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Abstract

We investigate the dynamics of bipartite entanglement after the sudden junction of two
leads in interacting integrable models. By combining the quasiparticle picture for the
entanglement spreading with Generalised Hydrodynamics we derive an analytical pre-
diction for the dynamics of the entanglement entropy between a finite subsystem and
the rest. We find that the entanglement rate between the two leads depends only on
the physics at the interface and differs from the rate of exchange of thermodynamic en-
tropy. This contrasts with the behaviour in free or homogeneous interacting integrable
systems, where the two rates coincide.
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1 Introduction

Recent years witnessed interdisciplinary efforts aiming at understanding how statistical me-
chanics and thermodynamics arise from the out-of-equilibrium dynamics of isolated quantum
many-body systems [1–5]. Characterising the entanglement spreading emerged as one of the
key aspects to elucidate this issue [6–8]. The reason is twofold.

First, the spreading of entanglement provides universal information on the time evolution
of the system, removing most of the inessential details that are typically tied to the correlation
functions of local observables. This is best illustrated by considering the evolution of bipartite
entanglement in pure states, customarily measured by the entanglement entropy [6–8]. Un-
der mild hypotheses, preparing the system in a low entangled state and switching on spatially
local interactions, the entanglement entropy of a finite subsystem exhibits a linear increase
at intermediate times, whereas it saturates at asymptotically large times. This behaviour is
observed in a huge variety of physical systems, ranging from random unitary circuits to inte-
grable models [9–39]. In particular, the saturation value is extensive in the subsystem size and
its density coincides with the density of the thermodynamic entropy of the statistical ensemble
describing the steady state [40–47]. The latter is a Gibbs ensemble for generic systems and a
Generalised Gibbs Ensemble (GGE) for integrable ones [2–4].

Second, the entanglement growth is crucial to understand the performance of numerical
methods based on Matrix Product States, such as the time-dependent Density Matrix Renor-
malization Group (tDMRG) [48–54]. Specifically, the linear entanglement growth implies an
exponential increase in time of the complexity of the numerical simulation. Accordingly, the
value of the slope determines whether or not the simulation is feasible.

Despite its fundamental importance, exact results for the out-of-equilibrium dynamics of
entanglement are typically extremely hard to obtain and, therefore, very scarce. Up to now
they have been found only for models that can be mapped to free fermions [9], and, very
recently, for a particular “maximally chaotic" Floquet system [38]. Nevertheless, two differ-
ent effective descriptions have been put forward in the extreme cases of integrable [10] and
chaotic [35–37] systems, which allow one to recover quantitatively the dynamics of entangle-
ment entropies in the limit of large times and subsystem sizes, also called “space-time scaling
limit". These descriptions are respectively known as “semiclassical quasiparticle picture” and
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Figure 1: Sketch of the physical setting used in this work. At large times after the
sudden junction of two macroscopically different states (left and right leads), local
properties at fixed x/t are described by a Local Quasi Stationary State (LQSS). Here
x is measured from the interface between the two chains. In this setting we are
interested in the entanglement entropy of a region A of length `. A semiclassical
description in terms of free quasiparticles applies to the entanglement entropy. In
the quasiparticle picture pairs of entangled quasiparticles are created in the bulk of
the two chains. Quasiparticles forming an entangled pair have rapidity of opposite
sign and initially travel with opposite velocities.

“minimal membrane picture”. In this paper we are interested in the entanglement spreading
in integrable models, thus we focus on the former.

In the semiclassical quasiparticle picture one views the initial state as a source of entangled
pairs of quasiparticles, generated uniformly in space at the initial time and propagating as free
classical objects with opposite velocities. Quasiparticles produced at the same point in space
are mutually entangled, whereas quasiparticles created further apart are not. The entangle-
ment between a subsystem A and the rest is proportional to the total number of quasiparticles
created at the same point and shared between A and its complement at time t. Assuming that
there are Ns species of particles, whose dispersion relation is characterised by a real “rapidity”
λ, we find

SA(t) =
Ns
∑

α=1

∫

dλ

∫

dx fα,λ(x)χA[Xα,λ(x , t)]
�

1−χA[Xα,−λ(x , t)]
�

, (1)

where χA(x) is the characteristic function of the interval A, the function fα,λ(x) denotes the
contribution to the entanglement of the pair (α,λ), (α,−λ), with rapidity ±λ and species α,
originated at x , and Xα,λ(x , t) gives the position at time t of the quasiparticle that was created
at position x at time 0. This picture can be extended to the case where the initial state consists
of more complicated multiplets of correlated particles [27, 28]. For the sake of simplicity,
however, here we stick to cases where only pairs are produced and, moreover, we assume that
the pairs are composed by particles of the same species.

The semiclassical quasiparticle picture, as described above, only gives qualitative predic-
tions. To make it quantitatively accurate one needs to specify what are the semiclassical par-
ticles responsible for the entanglement spreading, what are their trajectories, and what is the
contribution of a single entangled pair to the total entanglement. In translationally invariant
interacting integrable systems, this task has been accomplished in Ref. [33]. This has been
done by exploiting the exact knowledge of the stationary state describing finite subsystems at
large times [3,4] to complement the semiclassical quasiparticle picture. In particular, Ref. [33]
assumed that the entangling quasiparticles are the elementary excitations on the stationary

3

https://scipost.org
https://scipost.org/SciPostPhys.7.1.005


Select SciPost Phys. 7, 005 (2019)

macrostate. This gives

fα,λ(x) = SY Y
α,λ, Xα,λ(x , t) = x + vα,λ t , (2)

where vα,λ is the group velocity of the excitation (α,λ) and SY Y
α,λ is its contribution to the

thermodynamic entropy. The quantitative prediction of Ref. [33] is conjectured to apply for
all integrable models treatable via thermodynamic Bethe ansatz and to become exact in the
space time scaling limit (at least for a class of “integrable" initial states [55]).

In this paper we derive an analogous quantitative prediction for cases where the initial
state is not homogeneous. The idea is to use the recently developed theory of Generalised
Hydrodynamics (GHD) [56,57] (see Sec. 3) to determine the state of the system at large times
and use it to complement the semiclassical quasiparticle picture. In particular, we focus on
the paradigmatic case of initial states formed by the junction of two macroscopically different
homogeneous states (leads) and determine the time evolution of the entanglement entropy of
A= [x1, x1 + `] (see Fig. 1) in the space-time scaling limit. Our prediction applies to generic
integrable models and is tested in the concrete case of the anisotropic spin-1/2 Heisenberg
chain.

Note that the entanglement spreading in inhomogeneous settings has been already inves-
tigated in the recent literature, see e.g. Refs. [58–63,65,66]. In particular, Refs. [61] and [65]
considered exactly the problem studied here. Both these references, however, explored spe-
cial cases. Ref. [65] investigated free systems, while Ref. [61] focussed on x1 = 0 in the limits
`/t → 0 and `/t →∞. Our work represents a non-trivial extension of these studies.

Specifically, our prediction displays a remarkable novel effect due to the combination of
inhomogeneity and interactions. This is most easily explained by considering the entropy of
one of the leads, namely A = [0,∞[, and comparing it with the homogeneous and the free
cases. In particular, in the homogeneous case one has

Slead(t) = t
Ns
∑

α=1

∫

dλ |vα,λ|SY Y
α,λ = t

Ns
∑

α=1

∫

vα,λ>0

dλ vα,λSY Y
α,λ − t

Ns
∑

α=1

∫

vα,λ<0

dλ vα,λSY Y
α,λ . (3)

In words: the entanglement entropy increases with the rate at which the two leads exchange
thermodynamic entropy. Ref. [65] confirmed that, if the system is free, this feature remains
true also in the inhomogeneous case. This is because, in both these cases, the trajectories of
quasiparticles are straight lines; consequently, only one of the two entangled particles in a
given pair can cross the junction, and one can forget about the pair structure. Here, instead,
inhomogeneity and interactions cause the trajectories to curve, making it possible for both
particles of a given entangled pair to cross the junction, and, in turn, slow down the rate
of entanglement growth. In particular, this implies that the conjecture for the entanglement
production rate put forward in Ref. [61] is generically incorrect (although the correction is
typically small).

The rest of the manuscript is organised as follows. In Section 2 we review the Thermo-
dynamic Bethe Ansatz treatment of generic integrable models. In Section 3 we summarise
the GHD formalism for quenches from piecewise homogeneous initial states. In Section 4 we
identify the entangling quasiparticles and present a detailed analysis of their trajectories. In
Section 5 we derive and simplify the quasiparticle picture prediction for the full-time dynamics
of the entanglement entropy. In Section 6 we analyse the entanglement production rate for the
semi-infinite chain. In Section 7 we provide numerical checks on the validity of our results, by
presenting tDMRG data for several quenches in the XXZ chain. Finally, in Section 8 we draw
our conclusions. Three appendices contain various technical details of our derivations.
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2 Thermodynamic Bethe Ansatz treatment

In this work we consider interacting integrable quantum many-body systems describable by
Thermodynamic Bethe Ansatz [67] (TBA). This description applies to a variety of integrable
models both in the continuum and on the lattice. In most of this paper we will keep the
discussion at a general level, without specifying any concrete model. In Sec. 7 our results
will be tested against numerical simulations in the paradigmatic example of the “gapped” XXZ
spin-1/2 chain

H =
J
4

L
∑

j=1

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 +∆(σ

z
jσ

z
j+1 − 1)

�

, σαL+1 = σ
α
1 , (4)

where we denoted by σβj (β = x , y, z) the Pauli matrices at position j, by L the volume of the
system, and by ∆> 1 the “anisotropy”.

