed. Additionally, this distance would bound the precision of
the critical field strength values.

5 Quantum phase diagram

In this section we aim at approximating the quantum phase diagram of the 3D toric code
in an arbitrary uniform magnetic field. To this end we use the QP-properties deduced from
the pCUT series in SubSect. 2.2, the exact dualities of Sect. 3, and the variational treatment
presented in Sect. 4. Altogether, the results of this post allow a qualitive understanding and
coherent picture of the quantum criticality of the 3D toric code in a uniform magnetic field.
Since the variational calculation plays a crucial role, we state the variational ansatz (33) for
the ground-state wave function of the 3D toric code in a field discussed in Sect. 4 again:

|α,β〉 :=N (α,β)
∏

s

(1+αAs)
∏

p

(1+ βBp) |~h~h . . . ~h〉 , α,β ∈ [0,1].

Following the numerical scheme outlined in Sect. 4, the minimization of the variational energy,
see Eq. (48), determines the associated quantum phase diagram shown in Fig. 12.

Let us first interpret the different results for the three single-field cases. For ~h = (0,0, hz),
the exact duality transformation of Eq. (27) implies a second-order quantum phase transition
in the (3+ 1)D Ising* universality class at hc

z ≈ 0.097 with mean-field critical exponents. The
variational calculation slightly underestimates the critical point, but agrees with the second-
order nature of the phase transition. By construction, the expansion of the variational energy
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Figure 12: Quantum phase diagram of the 3D toric code in a uniform magnetic
field. Blue dots represent the results of the expansion of the variational energy. Blue
(green) circles give the variational (exact) critical points in the single-field cases.

leads to a first-order phase transition and yields an overestimated value for the critical point,
since less quantum fluctuations are taken into account for the polarized phase. The other two
single-field cases are known (or expected) to feature first-order phase transitions, which is
confirmed by the variational calculation. The expansion of the variational energy is therefore
expected to be a valid approximation for these cases.

Next we discuss the general case. The results of the expansion of the variational energy are
shown as dots in Fig. 12. The variational parameters ηc = 2αc/(1+α2

c ) and ζc = 2βc/(1+β2
c )

equal at most 0.003 at the displayed critical points. The expansion of the variational energy in
these parameters appears therefore to be self-consistent. Since we see no reason for second-
order phase transitions in the hx -hy -plane, it is reasonable that the quantum phase diagram
of the 3D toric code contains a surface of first-order phase transitions for hz not too large. In
contrast, at larger hz one expects a surface of second-order phase transitions in the (3+ 1)D
Ising* universality class, including the hz-field case. Obviously, the expansion of the variational
energy cannot capture this surface of second-order phase transitions, which is most likely
similarly flat as the analogue surface of the 2D toric code [31]. Instead, the expansion gives a
too-strongly bended surface. This seems to be confirmed by the approximative quantum phase
diagram for the 2D toric code presented in Fig. 14 of App. E, resulting from the application
of the methods of Sect. 3 and Sect. 4 to the 2D case. This phase diagram shows the same
phenomenon of a too-strongly bended surface around the hz-field case. The intersection of
the two surfaces in the phase diagram for the 3D toric code is a line of second-order phase
transitions expected to be in the (3+ 1)D tricritical Ising* universality class.

This discussion fits in well with the results of pCUT in SubSect. 2.2 for the qualitative QP-
dynamics: for hz not too large, the closing of the energy gap between the ground state and
the lowest excited states causing the quantum phase transition is determined by the attrac-
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tive interactions and fluctuations of immobile m-QP (mobile 4m-loops cost too much energy).
This hints at the first-order quantum phase transitions apparent in the approximative phase
diagram. At larger hz , the mobile e-QP rather than the immobile m-QP drive the quantum
phase transitions by lowering their energy due to delocalization in some kind of Bose-Einstein
condensation. This mechanism suggests the presence of second-order quantum phase transi-
tions in the phase diagram. The magnetic field values where the elementary energy gaps of
the 1e-sector, ε(2)1e,hz ,Γ , and of the 1m-sector, E(2)1m, equal each other is determined approximately
to second order in the perturbations by Eq. (21) in SubSect. 2.2; let us state it here again:

ε
(2)
1e,hz ,Γ = 1− 6hz − 12h2

z
!
= E(2)1m = 1− h2

x −
h2

y

3
.

