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Phases of scrambling in eigenstates
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Abstract

We use the monodromy method to compute expectation values of an arbitrary number
of light operators in finitely excited (“heavy") eigenstates of holographic 2D CFT. For
eigenstates with scaling dimensions above the BTZ threshold, these behave thermally
up to small corrections, with an effective temperature determined by the heavy state.
Below the threshold we find oscillatory and not decaying behavior. As an application of
these results we compute the expectation of the out-of-time order arrangement of four
light operators in a heavy eigenstate, i.e. a six-point function. Above the threshold we
find maximally scrambling behavior with Lyapunov exponent 27 T.4. Below threshold
we find that the eigenstate OTOC shows persistent harmonic oscillations.
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1 Introduction and summary

In recent years it has been recognised that black holes exhibit a strong form of chaos, most
cleanly quantified by a thermal out-of-time-order four-point function (OTOC) [1]

F(£) :== (W(OV(O)W()V(0))p - (1)

If this four-point function is evaluated in a CFT with holographic dual, for example a sparse
large—c CFT, as will be the focus of this work, one finds that it contains an exponentially
growing piece

K
F(t)=Fy——eml™0 4o, &)

where K is a constant that depends on the choice of operators W and V and the Lyapunov
exponent A; = 27T takes on its maximal allowed value [2]. At the same time, detailed
calculations [3-11] reveal that highly excited pure states in theories with holographic duals
can act thermally: for simple enough operators they reproduce the expectation values in a
suitable thermal ensemble at late times, up to small corrections,

A compelling scenario explaining the thermalization of simple operators in closed unitarily
evolving quantum systems is the eigenstate thermalization hypothesis (ETH) [12, 13], which
we will review in more detail below. Succinctly, ETH states that finitely-excited eigenstates
themselves carry information about the thermal ensemble. This implies that typical states
made from random superpositions of eigenstates in a small energy window, also look ther-
mal, up to corrections that are exponentially small in entropy, when probed by simple enough
operators,

(T|Q(F) — (Q())p, + O (e7572). 3)

In contrast, non-thermalising systems, such as many-body-localised phases (MBL), do not sat-
isfy ETH. As we will see below, eigenstates below the BTZ threshold do not satisfy ETH, and
behave in ways more reminiscent of non-thermalizing phases.

The operator whose expectation value we calculate to obtain F(t) in (1) is simple at early
times, but becomes increasingly complicated as the time-evolved W (t) = e'f*We™H¢ spreads
to encompass a larger and larger fraction of the total system. ETH therefore does not imply that
F(t), computed in a typical pure state, will approximate the answer in the thermal ensemble.

As an example, take the the n™ Rényi entropy, which can be thought of as an operator
whose spatial extent covers a finite fraction of the total system size. Only the limit n — 1,
namely the entanglement entropy, behaves approximately thermally when evaluated in an
energy eigenstate, as shown in [14-16]. For holographic (that is sparse large-c CFT), our
result adds the OTOC to the list of operators of finite spatial extent whose expectation value
is nevertheless approximately thermal in an eigenstate. There is evidence [8] that this should
be the case for theories with a holographic dual, at least up to the scrambling time t, ~ logS,
where the definition of the scrambling exponent (2) is valid. In this paper we show that in fact
a stronger result holds, which implies the approximately thermal behavior of the four-point OTOC
in typical states as a corollary.

Main result

In this work we use the monodromy method to establish that sparse, large—c 2D CFT satisfy

<H;H|Q1(t1)Q2(t2) e QnL(tnL)lH:I:I> o< Tr [e_ﬁHQl(tl)Qz(tz) o QnL(tnL)] +0 (C_l ) e_c)

4
where |H,H) := Oy 5(0)|0) is a heavy primary state with dimension H+H = A ~ O(c) and the
‘probe’ operators Q all have dimension A ~ O(ec) in terms of the central charge, for ¢ < 1.
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The inverse temperature 3 appearing in the canonical density matrix on the right-hand side
of (4) is the one associated to the eigenstate |H)! by a naive application of ETH. The notation
O (c_1 s e_c) is meant to indicate that the leading order result receives both perturbative cor-
rections, as well as non-perturbative corrections in the central charge, the latter corresponding
to the appearance of heavy conformal families in intermediate channels. The precise form of
these corrections reveals interesting connections with conserved higher KdV charges and the
corresponding generalized Gibbs ensemble [17-20].

Choosing the light composite operator in (4) to be the out-of-time-order arrangement men-
tioned above then immediately implies the result that there exists a notion of scrambling ex-
ponent in eigenstates, which moreover satisfies

A'L == ZHTETH, (5)

saturating an eigenstate version of the fast-scrambling bound [2,21], as conjectured in [8] in
the context of the SYK model. For future reference, let us mention the convention that we refer
to correlations of the type (4) above as “HHLL...L", which is meant to indicate that there are
two (H)eavy insertions and a number, typically > 2, of (L)ight ones. Note that [4] described
a purely algebraic method to obtain (4), relying on 1/c scalings of the Virasoro generators
when computing blocks of the form HHLL...L, whereas we prove this statement using the
monodromy method. An important open problem is to determine the timescale at which the
identity block domination breaks down in a given correlation function, in any given CFT. A
natural candidate in sparse large-c theories is the scrambling time t, itself.

