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Abstract

We study the stability of a zero temperature mixture of attractively interacting degener-
ate bosons and spin-polarized fermions in the absence of confinement. We demonstrate
that higher order corrections to the standard mean-field energy can lead to a formation
of Bose-Fermi liquid droplets – self-bound systems in three-dimensional space. The sta-
bility analysis of the homogeneous case is supported by numerical simulations of finite
systems by explicit inclusion of surface effects. We discuss the experimental feasibility
of formation of quantum droplets and indicate the main obstacle – inelastic three-body
collisions.
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1 Introduction

Self-bound systems are quite common in nature. They appear at different scales. Atomic
nuclei, Helium droplets, or astronomical objects like white dwarfs or neutron stars are some of
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the prominent examples. Their stabilization mechanism is due to a subtle balance of attractive
forces and repulsive interactions.

Yet another, not known so far self-bound systems, namely extremely dilute quantum liquid
droplets of ultracold atoms, have been suggested to exist in a mixture of two Bose-Einstein
condensates of different species, [1]. Soon after this prediction the quantum droplets were
unexpectedly discovered in quite a different setting – in ultracold 164Dy gas, i.e. a dilute
gas composed of atoms possessing the largest dipolar magnetic moment among all atomic
species [2]. Further experiments followed [3–5], and soon 166Er droplets, with dipole-dipole
interactions as a crucial element, were created [6]. Quite recently another self-bound objects
– droplets in a two-component mixture of 39K atoms entered the stage [7–9]. These ones are
a direct realization of the scenario suggested by Petrov [1].

Quantum liquid droplets having densities of about 1015cm−3, about eight orders of mag-
nitude less than Helium droplets, are the most dilute droplets ever. They also exist in reduced
dimension space for both the dipolar case [10] as well as the mixture case [11], however the
dimensional crossover region seems to be easier to access in experiments [12,13]. Droplets of
ultracold atoms are stabilized against a collapse by quantum fluctuations, i.e. the energy of the
Bogoliubov vacuum [1]. The stabilization mechanism of quantum droplets is universal. The
beyond mean-field effects responsible for quantum fluctuations can be incorporated into the
general mean-field description by including the so called Lee-Huang-Yang (LHY) term [14–16]
into the standard scheme based on the Gross-Pitaevskii equation [17, 18]. This extended
Gross-Pitaevskii (eGP) equation allows for a self-bound state [19,20]. In addition to the eGP
approach, Monte Carlo techniques, allowing for direct treatment of the beyond mean-field
effects, are being employed [21–23].

In a quasi 1D geometry quantum droplets show many similarities to bright solitons. The
common feature is that in both systems a quantum spreading is suppressed. Strongly bound
bright solitons in Potassium condensate have been studied recently [24]. The solitons pro-
duced in 39K have a very large peak density ∼ 5× 1014cm−3, and exist, similarly as droplets,
at the edge of collapse of the system. It was shown experimentally [8] that in a mixture of
two spin states of 39K a transition from lower density bright solitons to quantum droplets of
higher densities has the character of a first-order phase transition. In the crossover region both
solitons and droplets exist.

This analogy allows to invoke yet another system supporting bright solitons. The effective
interactions between bosons can change their character and become attractive in a 1D ultracold
mixture of mutually repeling Bose atoms attracted to polarized Fermi atoms. Bright solitons
can be expected then. This scenario was suggested in [25] where 40K and 87Rb were fermionic
and bosonic agents, respectively. This choice is particularly convenient because of the large
natural attraction between the two species. Only recently it was verified experimentally that
for an appropriately chosen attraction between bosons and fermions, the Bose-Fermi mixture
is turned into a train of Bose-Fermi solitons [26].

Effective Bose-Bose interactions become attractive only at the edge of stability of a system
[27,28]. In this paper we want to study such Bose-Fermi systems in the unstable region. The
main question we want to pose is whether quantum fluctuations contributing to the energy of
the Bose component and/or higher order beyond mean-field repulsive interactions between
Bose and Fermi species can stabilize the mixture and lead to a formation of dilute quantum
liquids in the limit of weak interactions. Although our motivation roots in elongated quasi
1D systems, we focus here on the generic 3D case having in mind the ultracold Bose-Fermi
mixture of 133Cs -6Li and recent experiments of the Cheng Chin group [29].

In a recently published work, Ref. [30], a repulsive short-range three-bosons interactions
are added to stabilize the Bose-Fermi mixture. This mechanism was previously suggested
in [31] to stabilize a dipolar condensate. Unfortunately the mechanism is rather difficult to
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implement because large three-body elastic collisions are typically accompanied by large three-
body losses. In addition, in [30] it is assumed that fermions are in a fully-paired superfluid
state, what in fact makes the system similar to a Bose-Bose rather than to a Bose-Fermi mixture.
And finally, the Ref. [30] shows that the droplets may consist of bosonic and fermionic atoms
in almost equal ratio in contrary to our results indicating a significant domination of the Bose
component.

