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Abstract

We study conformal blocks for thermal one-point-functions on the sphere in conformal
field theories of general dimension. These thermal conformal blocks satisfy second-
order Casimir differential equations and have integral representations related to AdS
Witten diagrams. We give an analytic formula for the scalar conformal block in terms
of generalized hypergeometric functions. As an application, we deduce an asymptotic
formula for the three-point coefficients of primary operators in the limit where two of
the operators are heavy.

Copyright Y. Gobeil et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 18-04-2019
Accepted 22-07-2019
Published 01-08-2019

Check for
updates

doi:10.21468/SciPostPhys.7.2.015

Contents

1 Introduction 2
1.1 Conformal blocks: definitions and conventions 4
1.2 Explicit form of conformal blocks 5

2 Thermal Casimir method 5
2.1 Casimir operator in 3d 6
2.2 General structure 6
2.3 Casimir differential equation 7

3 AdS-integral representation 9
3.1 Heuristic argument 9
3.2 Construction by shadow formalism 11
3.3 Explicit AdS integral representation 14

3.3.1 WKB limit 16
3.3.2 Large ∆O limit 17

4 An application: asymptotics of OPE coefficients 17
4.1 Density of states in general dimensions 17
4.2 Asymptotics for generic operators 18

1

https://scipost.org
https://scipost.org/SciPostPhys.7.2.015
mailto:yan.gobeil@mail.mcgill.ca
mailto:maloney@physics.mcgill.ca
mailto: gng@math.tcd.ie
mailto: jieqiang@mit.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.7.2.015&amp;domain=pdf&amp;date_stamp=2019-08-01
http://dx.doi.org/10.21468/SciPostPhys.7.2.015


Select SciPost Phys. 7, 015 (2019)

4.3 Asymptotics for primaries 19

A Conformal algebra and representations: notations and conventions 21

B Casimir equation in general dimensions 21
B.1 Orthonormal basis of the conformal algebra 22

B.1.1 Even dimension 22
B.1.2 Odd dimension 22

B.2 Casimir equation 23

C Brute force calculation of the blocks 25

D Various limits of the 3D conformal block using Casimir equations 26
D.1 WKB Limit 26
D.2 Large ∆O limit 27

E AdS-integral representation satisfies the Casimir differential equation 27
E.1 Field theory considerations 27
E.2 Solution to Casimir differential equation 28

F Details of performing AdS integrals 30

References 31

1 Introduction

The recent revival of the conformal bootstrap program (see [1–5] for reviews) has led to im-
pressive advances in our understanding of conformal field theories (CFTs). The main strategy
of this program is to impose the constraints of unitarity and conformal invariance directly on
the theory, without relying on a traditional perturbative expansion. So far most work has fo-
cused on the constraints coming from crossing symmetry of flat-space four point functions,
which is a consequence of the associativity of the operator product expansion (OPE). The con-
straints of conformal invariance on other observables, such as correlation functions in other
backgrounds or at finite temperature, are less well understood. A notable exception is in two
dimensions, where modular invariance relates the high temperature behaviour of the theory
to the low temperature behaviour. But the constraints coming from the consistency of higher
dimensional CFTs at finite temperature have not received as much attention.1

In this work, we aim to provide a first step towards a bootstrap program for thermal cor-
relators in higher dimensional CFT. In the case of the four point functions, the essential ingre-
dients in the bootstrap program are the conformal blocks, which describe the contributions
of an entire representation of conformal symmetry to a four point function. We are therefore
interested in exploring the structure of finite temperature conformal blocks, which describe
the contribution of a particular representation (or set of representations) of conformal sym-
metry to a given thermal correlation function. We will study conformal field theory in d > 2
space-time dimensions on Rtime × Sd−1 at finite temperature; we will sometimes specialize to
d = 3 for the sake of definiteness. We will focus on the computation of the conformal blocks

1See, however, [6–16]. For more recent progress, see [17].
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for one-point functions of scalar operators at finite temperature, which is the first non-trivial
case.2 We will obtain explicit expressions for these blocks when the internal primary operator
is also a scalar.

We begin in Sec. 2 by describing the Casimir differential equations satisfied by these ther-
mal conformal blocks. These are second order differential equations, which are obtained by
studying the insertion of the conformal Casimir operator into the thermal trace. In Sec. 2 we
will present explicit formulas for d = 3. In Appendix B we will discuss the generalization to
higher dimensions, which is straightforward, although the explicit expressions are more com-
plicated. This thermal Casimir method can be viewed as the generalization of the Casimir
method of [23] to thermal one-point functions, or as a higher-dimensional generalization of
the two dimensional case presented in [21]. One notable feature of this differential equation
is that it involves not just derivatives with respect to temperature, but also with respect to
angular potentials for the spatial sphere Sd−1. Thus, in seeking to find explicit solutions of
the Casimir equation it is necessary to consider the block with all possible thermodynamic
potentials turned on.