A scrambling phase transition

As we have already remarked, the thermality result (4) is valid only for heavy enough states,
specifically above the microcanonical BTZ threshold. For such states the system behaves ef-
fectively ergodically, the holographic interpretation being that these pure states act as if there
were a bulk horizon causing the exponential Lyapunov behavior. However, below threshold
this is not the case, and thus one might naturally expect the exponential Lyapunov growth to
be absent. Below we show that indeed this is the case, and the scrambling four-point function
transitions to an oscillatory behavior. We have just used our bulk intuition for this transition,
which makes it very natural, but it is important to emphasize that it is very non-trivial from
the boundary theory point of view: we have uncovered a sharp transition in chaotic behavior
that signals that the many-body system under consideration goes from an ergodic phase to a
non-ergodic phase. In the discussion section we comment further on our findings, and com-
ment on its relation to other non-ergodic phases violating ETH, such as many-body localized
(MBL) systems.

At finite temperature, decaying OTOCs arise due to the exchange of a reparametrization
mode or ‘scramblon’ in the Regge correlator (see e.g. [22-25]). As depicted in figure 1, our
results imply that a similar scramblon is responsible for the decay or oscillation of OTO correla-
tors in eigenstates, depending on whether the eigenstate is above or below the BTZ threshold.

Holographic bulk reconstruction and black holes

Statements of the kind (4) are intimately related to a number of recent developments sur-
rounding the holographic understanding of black holes and their microstates and attempts to
address the firewall paradox raised in [27]. For example the authors of [28] point out that
if statements of the type (4) & (5) hold for typical states, then a typical microstate of a black

In this work we will only consider scalar operators with H = H, and thus for the most part suppress the
anti-holomorphic labels. We expect the overall picture to apply also to spinning operators, with separate left- and
right-moving effective temperatures. See appendix A.
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Figure 1: Application of our main result (4) to the butterfly effect (‘scrambling’) in
heavy states, i.e. an out-of-time-order “HHLLLL” correlation function. As indicated
in purple, the effect of the heavy insertions can be interpreted as dressing the prop-
agator, s, of the leading mode, the “scramblon” [26], exchanged between the light
operators on the second sheet by the exponential factor s~ = e~*{, In the ergodic
phase, a = i|a|, this leads to maximal scrambling, while in the non-ergodic phase,
a = |a|, this results in an oscillatory OTOC. The bulk interpretation of the scramblon
picture is a single graviton exchange in the heavy background. Full details of the

calculation summarized here can be found in section 4 below.

hole itself contains information about behind-the-horizon physics. Our results hold for eigen-
states and will thus extend to typical states that are superpositions of eigenstates in a small
energy window as required by [28]. More precisely these authors show that if a statement
of the form (4) holds, one can add a “double-trace" deformation 99 to the CFT, where Qis
the so-called mirror operator of [29], which mimicks the double-trace deformation of Gao,
Jafferis and Wall [30], and thereby extract information about the region behind the horizon
in a typical microstate.

Very recently, [31] (building on [32,33]) similarly proposed a link between the firewall
paradox and efficient scrambling, albeit not in eigenstates. They demonstrate that, at infinite
temperature, the decay of OTOCs implies a growing mutual information between the black
hole interior and exterior as a function of time. This in turn implies that the Hayden-Preskill
protocol [34] can be used to recover black hole information.

2 Background

Since we will frequently refer to the Eigenstate Thermalization Hypothesis in what follows, we
will briefly introduce and review it. The ETH can be stated relatively simply. Let us consider
a non-extensive operator Q in a system that obeys ETH. This means that Q’s matrix elements
between energy eigenstates {|n)} must take the following form:

(m|QIn) = Q(E) 8y + ¢ SF/2 £ (E,0) Ry » (6)

where Q(E) is the microcanonical average of the operator Q, that is, over a set of energy
eigenstates in a small band centered around E, with uniform coefficients. R,,, is a random
variable with zero mean and unit variance, and the only restriction on f is that it must be a
smooth function of E and w := E,, — E,,,. If (6) is satisfied, then the expectation value of @ in
a single eigenstate of energy E is the same as its microcanonical average, up to exponentially
suppressed terms.

The equivalence between microcanonical and canonical averages implies a relationship
between E, the center of the microcanonical enegy band, and an “effective temperature” 1/,
given by

I S(E)=P, 7
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where S(E) is the logarithm of the number of states at energy E.

The entropy of two-dimensional CFTs quantized on a spatial circle and at large central
charge is fixed, at high energies, by modular invariance (as well as certain additional assump-
tions [35-37]). For spinless operators of weight (H, H) it takes the form:

C C
S(E)=2mq/ ZE, E=2H——. 8
(E)=2my/3 B (8)

This, in turn, fixes the microcanonical inverse temperature:

2

By = —@ = 9
The inverse temperature (9) has appeared numerous times in recent years in showing how
certain CFT pure states reproduce the physics outside of black hole backgrounds in AdS; [3,
4,38,39]. In this paper we add to that list by showing how (9) appears in a calculation of the
Lyapunov exponent computed in a single CFT eigenstate, and in fact the more general result
(4). As mentioned in the introduction, and modulo certain reasonable assumptions, we show
that the Lyapunov exponent is maximal and is given by A; = 2—Z On the one hand, the fact that
A; is maximal in CFT pure states is expected if the theory has a holographic dual and obeys
ETH. On the other hand, it is interesting to see precisely how one obtains this result. Doing so
sheds light on how ETH-like calculations pan out in 2d CFTs at large central charge. To wit,
our proof requires expanding upon techniques developed in [4], and in doing so we clarify
some statements made about CFT pure states reproducing thermal answers (see specifically
section 5.1 of [4]).