Let us now briefly summarise the main aspects of the TBA description that are needed in
the rest of the paper. When a TBA description applies, in the thermodynamic limit L →∞
the eigenstates of the Hamiltonian are characterised by a set of functions

{ρα,λ}α=1,...,Ns
, (5)

where the real variable λ ∈ C ⊂ R is customarily called “rapidity” and the integer Ns is the
“number of species". The integer Ns, and the domain C depend on the details of the specific
model considered. For instance, in the XXZ chain with∆> 1 one has Ns→∞ and can choose
C = [−π/2,π/2].

The functions {ρα,λ} are known as “root densities”, and they can be interpreted as rapidity
distributions of the system’s stable quasiparticles. The rapidity λ parametrises the quasipar-
ticles’ dispersion relation while the index α labels different families. For instance, in the XXZ
chain, α = 1 corresponds to magnon-like excitations, whereas quasiparticles with α > 1 can
be thought of as bound states of α magnons. A quasiparticle of the species α with rapidity λ
has energy eα(λ) and quasimomentum pα(λ) given by [67]

pα(λ) = 2 arctan
�

tan(λ)
tanh(αη/2)

�

, eα(λ) =
−J sinhη sinh (αη)
cosh(αη)− cos(2λ)

, (6)

where we introduced η = cosh−1∆ > 0. In other words, the root densities generalise to
interacting integrable models the notion of momentum occupation numbers in free systems.

The expectation values of local operators can be expressed as functionals of the root den-
sities {ρα,λ}. For instance, the densities q x of local conserved charges, i.e., operators with
local densities commuting with the Hamiltonian, are expressed as simple linear functionals as
follows

〈{ρα,λ}|q x |{ρα,λ}〉=
Ns
∑

β=1

∫

dµqβ ,µρβ ,µ . (7)

Here the “bare charges” qβ ,µ are functions specifying the charge density, and we denoted by
|{ρα,λ}〉 a generic eigenstate characterised by the set of root densities {ρα,λ}.

The correspondence between eigenstates and root densities is generically not one-to-one:
a large number of eigenstates corresponds to the same set of root densities. This fact is usually
referred to by saying that the root densities specify a “thermodynamic macrostate" of the sys-
tem, while the eigenstates of the Hamiltonian correspond to its “microstates". Quantitatively,
for a finite system of size L there are∼ exp[L

∑

α

∫

dλSY Y
α,λ] eigenstates that in the limit L→∞

are described by the same set of densities {ρα,λ}. Any of these eigenstates can be regarded as
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a finite-size representative eigenstate of the thermodynamic macrostate. Here we introduced
the Yang-Yang entropy density

SY Y
α,λ ≡ SY Y [ρα,λ] = −ρ t

α,λ

�

ρα,λ

ρ t
α,λ

log
ρα,λ

ρ t
α,λ

+
�

1−
ρα,λ

ρ t
α,λ

�

log
�

1−
ρα,λ

ρ t
α,λ

�

�

, (8)

where the auxiliary functionals {ρ t
α,λ} called “total root densities" are defined as [67]

ρ t
α,λ = aα,λ +

Ns
∑

β=1

∫

dµ Tα,λ;β ,µρβ ,µ . (9)

The precise form of aα,λ and Tα,λ;β ,µ depends, again, on the specific model considered. In
general, however, the kernel Tα,λ;β ,µ encodes all the information about the two-particle scat-
tering matrix (the only non trivial one in integrable models). For instance, for the gapped XXZ
spin-1/2 chain we have [67]

aα,λ =
1
π

sinh (αη)
cosh(αη)− cos(2λ)

, (10)

Tα,λ;β ,µ = (1−δα,β)a|α−β |,λ−µ + 2a|α−β |+2,λ−µ + · · ·+ 2aα+β−2,λ−µ + aα+β ,λ−µ . (11)

The total root densities are interpreted as the densities of all possible values that the rapidi-
ties can take (the constraint originates from the fact that in finite volume the rapidities obey
a set of non-trivial quantisation conditions [67]). These densities are generically not uniform
and, as a consequence of the non-trivial interactions, depend on the root densities.

Before concluding, we note that the TBA description can be used also for some mixed states.
This is true every time a generalised microcanonical representation applies [3, 5]. In other
words, if the expectation values of local observables in the mixed state can be reproduced,
in the thermodynamic limit, by expectation values on a single (carefully chosen) eigenstate
of the Hamiltonian. For example, the TBA description can be used for systems in Gibbs and
Generalised Gibbs states [3,5].

3 GHD description of the local quasi-stationary state

After being initialised in an inhomogeneous state ρ̂0 (see Fig. 1 for an example), the system
performs a non-trivial time evolution, during which the expectation values of local observables
display fast oscillations in both position x and time t. At large times, however, these fast
oscillations dephase away, and the expectation values become slow functions of x and t. In
this regime, it is reasonable to expect that the expectation values can be described by a quasi-
stationary state ρ̂s(x , t) retaining some slow dependence on position and time. Namely, we
expect

tr
�

Ox e−iĤ t ρ̂0eiĤ t
� t�1∼ tr

�

Ox ρ̂s(x , t)
�

, (12)

where H is the Hamiltonian of the system, Ox is a generic observable localised around the point
x , and ρ̂s is the density matrix describing the quasi-stationary state. In these general terms,
(12) can be interpreted as a hydrodynamic approximation; there are however limits where
(12) becomes exact (as in the cases studied in this paper). In the context of quantum non-
equilibrium dynamics the emergence of such a state was first proposed in Ref. [68], where it
was called locally quasi-stationary state (LQSS). Specifically, based on the intuition developed
for homogeneous quenches [2–5], it was argued that, at fixed (x , t), the state ρ̂s(x , t) is a
GGE constructed with the charges of the time evolving Hamiltonian. This means that ρ̂s(x , t)

6

https://scipost.org
https://scipost.org/SciPostPhys.7.1.005


Select SciPost Phys. 7, 005 (2019)

is homogeneous, stationary, and admits a “microcanonical” representation in terms of a TBA
representative eigenstate, or, equivalently, of a set of root densities {ρα,λ(x , t)}. Note that the
densities depend on space and time.

Determining ρ̂s(x , t) without solving the full non-equilibrium dynamics (in the presence
of integrable interactions) is the key result of the theory of generalised hydrodynamics (GHD)
introduced in Refs. [56, 57]. Specifically it was shown that, at the leading order in x and t,
the position-dependent root densities fulfil the following continuity equation

∂tρα,λ(x , t) + ∂x(vα,λ(x , t)ρα,λ(x , t)) = 0. (13)

The quantity vα,λ(x , t) appearing in (13) is the velocity of the elementary excitations on the
state described by {ρα,λ(x , t)}, see Ref. [69], and it is defined through the following integral
equation

vα,λ(x , t)ρ t
α,λ(x , t) = vb

α,λaα,λ +
Ns
∑

β=1

∫

dµ Tα,λ;β ,µ vβ ,µ(x , t)ρβ ,µ(x , t), (14)

where ρ t
α,λ(x , t) is the (x , t)-dependent total root density (cf. Eq. (9))

ρ t
α,λ(x , t) = aα,λ +

Ns
∑

β=1

∫

dµ Tα,λ;β ,µρβ ,µ(x , t) . (15)

The model-dependent function vb
α,λ is the velocity of the excitations on the “vacuum state”

(the state with ρα,λ = 0) and is known as “bare velocity”. For the gapped XXZ spin-1/2 chain
we have

vb
α,λ = −J

sinhη
2

a′
α,λ

aα,λ
, (16)

where aα,λ is given in Eq. (11). Note that for interacting models, i.e. when Tα,λ;β ,µ 6= 0,
the velocity vα,λ(x , t) depends on the densities {ρα,λ(x , t)}. This makes equation (13) highly
non-trivial.

The simplification introduced by Eq. (13) is remarkable. To determine the late-time prop-
erties of an integrable quantum many-body system one needs to solve a system of differential
equations whose number is proportional to the system size, instead of solving the Schrödinger
equation, which has instead the dimension of the Hilbert space. There is, however, a remain-
ing non-trivial step to make before a solution can be obtained: one has to impose the initial
conditions for ρα,λ(x , t). This has been successfully done in a number of cases [56,57,70–94],
including the bipartite quench protocol considered here (see below), but in general the prob-
lem is still open. We note that, very recently, it has been shown that GHD provides the precise
framework to describe experiments with trapped cold atoms [70].

Equation (13) admits a very simple interpretation in terms of a “kinetic theory" of free
classical particles moving in an inhomogeneous background. One regards ρα,λ(x , t) as the
distribution function for classical particles of the species α = 1, . . . , Ns with momentum λ, at
position x , and at time t. Equation (13) describes the evolution of the distribution functions
ρα,λ due to the motion of the particles, which are nothing but a “coarse grained version” of the
stable interacting quasiparticles characterising integrable models. Indeed, at the leading order
in (x , t), the only effect of the interaction is a renormalisation of the group velocity vα,λ(x , t).
Note that, at sub-leading orders, the effect of interactions might spoil this interpretation [93–
96].