This surface roughly indicates regions of first- and second-order phase transitions in the phase
diagram. In the case of the 2D toric code in a uniform magnetic field, the qualitative picture
of the QP-dynamics according to pCUT also agrees well with the approximative phase diagram
in Fig. 14 of App. E and with the different refined numerical results of [31].

The approximative phase diagrams for the 2D and the 3D toric code share the features that
the expansion slightly overestimates the toric code phase while the full variational ansatz in the
limiting cases slightly underestimates it. Furthermore, both show dips and too-strongly bended
surfaces around the cases of parallel magnetic fields. In both phase diagrams, regions of first-
and second-order phase transitions cannot be distinguished by the values for the variational
parameters at the phase transition points. Still, we think that the results for the 3D version
are most reliable near the hx -hy -plane due to the indications by pCUT.

The phase diagram for the perturbed 3D toric code differs qualitatively in that it is not
symmetric with respect to interchanging hx and hz . This is reasonable, as in the 3D version
in contrast to the 2D case, the star and plaquette operators differ from each other, since the
former are 6-spin and the latter 4-spin interactions.

We can conclude that the comparison to the perturbed 2D toric code confirms the use of
the expansion of the variational energy to determine approximative phase diagrams.

6 Conclusions and outlook

First, let us summarize the methods and results of this post and draw conclusions; secondly,
an outlook in the form of promising future steps will be given.

This post can be condensed to three main messages: (1) the combination of perturba-
tive continuous unitary transformations (pCUT) up to second order, exact duality relations
and the perturbative and non-perturbative variational calculations in this post yields a reliable
approximative quantum phase diagram of the toric code, a paradigmatic model of intrinsic
topological order, perturbed by a uniform magnetic field. (2) The perturbed 3D toric code is
robust and features a rich phase diagram (see Fig. 12), which can be qualitatively explained
and consistently interpreted in the following way: (3) for the breakdown of the intrinsic topo-
logical order of the 3D toric code, the mobility of the point-like excitation, the e-quasiparticle
(QP), and the immobility of the single constituents of spatially extended excitations, the m-QP,
– leading to second- and first-order phase transitions, respectively – are crucial in contrast to
their exotic mutual statistics.

The latter result was obtained in Sect. 2.2: first we applied pCUT to the perturbed 3D toric
code in order to determine low-energy effective Hamiltonians for sectors of few interacting
dressed QP, see Tab. 2, and then diagonalized them in infinite systems or by exact diagonal-
ization in finite systems. This revealed that the change in the ground-state energy and the
QP-dynamics can be understood in terms of vacuum fluctuations, hopping of e-QP, immobility
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of single m-QP in all orders of the perturbations due to superselection rules, deconfinement of
spatially extended excitations like 4m-loops and short-ranged attractive interactions between
QP leading to bound states between m-QP, as summarized in Tab. 3. Compared to the former
processes, the exotic mutual statistics between e-QP and m-loops turned out to be irrelevant
for the phase transitions and thus the robustness of the 3D toric code, as the statistics is only
relevant in sectors with relatively large excitation energies and in relatively high orders of the
perturbation. Based on these insights, we conjectured that in regions of the phase diagram
where the kinetic energy of the e-QP dominates over the attractive interaction of the m-pairs,
second-order phase transitions via a kind of Bose-Einstein condensation occur, while in re-
gions where the situation is reversed, first-order phase transitions via nucleation take place.
This conjecture was affirmed in the subsequent sections, as stated in main result (1) above.