2.1 Our approach

Let us now expand on our approach to the microstate average in 2D CFT. By the operator-state
correspondence we can map the computation of n; light operators in the state created by a
heavy operator to a normalized n; +2 correlation function, so that the statement (4) takes the
form

(Og(00) Q1(21) Qa(22) . - Qn, (2,,) 0y (0))
(O (00)04(0))

= (Q1(x1) Qa(x2) ... @y, (x5 ))p,, + O(c,e™),

(10)
for the CFT quantized on a spatial circle. The usual operator-state map computes the expec-
tation value with respect to the heavy eigenstates on the circle. This explains our choice of
coordinates z; = e'*i. Oy and Q; are scalar primary operators, and we have suppressed the
dependence on anti-holomorphic variables. The insertion of the heavy operator at the origin
creates the ket |H) in the infinite past on cylinder, while the insertion at infinity creates the
conjugate bra (H|. Thus (10) expresses once more that the expectation value of the Q; in
the state created by inserting Oy at the origin match with thermal expectation values at the
inverse temperature f3;;, up to 1/c corrections. Our proof will hold so long as there is a sep-
aration of scales between the conformal dimensions of the Q; and Oy, that is H > hg_ and
in the regime where the identity block dominates. This block can certainly be made to domi-
nate for larger separations by tuning the density of states such that the spectrum is sufficiently
sparse [3,6,37,40-46].

However, it is important to note that for the purposes of studying the chaotic dynamics,
further constraints on the spectrum are required such that the identity block dominates in the
Regge limit (required for extracting the chaos exponent). This has been investigated in [47-49]
although a full characterization of what is required such that the identity block dominates on
the second sheet is not yet fully understood.
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What will naturally come out of this proof is that (10) matches thermal correlators eval-
uated for CFTs quantized on a spatial line, rather than a circle, and only holds for H > ¢/24
[3,4,42,50,51]. One may take this as evidence that these results only hold in the high tem-
perature limit (H > c/24). However, when comparing to holographic calculations done in the
BTZ geometry with spherical boundary, one finds that the free energy [52] is extensive in the
size of the dual CFT and the entanglement entropy [53] is insensitive to the size of the CFT
sphere. Both of these holographic results mimic thermal physics on the line rather than the
circle. Thus holography requires that the large-c limit behave essentially like a large volume
limit for certain observables. One unifying picture for this behavior is that of unbroken center
symmetry, which guarantees the volume independence of the free energy and entanglement
entropy [54].

Since our proof will rely on the monodromy method [55], it therefore only holds at large
central charge c in the limit where H/c and hg,/c are held fixed. This is precisely the holo-
graphic limit where we expect to match with bulk geodesic calculations.

2.2 Thermal Jacobians

To motivate our result we will use two facts. The first is that primary operators of dimension
(h, h) transform under coordinate transformations z — z(w) as follows:

dz \" [ dz\

05— (52 ) (5] otz (1)
dw dw

The second fact we will use is that thermal correlation functions (on the line) can be obtained

from vacuum correlation functions using the conformal map from the plane to the cylinder

2n .
z — e B . That is:

(l_[(j_li)hi (j_vz:vii)ﬁi) <Uoi (zi(wi),z‘i(v‘vi))> = <Uoi (wi,wi)>ﬁ , (12)

i

where the expectation value on the left hand side is taken in the CFT vacuum, and the ex-
pectation value on the right hand side is taken in the thermal state with inverse temperature
p. This leads to an important realization: in order for an eigenstate expectation value to act
approximately thermally, the eigenstate must effectively enact the above coordinate transfor-
mation in (12), including the Jacobian term, with respect to some emergent temperature that
should depend on the eigenstate in a way analogous to the original ETH.

It is important for the arguments we present below that thermal correlators, again on the
line, can be obtained from vacuum correlators via this simple coordinate transformation. Thus,
in order to obey ETH, we must show in what sense eigenstates behave like simple coordinate
transformations with no additional features. This is crucial and, we will see that this only holds
in a particular identity block approximation to the correlation function in the heavy eigenstate.

3 Proof of statement (4)

3.1 Monodromy basics

A few assumptions about correlation functions in 2d CFT go into this proof. Firstly, we assume
that the correlation functions can be decomposed into Virasoro conformal blocks

Gz, %) = ) acFilz) Fi(E) (13)
k


https://scipost.org
https://scipost.org/SciPostPhys.7.1.003

Scil SciPost Phys. 7, 003 (2019)

where the index k labels which Virasoro primaries run in the OPE and the a; schematically
represent products over OPE coefficients. We note that each individual conformal block F (F)
depends (anti-)holomorphically on the locations of the insertions. We will also use the fact
that at large-c, the blocks exponentiate :

Fi(z;) ~ e sl (14)

The f, are often called semi-classical blocks and can be computed using the monodromy
method.