Finally, it is convenient to observe that, given a set of quantities {gα,λ(x , t)} fulfilling (13),
we have

∂t

�

gα,λ(x , t)

ρ t
α,λ(x , t)

�

+ vα,λ(x , t)∂x

�

gα,λ(x , t)

ρ t
α,λ(x , t)

�

= 0. (17)
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Equation (17) has a material-derivative form and it is generically easier to solve than (13),
for instance by using the method of characteristics [74, 75]. This implies that, instead of
solving (13), it is convenient to define the “so-called” filling functions

ϑα,λ(x , t)≡
ρα,λ(x , t)

ρ t
α,λ(x , t)

. (18)

For the upcoming analysis it also important to note that the (x , t)-dependent Yang-Yang en-
tropy densities

SY Y
α,λ(x , t) = −ρ t

α,λ(x , t)
�

ϑα,λ(x , t) logϑα,λ(x , t) +
�

1− ϑα,λ(x , t)
�

log
�

1− ϑα,λ(x , t)
�

�

(19)

fulfil a continuity equation of the form (13)

∂tS
Y Y
α,λ(x , t) + ∂x(vα,λ(x , t)SY Y

α,λ(x , t)) = 0, (20)

as it readily follows from (13) and (17).

3.1 Bipartite quench

Let us now specialise the GHD formalism of the previous section to what will be referred to as
a “bipartite quench” (see Fig. 1). This is the time evolution of a state that, up to irrelevant1

corrections localised around the junction, has the form

ρ̂0 ∼ ρ̂L ⊗ ρ̂R, (21)

with ρ̂L(R) two macroscopically different homogeneous states. For instance, in our numerical
tests in the XXZ chain we consider

ρ̂L(R) ∈ {|D〉〈D| , |F,θ 〉〈F,θ | , |N,θ 〉〈N,θ |} , (22)

where we defined the “Dimer state" |D〉, the “tilted Néel" state |N,θ 〉, and the “tilted ferromag-
netic state" |F,θ 〉 as follows

|D〉=
⊗

i

�

|↑↓〉 − |↓↑〉
p

2

�

, (23)

|N,θ 〉= ei θ2
∑

j σ
x
j

1
p

2

�

|↑↓ · · · ↑↓〉+ |↓↑ · · · ↓↑〉
�

, (24)

|F,θ 〉= ei θ2
∑

j σ
x
j | ↑↑↑ . . . 〉 . (25)

In this setting, if ρ̂L(R) have cluster decomposition properties, at long enough times all the
quantities generally become functions of the “ray" ζ = x/t [56, 57, 68]; in the limit t →∞
the LQSS on each ray becomes exactly stationary, and all the sub-leading corrections to (13)
vanish. Rewriting (17) (for ϑα,λ(ζ)) in the variable ζ we have

�

ζ− vα,λ(ζ)
�

∂ζϑα,λ(ζ) = 0. (26)

In this case, whenever information propagates with a bounded velocity, it is possible to impose
the initial conditions in (26) at ζ→±∞ and solve it [56,57,68]. Indeed, at infinite distances
from the interface between the two leads there are regions where no information on the inho-
mogeneity can arrive, and local observables evolve as if the system were homogeneous. This

1A quasi-localised impurity in the initial state does not change the late time behaviour if all the excitations are
delocalised.
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Figure 2: Velocity field vα,λ after a quench in the XXZ chain for ∆ = 10, plotted
against ζ ≡ x/t. The pre-quench initial state is obtained by joining the Néel state
|N, 0〉 (24) (left) and the ferromagnet |F,0〉 (25) (right). Here we only show results
for α= 1. Different panels correspond to different values of rapidity λ. Note that for
ζ < vmin ≈ −2 and ζ > vmax ≈ 1 the velocity field does not depend on ζ, as expected.

means that their expectation values are described by stationary states that can be computed
using the standard techniques developed for homogeneous quenches [2–5]. These stationary
states provide the boundary conditions ϑ(R/L)

α,λ for (26). We then find

ϑα,λ(ζ) = ϑ
(L)
α,λ θH(vα,λ(ζ)− ζ) + ϑ

(R)
α,λ θH(ζ− vα,λ(ζ)), (27)

where θH(x) is the step function. Equation (27) is only an implicit solution because it depends
on the velocity vα,λ(ζ) that in turn depends on ϑα,λ(ζ). To find ϑα,λ(ζ), it is convenient to adopt
an iterative approach, combining (27) with the infinite time limit of (14) and (15). Namely

ρ t
α,λ(ζ) = aα,λ +

Ns
∑

β=1

∫

dµ Tα,λ;β ,µ ϑα,λ(ζ)ρ
t
β ,µ(ζ), (28)

vα,λ(ζ)ρ
t
α,λ(ζ) = vb

α,λaα,λ +
Ns
∑

β=1

∫

dµ Tα,λ;β ,µ ϑα,λ(ζ)vβ ,µ(ζ)ρ
t
β ,µ(ζ). (29)

Finally, for the upcoming discussion it is useful to mention that the continuity equation for the
Yang-Yang entropy in terms of ζ reads as

ζ∂ζS
Y Y
α,λ(ζ)− ∂ζ(vα,λ(ζ)S

Y Y
α,λ(ζ)) = 0. (30)

4 Entangling quasiparticles in inhomogeneous backgrounds

The first step to turn quantitative the quasiparticle picture for the entanglement dynamics is to
identify the entangling quasiparticles and determine their trajectories. Here we perform this
task in the case of interacting integrable models after bipartite quenches.

The basic assumption of this work is that the entangling quasiparticles are the excitations
on the locally quasi-stationary state. The logic of this assumption is that, since the stable
quasiparticle excitations in integrable models are responsible for the spreading of any kind
of information, it is natural to argue that they also spread the entanglement. An analogous
assumption has been formulated in Ref. [33] in the homogeneous case and in Ref. [65] for
free systems.
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To be specific, we denote by Xα,λ(x , t) the position at time t of a particle of species
α= 1, . . . , Ns with rapidity λ that started at position x . The position is measured from the
interface between the two chains (see Fig. 1). We then assume that Xα,λ(x , t) is determined
by the following classical equation of motion

d
dt

Xα,λ(x , t) = vα,λ

�

Xα,λ(x , t), t
�

, (31)

where vα,λ(x , t) are the same velocities as in (13). Note that the trajectories generated by (31)
are generically not straight, in contrast to the homogeneous [33] and free [65] cases.

For bipartite quenches (see Fig. 1), vα,λ(x , t) are obtained by solving the GHD equations
(27)–(29) and are functions of the ratio ζ= x/t, i.e.,

vα,λ(x , t) = vα,λ(x/t). (32)

The function vα,λ(ζ) is taken to be fairly generic; we only make one assumption on its ζ
dependence:

Assumption 1. For fixed λ and α, the equation ζ− vα,λ(ζ) = 0 has a unique solution, which we
call ζα,λ.

This is the standard assumption of GHD. It has been verified in all the examples examined
up to now, but it has not yet been proven rigorously. A number of interesting properties of the
velocity field follow from (27)–(29). For example one can show (see Appendix A)

(i) vα,λ(ζ) =

¨

vα,λ(−∞) ζ <minαminλ(vα,λ(−∞))≡ vmin,

vα,λ(∞) ζ >maxαmaxλ(vα,λ(∞))≡ vmax,

(ii) ∂ζvα,λ(ζ) is bounded for all ζ.

The first property stems from the bounds on the velocity at which information propagates
from the interface to the bulk of the two semi-infinite chains; in space-time regions outside
the lightcone spreading from the origin, the system is described by the macrostates ρ(L/R)

α,λ . A
concrete example of a ζ-dependent velocity field obtained in the XXZ model is reported in
Fig. 2.

We remark that the quasiparticle picture is based on coarse graining procedure in space,
momentum, and, in turn, time, so the coordinates x and t in (31) have some intrinsic indeter-
mination. To keep track of potential effects of that, we naively capture such corrections with a
single parameter t0, which is regarded as the time when the initial conditions for the classical
problem (31) are imposed

Xα,λ(x , t0) = x . (33)

Keeping a finite t0 > 0 regularises the initial value problem (31)(33). Indeed, properties (i)
and (ii) ensure that vα,λ(x/t) is a Lipschitz continuous function of x for all t > 0. This implies
that Cauchy’s Theorem applies and a unique solution exists for any given initial condition x .
Eventually we will take the limit t0/t → 0.

An immediate consequence of the uniqueness of the solution of (31)(33) is that, for fixed
(α,λ), trajectories with different initial conditions cannot cross. In particular, it is useful to
observe that quasiparticles with “initial velocity" ζα,λ (cf. Assumption 1) follow linear trajec-
tories, i.e., sα,λ(t) = ζα,λ t solves (31) with initial value ζα,λ t0. This implies

x > ζα,λ t0 ⇔ Xα,λ(x , t)> ζα,λ t ∀t > t0 ,

x < ζα,λ t0 ⇔ Xα,λ(x , t)< ζα,λ t ∀t > t0 .
(34)
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Equivalently, this means that a trajectory starting on the left or on the right of sα,λ(t) remains
as such at any time.