In Sec. 3 we will describe an integral representation of the thermal one-point block. Al-
though we are not assuming the existence of a holographic dual, this integral representation
can be interpreted in terms of a Witten diagram in AdS. This is quite similar to the AdS geodesic
Witten diagram representation of the flat space conformal blocks [24–29].3 We will first give
a heuristic motivation for our integral representation by considering the decomposition of the
full Witten diagram calculation of CFT thermal one-point functions into conformal blocks.
Then in Sec. 3.2 we will give a more constructive proof of our AdS-integral representation
using the shadow formalism of [33]. In Appendix E we will verify that our integral expres-
sion solves the thermal Casimir equation with the correct boundary conditions. Remarkably,
it turns out that this integral expression can be evaluated for the scalar conformal block in the
absence of angular potentials. This will give an explicit analytic expression for the thermal
block in terms of the generalized hypergeometric function 3F2. The integral expression will
also allow us to easily discuss various limits of the block.

We will conclude in Sec. 4 with an important physical application, which is an asymptotic
formula for the OPE coefficients of primary operators. At high temperature, the one-point
function of an operator φ of dimension ∆φ will take the form4

〈φ〉β ≈ αφβ
−∆φ + . . . , (1)

where αφ is a constant which depends on the theory and the choice of operatorφ. The inverse
Laplace transform of this equation then gives an expression for this microcanonical expectation
value of φ:

〈O|φ |O〉
�

�

�

∆O
≈ αφ

�

∆O
(d − 1)c̃

�

∆φ
d

. (2)

This is the average value of the expectation value of φ in a heavy state |O〉, averaged over all
states |O〉 of energy∆O, and c̃ is a theory-dependent constant related to the asymptotic density

2Although we are not aware of a detailed study of thermal conformal blocks for n-point functions in dimension
d > 2, there is a considerable literature (see e.g. [18–22]) for two dimensional CFTs.

3We note that, for flat space four-point blocks, there are several other interesting representations of the con-
formal blocks that should exist for thermal blocks as well. For example, one representation uses the analytical
properties of the four-point block to obtain a recursion relation [30,31]. Another involves dimensional reduction
of the conformal block to lower-dimensional conformal blocks [32]. It would be interesting to generalize these
representations to thermal conformal blocks. We thank David Poland and Eric Perlmutter for discussions related
to this.

4It is possible for the coefficient αφ to vanish, in which case one might have to worry about subleading terms.
This occurs in d = 2, for example, where αφ = 0 by conformal invariance but there are non-vanishing subleading
corrections (which depend on the sphere radius) that vanish exponentially as β → 0 (as in [20]). In d > 2 we
generically expect αφ 6= 0 unless it is set to zero by a symmetry. So we will assume αφ 6= 0 in what follows.
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of states. Since 〈O|φ |O〉 ∼ COφO is an OPE coefficient, this can be viewed as an asymptotic
formula for the average value of the light-heavy-heavy three-point coefficients.5 Although we
will not focus on it here, this asymptotic formula plays a role in the Eigenstate Thermalization
Hypothesis (ETH), as discussed in [34]. A priori, equation (2) includes an average over all
operators O, not just primaries. However, now that we have explicit expressions for the one-
point thermal blocks we can obtain the analog of equation (2) where we average only over
primary operators O, instead of averaging over all operators. Remarkably, we will see in Sec. 4
that the result is still exactly given by equation (2).

Before moving on to the main part of the paper, let us first introduce some preliminary
definitions and state carefully our main result: an explicit formula for the scalar one-point
block.

1.1 Conformal blocks: definitions and conventions

We first need to introduce our conventions. For flat Euclidean Rd we will use either cartesian
coordinates xµ, µ= 1, . . . d, or spherical coordinates (r,Ω j), j = 1, . . . d − 1, with:

ds2
Rd = d xµd xµ = dr2 + r2dΩ2

d−1 . (3)

Letting r = eτ, this metric is conformally related to the cylinder R× Sd−1

ds2
Rd = d xµd xµ = e2τ(dτ2 + dΩ2

d−1) = e2τds2
R×Sd−1 (4)

in the usual radial quantization map. A scalar primary operator φRd on the plane of definite
conformal weight ∆φ will transform to a cylinder operator φcyl as

φRd (x) = e−τ∆φφcyl(τ,Ω) . (5)

We shall reserve the unsubscripted φ to be the operator on flat space φRd while the cylinder
operator φcyl will carry the subscript ‘cyl’.