In Sect. 3, the conjecture was confirmed for certain magnetic field configurations ~h and is
consistent with the final phase diagram (Fig. 12). In these cases, duality transformations can
be applied to the perturbed 3D toric code. For ~h = (hx , 0, 0), the Hamiltonian is self-dual and
features a first-order phase transition at exactly hc

x = 0.5; for ~h= (0, 0, hz), it can be mapped to
the 3D transverse-field Ising model, which is known to feature a second-order phase transition
at hc

z ≈ 0.097. The question remains open, whether the dual model for ~h = (0, hy , 0), which
is to the best of our knowledge novel, can be related to a known model.

Sect. 4 employed a variational ansatz for the ground state of the perturbed 3D toric code
in order to determine the complete phase diagram. The ansatz was chosen such that it in-
terpolates between the two limiting cases of the perturbed 3D toric code – the topological
loop/membrane soup and the trivial polarized state. Physically, the ansatz introduces an en-
ergy cost proportional to the length of strings and surface of membranes. In order to ap-
proximate the ground states and the phase transition points, the variational energy in the
thermodynamic limit had to be computed and minimized. This was possible in the cases dis-
cussed in Sect. 3 without further approximations in SubSect. 4.1 and in the general case by
applying a novel expansion of the variational energy up to second order in the variational
parameters η and ζ in SubSect. 4.2. This expansion is justified when the variational param-
eters change rapidly at the phase transition points from small to large values, as for example
for first-order phase transitions in the hx -hy -plane, but not for the second-order phase transi-
tion at ~h = (0, 0, hz). It turned out that the first-order and the second-order expansion yield
identical variational energies.

Finally, Sect. 5 combined all the insights of the previous sections to a rich phase diagram
in Fig. 12 which shows that the perturbed 3D toric code is robust (main message (2) above).
In this phase diagram, the exact results for the three single-field cases according to dualities,
variational calculations and expansion agree qualitatively and the quantitative differences can
be explained. For the general case of an arbitrary uniform magnetic field, we argued that
the surface of first-order phase transitions at small hz is determined well by the expansion
of SubSect. 4.2; in contrast at large hz this expansion results in a surface which seems to
be bended too strongly and cannot capture the expected second-order nature of the phase
transitions, as is indicated by comparing it to the 2D toric code. The phase diagram was
interpreted qualitatively in terms of pCUT: depending on the strength of hz , either the mobile
e-QP (at large hz) or the immobile m-QP (at small hz) drive the second-order or first-order
phase transitions, respectively. The comparison to the perturbed 2D toric code, whose phase
diagram shares key properties with the more refined phase diagram in the literature [31] and
the 3D case, indicated that it is valid to use the expansion of the variational energy to determine
approximative phase diagrams. In conclusion, Sect. 5 showed all three main messages stated
above.

How can one obtain more accurate results in the future? Obviously, the results of pCUT
could be improved quantitatively by computing the effects of perturbations in orders higher
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than the second. But this is a non-trivial task, because the number of terms to be calculated
is relatively large due to the three perturbation parameters and three dimensions of the toric
code and it increases expontially with the considered order. So computer aid is needed and a
white-graph expansion [94] would probably be useful. Still, pCUT is one of the few numerical
methods which can be successfully and efficiently applied to 3D systems. If one could achieve
high orders, one could not only determine the dynamics of the quasiparticles in the topological
and paramagnetic phase more quantitatively (so far the latter has not been investigated), but
one could also locate the second-order phase transitions via a Padé extrapolation analysis [95]
of the series expansions of the energy gaps. The same technique can be used to determine high-
field expansions about the polarized phase, in order to pinpoint first-order phase transitions
by comparing the ground-state energies of both expansions.