To gain information on the qualitative form of a generic trajectory Xα,λ(x , t), it is useful to
explicitly integrate Eq. (31). This is done by means of the following convenient rewriting

1
t
=

d
dt

�

Xα,λ(x , t)/t
�

vα,λ(Xα,λ(x , t)/t)− Xα,λ(x , t)/t
. (35)

Integrating the expression (35) from t0 to t we obtain
∫ Xα,λ(x ,t)/t

x/t0

dζ
vα,λ(ζ)− ζ

= log
t
t0

. (36)

After taking the limit t →∞, the right-hand-side diverges logarithmically. The only way for
the left-hand-side to match this behaviour is by having

lim
t→∞

Xα,λ(x , t)

t
= ζα,λ . (37)

In words, this means that the trajectories of the quasiparticles become linear at asymptotically
long times.

Crucially, Equation (36) allows us to explicitly determine the initial condition x in terms of
the position of the quasiparticle at time t. After a straightforward derivation (see Appendix A),
we find

x
t
= θH

�

ζα,λ −
Xα,λ(x , t)

t

�

[vmin − vα,λ(−∞)]exp

�

∫ Xα,λ(x ,t)/t

vmin

dz
z − vα,λ(z)

�

+ θH

�

Xα,λ(x , t)

t
− ζα,λ

�

[vmax − vα,λ(∞)]exp

�

∫ vmax

Xα,λ(x ,t)/t

dz
vα,λ(z)− z

�

+O
� t0

t

�

. (38)

Here the first and the second terms account for quasiparticles created on the left and right lead
(see Fig. 1), respectively. To treat the large time limit it is useful to define the scaling function

Φα,λ(ζ, t, t0) =
Xα,λ(ζt, t)

t
, (39)

such that Φα,λ(ζ, t, t0)t is the position at time t of the particle that was originated at position
ζt at time t0. From (38) it is straightforward to find

ζ= θH(ζα,λ −Φα,λ(ζ, t, t0))[v
min − vα,λ(−∞)]exp

�

∫ Φα,λ(ζ,t,t0)

vmin

dz
z − vα,λ(z)

�

+ θH(Φα,λ(ζ, t, t0)− ζα,λ)[v
max − vα,λ(∞)]exp

�

∫ vmax

Φα,λ(ζ,t,t0)

dz
vα,λ(z)− z

�

+O
� t0

t

�

. (40)

Furthermore, it is useful to introduce the inverse function Zα,λ(φ, t, t0) = Φ−1
α,λ(φ, t, t0).

Zα,λ(φ, t, t0)t gives the position at time t0 of the particle (α,λ) that at time t has position
φ t. Using (40) we obtain

Zα,λ(φ, t, t0) =θH(ζα,λ −φ)[vmin − vα,λ(−∞)]exp

�

∫ φ

vmin

dz
z − vα,λ(z)

�

+ θH(φ − ζα,λ)[v
max − vα,λ(∞)]exp

�

∫ vmax

φ

dz
vα,λ(z)− z

�

+O
� t0

t

�

. (41)
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(a) (b) (c)

Figure 3: Pictorial representation of the functions Φα,λ(ζ) (cf. (40)), its inverse
Zα,λ(φ) (cf. (41)), and of Jα,λ(ζ) (cf. (63)). In (a) a quasiparticle is produced at
time 0 at position ζt. The function Φα,λ(ζ) gives its ray at time t. In (b) Zα,λ(φ)t
is the position at time 0 of the particle that at time t is on the ray φ. In (c) two
quasiparticles with opposite rapidities λ and −λ are created. The function Jα,λ(ζ)
gives the ray at time t of the quasiparticle whose partner with rapidity −λ is at ray
ζ.

From now on we take the limit t0/t → 0, dropping the dependence on t0 and t in Φα,λ and
Zα,λ. With a slight abuse of notations, we indicate by Φα,λ(ζ)t the position at time t of the
quasiparticle that started at position ζt at time 0 and by Zα,λ(φ)t the position at time 0 of
the quasiparticle that is at position φ t at time t. The functions Φα,λ and Zα,λ are pictorially
illustrated in Fig. 3. Using these definitions, one immediately has

Zα,λ(Φα,λ(ζ)) = ζ . (42)

We mention that the function Zα,λ(φ)t has been already introduced in Refs. [74,75], where it
is called “characteristics”.

An important property of Zα,λ(φ) and Φα,λ(ζ) is that they are monotonic functions of their
arguments. This is a direct consequence of the non-crossing condition (34) of the trajectories.
To show the monotonicity of Zα,λ(φ) it is useful to observe that (41) implies

(φ − vα,λ(φ))∂φZα,λ(φ) = Zα,λ(φ). (43)

Moreover, a trivial consequence of (34) is

Zα,λ(φ)

φ − vα,λ(φ)
> 0 ∀φ . (44)

Equation (43) and (44) imply that Zα,λ and, in turn, its inverse Φα,λ(ζ) are monotonic.

4.1 Flow of conserved quantities

In this section we show how the information about the quasiparticles’ trajectories can be used
to determine the flow of conserved quantities. The latter are represented by functions of x
and t written in terms of a single-particle contribution gα,λ(x , t) that satisfies the continuity
equation (13), namely

G(x , t) =
Ns
∑

α=1

∫

dλ gα,λ(x , t) , (45)

where
∂t gα,λ(x , t) + ∂x vα,λ(x , t)gα,λ(x , t) = 0 . (46)

This definition includes the expectation values of all local and quasilocal conserved-charge
densities, for which (cf. (7))

gα,λ(x , t) = qα,λρα,λ(x , t) , (47)
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but also the Yang-Yang entropy, as demonstrated by Eq. (20).
Since gα,λ(x , t) is conserved, we have

∫ Xα,λ(x ,t)

Xα,λ(a,t)
dy gα,λ(y, t) =

∫ x

a
dy gα,λ(y, 0) . (48)

Let us now specialise this relation to our setting

gα,λ(x , 0) = θH(x)g
(R)
α,λ + θH(−x)g(L)

α,λ (49)

and assume that all the functions of x and t become functions only of the “ray" x/t. In this
case (48) becomes

∫ Φα,λ(ζ)

ζα,λ

dy gα,λ(y) = ζ
�

θH(ζ)g
(R)
α,λ + θH(−ζ)g

(L)
α,λ

�

, (50)

where we took
Xα,λ(a, t) = ζα,λ t, x = ζt (51)

and used (39). The l.h.s. of (50) can be directly computed using that gα,λ(ζ) fulfils the
continuity equation (30). In particular we find

∫ Φα,λ(ζ)

ζα,λ

dy gα,λ(y) = (Φα,λ(ζ)− vα,λ(Φα,λ(ζ)))gα,λ(Φα,λ(ζ)) . (52)

Plugging this into (50) gives

gα,λ(Φα,λ(ζ)) =
ζ

Φα,λ(ζ)− vα,λ(Φα,λ(ζ))
(θH(ζ)g

(R)
α,λ + θH(−ζ)g

(L)
α,λ) . (53)

All this has a very simple physical interpretation. This equation states that, since (48) is con-
served, gα,λ(Φα,λ(ζ)) is renormalised by the factor

ζ

Φα,λ(ζ)− vα,λ(Φα,λ(ζ))
(54)

to account for changes in the “volume" Xα,λ(x , t)− Xα,λ(a, t). For instance, if the trajectories
are straight lines the volume is constant and, accordingly, we have

ζ

Φα,λ(ζ)− vα,λ(Φα,λ(ζ))
= 1 . (55)

Finally, note that (53) can be equivalently expressed as

gα,λ(ζ) =
Zα,λ(ζ)

ζ− vα,λ(ζ)
(θH(Zα,λ(ζ))g

(R)
α,λ + θH(−Zα,λ(ζ))g

(L)
α,λ) . (56)

5 Prediction for the entropy dynamics

In this section we derive the quasiparticle picture’s prediction for the entanglement dynamics
after a quench from a piecewise homogeneous initial condition (21). Specifically, we assume
that ρ̂L(R) are both pure, low-entangled, states producing pairs of entangled quasiparticles.
Namely, we assume that we can use (1).
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As noted in the previous section, for large enough times after a bipartite quench, we can
make the following replacement (cf. the discussion after (41))

Xα,λ(x , t)→ t Φα,λ(ζ) , (57)

where the function Φα,λ(ζ) is defined in (40). Plugging this expression into (1) and changing
variables to the ray ζ= x/t we have

SA(t) = t
∑

α

∫

dλ

∫

dζ fα,λ(ζt)χ[ζ1,ζ2](Φα,λ(ζ))(1−χ[ζ1,ζ2](Φα,−λ(ζ))) , (58)

where we introduced ζ1,2 ≡ x1,2/t. The identification (57), however, is not sufficient. To make
Eq. (58) predictive we also have to determine the weight function fα,λ(ζ), i.e., the contribution
of the pair of quasiparticles {(α,λ), (α,−λ)} to the entanglement entropy.