The thermal one-point function of a scalar primary operator φcyl is defined as its (unnor-
malized) thermal expectation value:




φcyl(τ,Ω)
�

β
≡ Tr

�

φcyl(τ,Ω)e−βD
�

=
∑

i, j

e−β∆i 〈i|φcyl| j〉R×Sd−1(B−1) ji

=
∑

i, j

e−β∆i eτ∆φ 〈i|φ(x)| j〉Rd (B−1) ji =
∑

i, j

e−β∆OCiφ j(B
−1) ji . (6)

Here, D is the dilatation operator6 while the trace is over the Hilbert space of the CFT quantized
on R× Sd−1 (where the radius of the sphere is one). In the second line, we relate the thermal
one-point function to objects on Rd . In particular the OPE coefficient Ciφ j is defined through
three-point function on Rd : 〈i|φ(x) | j〉Rd = Ciφ j r

−∆φ . We note that



φcyl(τ,Ω)
�

β
depends

on β , but is independent of (τ,Ω) by translation invariance. In this expression the sum over
i includes contributions from all states, and Bi j = 〈i| j〉 will not necessarily be taken to be
diagonal.

We now organize the sum in terms of conformal primaries:




φcyl

�

β
=

∑

primary O
COφOF∆φ ;∆O ,`O(q) , (7)

5It is important that we are taking d > 2 here; the analagous expressions in two dimensions are very different
[20].

6See Appendix A for more details on our conventions for the conformal group and its representations.
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where q ≡ e−β . The functions F∆φ ;∆O ,`O(q) are the thermal one-point conformal blocks, and
encode the contributions from the conformal descendants of the primary operator O, which
we will take to have dimension and spin (∆O,`O). They are completely fixed by conformal
symmetry, and depend only on ∆φ ,∆O,`O and q. Comparing Eq. (6) and Eq. (7), we have
the expansion

F∆φ ;∆O ,`O(q) = q∆O

∞
∑

k=0

qk
∑

|m|=|n|=k

〈O, ~m|φ(1) |O, ~n〉
COφO

(B−1) ~m,~n , (8)

where |O, ~n〉 are the descendants defined in Eq. (93).
When `O 6= 0 one needs to carefully distinguish the different tensor structures of O (whose

tensor indices have been suppressed). There is a different block for each tensor structure in the
three-point function 〈OφO〉, and the results can become quite complicated. We shall therefore
focus on the case where `O = 0, and thus consider the scalar conformal block

F∆φ ;∆O
(q)≡ F∆φ ;∆O ,`O=0(q). (9)

1.2 Explicit form of conformal blocks

In principle, using Eq. (8), one can compute by brute force the coefficients of the q expan-
sion of the thermal block. An algorithm is presented in Appendix C to do so, which can be
implemented in Mathematica. However, as we shall see in Sec. 2, these thermal blocks (with
appropriate angular momentum potentials turned on) satisfy a Casimir differential equation
similar to the flat space conformal blocks. As such, one hopes that by solving the differential
equation, a closed-form explicit formula can be obtained. We will, however, not attempt to
solve these equations directly. Instead, motivated by recent work on the AdS representation
of the conformal blocks [21, 26–29], in Sec. 3, we will obtain an AdS-integral representation
for the thermal conformal blocks. For the case of zero angular potentials, this AdS-integral
representation yields an explicit closed-form expression for the conformal block:

F∆φ ;∆O
(q) = q∆O(1− q)−2∆O

× 3F2

�

−
d
2
+∆O +

1
2

,∆O −
∆φ

2
,−

d
2
+
∆φ

2
+∆O;∆O,−d + 2∆O + 1;−

4q
(q− 1)2

�

.

(10)

This expression looks very similar to the so-called diagonal limit of the flat space four-point
block in [2,35]. Although we have not done so in this paper, it will be interesting to study the
diagonal limit of our Casimir equation and derive Eq. (10) in this manner.7

2 Thermal Casimir method

In this section we derive a Casimir differential equation for thermal conformal blocks. We will
use a generalization of the technique of [21], who studied two dimensional thermal blocks. In
this section we will focus on d = 3, and write down the Casimir equation completely explicitly.
In Appendix B we will discuss the differential equation in general dimension.

Our conventions for the conformal group and its representations are summarized in Ap-
pendix A.