In contrast, the expansion of the variational energy does not seem to be improvable by
simply calculating higher orders, as discussed in this post. Nevertheless, one could improve
the variational results by computing the variational energy of the full ansatz numerically. This
could also be used to check the calculations of the variational energy in the special cases. All
these improvements are limited by the fact that apart from the two exact limiting cases the
variational ansatz (33) used in this post is only an approximation to the exact ground state
for a finite magnetic field strength. Hence how can this approximation be (systematically)
improved? How can the quality of the approximation be assessed? The framework of tensor
networks, for example in the flavor of variational PEPS, provides answers to both questions,
since the variational ansatz can be represented as tensor network state (PEPS) in several ways,
e.g., as a suitable 3D version of the double-line tensor network used in [93] for the 2D toric
code in a magnetic field ~h = (hx , 0, 0). Increasing the bond dimension and thus the number
of variational parameters of the chosen tensor network state systematically improves the ap-
proximation of the ground-state wave function and energy; quantifying the convergence of
this energy with increasing bond dimension enables one to assess the quality of the approx-
imation. On the contrary, the advantage of the variational methods of this post over tensor
network approaches is that the computations are much easier due to less variational parame-
ters. One further promising route is to combine perturbative expansions and iPEPS calculations
as recently realized for the 2D toric code in a field [34].

Beside the robustness and phase diagram of the toric code in a uniform magnetic field,
those of other models with similar structures could potentially be investigated using the com-
bination of pCUT, duality relations and variational methods as in this post; examples include
the 3D string-net models [65], the 3D double-semion model [69,96] and certain exactly soluble
models of fracton topological order [58–63] like Haah’s code [60] and the X-Cube model [63].
Fracton phases have come into the focus of research recently, since despite their translational
invariance they feature immobile (confined) elementary excitations due to superselection sec-
tors. This resembles the m-QP of the 3D toric code. Additionally, if fracton phases are realiz-
able, they might be employed as thermally stable, self-correcting, fault-tolerant topologically-
protected quantum memories. To this end it is essential to investigate how robust they are
against ubiquitous perturbations (quantum fluctuations) like a uniform magnetic field. Our
conjecture is that due to the immobility of the fractons Haah’s code in such a magnetic field
features first-order phase transitions like the 3D toric code.

Acknowledgements

While working on this paper, DAR was financially supported by the Deutsche Forschungsge-
sellschaft within the Collaborative Research Center TRR 227 “Ultrafast Spintronics" and by the
Max Weber Program in the Elite Network of Bavaria. We thank L. Balents for fruitful discus-

29

https://scipost.org
https://scipost.org/SciPostPhys.6.6.078


SciPost Phys. 6, 078 (2019)

sions.

A Implications of self-duality for perturbative expansions

Mentioned in Sect. 3, here we state the necessary conditions – implied by self-duality of H(λ),
λ ∈ [0,∞) – for the n-th order coefficients E(n)

>/<
of perturbative expansions around the limits

λ−1
0 = 0 and λ0 = 0, respectively, assuming that H(λ) features one phase transition at λc:

for λ < λc : E(λ) = E(0)< + E(1)< λ+ E(2)< λ
2 +O(λ3) ,

self-dual
⇒ for λ > λc : E(λ)

!
= λ

�

E(0)< + E(1)<
1
λ
+ E(2)<

1
λ2
+O

� 1
λ3

�

�

.
(50)

Perturbation theory in λ−1around the limit λ−1
0 = 0 yields

for λ > λc : E>(λ) = λ

�

E(0)> + E(1)>
1
λ
+ E(2)>

1
λ2
+O

� 1
λ3

�

�

. (51)

In summary self-duality implies for the expansion coefficients that

E(0)< = E(0)> , E(1)< = E(1)> , E(2)< = E(2)> , . . . . (52)

B Calculation of the variational energy for the configuration
~h= (0,0, hz)

As supplement to Subsubsect. 4.1.1, the calculation of the variational energy for the ansatz
(37) and ~h= (0,0, hz) will be presented in the following. Analogous to [81], the first step is to
compute the normalization N (α) of the wave function and in the second step the expectation
value of the Hamiltonian for the ansatz. The definition η := 2α

1+α2 will be convenient:

1
!
= 〈α|α〉=N 2(α)(1+α2)N 〈⇑ |

∏

s

(1+ηAs)| ⇑〉=N 2(α)(1+α2)N 〈⇑ |1| ⇑〉 ,

⇔ N (α) = 1
(1+α2)N/2

,
(53)

where N is the number of stars, going to infinity in the thermodynamic limit; using that all As
commute with each other and A2

s = 1. The third equality holds because in the product of all
stars s, only the term of order η0 is proportional to the identity operator or Pauli matrices σz .
All other terms are zero due to orthogonality. The evaluation of the expectation value of the
Hamiltonian yields:

as(α) := 〈α|As|α〉=N 2(α) (1+α2)N 〈⇑ |(η1+ As)
∏

s′ 6=s

(1+ηAs′)| ⇑〉
(53)
= η ,

bp := 〈α|Bp|α〉= 1 ,

s j(α) := 〈α|σz
j |α〉=N 2(α) (1+α2)N−2(1−α2)2 〈⇑ |σz

j

∏

s′ 6=s1,s2

(1+ηAs′)| ⇑〉=

(53)
=

�

1−α2

1+α2

�2

= 1−η2,

⇒ e(α)≡ e(α,β = 1) :=
〈α|Hz

eff|α〉
3N

= −
�

2α
3 · 2(1+α2)

+
1
2

�

− hz

�

1−α2

1+α2

�2

,

(54)
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where again only the term of order η1 contributes to the expectation value as(α), the anticom-
mutation relation of Pauli matrices was used, s1 and s2 denote the stars containing spin j and
e(α) is the variational energy per spin.

C Transformations between the representations of the Pauli ma-
trices and their eigenstates in the σz-basis and rotated basis

For the variational methods applied in SubSect. 4.2 to the general case hx 6= 0, hy 6= 0, hz 6= 0,
it is convenient to work in the basis {|~h〉 , |−~h〉}. In order to do so, the transformations of Pauli
matrices and eigenstates between the commonly used basis {|↑〉 , |↓〉} and the new basis are
needed, for example expressed in the spherical coordinates of the Bloch sphere: the eigenstates
of the operator ~h · ~σ are given by

|ϑ,ϕ〉 ≡ |~h〉 := cos
�ϑ

2

�

|↑〉+ eiϕ sin
�ϑ

2

�

|↓〉 ,

|π− ϑ,ϕ +π〉 ≡ |−~h〉= sin
�ϑ

2

�

|↑〉 − eiϕ cos
�ϑ

2

�

|↓〉

for hx = |~h| sin (ϑ) cos (ϕ), hy = |~h| sin (ϑ) sin (ϕ), hz = |~h| cos (ϑ).

(55)

Then the Pauli matrices can be expressed in the new basis as

{|~h〉 , |−~h〉} =̂ {
�

1
0

�

,

�

0
1

�

} ⇒ σx =̂

�

〈~h|σx |~h〉 〈~h|σx | − ~h〉
〈−~h|σx |~h〉 〈−~h|σx | − ~h〉

�

,σ y =̂ . . . ,σz =̂ . . . ,

which evaluates to

σx =̂

�

sin (ϑ) cos (ϕ) − cos (ϑ) cos (ϕ)− i sin (ϕ)
− cos (ϑ) cos (ϕ) + i sin (ϕ) − sin (ϑ) cos (ϕ)

�

, (56)

σ y =̂

�

cos (ϑ) sin (ϕ) − cos (ϑ) sin (ϕ) + i cos (ϕ)
− cos (ϑ) sin (ϕ)− i cos (ϕ) − cos (ϑ) sin (ϕ)

�

, (57)

σz =̂

�

cos (ϑ) sin (ϑ)
sin (ϑ) − cos (ϑ)

�

. (58)

D Calculation of the variational energy for the general configura-
tion ~h= (hx , hy , hz)

In this appendix, the calculations for the expansion of the variational energy used in
SubSect. 4.2 are summarized. The following Tab. 5, 6, 7, 8, 9 and 10 contain the rele-
vant terms in the normalization N 2 of the variational ansatz (33) and the ansatz’ expectation
values for the star operators As, plaquette operators Bp and Pauli matrices σx

i ,σ y
i and σz

i . We
again use the abbreviations x := sin (ϑ) cos (ϕ), y := cos (ϑ) sin (ϕ) and z := cos (ϑ).