Here we conjecture that the entanglement entropy is given by the Yang-Yang entropy
SY Y
α,λ(±∞) of the quasiparticles created initially in the two leads. This means

fα,λ(ζ) = SY Y
α,λ(−∞)θH(−ζ) + SY Y

α,λ(∞)θH(ζ). (59)

As discussed in Sec. 3.1, SY Y
α,λ(±∞) is the density of Yang-Yang entropy of the stationary states

reached after the quench from the homogeneous initial conditions on left and right leads.
The ansatz (59) is motivated by two main observations. First, Eq. (59) has been verified
for quenches from piecewise homogeneous initial states in free systems [65]. Second, for
homogeneous quenches Eq. (59) holds true even in the presence of interactions [33].

Equation (58), supplemented with (59), gives a complete quasiparticle prediction for the
dynamics of the entanglement entropy in the interacting case. It is, however, very complicated
to evaluate, as it involves the determination of both vα,λ(ζ) and Φα,λ(ζ) for all values of ζ. In
the following we show that it is possible to drastically simplify Eq. (58). We begin by changing
variables from ζ to φ = Φα,λ(ζ)

SA(t) = t
∑

α

∫

dλ

∫

dφ
Φ′
α,λ(Zα,λ(φ))

fα,λ(Zα,λ(φ))χ[ζ1,ζ2](φ)(1 − χ[ζ1,ζ2](Φα,−λ(Zα,λ(φ)) ,

(60)

where the function Zα,λ(φ) is defined in (41) and Φ′
α,λ(ζ) = ∂ζΦα,λ(ζ). Then we note

fα,λ(Zα,λ(φ))

Φ′
α,λ(Zα,λ(φ))

=
Zα,λ(φ)

φ − vα,λ(φ)
fα,λ(Zα,λ(φ)) = SY Y

α,λ(ζ), (61)

where in the first step we used (43) and in the second (53). Finally, we use the identity (see
Appendix B for the proof)

θH(Φα,−λ(Zα,λ(φ))− ζ2) = θH(φ − Jα,λ(ζ2)) . (62)

In (62) we introduced the function Jα,λ(ζ), which characterises the trajectory of entangled
quasiparticles pairs. Specifically, Jα,λ(ζ)t gives the position at time t of the quasiparticle (α,λ)
starting at the same point as the particle (α,−λ) that at time t is at position ζt (see Fig. 3 for
a pictorial representation). In formulae we have

Jα,λ(ζ) = θH(ζα,−λ − ζ)Φα,λ

�

[vmin − vα,−λ(−∞)]exp

�

∫ ζ

vmin

dz
z − vα,−λ(z)

��

+ θH(ζ− ζα,−λ)Φα,λ

�

[vmax − vα,−λ(∞)]exp

�

∫ vmax

ζ

dz
vα,−λ(z)− z

��

. (63)
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Note that one trivially has
Jα,λ(Jα,−λ(ζ)) = ζ . (64)

Putting all together we find the following expression for the entanglement entropy

SA(t) =t
∑

α

∫

dλ






θH(ζ2 − Jα,λ(ζ2))

ζ2
∫

max(ζ1,Jα,λ(ζ2))

dφ SY Y
α,λ(φ) + θH(Jα,λ(ζ1)− ζ1)

min(ζ2,Jα,λ(ζ1))
∫

ζ1

dφ SY Y
α,λ(φ)






.

(65)

This expression can be simplified further by using the continuity equation (30) for the Yang-
Yang entropy density. This allows one to perform the integral over φ explicitly

SA(t) = t
∑

α

∫

dλ
§

θH(ζ2 − Jα,λ(ζ2))(φ − vα,λ(φ))S
Y Y
α,λ(φ)

�

�

�

φ=ζ2

φ=max(ζ1,Jα,λ(ζ2))

+θH(Jα,λ(ζ1)− ζ1)(φ − vα,λ(φ))S
Y Y
α,λ(φ)

�

�

�

φ=min(ζ2,Jα,λ(ζ1))

φ=ζ1

ª

. (66)

The last step is achieved by means of the following identity (see Appendix B for the proof)

(ζ− vα,λ(ζ))S
Y Y
α,λ(ζ) = (Jα,−λ(ζ)− vα,−λ(Jα,−λ(ζ)))S

Y Y
α,−λ(Jα,−λ(ζ)) . (67)

Using (67) we can finally rewrite (66) as follows

SA(t) =t
∑

α

∫

dλ
¦

sgn(Jα,−λ(ζ1)− ζ1)sgn(ζ2 − Jα,−λ(ζ1))(ζ1 − vα,λ(ζ1))S
Y Y
α,λ(ζ1)

−sgn(Jα,−λ(ζ2)− ζ1)sgn(ζ2 − Jα,−λ(ζ2))(ζ2 − vα,λ(ζ2))S
Y Y
α,λ(ζ2)

©

, (68)

where we assumed ζ1 < ζ2. Contrary to (58), (68) does not require to integrate over ζ;
Eq. (68) is one of the main results of this paper.

The terms on the two lines of (68) correspond to processes where the quasiparticle (α,λ)
crosses the boundary at ζ1 and ζ2 respectively. Let us look more closely at one of them,
say the one on the first line. First we note that the contribution is positive only if the final
configuration has only one of the two quasiparticles in the system, namely if the particle with
rapidity λ enters the system and its companion is outside or if the particle of rapidity λ exits the
system and its companion is inside. The contributions with final configurations featuring both
quasiparticles inside or outside are instead weighted with a negative sign. This is in perfect
agreement with our intuition: the entanglement increases when a pair is shared. Second, we
note that the numerical value of the contribution is (cf. Eq. (61))

|x1 − t vα,λ(ζ1)|SY Y
α,λ(ζ1) = t|Zα,λ(ζ1)| fα,λ(Zα,λ(ζ1)) . (69)

This is nothing but the number of pairs (α,λ), (α,−λ) for which (α,λ) crossed the border
at x1 before time t times fα,λ(Zα,λ(ζ1)), the contribution of a single pair. This is, again, in
agreement with our expectations. Analogous considerations hold for the term on the second
line.

In Section 6 we discuss further qualitative features of the result (68), focusing on the
dynamics of the entanglement of the semi-infinite chain. Before specialising (68) to that situ-
ation, however, we provide some consistency checks of its validity.
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5.1 Check I: Infinite time limit on a fixed ray

As a first check of (68), we consider the evolution of the entropy when the size of the subsystem
A does not scale with t; in this case the entire subsystem is described by a single ray, say
ζ1. At infinite time the entanglement entropy is expected to coincide with the entropy of the
LQSS that describes the steady state at ray ζ1, in complete analogy with what happens after
homogeneous quenches [33, 34, 40–43]. Let us then verify that (68) is consistent with this
picture. Fixing A= [ζ1 t,ζ2 t], with

ζ2 = ζ1 +
`

t
(70)

in Eq. (68) and taking the infinite time limit with fixed subsystem size `, we find

lim
t→∞

SA(t)
`
= lim

t→∞

t
`

∑

α

∫

dλ
§

`

t

�

SY Y
α,λ(ζ1) + ζ1∂ζ1

SY Y
α,λ(ζ1)− ∂ζ1

�

vα,λ(ζ1)S
Y Y
α,λ(ζ1)

��

ª

=
∑

α

∫

dλSY Y
α,λ(ζ1) , (71)

which is the expected result. In the second step we used that SY Y
α,λ(ζ) fulfils the continuity

equation (20).

5.2 Check II: A lead with sub-extensive entropy

Another interesting case is when one of the homogeneous states joined in the bipartite quench
protocol, say that on the right, has sub-extensive entropy (SY Y

α,λ(∞) = 0). This setup has been
investigated in Ref. [61] for quenches in the XXZ chain.

In this case we expect the entanglement entropy to be independent of the position of the
system’s right boundary, as long as it cannot be reached by quasiparticles coming from the left
lead. In the following we show that this expectation is confirmed by Eq. (68). We first note
that, as a special case of (17), the Yang-Yang entropy density satisfies

φ∂φ

�

SY Y
α,λ(φ)

ρ t
α,λ(φ)

�

= vα,λ(φ)∂φ

�

SY Y
α,λ(φ)

ρ t
α,λ(φ)

�

, (72)

where ρ t
α,λ(φ) is the total root density defined in (9). In the specific case considered we have

SY Y
α,λ(∞) = 0, so we find

SY Y
α,λ(φ) = ρ

t
α,λ(φ)θH(ζα,λ −φ)

SY Y
α,λ(−∞)

ρ t
α,λ(−∞)

. (73)

Considering an interval A = [ζ1 t,ζ2 t] with ζ2 > vmax (cf. Point (i) in Sec. 4), and plugging
(73) into the semiclassical expression (68), we find

SA = t
∑

α

∫

dλ
¦

sgn(ζ1 − Jα,λ(ζ1))sgn(Jα,λ(ζ2)− ζ1)

× (ζ1 − vα,λ(ζ1))θH(ζα,λ − ζ1)S
Y Y
α,λ(ζ1)

©

. (74)

Here we used sgn(Jα,−λ(ζ)−ζ) = sgn(ζ−Jα,λ(ζ)), which is a consequence of the monotonicity
of the functions Jα,λ(ζ) and of (64). We now show that the expression in (74) does not depend
on ζ2 as long as ζ2 > vmax. First, from the definition (63) of Jα,λ(ζ) it follows

Jα,λ(ζ2) = Φα,λ(ζ2 − vα,−λ(∞)) , ζ2 > vmax , (75)
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where we used that for ζ2 > vmax the quasiparticles velocities do not depend on ζ. Second,
we observe

sgn(Φα,λ(ζ2 − vα,−λ(∞))− ζα,λ) = sgn(ζ2 − vα,−λ(∞)− Zα,λ(ζα,λ))

= sgn(ζ2 − vα,−λ(∞)) = 1 . (76)

Here we used that both Zα,λ and Φα,λ are monotonic functions of their arguments and can
then be applied to both members of a difference in the argument of the sgn function. We
also used that Φα,λ = Z−1

α,λ, and Zα,λ(ζα,λ) = 0 (see Section 4). Putting all together we find
Jα,λ(ζ2)> ζα,λ. Combining this with the step function θH(ζα,λ−ζ1) appearing in the integrand
of (74), we then conclude

sgn(Jα,λ(ζ2)− ζ1)θH(ζα,λ − ζ1) = θH(ζα,λ − ζ1) , (77)

which implies that (74) does not depend on ζ2.