The monodromy method, used for computing semiclassical conformal blocks, is explained
in many places (see e.g. [41]), and here we give a cursory review of the basic ingredients
required to follow the proof. Consider the holomorphic differential equation

Y(2) + Ta(2)y(z) =0, (15)
where T, is the stress tensor expectation value arising from the insertion of our CFT operators.
By the conformal Ward identity it must take the form?

ny

G 6H/c Iy ) (6hi/c e )
TCI_Z((Z—J’IJZ 2= Yk +Z (z—2)? z—z ’ (1

k=1 i=1

where the (b;,c;), called accessory parameters, are undetermined functions of the insertion
points (y;,2;). In (16) we have split the stress tensor into contributions from heavy insertions
with coordinates labeled y; and accessory parameters labeled b;, and light insertions with
coordinates labeled z; and accessory parameters labeled c;. Regularity at the origin under a
coordinate inversion fixes the stress tensor to fall off as

Ty(z > 00)=0(z7%), (17)

which imposes the following conditions on the accessory parameters:

ny ny

ZCiZ—Zbi, (18)
i=1 i=1

ny

6h\ & 6H,
Z(Cizi—T)—_Z(biJ’i— c ): (19)

i=1 i=1

np ny
Z 12h; Z 12H;

i=1 i=1

To fix the remaining accessory parameters, we tune the (b;, c;) such that the solutions to (15)
obey certain monodromy conditions. For example, say that we wish to compute the block
corresponding to the OPE channel: O Oz — O, then we demand that the two independent
solutions v, 5 to (15) obey the following monodromy condition around a path y encircling

both z, and z5:
Y Y 24h
(lpi)_)MY(”t/J;) , TrMY=—2cos(7'c\ 1— CC) ) 21)

Once we have fixed the c;, the corresponding semiclassical block is obtained by solving

6fk Efk
3yi e 321- G ( )

A special mention is reserved for the semiclassical identity block, correpsonding to TrM, =2,
which contributes in all CFTs and appears to give universal results reproducing semiclassical
gravity in AdS; [3,4,6,42,44].

2As is conventional, we have multiplied the stress tensor by 6/c for convenience.
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3.2 Coordinate transformation

For the remainder of the paper we will take ny; = 2 and set H; = H, = H. We can now fix the
b; as well as c; using (18), giving®

H (y; — y2)*
(Z—J’1)2(Z—J’2)2
|:h-( 1 _(2—21)4‘(21'_}’1)"'(21'_}’2))_E ci(zi—21) (2 —y1) (2 — ¥2) ]
\(z—2)? (z—21)(z—y1)(z—y2) 6(z—2)(z—2)(z—y1)(z—y2) ]
(23)

C
ETCI =

n

i=1

It is known that under local coordinate transformations g — w(z), the stress tensor transforms
as a quasi-primary of weight 2:

/17 7 2
@) = WP L) + 3w}, (wias) = -2 () 2w

and 1 (z) transforms as a weight —1/2 density
P(z) = w'(z) " Pp(w(z)) . (25)
Applying these transformations to (15) appears to transform it trivially:
d? -
w'(2)*/? [mw(w(z)) + Tcl(W(z))w(W(z))] =0. (26)

But that is not quite correct, the advantage we have gained is that we can reinterpret the new
differential equation from the intrinsic geometry of the w plane. Taking w as the fundamental
coordinate, we have:

1
P (w) + |:z/(w)2 Tq(z(w)) + E{z(w), W}:| YP(w)=0. 27)
As was first noted in [4], choosing
O VU Uit RO | PR 28)
z(w —yzwl/a+y2 wi a= .

eliminates the terms in T, proportional to H. In this sense, the w coordinate would seem to
trivialize their effect.

We are now tasked with understanding the monodromy properties of the following differ-
ential equation:

P W)+ Ta(w)yp(w) =0, (29)
with
% ~cl(W) =Wa; X

n |:h whe (wi/a — w?/a)z — ¥y (Wl/“ — w}/a)z + (yzwl/“ + W}/awg/a) (Wl/“ — Wi/a)
i

1 1
(Wl/a — W}/a)z (wl/a — wi/a) (w?/a — yz)

1

Ci Wg/a}’Z (Wg/a - Wi/a) (y2—x1)
(30)

(Wl/“ — Wl/a) (Wl/a — Wi/a) (w?/a + J’Z)z

i i

oo

*Normal treatments take (y;, ¥,,2;) — (0, 00, 1) but we will keep them arbitrary here.

8
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While we may have gotten rid of two insertions, this new stress tensor looks terrible! But note
that we only care about the monodromy properties of (29), meaning we can simply study (30)
near its singular points. Up to regular terms as w — w;, we find:*

5 h hy+ >0 (h—S6w;) & h. ;.
ETd: ! —— 21_2( i J+Z[ i LS _]+reg., (31
6 (w—wq)2 wi(w—w;) p w—w;)2 6w—wi
where we have defined
i 6h; 3 wl/e 4y
G =iz’ (W) — Tla_wl logz'(wy) z(w) = Yzm : (32)

It would appear that the w-plane monodromy problem is simply a standard monodromy prob-
lem with a newly defined set of accessory parameters. But this is too hasty. In fact we have a
non-standard monodromy problem, since we can no longer fix the ¢; by demanding regularity
at infinity on the w-plane. Regularity does not strike twice. To further elucidate this: demand-
ing regularity as w — oo would be equivalent to asking for regularity at z = y,, which would
be incorrect since we have inserted an operator there. In fact, the new stress tensor behaves
as:

S0t (= 580w —w2)
wiw
o Zim t@wi—w) — g —wwi} W) . 63

w3

C ~
g CI(W_’OO)=_

As we can see, T,;’s behavior as w — oo contains information about the block we’re computing,
through its dependence on the ¢;.

So as a recap: we have a non-standard w-plane monodromy problem, since T.,’s behavior
as w — 00 is not fixed to fall off like w™* by regularity at the origin.