7 As a final remark, we note recent interesting work relating flat space conformal blocks to wave functions of
integrable systems [36–42], where the conformal Casimirs are mapped to the Hamiltonian and higher conserved
charges. It will be interesting to explore these connections in the context of thermal conformal blocks. We thank
Samson Shatashvili for discussions related to this.
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2.1 Casimir operator in 3d

For d = 3, the rotational subgroup (generated by the Mµν) of the conformal group is SO(3).
We define

J3 ≡ −iM12, J± ≡ iM23 ±M13, (11)

so that
[J3, J±] = ±J±, [J+, J−] = 2J3 . (12)

It will be useful to consider the following coordinate system for R3:

x± ≡ x (1) ± i x (2), ds2
R3 = d x+d x− + (d x (3))2, (13)

with

r2 = x+x− + (x (3))2 , ∂1 = ∂+ + ∂−, ∂2 = i (∂+ − ∂−) , ∂± =
∂1 ∓ i∂2

2
. (14)

We will sometimes use the notation x (µ) ≡ xµ to avoid confusion with various powers of xµ.
We will also use spherical coordinates on R3:

x (1) = rcϕsθ , x (2) = rsϕsθ , x (3) = rcθ , (15)

where cx ≡ cos x and sx ≡ sin x .
To work with these new coordinates, we define the operators

P± ≡ P1 ± iP2, K± ≡ K1 ± iK2 . (16)

With these definitions, in radial quantization, we have P†
± = K∓ and P†

0 = K0. Using our new
notation, the action of the conformal generators on scalar primaries (94) becomes

[D,φ(x)] = (∆φ + xµ∂µ)φ(x)≡Dφ,

[P±,φ(x)] = (2∂∓)φ ≡ P±φ,

[K±,φ] =
�

2x±∆φ + 2x±(x · ∂ )− x2(2∂∓)
�

φ ≡K±φ,

[J±,φ(x)] = (±x3(2∂∓)∓ x±∂3)φ ≡ J±φ,

[J3,φ] = (x−∂− − x+∂+)φ ≡ J3φ , (17)

where curly letters denote spatial derivatives on operators. The quadratic Casimirs are:

J2 ≡ −
1
2

MµνMµν = J3(J3 + 1) + J−J+,

C ≡ D(D− 3) + J2 − P0K0 −
1
2
(P+K− + P−K+) . (18)

J2 is the Casimir of the SO(3) algebra and C is the Casimir of the conformal algebra.

2.2 General structure

Let us focus on the case of scalar internal and external operators. To study the contribution of
a single conformal family (say generated by O) to the thermal expectation value, we need to
insert the projection operator

PO =
∑

i, j=O,PO,P2O,...

|i〉 (B−1)i j 〈 j| (19)

into the thermal trace.
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It turns out that we will need to turn on both temperature and angular momentum poten-
tials in the trace in order to use the thermal Casimir method. The object that we are interested
in is then

F∆φ ,∆O
(q, y; x) = C−1

OφOTr
�

POφcylq
D y J3

�

= C−1
OφO r∆φTr

�

POφ(x)q
D y J3

�

. (20)

Here y is the potential for the angular momentum J3. When y = 1, i.e. with no angular
potential, the conformal block F has no x-dependence. But when y 6= 1, F will depend
non-trivially on x .

Let us now study this x-dependence. To begin, we insert D into the trace, which we denote
by Tr[PO...] = TrO[...]:

TrO
�

Dφ(x)qD y J3
�

= TrO
�

[D,φ(x)]qD y J3
�

+ TrO
�

φ(x)qD y J3 D
�

= DTrO
�

φ(x)qD y J3
�

+ TrO
�

Dφ(x)qD y J3
�

=⇒ 0 = (∆φ + xµ∂µ)F . (21)

Here we have used Eq. (17) to move D to the right, used the fact that D and J3 commute, and
used the cyclicity of the trace. The result is

F∆φ ,∆O
(q, y; x) = Function

�

q, y;
x+

x (3)
,

x−

x (3)

�

. (22)

Similarly, inserting and moving J3 through implies that F is a function of x−x+ and x (3).
Combining these two facts, we conclude that we can write the conformal block in the form

F∆φ ,∆O
(q, y; x) = Function

�

q, y;
x+x−

r2

�

= Function (q, y; s) , s ≡ s2
θ . (23)

2.3 Casimir differential equation

Let us begin with the following equations:

P±qD y J3 = qD−1 y J3∓1P±, P3qD y J3 = qD−1 y J3 P3,

K±qD y J3 = qD+1 y J3∓1K±, K3qD y J3 = qD+1 y J3 K3,

J±qD y J3 = qD y J3∓1J± . (24)

These are true as operator statements, as can be seen by expanding the exponentials, but one
can also derive them by acting on an orthogonal basis for the descendants where the states
are labelled by their D, J3 and J2 eigenvalues. This is straightforward but not essential for our
calculation, so we will not discuss this here.