6 Entanglement entropy of a semi-infinite interval: Entanglement
production rate

Here we focus on the entanglement entropy of a semi-infinite interval. There are several
reasons why this quantity is interesting. First, it is much easier to calculate via direct numerical
methods, such as tDMRG (cf. Sec. 7). Moreover, in contrast with Formula (68), it is much
simpler to evaluate. Specifically, (68) requires determining the functions Jα,λ(ζ) (see Sec. 4),
which relate the trajectories of the quasiparticles forming an entangled pair. As we now show,
this is not the case for the entanglement between two semi-infinite chains.

The starting point to derive the semiclassical prediction for the entanglement production
rate is obtained from Eq. (68) by considering the limit ζ2 →∞, and neglecting the entropy
contribution associated with the boundary at ζ2 t. The result reads as

S[ζt,∞](t) = t
∑

α

∫

dλ sgn(Jα,−λ(ζ)− ζ)(ζ− vα,λ(ζ))S
Y Y
α,λ(ζ) . (78)

Remarkably, under some general assumptions on the velocity field vα,λ(ζ), this formula can be
further simplified, completely removing the dependence on Jα,λ(ζ). To that aim, we use the
following properties of the group velocities

1. vα,λ(±∞) are differentiable, periodic functions of λ with period Λ;

2. vα,λ(±∞) are odd functions of λ;

3. vα,λ(±∞) have a single maximum in [−Λ/2,Λ/2].

It is possible to show that 1.–3. imply that the trajectories of the entangled quasiparticles (α,λ)
and (α,−λ) originating in the same point do not cross during the dynamics (see Appendix C).
This implies

sgn(Jα,−λ(ζ)− ζ) = sgn(vα,−λ(σα,λ(ζ)∞)− vα,λ(σα,λ(ζ)∞)) = −sgn(vα,λ(σα,λ(ζ)∞)) ,
(79)

where we defined

σα,λ(ζ)≡ sgn(Zα,λ(ζ)) = sgn(ζ− ζα,λ) = sgn(ζ− vα,λ(ζ)) . (80)
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In the first step of (79) we used that, since the particles never cross, the sign of Jα,−λ(ζ)−ζ is
the sign of the difference of the initial velocities (σα,λ(ζ) discriminates whether these velocities
are computed in the left or in the right state). In the second step we used that the velocities in
the left and right macrostates are odd functions of λ. Finally, the last equality in (80) is due
to

ζ > ζα,λ ⇔ ζ > vα,λ(ζ) , (81)

which is a consequence of Assumption 1 and of the continuity in ζ of vα,λ(ζ).
We remark that the conditions 1.–3. are not very restrictive. For example, they hold for

all the quenches considered so far in the XXZ chain. In particular, they are verified in all the
bipartite quenches in the XXZ chain considered in this work.

After plugging (79) in (78) we obtain that the entanglement entropy grows linearly as

S[ζt,∞](t) = t
∑

α

∫

dλ sgn(vα,λ(σα,λ(ζ)∞))(vα,λ(ζ)− ζ)SY Y
α,λ(ζ) . (82)

This equation is our second main result, and it expresses the entanglement production rate
S′ent, i.e., the slope of the linear growth in (82) solely in terms of quantities evaluated at the
point ζ: all information about the quasiparticle trajectories has disappeared from the final
expression. This means that, at least under the assumptions 1.–3., all information about the
entanglement-entropy spreading is encoded in the local equilibrium state at ray ζ.

Equation (82) contains highly non-trivial effects of the interaction. To describe them, let
us focus on the simplified case

sgn(vα,λ(+∞)) = sgn(vα,λ(−∞)) = sgn(λ). (83)

Once again, we stress that condition (83) holds for all the quenches in the XXZ chain that
have been considered so far in the literature. In addition, we specialise (82) to the case ζ= 0,
namely we consider the entropy between the two leads in Fig. 1. In this case we find

S[0,∞](t) =t
∑

α

∫

dλ sgn(λ)vα,λ(0)S
Y Y
α,λ(0)

=t
∑

α

∫

λ>0

dλ
�

vα,λ(0)S
Y Y
α,λ(0)− vα,−λ(0)S

Y Y
α,−λ(0)

�

. (84)

In this expression we can distinguish four possible “processes”

(a) sign(vα,λ(0)) = 1, sign(vα,−λ(0)) = −1;

(b) sign(vα,λ(0)) = 1, sign(vα,−λ(0)) = 1;

(c) sign(vα,λ(0)) = −1, sign(vα,−λ(0)) = −1;

(d) sign(vα,λ(0)) = −1, sign(vα,−λ(0)) = 1;

The last case is forbidden by (83), which would imply the absurd scenario where (α,λ) is
initially on the right of (α,−λ) despite the trajectories of the two particles not crossing. We
are then left with the three possibilities (a)–(c).

We begin our analysis by considering case (a). This case accounts for the entangled quasi-
particles that, at time t, are shared between the leads. Reasoning as in (69), we identify the
contribution

t|Zα,λ(0)| fα,λ(Zα,λ(0)) + t|Zα,−λ(0)| fα,−λ(Zα,−λ(0)) , (85)
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Figure 4: Possible trajectories of the entangled quasiparticles after a quench from
piecewise homogenous initial state. Quasiparticle pairs are produced deep in the
bulk of the two subsystems, with opposite velocities. The shaded area denotes the
lightcone spreading from the interface between the two systems (vertical dotted line).
Quasiparticles trajectories are linear until they hit the lightcone. Within the lightcone
the quasiparticles velocities depend on the ray ζ≡ x/t. Panels (a)–(c) show the three
possible trajectories of the quasiparticle pairs produced on the left of the junction.
(a) Only one member of the pair reaches the interface. (b) Both members of the pair
reach the interface at different times. (c) Both members are deflected back before
reaching the interface.

where {t|Zα,±λ(0)|} count the number of relevant pairs and { fα,λ(Zα,±λ(0))} are the contribu-
tions to the entropy of each pair.

Case (b), instead, describes the situation where both quasiparticles forming an entangled
pair, emitted from the left lead, eventually reach the boundary with the right lead. This implies
that the velocity of one of the two entangled quasiparticles changes sign during the dynamics.
Importantly, this also implies that the pairs emitted from the right do not reach the boundary
and are deflected back. Indeed, two particles with the same rapidity λ can reach ζ= 0 only if
they come from the same side (otherwise the velocity field in ζ= 0 would not be well defined).
In this case the contribution reads as

t|Zα,λ(0)| fα,λ(Zα,λ(0))− t|Zα,−λ(0)| fα,−λ(Zα,−λ(0)) . (86)

Case (c) is complementary to (b): both quasiparticles emitted from the right reach the bound-
ary and those emitted from the left are deflected back. The contribution reads as

−t|Zα,λ(0)| fα,λ(Zα,λ(0)) + t|Zα,−λ(0)| fα,−λ(Zα,−λ(0)) . (87)

Finally, we point out that, once crossed the junction, a particle obeying the equation of mo-
tion (31) cannot come back.

The trajectories of the entangled pairs corresponding to the three different scenario are
schematically represented in Figure 4. Note that (a) is the standard case: it is realised in
quenches from piecewise homogeneous initial states in free systems [65] and in quenches
in interacting integrable systems evolving from homogeneous states [33, 34]. Cases (b) and
(c), instead, are a landmark of the simultaneous presence of inhomogeneity and interactions.
In these cases the entangled pair contributes only for a finite time, i.e., only when the two
quasiparticles are in different leads. After both quasiparticles crossed the boundary they do
not contribute anymore to the entropy dynamics. The different scenarios (a)–(c) are illustrated
in Figure 5 for some concrete bipartite quenches in the XXZ chain.