Now, recall that the semiclassical block is related to the accessory parameters by solving
dfi/92; = c; as in (22). Using this we can reinterpret (32):

df., 0f. dz; 6h; 3 ,

— =—————Ilogz(w;), 34

ow; 9z dw; ¢ dw; gz;(wi) (34)
which up to the logarithmic term is simply an application of the chain rule. What does this
imply for the individual blocks F;? We can reinterpret (34) in the original coordinates z;:

Ofi _ 3fi dw; 6h; 3 /

— = ——1 (z:), 35

dz; Ow; 3z ¢ 0z ogwi(zi) (35)
which means that, solving the monodromy problem in the w; coordinates allows us to imme-
diately find the leading contribution to the block in the z; coordinates

~ ny
Filz) ~ e~ sfk@) = o= filwilz) H(W;(zi))hi ) (36)
i=1

In general there is an integration constant in going from (35) to (36), but for the special
case of the identity block it vanishes, unlike non-identity blocks (see appendix B). We will

“It is important that we drop the regular terms actually, as this is the invariant information carried by the
Virasoro symmetries. In fact the form in (31) is required by the Virasoro Ward identity in the w coordinate.

9
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Figure 2: We will treat the Q operators as parametrically lighter than the Oy. We
can then impose that the Oy fuse to the identity operator, which, to leading order
results in Ty(w — 00) = 0(w™).

address the caveats related to this expression shortly, but the message is as follows: if we
can solve the w-plane problem, then we can extract the solution to the z-plane problem by
undoing the coordinate transformation (28). This is precisely what we had hoped for given
the motivation in section 2.2.

Before moving on, it is important to reiterate that (36) will only actually hold in the iden-
tity block, due to additional integration constants appearing in blocks where a non-identity
operator is exchanged between the heavy and the light insertions (see appendix B).

Some parameter counting

We started with a monodromy problem on the z-plane with n = ny + n; insertions and n
accessory parameters. Three of these are fixed by demanding regularity on the z plane as
in (18), leaving n — 3 accessory parameters which must be tuned by imposing the proper
monodromy conditions.

On the w-plane, we have n; insertions and n; — 1 accessory parameters to be tuned by
imposing the desired monodromies. The fact that we have n; — 1, and not n; — 3, accessory
parameters is an artifact of the initial setup on the z-plane. However if we could somehow
impose two additional conditions, we would cut down the number of accessory parameters to
n; — 3, thus returning us to the standard setup on the w-plane.

We need look no further than (33) to find these two extra conditions. If we could argue
for regularity as w — oo, instead of the more general condition written there, we would be
back to the standard case that we know and love.

Heavy-light imit

So far nothing we have done assumed that the two operators of dimension H are much heavier
than the rest. But this is precisely the limit we need to take. If we treat the n; light insertions
as a perturbation, then to leading order, the two insertions of dimension H fuse to the identity.
To a first approximation, this implies regularity as w — o0 or 2 — z,. This is precisely the
limit we take in the rest of the paper as shown in figure 2.

10


https://scipost.org
https://scipost.org/SciPostPhys.7.1.003

Scil SciPost Phys. 7, 003 (2019)

3.3 Sanity check (HHLL done doubly well)

The simplest place to demonstrate this technique is the HHLL vacuum block, first computed
in [3]. We start with the monodromy differential equation (29) with T,; given in (31). In this
example n; = 2 and we will also take h; = hy, = h;.
We are computing a two-point function in the w plane, and the stress tensor T, has one
accessory parameter ¢,. Fixing &, such that T(w — 00) ~ O(w™*) yields:
12h; /c

Cy=—"7""—, (37)
w1 —Wwy

which we can integrate to obtain the semiclassical block on the w plane:

12h
c

L log(w; —w,) + const . (38)

JE o(wy,wy) =
We now use (36) to translate this to the semiclassical block in the z plane. Recall that the

coordinates are related by
7 — a
w(z) = (yz J’1) . (39)
Y2a—2%

To fix the constant in (38), we require the correlator exhibit the correct z-plane singularity as
Y172

oh,
C

6h
o) = 22 10g (1 — 1) + L log (w(z1) — w(z2)) — - (logw'(z1) +logw'(2,))

1—a
12H 12h z72 (1—g%
= e =y + P tog | (2 T 2D | (40)
c c a(l—2)
where in (40) we have introduced the cross ratio z:
g = (21— Y2) (22— 1) (41)

(z1—y1) (32— ¥2) .

Equation (40) is precisely the answer found in [3] for the vacuum Virasoro block, which we
have managed to compute without solving a monodromy problem. The addition of the Jaco-
bian term arising from the coordinate transformation (39) was crucial in getting the correct
answer. Notice, however, that fixing the stress tensor to vanish like w™* in turn completely
fixes the accessory parameter, meaning this simple trick cannot work if we want to compute
the block corresponding to non-identity exchange. We explain how to obtain the non identity
blocks (still in the heavy light limit) in appendix B. It is important to mention that, in deriving
the non-identity blocks using the w-plane geometry, we encounter an additional subtlety not
present in the identity block calculation on the w-plane: we need to include additional inte-
gration constants in order to ensure the correct OPE singularities on the z-plane. This explains
why non-identity blocks fail to exhibit thermal behavior.

A comment on ETH

We will briefly review the standard observation that a two point function computed in the
eigenstate created by Oy behaves thermally. We want to compute:
(01 (00)Q(21)Q(22)0x(0)) _ (H|Q(21)Q(2,)IH)

(04 (00)0y(0)) = (H|H) : (42)

For sufficiently small separations |z; — z,| the vacuum block contribution (40) to the above
correlator will dominate.
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If we put our light operators along the unit circle, z; = e, then performing the coordinate
transformation from z — x in the vacuum block gives

P @G ) e B ra e —x) T —\1-22
le_l;lo — oH = ESIH T , a= —T
1 (r1—y2)

y2—>00
(43)
such that the holo-

27

Now if 24H /c > 1 we can identify an effective temperature f; =

morphic part of the correlator is the usual thermal answer:

mla=x,) )]_%L (44)

Br

with the analogous expression for the antiholomorphic contribution. This effective temper-
ature is expected from the microcanonical ensemble for a CFT quantized on a spatial S!, as
explained at the beginning of this paper, and, in addition to the two-point function described
in this example, will be present in higher point functions as well.