The first part of the entries in the tables up to the second double line contain the zeroth-
and first-order terms in parts already shown in SubSect. 4.2. In the case of the normalization,
the second part displays all second-order terms. The number of possible configurations of
star, plaquette and spin operators leading to different terms increase rapidly with order, see
Fig. 13. Therefore, for the expectation values the second part of the entries contains only
the relevant terms for the general case hx 6= 0, hy 6= 0, hz 6= 0 (in short hx , hy , hz) in the
thermodynamic limit N → ∞. These terms result from configurations of unconnected stars
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Table 4: List of abbreviations used in Tab. 5, 6, 7, 8, 9 and 10. In all cases, "next
neighbor" means the direct neighbor of the direct neighbor.

quantity abbreviation

ratio no. stars to no. of unit cells r
ratio no. stars to no. of spins rs
ratio no. plaquettes to no. of spins rp
no. spins/stars in/neighboring star ns
no. spins in plaquette np
no. plaquettes neighboring star nps
no. stars neighboring plaquette nsp
no. plaquettes neighboring plaquette npp
no. next neighbor stars to star nn,ss
no. next neighbor plaquettes to star nn,ps
no. next neighbor stars to plaquette nn,sp
no. next neighbor plaquettes to plaquette nn,pp
no. stars neighboring spin n̄s
no. plaquettes neighboring spin n̄p
no. next neighbor stars to spin n̄n,s
no. next neighbor plaquettes to spin n̄n,p

and plaquettes. The terms’ order in N equals the highest considered order in η and ζ. In the
special cases (hx , 0, 0), (0, hy , 0) and (0,0, hz), additional terms can contribute for N →∞, as
terms of higher order in N , which dominate in the general case, can be killed. Thus the only
relevant terms for these special cases for N → ∞ are stated in parentheses. In the special
case (hx , 0, 0), set the variational parameter η = 1 and for (0,0, hz) set ζ = 1, like in the
ansatz (40) and in (37) for the full variational calculations. Ignore all terms in the tables
containing η, As or ζ, Bp, respectively. Finally, the expectation value of As (Bp) contributes rs

2

(
rp
2 ) to the variational energy.

1 1

1

1 1

1

Figure 13: Configurations of connected and unconnected star and plaquette opera-
tors. Configuration (i; j) refers to the ith row and jth column; 1(i; j) encodes config-
uration (i; j) without the unconnected star.
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Table 5: List of terms calculated for the normalization up to second order in η and
ζ, as explained in the main text. The notation (¬) < i, j > encodes that star or
plaquette i (does not) neighbors j. For the notation see also Fig. 13 and Tab. 4.

NORMALIZATION
order: configuration diagram exact value value for N →∞
η0ζ0: 1 - +1 0 (+1 for (0, hy , 0))
η1:

∑

s
As - N · xns 0

ζ1:
∑

p
Bp - rN · znp 0

η2:
∑

s

∑

s′,s′ 6=s
AsAs′; < s, s′ > 1(1;4) Nns · x2ns−2 0

η2:
∑

s

∑

s′,s′ 6=s
AsAs′; ¬< s, s′ > 1(1;6) N(N − ns − 1) · x2ns N2 x2nsη2

η1ζ1:
∑

s

∑

p
AsBp; < s, p > 1(2;5) −Nnps · xns−2 y2znp−2 0

η1ζ1:
∑

s

∑

p
AsBp; ¬< s, p > 1(2;6) N(rN − nps) · xns znp rN2 xns znpηζ

ζ2:
∑

p

∑

p′,p′ 6=p
BpBp′; < p, p′ > 1(3;4) rNnpp · z2np−2 0

ζ2:
∑

p

∑

p′,p′ 6=p
BpBp′; ¬< p, p′ > 1(3;6) rN(rN − npp − 1) · z2np r2N2z2npζ2

Table 6: List of terms calculated for the star operator up to second order in η and ζ,
as explained in the main text. For the notation see also Fig. 13, Tab. 4 and Tab. 5.