The thermal Casimir trick is to insert the Casimir operator defined above into the trace
(20). We can then use Ward identities to convert each of the terms into derivatives acting on
F . On the other hand, the Casimir operator has value ∆O(∆O − 3) for each state in a scalar
conformal family. This leads to a Casimir equation of the form

(x2)∆φ/2C−1
OφOTrO

�

Cφ(x)qD y J3
�

=∆O(∆O − 3)F = CF , (25)

where C is the differential operator associated with the Casimir operator.
We now just need to compute the differential operator C. First, note that inserting D in

the trace TrO
�

φ(x)qD y J3
�

is equivalent to acting on the trace with q∂q. This allows us to
convert the first term of the Casimir (see Eq. (18)) into derivatives. Similarly, inserting J3 is
the same as acting with y∂y . This is why we need to include an angular potential in the trace
– otherwise, we would be unable to evaluate J3 in the Casimir. For the other operators, we
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use Eq. (17), Eq. (24), and the conformal algebra to bring the operators to the right of φ(x).
Cyclicity of the trace allows us to combine some terms and convert the quantum operators to
differential operators. For example,

TrO
�

J+φ(x)q
D y J3

�

= TrO
�

[J+,φ(x)]qD y J3
�

+ TrO
�

φ(x)J+qD y J3
�

= J+TrO
�

φ(x)qD y J3
�

+ TrO
�

φ(x)qD y J3−1J+
�

= J+TrO
�

φ(x)qD y J3
�

+ y−1TrO
�

J+φ(x)q
D y J3

�

,

⇒ TrO
�

J+φ(x)q
D y J3

�

=
1

1− y−1
J+TrO

�

φ(x)qD y J3
�

. (26)

Eventually, all of the operators appearing in the Casimir are converted into differential
operators on (q, u, s) and we obtain the Casimir differential equation:

0 = q2∂ 2
q f + u(u+ 4)∂ 2

u f + 2q
�

∆O +
q(2q− u− 2)

q2 − q(u+ 2) + 1
+

q
q− 1

− 1
�

∂q f

+
2(q(q(u+ 3)− u(2u+ 9)− 6) + u+ 3)

q2 − q(u+ 2) + 1
∂u f

+
2∆Oq

�

3q2 − 2q(u+ 3) + u+ 3
�

(q− 1)3 − (q− 1)qu
f

−u−1
�

2(3s− 2)∂s + 4s(s− 1)∂ 2
s

�

f
q

(1− q)2

+
�

∆φ(1−∆φ) +∆2
φs+

�

−2(1+ 2∆φ) + 4(∆φ + 1)s
�

s∂s + 4s2(s− 1)∂ 2
s

�

f

+

�

q(q(q(u+ 2)− 4) + u+ 2)

2 (q2 − q(u+ 2) + 1)2

�

(27)

×
�

2∆φ −∆2
φs+ 4

�

(∆φ + 2)s− (∆φ + 1)s2 − 1
�

∂s − 4s(1− s)2∂ 2
s

�

f .

(28)

Here u ≡ y + y−1 − 2 (we pick the root y = (u/2) + 1 +
p

(u/2)((u/2) + 2)) and we have
defined f to be

f∆φ ,∆O
(q, y; s)≡ q−∆OF∆φ ,∆O

(q, y; s) = 1+O(q1) . (29)

Note that the differential equation is a 2nd-order differential equations in three variables (i.e.
q, u and s).

Now that we have the differential equation, let us discuss the boundary conditions the
solution must obey. We are looking for solutions which have appropriate behavior at small q:
as q→ 0, the solution must approach 1. We also want the u→ 0 limit to give the q expansion
of the zero-angular-rotation thermal block, which is independent of s. These conditions are
sufficient to fix a unique solution. More precisely, we can imagine expanding the block in a
power series:

f (q, u, s) =
∞
∑

a,b,c=0

fa,b,c qaubsc , (30)

and insist on a ≥ b ≥ c. The b ≥ c condition is actually already imposed by the differential
equation. We demand a ≥ b because states at a given level a can have maximum angular
momentum a. Once this expansion is fixed, the only condition required is the normalization
f0,0,0 = 1 coming from the primary state. Using this, the first few terms of the desired solution
have the following small q expansion:

f (q, u, s) = 1+

�

3+
∆φ(∆φ − 3)

2∆O

�

q+
�

1−
∆φ

2∆O

�

qu+

�

∆2
φ

4∆O

�

qus+O(q2). (31)

8

https://scipost.org
https://scipost.org/SciPostPhys.7.2.015


Select SciPost Phys. 7, 015 (2019)

As it stands, the differential equation Eq. (27) is rather complicated. We have not been able
to obtain a general exact solution. In Appendix D, we consider various interesting limits of the
differential equation where solutions can be easily obtained. Furthermore, encouraged by the
recent AdS-integral representation of the conformal blocks in [21, 26–29], we will now look
for an integral representation of the solution to Eq. (27). We will see that for zero angular
potential (i.e. u = 0 or y = 1), this gives an explicit result in terms of a 3F2 function (see
Eq. (63)).