Of course this cannot be the full answer, as this block has certain ‘forbidden singularities’
whenever the x; are separated by an integer muliple of if3;. This observation is intricately
linked with the information loss problem in AdS; [4,6,9,42,43,56]. Also it is important to
recall our comment from above that non-identity blocks do not behave thermally in the sense
of (44).

Folx) ~ [ﬁFH sinh(

Remarks

As we have shown, if we restrict to the identity block in the limit where the n; O-operators
are parametrically light, we can obtain the identity block of two heavy operators and n; light
operators by studying a standard monodromy problem involving only the n; light operators.
For n; > 4 this remains a very difficult problem. However, we may obtain the even higher
point blocks, if we are willing to restrict to identity exchanges in all internal channels, by
recursively applying the method described herein.

4 Lyapunov exponent in a heavy eigenstate

We now set out to solve a w-plane monodromy problem with n; =4. We will take h; = h, = hy,
and h; = hy = hy,.

This w-plane monodromy problem has three accessory parameters, two of which we again
fix by demanding that T, fall off like w™* at infinity, since we are interested in the HHLLLL
identity block. We are now left with the task of computing an LLLL identity block on the w
plane. The answer has been computed by algebraic means in appendix B of [3], but can also
be reproduced using the monodromy method. We simply copy the answer here:

12h 12h 12hy h
Y Jog(w;—wy)+—F log (W3 —W4)—M

; - = (1-w)*,F1(2,2,4,1—w), (45)

folw;) =
where the cross ratio w is defined as

(W —wy)(wy —ws)
(W —w3)(wy —wy) '

w (46)

We see that the LLLL identity block on the w-plane is the exponentiated single graviton global
block. We can now go from this expression to the HHLLLL identity block on the z plane by
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implementing the coordinate transformation:

. 6
foz) = fow(z))— - [hy logw'(z,) + hy logw'(25) + hy logw/(23) + hy, logw'(z,) ] + const.

The coordinate transformation back to the z-plane is given in (39). Again we fix the constant
by demanding the correct OPE singularity on the z-plane when y; — y,. Once the dust settles,
we are left with the following semiclassical block

g (1—29
a(l—z2)
(w/v)7 (1= (u/v)*)
a(1—(u/v))

12H 12h
fo :T log(y1 —y2) + c Y log [(21 —23)

12hy,

+ log |:(Z3 —24)

12hy hy, ( (1—u®)(z*— v“))z ( (1—u®)(z*— v“))
— 1— Fi(2,2,4,1—
c2 (—ve—wm) P\ a5 ) @
where we have introduced the following cross ratios:
_EG-y)Em-y) @ y)E-y) @) (Eon)
zZ = , u= , V= . (48)
(21— Y1) (22— Y2) (21— y1) (33— 2) (zl—yl)(z4—y2)

In (47) we see two HHLL identity blocks, as well as a new piece that comes from enacting the
coordinate transformation on the single graviton global block. We now proceed to use this
new semiclassical identity block to extract some interesting physics.

4.1 Extracting the chaos exponent

Using (47) we can finally arrive at our main result. We will show that the Lyapunov exponent,
as extracted from an out-of-time-ordered correlator computed in a heavy eigenstate, saturates
the microcanonical chaos bound. Thatis A; = 27/ with By = To extract the chaos

27
Iy
exponent in the eigenstate H we must compute a correlator of the form:

(HIV(O)W )V ()W (x)|H) (H|H)*

0TOC = HIH) (HIV(OV(OH)HIW )W (x)|H)

(49)

We have divided out by the partially disconnected 4-point contributions and normalized each
correlator in the eigenstate |H). We will use (47) for the 6-point contribution, while the factors
in the denominator will be approximated using the standard HHLL identity block (40).

Since we want to compute these correlation functions in an eigenstate created by the in-
sertion of Oy, we take y; — 0 and y, — 00. Now, for the purposes of extracting the OTOC,
we only need the leading order contribution in an expansion in small hyhy, /c. In this limit,
the holomorphic dependence of the identity block is simply:

(HIV(21)V (22)W (23)W (24)|H ) (H|H) 2hyhy
HIVEOV @) HWeWeE) ~ T o i@2ad+... (0

where
a a a a
s= (=5 —25) (25 —=5)
T (40 a a a) ’
(2§ —25) (2 —25)
In bulk language this expression counts the contribution of a single graviton exchange between

V and W in the background defined by the insertion of Oy;. As observed in [57], this is enough
to compute the chaos exponent.