EXPECTATION VALUE OF As

order: configuration
diagram

exact value
value for

N →∞
η0ζ0: As - xns 0

η1: 1 - +1
0 (η for
(0, hy , 0))

η1: As
∑

s′,s′ 6=s
As′; < s, s′ > 1(1; 4) ns · x2ns−2 0

η1: As
∑

s′,s′ 6=s
As′; ¬< s, s′ > 1(1; 6) (N − ns − 1) · x2ns 0

ζ1: As
∑

p
Bp; < s, p > 1(2; 5) −nps · xns−2 y2znp−2 0

ζ1: As
∑

p
Bp; ¬< s, p > 1(2; 6) (rN − nps) · xns znp 0

η2: As
∑

s1

∑

s2,s26=s1
As1As2; (1; 6)

�

(N − nn,ss − ns − 1)(N − 2ns − 2)+ N2 x3nsη2

¬< s, s1 >,¬< s, s2 >, nn,ss(N − 2ns − 1)
�

· x3ns

¬< s1, s2 >

η1ζ1: As
∑

p

∑

s′,s′ 6=s
BpAs′; (2; 6)

�

(rN−nn,ps−nps)(N−nsp−ns−1)+ rN2 x2ns znpηζ

¬< s, p >,¬< s′, p >, nn,ps(N − nsp − ns)
�

· x2ns znp

¬< s, s′ >
ζ2: As

∑

p

∑

p′,p′ 6=p
BpBp′; (3; 6)

�

(rN−nn,ps−nps)(rN−nps−npp−1)+ r2N2 xns z2npζ2

¬< s, p >,¬< s, p′ >, nn,ps(rN − nps − npp)
�

· xns z2np

¬< p, p′ >
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Table 7: List of terms calculated for the plaquette operator up to second order in η
and ζ, as explained in the main text. For the notation see also Fig. 13, Tab. 4 and
Tab. 5.

EXPECTATION VALUE OF Bp

order: configuration diagram exact value value for N →∞
η0ζ0: Bp - znp 0
η1: Bp

∑

s
As; < s, p > 1(2;5) −nsp · xns−2 y2znp−2 0

η1: Bp
∑

s
As; ¬< s, p > 1(2;6) (N − nsp) · xns znp 0

ζ1: 1 - +1 0 (ζ for (0, hy , 0)
ζ1: Bp

∑

p′,p′ 6=p
Bp′; < p, p′ > 1(3;4) npp · z2np−2 0

ζ1: Bp
∑

p′,p′ 6=p
Bp′; ¬< p, p′ > 1(3;6) (rN − npp − 1) · z2np 0

η2: Bp
∑

s

∑

s′,s′ 6=s
AsAs′; (2; 6) . . . N2 x2ns znpη2

¬< s, p >,¬< s′, p >,¬< s, s′ >
η1ζ1: Bp

∑

s

∑

p′
AsBp′; (3; 6) . . . rN2 xns z2npηζ

¬< s, p >,¬< s, p′ >,¬< p, p′ >
ζ2: Bp

∑

p1

∑

p2,p26=p1
Bp1Bp2; (4; 6) . . . r2N2z3npζ2

¬< p, p1 >,¬< p, p2 >,¬< p1, p2 >

Table 8: List of terms calculated for the Pauli matrix σx
i up to second order in η and

ζ, as explained in the main text. For the notation see also Fig. 13, Tab. 4 and Tab. 5.