3 AdS-integral representation

In this section we derive an integral representation for the one-point thermal block. We first
give a heuristic argument for the AdS-integral representation, similar to the analogous con-
struction in CFT2 of [21]. We then prove the validity of this representation, making use of the
shadow formalism of [33], similar to the shadow-formalism construction of AdS geodesic Wit-
ten diagrams for flat space four-point blocks [27, 28,43]. Finally, in Sec. 3.3, we will directly
evaluate the AdS-integral representation for the case of zero angular potentials and obtain an
explicit closed form result for the block.

3.1 Heuristic argument

Let us consider the thermal one point function of φ and its decomposition into conformal
blocks




φcyl(τ,Ω)
�

β
= Tr

�

φcyle
−βD

�

=
∑

primary O
COφOF∆φ ;∆O ,`O(q) , (32)

where F∆φ ;∆O ,`O(q) = q∆O(1+ . . .) at small q = e−β . We start by considering the contribu-
tion from a single trace operator O. This operator is dual to a bulk field in AdS, with mass
m2 = ∆O(∆O − d). In first quantization, the bulk field’s propagator can be computed using
a particle world-line path integral.8 The factor q∆O = e−β∆O is the Boltzmann factor for this
particle sitting at the origin and wrapping around the thermal cycle exactly once.

Now, let us present a heuristic argument/motivation for the bulk representation of the
thermal blocks. Assuming a bulk cubic coupling between the bulk fields dual to φ and O,
and denoting the boundary coordinates as x∞, the full thermal one-point function can be
computed by the Witten diagram

〈φcyl(x∞)〉β ∝
∫

thermal AdSd+1

dd+1 x
p

gG
∆φ
b∂ (x , x∞)G

∆O
bb (x , x) . (33)

Both of the propagators are thermal AdS propagators. In fact, the thermal AdS propagator
G∆O

bb (x , x) can be obtained from that in global AdS by summing over thermal images. From
a first-quantised worldline point of view, this sum over images is a sum over topologies of
worldlines, organised by the number of windings around the thermal circle. The calculation of
〈φ(x∞)〉β in Eq. (33) then naturally decomposes into contributions labelled by their winding
around the thermal circle. This yields the sum represented pictorially in Fig. 1.9 Since the
block behaves like q∆O at small q, it is the single winding term in this sum which should be
dual to the conformal block. This motivates the following proposal:

F∆φ ;∆φ ,`O(q)∼
∫

thermal AdSd+1

dd+1 x
p

gG
∆φ
b∂ (x , x∞)G

AdS,∆O
bb (x , q) , (34)

8See [44] for a detailed discussion of bulk world-line dynamics and the relation with conformal blocks.
9The zero winding contribution is divergent, but we omit this since it corresponds to the one-point function in

global AdSd+1, which vanishes as it is cancelled by a local counterterm.
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t

= + + . . .x

x
�O �O

����

h�cyl(x1)i�

Figure 1: Bulk dual of the thermal one-point function as a sum over bulk diagrams.
Here, the blue line represents the thermal AdS bulk-to-boundary propagator G

∆φ
b∂ .

In the first diagram, the red line winding around the thermal circle once represents
the GAdS,∆O

bb contribution, while in the second diagram, the red line winding around
the thermal circle twice represents the contribution from two windings around the
thermal circle. The bulk point x is to be integrated over all thermal AdS.

where the propagator GAdS,∆O
bb (x , q) is the global AdS bulk-bulk propagator with points related

by a single thermal translation. Eq. (34) is illustrated in Fig. 2. In fact, there is an alternative
representation of the proposal in Eq. (34), as

F∆φ ;∆φ ,`O(q)∝
∫

AdSd+1

dd+1 x
p

g G
AdS,∆φ
b∂ (x , x∞)G

AdS,∆O
bb (x , q) . (35)

In this formula the integration is now over all of global AdS, while G
AdS,∆φ
b∂ (x∞, x) is the bulk-

boundary propagator on global AdS. The equivalence between Eq. (34) and Eq. (35) can be
shown by rewriting the thermal bulk-boundary propagator integrated over thermal AdS as
(rewriting the propagator as sum over thermal images) the global bulk-boundary propagator
integrated over global AdS.