6.1 Entanglement versus thermodynamic entropy production rate

Let us now focus on the entanglement production rate. This quantity is defined as the slope of
the linear growth of the entanglement entropy of a semi-infinite interval, or, in other words,
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Figure 5: Trajectories of entangled quasiparticles (α,λ) and (α,−λ) after a bipartite
quench in the XXZ chain. x and y-axis show space and time, respectively. Different
lines correspond to different λs. (a) Trajectories of the quasiparticles of the first
species (α = 1) after the sudden junction of the Néel state |N,0〉 (24) (left) and the
Dimer state (23) (right). (b) Trajectories of the quasiparticles of the second species
(α = 2) after the sudden junction of the Néel state |N, 0〉 (24) (left) and the Dimer
state (23) (right). Note that the trajectories of pairs corresponding to solid lines are
always very close (but not coinciding). This is due to the fact that λ ≈ π/2. (c)
Trajectories of the quasiparticles of the first species (α= 1) after the sudden junction
of the Ferromagnetic state |F, 0〉 (25) (left) and the Néel state |N, 0〉 (24). The results
are obtained by solving the equation of motion (31); We took ∆ = 10 in panels (a)
and (b), and ∆= 5 in panel (c).

as the time derivative of (78) at fixed ray ζ. As discussed in Section 6, it reads as (cf. (82))

S′ent,ζ ≡ S′[ζt,∞] =
∑

α

∫

dλ sgn(vα,λ(σα,λ(ζ)∞))(vα,λ(ζ)− ζ)SY Y
α,λ(ζ) . (88)

It is particularly instructive to compare it with the rate at which the two semi-infinite intervals
exchange thermodynamic entropy. This is defined as

S′th,ζ ≡
∑

α

∫

dλ |vα,λ(ζ)− ζ|SY Y
α,λ(ζ). (89)

First of all, we observe that the exchange rate of thermodynamic entropy is an upper bound
for the entanglement production rate, i.e.,

S′ent,ζ ≤ S′th,ζ , ∀ζ . (90)

This is a direct consequence of

sgn(vα,λ(σα,λ(ζ)∞))(vα,λ(ζ)− ζ)≤ |vα,λ(ζ)− ζ| . (91)

At the specific ray ζ = 0, after quenches from homogeneous initial states [33, 34] and after
bipartite quenches in free models [65], the bound is saturated, S′ent,0 = S′th,0. Indeed, in these
cases the group velocity does not depend on ζ, implying

sgn(vα,λ(σα,λ(0)∞))vα,λ(0) = sgn(vα,λ(0))vα,λ(0) = |vα,λ(0)| . (92)

After bipartite quenches in interacting integrable systems, instead, S′ent,0 and S′th,0 are generi-
cally different. Using the simplifying assumption (83) we see that only scenario (a) in Figure 4
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Figure 6: Entanglement (full simbols) versus thermodynamic (empty symbols) en-
tropy production rate after the quench from a piecewise homogeneous initial state in
the XXZ chain. The x-axis shows that chain anisotropy. Different symbols are used
for different initial states obtained by joining the tilted Néel state (24), the dimer
state (23), and the tilted ferromagnetic state (25). Full symbols are obtained using
Eq. (88) while empty symbols are obtained using Eq. (89).

ensures S′ent,0 = S′th,0. On the contrary, scenarios (b) and (c) imply S′ent,0 6= S′th,0. An illustration
of the generic behaviour is given in Figure 6, which reports results for three bipartite quenches
in the XXZ chain.

We point out that, if one of the scenarios (b) and (c) is allowed, the equality could hold
only in the special case when the pairs reaching the junction originate on a lead with sub-
extensive entropy (see Section 5.2). This is the case, for instance, after bipartite quenches in
the XXZ chain if one of the two leads is prepared in the ferromagnetic state [66].

7 tDMRG benchmark

Here we present numerical checks of the results of Sections 5 and 6, focussing on the evolution
of the half-chain entanglement entropy after a bipartite quench in the XXZ spin-1/2 chain with
∆> 1 (cf. (4)).

We first focus on the quench from the state |N,0〉⊗|F,θ 〉 (cf. (24) and (25)). The results are
presented in Figure 7. The different continuous curves are tDMRG results for different values
of the tilting angle θ and of the chain anisotropy∆. In the simulations we considered maximal
bond dimensions χmax ≈ 400, which allowed us to reach half-chain entropy S ≈ 3 and times
t ≈ 25. The dashed-dotted lines in the figure are the prediction (82). The agreement between
the numerics and the analytical result is satisfactory for all quenches.

Let us now consider the difference between the entanglement production rate (88) and the
production rate (89) of thermodynamic entropy. As demonstrated in Figure 6, this difference
is generically quite small. This makes its numerical observation a highly non-trivial task. In
practice, we verified that for all the quenches discussed in Fig. 7, the difference Sent − Sth is
not visible within the times and system sizes accessible with tDMRG.

To accentuate the discrepancy between Sent and Sth, we consider the case in Fig. 6 that
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Figure 7: Entanglement dynamics after a bipartite quench in the XXZ chain. In the
initial state two semi-infinite chains are prepared in the Néel state |N,0〉 (24) (left)
and the tilted ferromagnetic state (25) (right), respectively. The figure shows the
half-chain entropy plotted versus the time after the quench. The different curves are
tDMRG data for the chain with∆= 5, 10 and several values of θ (tilting angle). The
dashed lines are linear fits. The slope of the lines is fixed by the prediction of the
quasiparticle picture (82).

shows the largest difference |Sent−Sth|, namely, the quench from the state |N〉⊗|N,θ 〉 (cf. (24)).
In this case, however, the entanglement growth is much faster, posing a severe limitation to
the timescales accessible by tDMRG. The time evolution of the entanglement entropy after
the quench for different values of the tilting angle θ and of the anisotropy ∆ is reported in
Figure 8. For short times the tDMRG data exhibit large finite-time effects and are not described
by (82). On the other hand, for t ¦ 6 the numerical data become compatible with the slope
S′ent. Still, much larger timescales are needed to provide a robust verification of (82).

8 Conclusions

We investigated the dynamics of the entanglement entropy after quenches from a piecewise
homogeneous initial states in interacting integrable systems. By combining the quasiparticle
picture for the entanglement spreading with the GHD approach, we derived an analytic pre-
diction for the entropy evolution after the quench. Remarkably, the entanglement production
rate, i.e., the growth rate of the entanglement between two half-infinite chains is described
by a simple formula that we provided. This depends only on the thermodynamic macrostate
(GGE) that describes local properties near the interface between the two chains at infinite
time, as it was pointed out in Ref. [61]. We showed, however, that the entanglement produc-
tion rate is different from the rate of exchange of thermodynamic entropy between the two
half-infinite chains. This is in contrast with quenches in free-fermion models [65] and in ho-
mogeneous systems [33, 34] and it is a genuine effect of the combination of inhomogeneity
and interactions.

Our work calls attention to several interesting directions for future research. An immediate
one is to provide a more robust independent numerical check, going beyond the tDMRG time
scales that we accessed in this work. Moreover, our analytic formula for the entanglement
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Figure 8: Entanglement dynamics after a bipartite quench in the XXZ chain. The
initial state is obtained by joining the Néel state |N, 0〉 and the tilted Néel state |N,θ 〉
(24). The two panels report the dynamics for different values of the chain anisotropy
∆ and the tilting angle θ . The continuous lines are tDMRG results. The slope of the
dashed-dotted line is S′ent, the entanglement production rate at ζ= 0 (cf. (88)). The
slope of the dotted lines is S′th, the exchange rate of thermodynamic entropy at ζ= 0
(cf. (89)).

dynamics of a finite interval (cf. (68)) requires the quasiparticle trajectories, which have to
be determined numerically. A promising alternative route is to apply the so-called “flea gas”
approach [77]. There, the dynamics of out-of-equilibrium quantum systems is simulated by a
gas of point-like particles travelling ballistically and scattering elastically.

Another interesting direction is to extend our framework to describe the dynamics of Rényi
entropies. Indeed, as recently shown in Ref. [97], from the the dynamics of Rényi entropies
one can extract that of the logarithmic negativity [98–107], which is a good entanglement
measure for mixed states. Unfortunately, even if the steady-state value of the Rényi entropies
is known [66, 108–110], computing their full dynamics remains a highly challenging task. A
severe complication is that the thermodynamic macrostate describing the Rényi entropies does
not coincide with that describing local operators and depends non-trivially on the Rényi index.

Finally, a local breaking of integrability around the interface between the two chains is
expected to have dramatic effects on the entanglement production rate along any ray. We
wonder, however, whether the ray ζ = 0 is somehow exceptional, displaying a completely
different qualitative behaviour. We leave this question to future investigations.
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A Trajectories of semiclassical quasiparticles

A.1 Properties of the velocity field

Here we prove that, for the velocity field defined by (27)–(29), the Points (i) and (ii) of Sec-
tion 4 are fulfilled. Point (i) is almost trivial. For ζ > vmax all functions ϑα,λ(ζ) defined in (27)
become independent of ζ. It then follows from (28) and (29) that also ρ t

α,λ(ζ) and vα,λ(ζ)
become independent of ζ. The same holds true for ζ < vmin. Let us now consider Point (ii):
we will show that vα,λ(ζ) is always differentiable with bounded derivative. We start by noting
that ρ t

α,λ(ζ) fulfils a continuity equation of the form (30), as it can be immediately seen from
(13), (28), and (29). We then have

ρ t
α,λ(ζ)∂ζvα,λ(ζ) = (ζ− vα,λ(ζ))∂ζρ

t
α,λ(ζ) . (93)

Here we always assume ρ t
α,λ(ζ) 6= 0 for all α, λ, and ζ. Moreover, as a consequence of (i), we

have
∂ζvα,λ(ζ) = ∂ζρ

t
α,λ(ζ) = 0 for ζ > vmax ∧ ζ < vmin . (94)

Thus, to show that ∂ζvα,λ(ζ) is bounded we just need to show that ∂ζρ
t
α,λ(ζ) is continuous.