2 Uniform mixture

The mean-field energy E0 of a uniform system in a volume V , having NB = nBV and NF = nF V
bosons and fermions, respectively, can be written in the form:

E0/V = ε0(nB, nF ) = 3εF nF/5+ gB n2
B/2+ gBF nBnF , (1)

where nB and nF are atomic densities, and the consecutive terms (energy densities) correspond
to: (1) the kinetic energy of fermions with εF = ħh2k2

F/2mF = 5κkn2/3
F /3 being the Fermi en-

ergy, and kF = (6π2nF )1/3 the Fermi wave number, (2) the boson-boson interaction energy, and
finally (3) the boson-fermion contact interaction energy. For convenience we introduced the
following notation: κk = (3/10) (6π2)2/3ħh2/mF , gB = 4πħh2aB/mB, and gBF = 2πħh2aBF/µ,
where aB (aBF ) is the scattering length corresponding to the boson-boson (boson-fermion)
interactions and mB, mF , and µ= mB mF/(mB +mF ) are the bosonic, fermionic, and reduced
masses, respectively.

We assume the weak interaction limit, i.e. the gas parameters are small: n1/3
B aB � 1

and n1/3
F aBF � 1 so the kinetic energy of fermions, being proportional to n5/3

F , is the largest
contribution to the system energy. It favors a spreading of the fermionic component all the
way to infinity. Similar is the effect of repulsive boson-boson interactions, gB > 0. However,
a sufficiently strong attraction, gBF < 0, can suppress this expansion, but the equilibrium
reached is unstable. Higher order terms must come into play to ensure stability. A perturbative
approach suggests the Lee-Huang-Yang term (LHY), the zero-point energy of the Bogoliubov
vacuum of a Bose system:

ELHY /V = εLHY (nB, nF ) = CLHY n5/2
B , (2)

with CLHY = 64/(15
p
π) gB a3/2

B . However, this is not enough to stop the system from ex-
pansion. Our studies indicate that the contribution to the mutual boson-fermion interaction
resulting from the higher order term in the Bose-Fermi coupling turns out to be the most im-
portant. These effects were considered on a theoretical ground [32–35]. A Bose-Fermi system
across a broad Feshbach resonance was studied in [34], but results obtained are applicable
only when the fermionic density is much larger than the density of bosons. As it will be shown
later, this situation does not support droplets formation. The contribution to the Bose-Fermi
interaction energy obtained in a frame of second-order perturbation theory in [33], more gen-
eral than the results of [32] based on renormalized T-matrix expansion, leads to the following
quantum correction to the energy:

EBF/V = εBF (nB, nF ) = εF nB(nF a3
BF )

2/3A(w,α)

= CBF nBn4/3
F A(w,α) , (3)

where w = mB/mF and α = 2w(gBnB/εF ) are the dimensionless parameters,
CBF = (6π2)2/3ħh2a2

BF/2mF , and the function A(w,α) is given in a form of integral [33]
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where Θ(x) is the step theta-function. The arguments of A(w,α) are: w = mB/mF and
α = 2w(gBnB/εF ) = 16πnBa3

B/(6π
2 nF a3

B)
2/3. The above formula, Eq. (3), coincides with

the results of [32] for α� 1, i.e. in the limit when the Fermi energy is much larger than the
chemical potential of bosons (assuming the mass ratio, w, is of the order of one).

Summarizing the above discussion, in the regime where both gas parameters are small,
aBn1/3

B � 1 and aBF n1/3
F � 1, we approximate the energy of the dilute uniform system by the

following expression:

E(NB, NF , V ) = E0 + ELHY + EBF = Vε(nB, nF ) . (5)

To find densities corresponding to the energy minimum, physical constrains should be
introduced. For a trapped system they are set by the number of atoms in every component.
Here the system is free and we look for a configuration which is stable in absence of any
external confinement. Therefore neither the volume V , nor the number of atoms NB and NF ,
are controlled. Instead, the pressure p(nB, nF ) = −dE/dV plays an important role. Outside
of the droplet it is equal to zero. The same must be inside. We ignore for a moment surface
tension and consider an infinite system. For finite droplet, the energy related to the surface is
proportional to its area∝ V 2/3, thus is only a fraction∝ V−1/3 of the internal energy. This
fraction vanishes in the limit of infinite system, reducing the importance of the surface effects.
This fact will be demonstrated in the next section. With all limitations mentioned above, the
condition of vanishing pressure is necessary for the mechanical stability of the system:

p(nB, nF ) = nBµB + nFµF − ε(nB, nF ) = 0 , (6)

where we introduced the chemical potentials µB(F) = dE/dNB(F) = ∂ ε/∂ nB(F) of both species.
Numerical solutions of Eq. (6) are shown graphically in Fig. 1 for several values of aBF/aB
and in the case of the 133Cs -6Li (w = 22.095) mixture (contours for the 41K -40K (w = 1.025)
system look similar). Pressure vanishes on the closed contours forming a kind of loops in the
nB − nF plane. If |aBF |/aB is smaller than some critical value, |aBF |/aB < η0, then Eq. (6) has
no solutions. Contours marked by solid lines support negative energy solutions. They shrink
with increasing |aBF |/aB.