To study the convergence of Eq. (35), let us consider the behavior of each object in the
integrand near the boundary. We will use the global AdS metric (55) and radial coordinate r
so that, as r →∞, we have

p
g ∼ rd ,

G
AdS,∆φ
b∂ (x , x∞) ∼ r∆φ−d

�

#+O(r−1)
�

+ r−∆φ
�

#+O(r−1)
�

,

GAdS,∆O
bb (x , q) ∼ r−2∆O , (36)

where # are r-independent terms. Thus for the integral to be finite we need ∆φ < 2∆O and
d <∆φ + 2∆O. When the conformal dimensions are large (∆O,∆φ � 1), the only nontrivial
condition is 2∆O > ∆φ . This is easy to understand: in a saddle-point approximation the
Witten diagram integral is dominated by a geodesic network with minimum total action. But
there is a bulk saddle point only when 2∆O >∆φ; otherwise, the bulk-to-boundary world line
will drag the three point vertex all the way to the boundary.

We will provide two independent proofs of Eq. (35). In the next section we will give a proof
using the shadow formalism. The will unambiguously fix the overall factor in our integral
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x

t

�O

��

Figure 2: Bulk dual of the thermal one-point block F . The blue line represents the
bulk-to-boundary propagator for ∆φ , and the red line represents the propagator for
the O particle to propagate once around the thermal circle.

formula, which is so far unfixed. In Appendix E we give another proof, by showing that the
RHS of Eq. (35) obeys our Casimir differential equation and has the correct low temperature
behavior.

3.2 Construction by shadow formalism

This section includes a proof of the AdS-integral representation of the thermal one-point block.
It follows essentially the same arguments laid down in [27, 28, 43] where they clarified the
relation between the shadow formalism (and its projection) and the geodesic Witten diagram
representation of flat space conformal blocks. In principle, this is a systematic and constructive
method to build AdS-representations of any conformal block.

First, the shadow-transform of O, denoted Õ (termed the “shadow operator” in [33]), is
given by:

Õ(x)≡
∫

dd y
1

|x − y|2(d−∆O)
O(y). (37)

The utility of this object is that it allows us to project onto the representation generated by
primary O, via:

PO =
1
NO

∫

dd x O(x)|0〉〈0|Õ(x), NO ≡ πd
Γ
�

∆− d
2

�

Γ
� d

2 −∆
�

Γ (∆)Γ (d −∆)
. (38)

We note that with this definition, all n-point functions of Õ are related to those of O. For
example,

〈Õ(x1)φ(x2)O(x3)〉Rd =

∫

dd y
1

|x1 − y|2(d−∆O)
〈O(y)φ(x2)O(x3)〉Rd

= COφO|x2 − x3|−∆φ
∫

dd y
1

|x1 − y|2(d−∆O)|y − x2|∆φ |y − x3|2∆O−∆φ
.

(39)

Performing the integral (using Eq. (2.20) of [33]) gives

rC ≡
CÕφO

COφO
=
πd/2Γ

�

∆O −
d
2

�

Γ
� d−∆φ

2

�

Γ
� d−2∆O+∆φ

2

�

Γ
�

∆φ
2

�

Γ (d −∆O)Γ
�

∆O −
∆φ
2

� . (40)
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The thermal block is just the projection:

F∆φ ;∆O
(q)≡ C−1

OφO 〈φ(x1)PO〉β = C−1
OφO

∑

i, j

(B−1)i j〈i|POqDφ(x1)| j〉Rd , (41)

where the sum is over all states in the representation generated by O. Using the shadow
representation of the projector in Eq. (38), we have:

F∆φ ;∆O
(q) =

1
COφONO

∑

i, j

(B−1)i j〈i|
�∫

dd xO(x)|0〉〈0|Õ(x)
�

qDφ(x1)| j〉Rd

=
�

NOCOφO
�−1

∫

dd x〈Õ(xq)φ(x1)O(x)〉Rd , (42)

where we have used the identity10

∑

i, j∈O,PO,...