(51
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We eventually want to extract the out-of-time-ordered correlator as in (49) by taking the
Lorentzian continuation of Euclidean correlator on the s-plane. The analysis proceeds almost
exactly as in [58], indipendently of whether H is greather than or less than c/24. As we
previously mentioned, in order to see the thermal nature of the eigenstate H, we need to
place the V and W operators along the unit circle, that is (z;,%;) — (eixi, et ’_‘i), and we will
furthermore take

Xq =t—i€1 , J_Cl :—t+i€1 , (52)
x2=t—i€2 , J_C2:—t+i€2 5 (53)
X3:X—i€3, J_C3=X+i€3, (54)
X4 =X—l€y, X4 =X+i€y. (55)

To obtain the time ordering as shown in (49), we need to ensure that the Lorentzian con-
tinuation starting from t = 0 is taken with

61>63>62>64. (56)

This results in a Regge-limit of (50) whereby we go around the branch cut at s = 1 from
below,> before taking s — 0 as we take t > x. In the antiholomorphic sector, no branch cuts
are crossed in the §-plane and it remains small in the Lorentzian continuation. Multiplying
holomorphic and antiholomorphic contributions in this limit gives:

48mihy hy, L
cs

GRegge = ]:0(5)]}0(5_) =1- (57)

As was mentioned in the introduction, this form of the Regge correlator has a simple interpreta-
tion, namely that a single ‘scramblon’ with propagator s! is exchanged between the operators
in the OTOC. The effect of the heavy fields is to dress this propagator with a factor mimicking
the thermal case, s ~ e '*(™9) a5 depicted in Figure 1. In the end we find, for small ¢; (and
defining €;; = €; — €;):
192imthy hy /c .
0T0c=1—2—VW/sm2[g(t—x)]+.... (58)
A€12€34 2

Notice that for H < ¢/24 the OTOC oscillates and gives no evidence of scrambling. This is
reminiscent of a CFT in a non-ergodic phase, which we discuss further in the next section.

As we increase the energy eigenvalue through H > ¢/24, we must take a — i|a| in (58)
and we see that the large t behavior exhibits the expected Lyapunov behavior:

Iy P [C et

OTOC=1-— 3 (59)
la|2€10€34
with Lyapunov exponent
271
Ap=lal=—, (60)
Br

as promised. Note that the eigenstate butterfly velocity vg is the speed of light. Note also that
the period of oscillation of the OTOC in the non-ergodic phase is governed by the parameter
a € R, which can be thought of as the analytic continuation of the Lyapunov exponent A; to
purely imaginary values.

5In [58] the branch cut is crossed from above in the Regge limit. Our analysis differs only because we are taking
€, > €, rather than the reverse order.
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It is important to mention that the authors of [59] also studied higher point correlators in
heavy eigenstates and concluded that the leading answer, for an even number of light inser-
tions, is given by a product of two-point functions of light operators in the heavy eigenstate,
that is:

(O (00) Q1(x1)Qa(x32). .. Qy, (x,,) Oy (0)) ~ l_[(OH(OO) Q;(x;) Qj(x;) Oy(0)) + perms.
ij
(61)
This is the leading disconnected piece of the correlator and is not in contradiction with our
answer, as can be seen from (47). Our results have allowed us to extract the subleading,
connected contribution.

5 Discussion: signatures of non-ergodic scrambling

One typical aim in holography is to match bulk calculations with analogous ones in CFT. States
with operator dimensions below the threshold H < c/24 are dual to bulk geometries that are
not black holes, but rather conical defects. This begs the question—what should we expect of
these states? Since the bulk has no black hole, it comes as no surprise that these states fail to
satisfy ETH in the same way that heavy operators do. In this section we will argue that CFT
states dual to conical defects exhibit non-ergodic behavior, such as is typically encountered in
many-body-localized (MBL) or spin glass phases.®

First consider the entanglement entropy of an interval of length L computed in a eigenstate
of dimension H, at large-c. This was first computed in [51,62]:

c 2R L
Ser=—1 ——sin| —— 62
EE Og|:ea8m(2R/a)] 5 (62)

where we have reinstated the size of the CFT circle R # 1. Above the H > ¢/24 threshold, we
again identify @ = 27iR/fy and the entanglement entropy behaves thermally. Below thresh-
old the entanglement entropy obeys an area law as in vacuum, but where the CFT volume
appears renormalized R — R/a. States where Sy obeys an area law were characterized as
many-body-localized states in [63] and are meant to exhibit the physics of an MBL phase sim-
ilarly to how pure states satisfying ETH exhibit physics in a thermal ensemble. This simple
observation suggests that the below threshold states probe a non-ergodic phase of the CFT.

Further evidence for interpreting below threshold states as non-ergodic is provided in [64],
in which the authors solve for the time-dependence of the entanglement entropy under a
particular oscillatory type of driving. The dynamics can be solved because the driving force
can be undone by an appropriate coordinate transformation. If this coordinate transformation
is in the elliptic class, then the dynamics was dubbed ‘non-heating,” in [64]. And for states
with H < ¢/24, the coordinate transformation (28) is precisely in the elliptic class. Conversely
when H > ¢/24 the coordinate transformation is in the hyperbolic class. When the dynamics
fall in this class, [64] found that the entanglement entropy is thermalizing. Let us remark that
the classification into elliptic, parabolic and hyperbolic also leaves signatures of (non-) ergodic
behavior in late-time correlation functions [6, 39, 44, 65].

We finally come to the oscillating OTOC found in (58) when H < c¢/24. Because the
OTOC does not decay, the immediate interpretation must be that these states mimic non-
ergodic ensembles. To our knowledge, few examples of oscillating OTOCs similar to (58) have
been computed. These include those computed numerically in [66] in a spin chain known to

The idea that spacetime geometry may capture the physics non-ergodic systems through holography has been
explored in [60,61].
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exhibit an MBL phase, giving further credence to the interpretation that these conical deficit
states display the physics of non-ergodic systems. Another interesting example is the classically
chaotic system known as the stadium billiard [67]. The eigenstate OTOCs were computed
numerically and were found to be oscillatory [68], but interestingly, the stadium billiard’s
thermal OTOC, while non-oscillatory, also somehow fails to exhibit any Lyapunov behavior—a
stark difference between its classical and quantum behavior, although perhaps we can attribute
this to the billiard’s small number of degrees of freedom. This illustrates an important and
more general point, namely that thermalizing systems do not necessarily scramble efficiently.
A striking example, taking us again closer to the black-hole context, is the IOP matrix model
[69, 70], which shows signatures of thermalization and information loss, yet does not have
an exponential OTOC, much less one that saturates the bound [71]. It will be interesting to
further investigate non-ergodic OTOCs in holographic models as well as more generic chaotic
quantum systems [72,73].