All points on a single contour define mechanically stable droplets for given values of in-
teraction parameters. The volume of the droplet is not specified, it is a scale parameter and
if fixed it allows to determine the number of particles. What is most important, the energy of
the system (for a fixed volume) varies along the contour, and reaches the minimal value, if:

µB
∂ p
∂ nF

−µF
∂ p
∂ nB

= 0. (7)

Eq. (7) originates in a necessary condition for the extremum of the energy density ε(nB, nF )
constrained to the zero-pressure line. The energy minima are marked in Fig. 1 by dots. Only
these particular spots define systems which are stable with respect to evaporation process. If
the initial ratio of the number of particles of the Bose and Fermi components is different than
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Figure 1: Solutions of Eq. (6), in the form of contour plots in the nB − nF plane.
133Cs -6Li mixture: Broken lines show metastable cases for aBF/aB = −2.45(dotted),
−2.5(dashed), and −2.7(dash-dotted). Solid lines show stable cases for
aBF/aB = −3(brown), −5(green), −7(blue), and −9(red). Dots correspond to the
energy minima. The inset shows the equilibrium density of the bosonic species as a
function of aBF/aB for the 133Cs-6Li mixture.

Table 1: The second column: Values of the critical ratio |aBF |/aB supporting the
existence of stable 41K -40K, 87Rb -40K, and 133Cs -6Li mixtures. The third and the
fourth column show the corresponding bosonic and fermionic densities. The fourth
and fifth one give the values of the α parameter and the mass ratio.

ηc nB a3
B nF a3

B α mB/mF
41K -40K 12.1 9.10× 10−6 1.26× 10−6 0.258 1.025

87Rb -40K 10.4 1.95× 10−5 2.01× 10−6 0.406 2.175
133Cs -6Li 2.8 7.16× 10−4 4.75× 10−5 1.796 22.095

satisfying the above mentioned condition, some particles, mostly the excess ones, are simply
evaporated from the droplet.

With our choice of the energy zero, the stable self-bound droplets should be characterized
by negative energy. For some range of the parameter, η0 < |aBF |/aB < ηc energies are positive.
These are metastable states, marked by broken lines in Fig. 1. Only if |aBF |/aB exceeds some
critical value, |aBF |/aB > ηc , the energy of droplets becomes negative. These are the stable
droplets. Values of η0 and ηc can be found numerically. In general, except of a small region
of the parameter |aBF |/aB, the larger the attraction the smaller the equilibrium densities (see
inset of Fig. 1).

In order to reach the desired ratio of |aBF |/aB the two approaches are possible. One is
to increase |aBF |, the second is to tune the Bose-Bose scattering length, aB, to small values.
Both scenarios assume utilizing appropriate Feshbach resonances. Simultaneously one should
avoid large values of densities as it would lead to a relatively large atom number decay due
to three-body recombination. This is why the life-time of a droplet is typically of the order of
10 ms [7, 8]. The life-time of Bose-Fermi droplets will be estimated in the following section,
where we study dynamical situations.

In the first column of Tab. 1 we list values of the critical ratio ηc supporting stable liq-
uid droplets, while in the second and third columns we list corresponding densities of Bose
and Fermi species. We present the results for three different mixtures of different mass ratio,
41K-40K, 87Rb-40K, and 133Cs-6Li. For all these mixtures bosons are in vast majority. There-
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fore, fermions can be treated as impurities immersed in a bosonic cloud bringing analogy to a
polaron.

Boson-fermion attraction mediates an effective attraction between fermionic atoms. It
prevents expansion of fermions due to quantum pressure. A similar mechanism, the effec-
tive attraction between distinct electrons mediated by interaction with phonons is responsible
for formation of Cooper pairs. The question of fermionic superfluidity of Bose-Fermi droplets
seems to be legitimate. The same interaction induce an effective attraction between bosons.
For a large enough number of bosons this might result in a collapse of the bosonic component.
Then, fermions start to play an important role. They are able to counteract, due to quantum
pressure, the collapse of bosonic cloud – an analogy with white dwarf and neutron stars be-
comes immediate. Hence, the studying of ‘atomic white dwarfs’ in the laboratory seems to be
possible with Bose-Fermi droplets.