Taking the derivative of (28) we have

∂ζρ
t
α,λ(ζ) =

Ns
∑

β=1

∫

dµ Tα,λ;β ,µρ
t
β ,µ(ζ)∂ζϑβ ,µ(ζ) +

Ns
∑

β=1

∫

dµ Tα,λ;β ,µ ϑβ ,µ(ζ)∂ζρ
t
β ,µ(ζ). (95)

From this equation follows that ∂ζρ
t
α,λ(ζ) is continuous in ζ if the driving term (the first term

on the r.h.s.) is. Taking the derivative of (27) we find that the driving term reads as

Ns
∑

β=1

∫

dµ Tα,λ;β ,µρ
t
β ,µ(ζ)∂ζϑβ ,µ(ζ)=

Ns
∑

β=1

∫

dµ Tα,λ;β ,µρ
t
β ,µ(ζ)[ϑ

(R)
µ,β(ζ)− ϑ

(L)
µ,β(ζ)]δ(ζ− ζβ ,µ) .

(96)
The function ζβ ,µ (defined in Assumption 1) is a continuous piecewise invertible function of
µ, so the sum on the r.h.s. can be written as a sum of continuous functions of ζ by integrating
over the Dirac delta function. This implies that ∂ζρ

t
α,λ(ζ) is a continuous function of ζ and

concludes the proof.

A.2 Proof of Eq. (38)

We start by considering (36) for x < vmin t0. In this case, using that vα,λ(ζ) = vα,λ(−∞) for
ζ < vmin

α (−∞), we find

�

x − vα,λ(−∞)t0

�

= t(vmin − vα,λ(−∞))exp

�

∫ Xα,λ(x ,t)/t

vmin

dζ
ζ− vα,λ(ζ)

�

. (97)

Analogously, considering x > vmax t0, we have

�

x − vα,λ(∞)t0

�

= t(vmax − vα,λ(∞))exp

�

∫ vmax

Xα,λ(x ,t)/t

dζ
vα,λ(ζ)− ζ

�

. (98)
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Putting all together we find

x
t
=θ (vmin t0 − x)

x
t
+ θ (vmax t0 − x)θ (x − vmin t0)

x
t
+ θ (x − vmax t0)

x
t

=θ (vmin t0 − x)(vmin − vα,λ(−∞))exp

�

∫ Xα,λ(x ,t)/t

vmin

dζ
ζ− vα,λ(ζ)

�

+ θ (x − vmax t0)(v
max − vα,λ(∞))exp

�

∫ vmax

Xα,λ(x ,t)/t

dζ
vα,λ(ζ)− ζ

�

+O
� t0

t

�

, (99)

where we used that, if vmin t0 ≤ x ≤ vmax t0, then x/t = O (t0/t). Using now (34) we have

x
t
= θH

�

ζα,λ −
Xα,λ(x , t)

t

�

[vmin − vα,λ(−∞)]exp

�

∫ Xα,λ(x ,t)/t

vmin

dζ
ζ− vα,λ(ζ)

�

+ θH

�

Xα,λ(x , t)

t
− ζα,λ

�

[vmax − vα,λ(∞)]exp

�

∫ vmax

Xα,λ(x ,t)/t

dζ
vα,λ(ζ)− ζ

�

+O
� t0

t

�

, (100)

which is Eq. (38).

B Details on the calculation of the entanglement entropy

B.1 Proof of (62)

Using the monotonicity of Zα,λ(φ) in φ we have

θH(Φα,−λ(Zα,λ(φ))− ζ2) = θH(Zα,−λ
�

Φα,−λ(Zα,λ(φ))
�

− Zα,−λ (ζ2))

= θH(Zα,λ(φ)− Zα,−λ(ζ2)) . (101)

Applying Eq. (41) we find

θH(Φα,−λ(Zα,λ(φ))− ζ2) (102)

= θH(ζα,−λ − ζ2)θH

�

Zα,λ(φ)− [vα,−λ(−∞)− vmin]exp

�

∫ ζ2

vmin

dz
z − vα,−λ(z)

��

+ θH(ζ2 − ζα,−λ)θH

�

Zα,λ(φ)− [vmax − vα,−λ(∞)]exp

�

∫ vmax

ζ2

dz
vα,−λ(z)− z

��

. (103)

Finally, using the monotonicity in ζ of Φα,λ(ζ) we have

θH(Φα,−λ(Zα,λ(φ))− ζ2) (104)

= θH(ζα,−λ − ζ2)θH

�

φ −Φα,λ

�

[vα,−λ(−∞)− vmin]exp

�

∫ ζ2

vmin

dz
z − vα,−λ(z)

���

+ θH(ζ2 − ζα,−λ)θH

�

φ −Φα,λ

�

[vmax − vα,−λ(∞)]exp

�

∫ vmax

ζ2

dz
vα,−λ(z)− z

���

. (105)

Using the definition (63) of the function Jα,λ(ζ) this equation immediately gives (62).
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B.2 Proof of (67)

Applying (53) to the Yang-Yang entropy SY Y
α,λ(Φα,λ(ζ)) and using SY Y

α,±λ(±∞) = SY Y
α,λ(±∞) we

find

(Φα,λ(ζ)− vα,λ(Φα,λ(ζ)))S
Y Y
α,λ(Φα,λ(ζ)) = (Φα,−λ(ζ)− vα,−λ(Φα,−λ(ζ)))S

Y Y
α,−λ(Φα,−λ(ζ)) . (106)

Using the arbitrariness of ζ and the definition (63) of Jα,λ(ζ) this equation can be written as

(ζ− vα,λ(ζ))S
Y Y
α,λ(ζ) = (Jα,−λ(ζ)− vα,−λ(Jα,−λ(ζ)))S

Y Y
α,−λ(Jα,−λ(ζ)) , (107)

which is (67).

C Non-crossing of quasiparticles trajectories

Here we show that the trajectories of the entangled quasiparticles with opposite rapidities ±λ
do not cross during the dynamics. Specifically, we show that

Φα,λ(ζ) 6= Φα,−λ(ζ), (108)

where Φα,λ(ζ) is defined in (40). To prove (108) we use the following assumptions on the
velocity field vα,λ(±∞)

1. vα,λ(±∞) are differentiable, periodic functions of λ with period Λ.

2. vα,λ(±∞) are odd functions of λ.

3. vα,λ(±∞) have a single maximum in [−Λ/2,Λ/2].

The first step is to take the λ-derivative of (40) at fixed ζ

∂λΦα,λ(ζ) = [Φα,λ(ζ)− vα,λ(Φα,λ(ζ))]
� v′

α,λ(∞)θH(ζ)

vmax − vα,λ(∞)
+

v′
α,λ(−∞)θH(−ζ)

vmin − vα,λ(−∞)

�

, (109)

where we used
θH(±ζ) = θH(±ζα,λ ∓Φα,λ(ζ)) . (110)

Let us define λ̄α,+ and λ̄α,− as the rapidities corresponding to the maximum of vα,λ(∞) and
vα,λ(−∞) respectively. We then distinguish four cases depending on the sign of ζ and of
|λ| − |λ̄α,±|.

(i)ζ > 0 and |λ|< |λ̄α,+|, (ii)ζ > 0and |λ|> |λ̄α,+|, (111)

(iii)ζ < 0 and |λ|< |λ̄α,−|, (iv)ζ < 0and |λ|> |λ̄α,−|. (112)

We start with the proof of case (i). By integrating (109) from −λ to λ, we find

Φα,λ(ζ)−Φα,−λ(ζ) =

λ
∫

−λ

dµ [Φα,µ(ζ)− vα,µ(Φα,µ(ζ))]
v′α,µ(∞)

vmax − vα,µ(∞)
. (113)

The integrand has fixed sign in the interval [−λ,λ]. This is because we have that for any ζ,
Φα,µ(ζ)− vα,µ(Φα,µ(ζ))> 0, v′α,µ(∞) has fixed sign ∀µ ∈ [−λ,λ], and vmax− vα,µ(∞)> 0, for
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any µ. Thus, we conclude that (108) holds. The case (ii) is treated similarly. By integrating
(109) from λ to Λ/2 and from −Λ/2 to −λ we find

Φα,λ(ζ)−Φα,−λ(ζ) = Φα,λ(ζ)−Φα,Λ/2(ζ) +Φα,−Λ/2(ζ)−Φα,−λ(ζ)

= −







−λ
∫

−Λ/2

+

Λ/2
∫

λ






dµ [Φα,µ(ζ)− vα,µ(Φα,µ(ζ))]

v′α,µ(∞)

vmax − vα,µ(∞)
. (114)

Here we used Φα,−Λ/2(ζ) = Φα,Λ/2(ζ), which follows from the definition (40) and the peri-
odicity of vα,µ(±∞). As for case (i), the integrand has fixed sign in the integration interval,
implying that (108) holds true. Finally, the remaining cases (iii) and (iv) are treated in a
completely analogous way.
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