Curiously, an oscillatory OTOC at finite temperature was observed in [74]. This OTOC was
computed holographically in a geometry that interpolates between an AdS, boundary and a
de Sitter horizon deep in its interior [75], suggesting that de Sitter horizons may themselves
be non-ergodic, despite being at finite temperature.
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A Eigenstates with spin

In the main text we have been careful to consider eigenstates with equal left- and right-moving
conformal dimensions when defining the microcanonical temperature, but this can be gener-
alized to the case where the operator has spin, with minimal change. For spinning particles
(H # H), the density of states at high energy (1/EEg > c/24) is given by the Cardy formula:

S(Ey, Ep) = 27y %EL + Zn,/%ER , (63)

c - C
E,=H——, ER=H——. 64
L 24 R 24 (©4)
We can thus define two distinct microcanonical temperatures that left- and right-movers will

be sensitive to:

with

2n 2
/3H = 3ELS(EL,ER) =, /jH = aERS(EL,ER) e — . (65)
24H _ 4 24H _ 4
C C

Note that 8 defined in this way coincides with (9), as it should.
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B Non-vacuum HHLL block

In the main part of this paper we have shown how straightforward it is to compute the vacuum
HHLL block using this trick, we now show how to compute the non-vaccuum blocks. We will
see that they require more subtle considerations.

Remember that to set up this problem, we first fixed as many accessory parameters as
possible using the regularity conditions (18). In turn, this means that we cannot use regularity
in the w plane to fix even more accessory parameters. The rest must be obtained by solving the
monodromy problem. So, while it is perfectly fine to assume that T,;(w) should fall off like w™*
in the vacuum block, it is not fine to assume this whenever there is non-vacuum exchange. The
reason it works for the identity block stems from the fact that the stress tensor obeys regularity
at infinity in this block only, due to all operators fusing to the identity.

To solve the problem in the w plane, we will use the method of variation of parameters.
The idea is to use the fact that h; /¢ = € < 1 such that

YP=y+en+... (66)
Ty=¢Ty . 67

To zeroth order in ¢, the independent solutions are y = (1,w). It is now standard to find 7:

wo . Jjk
X1Xo— X2X1

This in turn allows us to write down the monodromy matrix to first order in ¢ around a path
v that encircles the points 1 and w,:

M, = 15,5 +2mie (Reswle + ResW:WZF) . (69)

The eigenvalues of the full monodromy matrix should be:

24h,
eigenvalues(MY) =expsinm| 1+ \1— , (70)

C

meaning that we can match the leading order expression in hp /¢ between (69) and (70) yield-

ing:
6 (2hy —h, vV w1/wy)

c Wiy —wy

Cy =

(71)

This agrees with (37) when h, — 0. Also, now with hindsight to guide us, we see that we
could have obtained this answer by demanding

. 6h,/c )
Ty(w— 00)=— +0(w™2). (72)
WL/ Wi wy
We can now find f(w;,w,) by solving
af af
M =&, fwy, ws) = 6 (2hL — 252 Wz) , (73)
ow,y ow, cw, 6

which can be read off from the expression for ¢; in (31). We can fix the constant of integration
partly by demanding

6(2h; —hy,)

fp(WZ —>wy)~ log(w; —ws) . (74)
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This gives

12h
c

fp(WhWZ) = (75)

6h T+ e
L log(w; —wy) — Tp [log(w1 —wy)—2log (%)] + const .

Now comes the important observation. If we use (36) to go from this expression to expression
for the semiclassical block on the z plane, we get the wrong answer. Instead we must add an
additional ‘constant’ of integration proportional to h,, 7

N 6h —
fyla) = T2 log vy = y2) + fy(wla)) — 2 [y logw/(2) + hy logw/(2)] — ~-Z log | —+—" |

a(l—z2)
(76)
12H 6 5 (1—2%)
Z —3z
= ——log(y1 —y2) + - {2h log| (21 —23) ————
c c a(l—z2)
4 21— 29 1 —Z%
—h,log| — , 77
pog[a 1—2 (1+z%)]} 77
yielding the correct HHLL block, with the cross ratio
g = (21— ¥2) (22— 1) (78)

(z1—y1) (32— ¥2) '

The ‘integration constant’ proportional to h,, in (76) comes from the need to impose the correct
OPE singularity on the z plane. For standard insertion locations (y;, y»,%;) = (0, 00, 1) it is an
actual constant, but shows that the non-identity block cannot simply be obtained by coordinate
transforming the solution to the w-plane problem. More work needs to be done.

We hope that this example is instructive, as it contains one of the messages of our paper.
In 2d CFT at large-c, the heavy insertions do indeed behave as a coordinate transformation,
but the need to impose the correct OPE singularity on the z plane implies that each individual
conformal blocks, apart from the identity block, transforms anomalously under the coordinate
transformation. However, as previously noted, these complications do not arise in the vacuum
block, meaning that the vacuum block is the one that truly appears thermal in CFT,.
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