3 Finite system analysis – hydrodynamic approach

We address now the properties of finite Bose-Fermi droplets including surface effects. Evi-
dently, additional energy terms related to the density gradients have to be considered. There-
fore, we apply the local density approximation and add the kinetic energy EB

k =
∫

drεB
k with

εB
k = (ħh

2/2mB)(∇
p

nB)2 for the bosonic component to Eq. (5). Similarly, for fermions we add
the Weizsäcker correction [36] to the kinetic energy, EF

k,W =
∫

drεF
k,W , where

εF
k,W = ξ (ħh

2/8mF ) (∇nF )2/nF , with ξ = 1/9 [37, 38]. We neglect the contribution due to
higher order gradient terms. The total energy of a finite Bose-Fermi droplet is then given by
E[nB(r), nF (r)] =

∫

dr(ε + εB
k + ε

F
k,W ).

The time evolution of the Bose-Fermi system can be conveniently treated within quantum
hydrodynamics [39]. For that both bosonic and fermionic clouds are described as fluids charac-
terized by density and velocity fields. Since we assume that bosons occupy a single quantum
state, their evolution is governed just by the Schrödinger-like equation of motion which in-
cludes the mean-field, the LHY, and the boson-fermion interaction terms. Fermions require a
special care, however. It has been already discovered many years ago that oscillations of elec-
trons in a many-electron atom can be described by hydrodynamic equations [40]. We follow
this proposal and write the hydrodynamic equations for fermions:

∂

∂ t
nF = −∇(nF ~vF ),

mF
∂

∂ t
~vF = −∇

�

δT
δnF

+
mF

2
~v 2

F + gBF nB +
δEBF

δnF

�

,

(8)

where nF (r, t) and ~vF (r, t)) denote the density and velocity fields of the fermionic component,
respectively. T is the intrinsic kinetic energy of the fermionic gas and is calculated including
the lowest order gradient correction [36–38]

δT
δnF

=
5
3
κk n2/3

F − ξ
ħh2

2mF

∇2pnF
p

nF
, (9)

with ξ= 1/9.
The convenient way to further treat Eqs. (8) is to bring them into a form of the Schrödinger-

like equation by using the inverse Madelung transformation [41–43]. This is just a mathemat-
ical transformation which introduces a single complex function instead of density and velocity
fields used in the hydrodynamic description. Both treatments are equivalent provided the
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Figure 2: Radial densities (solid and dashed lines for bosons and fermions, respec-
tively) for a sequence of Bose-Fermi droplets. for 133Cs -6Li mixture for aBF/aB = −5
and the initial number of bosons (fermions) equal to 1000 (100), 10000 (1000),
and 100000 (10000). The horizontal lines are the bosonic and fermionic densities
coming from the analysis ignoring the surface effects. Clearly, the surface effects for
larger droplets can be neglected.

velocity field is irrotational (vanishing vorticity). After the inverse Madelung transformation
is applied, the equations of motion describing the Bose-Fermi mixture are turned into cou-
pled Schrödinger-like equations for a condensed Bose field ψB (nB = |ψB|2) and a pseudo-
wavefunction for fermions ψF =

p
nF exp (iφ) (nF = |ψF |2 and ~vF = (ħh/mF )∇φ)

iħh
∂ψB

∂ t
=

�

−
ħh2

2mB
∇2 + gB |ψB|2 +

5
2

CLHY |ψB|3

+ gBF |ψF |2 + CBF |ψF |8/3A(α) + CBF |ψB|2|ψF |8/3
∂ A
∂ α

∂ α

∂ nB

�

ψB ,

iħh
∂ψF

∂ t
=

�

−
ħh2

2mF
∇2 + ξ′

ħh2

2mF

∇2|ψF |
|ψF |

+
5
3
κk|ψF |4/3

+ gBF |ψB|2 +
4
3

CBF |ψB|2|ψF |2/3A(α) + CBF |ψB|2|ψF |8/3
∂ A
∂ α

∂ α

∂ nF

�

ψF . (10)

Here, ξ′ = 1− ξ = 8/9. The bosonic wave function and the fermionic pseudo-wave function
are normalized as NB,F =

∫

dr |ψB,F |2. We would like to emphasize that the fermionic pseudo-
wave function has no direct physical meaning. Only the quantities which are the square of
modulus of ψF (r, t) and the gradient of its phase can be interpreted as physical quantities.
The Madelung transformation itself is supported by the Stokes’ theorem. Provided that in a
given region the condition ∇× ~vF = 0 is fulfilled, then the phase of the pseudo-wave function
is defined as a curvilinear integral of the velocity ~vF .

To find the ground state of the Bose-Fermi droplet we solve Eqs. (10) using the imaginary
time propagation technique [44]. The resulting ground state densities for 133Cs -6Li mixture
for three different numbers of bosons and fermions are shown in Fig. 2. For the smallest
droplets the peak densities for both bosons and fermions are slightly higher than predicted by
the analysis based on a uniform mixture. For bigger droplets the peak density approaches the
uniform mixture solution as expected because the surface effects become less important. The
stability of the droplets is verified by real time propagation of Eqs. (10). The conclusion is that
the droplet reaches the state of minimal energy by evaporating mostly surplus atoms.