EXPECTATION VALUE OF σx
i

order: configuration diagram exact value value for N →∞
η0ζ0: σx

i - x 0 (x for (hx , 0, 0))
η1: σx

i

∑

s
As; < i, s > - n̄s · xns−1 0

η1: σx
i

∑

s
As; ¬< i, s > - (N − n̄s) · xns+1 0

ζ1: σx
i

∑

p,¬<i,p>
Bp; ¬< i, p > - (rN − n̄p) · xznp 0

η2: σx
i

∑

s

∑

s′,s′ 6=s
AsAs′;

1(1;6) + spin . . . N2 x2ns+1η2

¬< i, s >,¬< i, s′ >,¬< s, s′ >
η1ζ1: σx

i

∑

s

∑

p,¬<i,p>
AsBp; 1(2;6) + spin . . . rN2 xns+1znpηζ

¬< i, s >,¬< i, p >,¬< s, p >
ζ2: σx

i

∑

p

∑

p′,p′ 6=p,¬<i,p′>
BpBp′;

1(3;6) + spin . . . r2N2 xz2npζ2

¬< i, p >,¬< i, p′ >,¬< p, p′ >
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Table 9: List of terms calculated for the Pauli matrix σ y
i up to second order in η and

ζ, as explained in the main text. For the notation see also Fig. 13, Tab. 4 and Tab. 5.

EXPECTATION VALUE OF σ y
i

order: configuration diagram exact value value for N →∞
η0ζ0: σ y

i - y 0 (y for (0, hy , 0))
η1: σ y

i

∑

s
As; ¬< i, s > - (N − n̄s) · xns y 0

ζ1: σ y
i

∑

p,¬<i,p>
Bp; ¬< i, p > - (rN − n̄p) · yznp 0

η2: σ y
i

∑

s

∑

s′,s′ 6=s,¬<i,s′>
AsAs′;

1(1; 6) + spin N2 x2ns yη2

¬< i, s >,¬< i, s′ >,¬< s, s′ >
η1ζ1: σ y

i

∑

s,¬<i,s>

∑

p,¬<i,p>
AsBp; 1(2; 6) + spin rN2 xns yznpηζ

¬< i, s >,¬< i, p >,¬< s, p >
ζ2: σ y

i

∑

p

∑

p′,p′ 6=p,¬<i,p′>
BpBp′;

1(3; 6) + spin r2N2 yz2npζ2

¬< i, p >,¬< i, p′ >,¬< p, p′ >

Table 10: List of terms calculated for the Pauli matrix σz
i up to second order in η and

ζ, as explained in the main text. For the notation see also Fig. 13, Tab. 4 and Tab. 5.

EXPECTATION VALUE OF σz
i

order: configuration diagram exact value value for N →∞
η0ζ0: σz

i - z 0 (z for (0, 0, hz))
η1: σz

i

∑

s
As; ¬< i, s > - (N − n̄s) · xns z 0

ζ1: σz
i

∑

p,¬<i,p>
Bp; < i, p > - n̄p · znp−1 0

ζ1: σz
i

∑

p,¬<i,p>
Bp; ¬< i, p > - (rN − n̄p) · znp+1 0

η2: σz
i

∑

s

∑

s′,s′ 6=s,¬<i,s′>
AsAs′;

1(1; 6) + spin N2 x2ns zη2

¬< i, s >,¬< i, s′ >,¬< s, s′ >
η1ζ1: σz

i

∑

s,¬<i,s>

∑

p
AsBp; 1(2; 6) + spin rN2 xns znp+1ηζ

¬< s, p >,¬< i, s >,¬< i, p >
ζ2: σz

i

∑

p

∑

p′,p′ 6=p
BpBp′;

1(3; 6) + spin r2N2z2np+1ζ2

¬< i, p >,¬< i, p′ >,¬< p, p′ >

E Approximative quantum phase diagram for the 2D toric code in
a uniform magnetic field

Fig. 14 presents the approximative quantum phase diagram for the 2D toric code in a uniform
magnetic field resulting from the application of the methods of Sect. 3 and Sect. 4.
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Figure 14: Quantum phase diagram of the 2D toric code in a uniform magnetic
field. Blue dots represent the results of the expansion of the variational energy. Blue
(green) circles give the variational (exact) critical points in the single-field cases.
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