Next, we check whether Bose-Fermi droplets can be formed dynamically in a process of
opening a harmonic trap where a mixture of bosonic and fermionic gases is prepared initially.
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Figure 3: Width of the bosonic component of a Bose-Fermi droplet composed of
NB = 100000 bosons and NF = 10000 fermions as a function of time. The trapping
potential is removed in 1ms (marked by a vertical line). The solid (dashed) line
corresponds to aBF/aB = −2.0 (aBF/aB = −3.6). For the ratio |aBF |/aB equal to 2.0,
which is below the critical value, both the bosonic and fermionic clouds spread out.
In the case when |aBF |/aB = 3.6, i.e. when the attraction is larger than the critical
one, a breathing droplet is formed. The width of the fermionic part of the droplet
behaves similarly and is not shown.

For that we choose the 133Cs -6Li mixture and set aB = 250 a0, where a0 is the Bohr radius and
aBF/aB = −2.0 and −3.6. Initial numbers of atoms are: NB = 100000, and NF = 10000. They
are confined in spherically symmetric harmonic traps with frequencies ωB/(2π) = 200 Hz
for bosons and ωF/(2π) = 940 Hz for fermions. The trap parameters are chosen to match a
radius of a droplet to be formed. We find the ground state of such a Bose-Fermi mixture by
solving Eqs. (10) in imaginary time. Next, the confinement is removed in 1ms (2730 mBa2

B/ħh).
We monitor the evolution of the system in a period of about 8 ms. The width of the bosonic
component,

∫

dr r |ψB|2/NB, is shown in Fig. 3. The fermionic width looks similar. The
vertical line indicates the moment of time when the confinement is completely switched off.
The densities preserve spherical symmetry during the evolution. Clearly, the system stays
bound and a droplet is formed when the ratio |aBF |/aB is above the critical value equal to
about 2.8 (see dashed line in Fig. 3). Contrary, for low enough ratio |aBF |/aB the bosonic and
fermionic clouds spread out (solid line in Fig. 3).

The main obstacle, jeopardizing the above scenario of droplet formation is atomic loss,
mainly due to three-body inelastic collisions, not included in our calculations. A crude es-
timation of losses can be based on the measured loss rate, Γ , of Cesium atoms from a Bose-
Einstein condensate immersed in a large cloud of degenerate Fermi Lithium atoms as observed
in Ref. [29].

To get a life-time for a droplet of density nB = 4×1014 cm−3 corresponding to aB/a0 = 250
and |aBF |/aB = 3.6, we have to extrapolate the data presented in Fig. 4b of [29] assuming a4

BF
scaling of the recombination rate K3. Consistently, the loss rate scales as Γ ∼ a4

BF n2
B. Assuming

in addition a constant condensate density (equal to 5× 1013 cm−3) independent of aBF for all
data in Fig 4b of [29] the estimated loss rate of atoms from the droplet is Γ = 3000 s−1. Corre-
sponding life-time is extremely short τ= 0.3ms. The estimation is very pessimistic and shows
that Bose-Fermi droplets seem to be not feasible in present experiments. For |aBF |/aB = 2.8,
i.e. at the edge of existence of the droplet, the life-time gets longer and reaches less pessimistic
value of about τ= 1ms.

However, the above estimation is not conclusive. Scaling of the three-body recombination
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rate K3 with aBF is actually more complex – the a4
BF behavior is modified by a factor which is

an oscillating function of the scattering length [45]. Simple extrapolation of data presented
in [29] might be not precise.

Moreover, the estimated value of the life-time is based on a particular interpretation of a
stability of the system for a given densities of species in the regime of relatively large inter-
species attraction |aBF |/a0 > 520 where a mean-field analysis predicts a collapse [29]. The
stability observed in [29] is attributed to a dynamical equilibrium between losses of Li atoms
trapped by a Cesium condensate and their supply from the Lithium vapor surrounding the
Li-Cs system. Counter intuitively, the fast loss, mainly at the center of the cloud, stabilizes the
system by preventing densities of both species to grow. A crucial assumption that densities of
Cs atoms do not change with aBF is not confirmed by any data shown in [29].

The experiment of C. Chin’s group [29] shows that a loss rate exceeds a thermalization
rate in the region where the mean-field considerations predict a collapse (|aBF |/aB = 600,700
in Fig. 4b of [29]). We want to speculate that even in such a dynamical situation a formation
of a droplet might be still possible if both species densities adjust to the ’droplet values’ at
dynamical equilibrium. The situation could resemble to some extent a polariton condensate –
a life-time of its components is much smaller than the coherence time of the system which is
at dynamical equilibrium.

Therefore, an alternative origin of observed stability can be attributed to a repulsion of
atoms due to beyond mean-field effects leading to formation of droplets of densities depending
on aBF . In such a case interpretation of Fig. 4b of [29] must be different. Accounting for
dependence of densities on the scattering length will significantly influence K3 scaling with
aBF . Extrapolation of loss rate is very difficult then.

To support this point we would like to note that Fig. 2b of [29] already shows an elongated
falling object, living for at least by 2.5 ms, whose existence cannot be explained by the dynam-
ical model proposed by the authors since the lack of overlap with the fermionic background
cloud which was pushed upwards. We performed numerical simulations for Cs-Li mixture for
parameters as studied in [29]. Our calculations show that already for aBF/aB = −2.8 an elon-
gated droplet is formed in the trap with the bosonic density of nB = 4×1014 cm−3 which after
removal of the trapping potential survives and oscillates. Our simulations are in agreement
with results shown in Fig. 2b, supporting Bose-Fermi droplets scenario.

The above discussion is highly speculative. Definitely much more experimental and theo-
retical work is needed to find out what will be the fate of the Bose-Fermi droplets discussed
here. The pessimistic estimation of droplet’s life-time presented above has to be treated as a
serious warning but no definite conclusion about a value of loss rates in the droplet regime
can be drawn on the basis of [29].

4 Finite system analysis – atomic-orbital approach

We address now the properties of finite Bose-Fermi droplets by using the Hartree-Fock ap-
proximation in which, as opposed to the hydrodynamic approach, fermions are treated indi-
vidually. Therefore, we assign a single-particle orbital to each fermionic atom, ψF

j (r), where
j = 1, ..., NF and assume that the many-body wave function of the droplet is a product of
the Hartree ansatz for bosons (all bosonic atoms occupy the same state ψB) and the Slater
determinant, built of orbitals ψF

j , for fermions. Hence, the total fermionic and bosonic den-

sities are nF =
∑NF

j |ψ
F
j |

2 and nB = NB |ψB|2, respectively. The easiest way to derive the
Hartree-Fock equations of motion for the Bose-Fermi droplet is to extend our analysis per-
formed for a uniform system (see Eq. 5) by applying the local density approximation (as we
did previously) and by adding the kinetic energy density terms related to the spatial gradients
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of fermionic orbitals EF
k =

∑NF
j

∫

drħh2/(2mF )(∇ψF∗
j )∇ψ

F
j and the bosonic wave function

EB
k =

∫

drħh2/(2mB)(∇ψ∗B)∇ψB. The total energy of the droplet, E + EB
k + EF

k , can be now
considered as a functional of bosonic wave function ψB(r) and fermionic orbitals, ψF

j (r). The
time-dependent Hartree-Fock equations are then given by

iħh
∂ψB

∂ t
=

�

−
ħh2

2mB
∇2 + gB nB +

5
2

CLHY n3/2
B + gBF nF

+ CBF n4/3
F A(α) + CBF nBn4/3

F
∂ A
∂ α

∂ α

∂ nB

�

ψB ,

iħh
∂ψF

j

∂ t
=

�

−
ħh2

2mF
∇2

j + gBF nB +
4
3

CBF nB n1/3
F A(α)

+ CBF nB n4/3
F
∂ A
∂ α

∂ α

∂ nF

�

ψF
j (11)

for j = 1, ..., NF .
We solve the Hartree-Fock Eqs. (11) to obtain the densities of a Bose-Fermi droplet con-

sisting of a small number of fermions, see Fig. 4. These results are compared to the results we
demonstrated in the previous section, which were achieved within the hydrodynamic descrip-
tion of the Bose-Fermi mixture. The atomic-orbital approach has been used by us previously
to study the dynamics of Bose-Fermi solitons in quasi-one-dimensional mixtures [25,27] (ob-
served experimentally in [26]) as well as fermionic mixtures, in particular in the context of
formation of Cooper pairs [46].

Equilibrium densities are plotted in Fig. 4, upper frame. The solutions of Eqs. (11) were
obtained by adiabatic following of an initially noninteracting trapped system of NF fermions
and NB bosons. Additional trapping terms in Eqs. (11) are included. The traps are chosen to
match the size of the droplet to be formed. First, we gradually turn on the mutual interactions
between species. In a duration of 3×105 mBa2

B/ħh the interaction strength is changed from zero
to aBF = −3aB. After that the harmonic trap is slowly removed within a time interval equal to
5× 105 mBa2

B/ħh. Finally, we monitor the droplet during a further period of 5× 105 mBa2
B/ħh.

The system is stable and densities are shown in Fig. 4, upper frame. Already for as little as
tens of fermions, the atomic-orbital and hydrodynamic descriptions give very similar results.
On the other hand, in the lower frame of Fig. 4 we compare the dynamical properties of the
Bose-Fermi mixture for different values of the mutual scattering length aBF , obtained within
the atomic-orbital and hydrodynamic approaches. Here, the trapping potential is removed in
1ms (marked by a vertical line) as in the case of Fig. 3. Similarly to the previous analysis, only
for large enough |aBF |/aB (> 2.8) a droplet is formed, otherwise we observe an expansion of
both atomic clouds. Note however that for |aBF |/aB close to the critical value, there appears
a small discrepancy between both descriptions. But it only means that the critical values of
|aBF |/aB found within the atomic-orbital and hydrodynamic analyses are slightly different.
This is because of relatively large contribution of the surface terms to the total energy for such
small systems. These terms are treated on a different footing in both compared methods. Away
of the critical value of |aBF |/aB both approaches match perfectly.

The similar outcomes of hydrodynamic and Hartree-Fock calculations should not be a sur-
prise. This is because the Madelung transformation, we invoked while solving the hydrody-
namic equations in Sec. 3 can be safely used as long as the hydrodynamic velocity field is
irrotational. Of course, this is not a general feature of hydrodynamic flow. For example, when
vortices are present in the system, the phase of the pseudo-wave function is not defined at
the positions of vortex cores and the equivalence between the Madelung and hydrodynamic
approach is broken. The other example is related to the interference effect studied for fermion-
ized bosons in the article of Girardeau et al. [47]. Here, two interfering clouds of fermions
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Figure 4: Upper frame: Radial densities of bosonic (solid lines) and fermionic
(dashed lines) components for two Bose-Fermi droplets. Blue (hydrodynamical ap-
proach) and green (atomic-orbital method) colors correspond to a droplet consisting
of 35 fermions and 350 bosons whereas colors black and red describe the case for
120 fermions and 1250 bosons. In both cases aBF = −3aB. Lower frame: Radius of a
mixture consisting of 35 fermions and 350 bosons for different values of the coupling
constants aBF , according to the legend, as a function of time. The time is counted
from the moment when the trap starts to be removed (at the time marked by the
vertical line the trap is fully removed). Both stable (|aBF |/aB > 2.8), i.e. leading to
formation of a droplet and unstable (|aBF |/aB ≤ 2.8) cases are shown. The dashed
and solid lines are obtained within the hydrodynamic and atomic-orbital approaches,
respectively.

moving irrotationally can not be described as a single fluid with a potential flow. This is because
the two fermionic clouds are well separated (the fermionic cloud is not simply connected) be-
fore they are merged and the total velocity (calculated as a ratio of the total current to the
total density) cannot be related to the gradient of the phase in the region of vanishing density.
However, in the process of adiabatic formation of the Bose-Fermi droplets the velocity field is
irrotational and can be defined everywhere, therefore both hydrodynamic and Hartree-Fock
descriptions give similar outcome.

Adiabatic following of the ground state of the Bose-Fermi mixture is a very effective method
of finding a stationary droplet as well as occupied single particle orbitals corresponding to the
Hartree-Fock Eqs. (11). The stationary version of these equations has a form of an eigenvalue
problem. Solving this problem is numerically much more demanding (since it requires the
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use of a large number of basis functions) but gives more insight as the fermionic orbitals and
their energies are determined simultaneously. What’s more, it gives not only the lowest energy
orbitals occupied by a given number of fermionic atoms, but also higher energy single-particle
states which could possibly be populated by fermions.
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Figure 5: Bosonic densities (solid lines) and fermionic densities (dashed lines) for 35
fermions and 350 bosons – in the harmonic trap (black) and in the free space (red),
for the mutual scattering length: aBF/aB = −2 (upper panel) and aBF/aB = −4
(lower panel). In the upper panel it is clearly visible that if the trap is removed the
atoms are uniformly smeared over the entire grid. Fermionic density is so low that it
is out of scale and is not visible in figure. Contrary, in the lower panel, after the atoms
are released from the trap the densities reach equilibrium values corresponding to
stationary droplets.

As previously, at the beginning we turn on the harmonic traps and decouple bosons and
fermions, i.e. we put aBF = 0. We find the density of the bosonic component by solving the
first equation in Eqs. (11) by imaginary time technique. Then we solve the eigenvalue problem
for the set of fermions
�

−
ħh2

2mF
∇2

j + VF T + gBF nB +
4
3

CBF nB n1/3
F A(α) + CBF nB n4/3

F
∂ A
∂ α

∂ α

∂ nF

�

ψF
j = ε

F
j ψ

F
j , (12)

where VF T represents the harmonic trapping energy for fermions.
To this end the harmonic oscillator wave function basis is used, and the effective Hamilto-

nian matrix, as in Eqs. (12), is diagonalized. The eigenvectors define a new fermionic density
which, in turn, allows to build the next-iteration Hamiltonian matrix. The diagonalization
is then repeated and the whole cycle is done again until the fermionic orbitals energies are
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Figure 6: Single-particle energies for the system of 35 fermions immersed in a cloud
of 350 bosons – in the harmonic trap (black dots), and without the trap (red dots), for
the mutual scattering length equal to: aBF/aB = −2 (upper panel) and aBF/aB = −4
(lower panel). The solid horizontal line indicates zero energy level. The dashed
vertical line is located at j = 35.5 which is exactly between 35th and 36th fermionic
orbital. The total number of basis functions is 2600.

established with a sufficient accuracy. The total energy of the system is checked and provided
it stabilizes within assumed error range, we move to the next step and change the scatter-
ing length aBF by ∆aBF = −1aB and the whole procedure is repeated. Otherwise, we do the
imaginary time evolution for bosons and iterative procedure for fermions again.

Here, we report the results of such an approach for a 133Cs -6Li mixture consisting of
NB = 350 bosons and NF = 35 fermions. Atoms are confined in the isotropic harmonic trap
with frequency ωB/(2π) = 1200 Hz for bosons and ωF/(2π) = 4800 Hz for fermions. The
basis is formed by 3D harmonic oscillator wave functions. The trap frequency for the basis
functions is ω/(2π) = 12800 Hz. We use these basis functions since they fit better the final
size of the droplets.

When the final value of aBF is reached we start to open the trap. We lower the trap strength
by 20% in each of five steps. In Fig. 5 we show the density of bosons and fermions for two
qualitatively different attractive scattering lengths. In the upper panel |aBF |/aB = 2, i.e. is well
below the critical value 2.8. When the trap is present (black curves) both components are held
by the trap. When the trap is off then both bosons and fermions spread over all available space
(red lines). The red dashed line which indicates the fermionic density is so low that it is not
visible in the figure. Contrary, in the lower panel of Fig. 5, when the mutual scattering length
|aBF |/aB = 4 is well above the critical value 2.8, the behavior of the mixture is qualitatively
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different. Now, when the trap is off, a stable self-bound Bose-Fermi droplet is formed.
This observation is supported by analysis of single-particle energies of the fermionic compo-

nent. These are shown in Fig. 6. The upper panel corresponds to the case when |aBF |/aB = 2.
If the system is trapped, some number of single-particle energies are negative. But when the
trap is off, almost all become positive and form a continuum above zero energy. This is the
case of free particles. The opposite case is when |aBF |/aB = 4, i.e. above the critical value
2.8. Now all 35 fermions have negative energies as one expects for trapped particles. This is
indicated by the vertical dashed line located at 35.5, exactly between the 35th and 36th single-
particle state. There is 8 energy levels below zero energy. One can easily recognize two families
of states, corresponding to the radial quantum number equal to 0 and to 1. Because of the
three-dimensional spherical geometry the eigenenergies are degenerate, and these eight en-
ergy levels are able to accommodate many more fermions than in one-dimension, where only
one spin-polarized fermion per one energy level is allowed. Therefore, in three-dimensional
Bose-Fermi droplets the number of fermions can be large as opposed to the case of quasi-one-
dimensional Bose-Fermi mixtures of magnetic atoms [48].

5 Conclusions

The analysis of stability of a mixture of ultracold Bose-Fermi atoms presented here indicates
that stable liquid self-bound droplets can be spontaneously formed when interspecies attrac-
tion is appropriately tuned. Droplets are stabilized by the higher order term in the Bose-Fermi
coupling. We predict the values of interaction strengths as well as atomic densities corre-
sponding to droplets of three different mixtures, suitable for experimental realization: 41K-40K,
87Rb-40K, and 133Cs-6Li.

We demonstrate by time dependent calculations that a Bose-Fermi droplet should be achiev-
able by preparing the mixture of bosonic and fermionic atoms in a trap and then by slowly
removing the confinement. The main obstacle on a way to form the droplets are three-body
losses. The droplets are formed in a regime where inelastic collisions are not negligible. Un-
fortunately, the existing experimental data does not allow to determine unambiguously the
life-time of the droplets. The crude estimation based on extrapolation of the loss rate is very
pessimistic, showing that Bose-Fermi droplets are illusive objects. The second scenario, as-
suming beyond mean-field effects play essential role, is much more optimistic. Moreover, we
would like to note that low dimensional Bose-Fermi droplets [49] are free of three-body loss
related troubles and should be experimentally feasible soon.

Quantum Bose-Fermi droplets bring into play the higher order term in Bose-Fermi coupling.
The role of this term was not studied extensively in experiments so far. Moreover the effect
of this ‘correction’ seems to be somewhat elusive as reported in [50]. We think that this fact
should not discourage future experiments towards investigation of this higher order effects in
Bose-Fermi systems. Liquid droplets such as studied here, seem to be the best systems to this
end.

The ultradilute self-bound Bose-Fermi droplets are a novel, so far unknown form of matter
organization. Their composition, involving not only a bosonic, but also a fermionic compo-
nent, might bring into play a rich variety of physical phenomena related to polaron physics,
Cooper pairing mediated by bosons, as well as fermionic superfluidity. The stabilization mech-
anism involving Fermi pressure brings some analogies to astronomical objects like white dwarfs
or neutron stars. The dynamics of droplets, their merging and collisions can simulate some
astronomical processes as well.
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