(B−1)i j〈i|O(x)|0〉〈. . . | j〉= 〈. . . O(x)|0〉 . (45)

The notation xq means that x is ‘thermal’-translated by q.
All the discussions so far have been focusing on field theoretical objects in a CFT. To con-

struct an AdS representation, we rewrite the three-point function in the integrand using an
AdS-integral representation. This is given by an integral over product of three bulk-boundary
propagators (assuming a φO2 coupling) [45]:

∫

AdSd+1

dd+1 y
p

g GAdS,d−∆O
b∂ (y; x ′)G

AdS,∆φ
b∂ (y; x1)G

AdS,∆O
b∂ (y; x)

= c0C−1
ÕφO〈Õ(x

′)φ(x1)O(x)〉Rd , (46)

where

c0 ≡ C∆O
C∆φ
Γ
�

∆φ
2

�

Γ
� d−∆φ

2

�

Γ
� d−2∆O+∆φ

2

�

Γ
�−d+2∆O+∆φ

2

�

4Γ (∆O)Γ
� d

2 −∆O + 1
�

Γ
�

∆φ
� .

(47)

The bulk-boundary propagator will be given explicitly in Eq. (60), but can also be written in
embedding space coordinates (following the convention of [46]) as

GAdS,∆
b∂ (X ; P) = C∆(−2P · X )−∆, C∆ ≡

Γ (∆)
2πd/2Γ (∆+ 1− d/2)

. (48)

10One way to show this is to first parametrize a level n descendant of |O〉 by |n, ~n〉 ≡ (P · ~n)n|O〉 and denote the
norm matrix at level n by B~n1 ,~n2

. The LHS is then given by

∞
∑

n=1

∑

~n1 ,~n2

(B−1)~n1 ,~n2〈n, ~n1|O(x)|0〉〈. . . |n, ~n2〉 . (43)

We now rewrite O(x)|0〉= eiP·x |O〉=
∑

n((iP · x)
n/n!)|O〉=

∑

n(i
n/n!)|n, ~x〉. The sum now turns into

∑

n

in

n!

∑

~n1 ,~n2

(B−1)~n1 ,~n2〈n, ~n1|n, ~x〉〈. . . |n, ~n2〉=
∑

n

in

n!

∑

~n1 ,~n2

(B−1)~n1 ,~n2 B~n1 ,~x 〈. . . |n, ~n2〉

=
∑

n

in

n!
〈. . . |n, ~x〉=

∑

n

in

n!
〈. . . (P · ~x)n|O〉= 〈. . .O(x)|0〉 . (44)
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We can use the symmetry of the propagator to deduce that

GAdS,d−∆O
b∂ (y; xq) = GAdS,d−∆O

b∂ (yq−1; x), (49)

and thus

〈Õ(xq)φ(x1)O(x)〉Rd

= c−1
0 CÕφO

∫

AdSd+1

dd+1 y
p

g GAdS,d−∆O
b∂ (yq; x)G

AdS,∆φ
b∂ (y; x1)G

AdS,∆O
b∂ (y; x) . (50)

Substituting this AdS-representation of the three-point function back into the integrand,
the conformal block becomes

F∆φ ;∆O
(q)

= rC (NOc0)
−1

∫

AdSd+1

dd+1 y
p

g G
AdS,∆φ
b∂ (y; x1)

�∫

dd x GAdS,d−∆O
b∂ (yq; x)GAdS,∆O

b∂ (y; x)

�

= rC (NOc0(d − 2∆O))
−1

∫

AdSd+1

dd+1 y
p

g G
AdS,∆φ
b∂ (y; x1)Ω∆O

(y, yq) , (51)

where we have used the split representation of the AdS harmonic function

Ω∆(y1, y2)≡ GAdS,∆
bb (y1, y2)− GAdS,d−∆

bb (y1, y2)

= (d − 2∆)

∫

dd xGAdS,∆
b∂ (y1; x)GAdS,d−∆

b∂ (y2; x) . (52)

The AdS harmonic function is defined as the regular (at coincident point) Green’s function. It
is a particular linear combination of the Green’s function of a bulk field of dimension ∆ and
a bulk field of dimension d −∆. The shadow formalism instructs us to further project, either
using monodromy projection or utilizing some clever integration contour, onto just the block
associated with operator with dimension ∆. This projection in terms of AdS representation
amounts to replacing the bulk harmonic function Ω with the bulk-bulk propagator Gbb used
for a field dual to an operator of dimension ∆, and so finally we obtain

F∆φ ;∆O
(q) = rC (NOc0(d − 2∆O))

−1

∫

AdSd+1

dd+1 y
p

g G
AdS,∆φ
b∂ (y; x∞)G

AdS,∆O
bb (y, q). (53)

This is exactly the proposal for the thermal one-point block in Eq. (35). The boundary con-
dition at small q is just the statement that as β →∞ we expect the bulk-bulk propagator to
vanish as e−∆Oβ = q∆O . If we had used the harmonic function, we would have obtained in
addition a e−(d−∆O)β = qd−∆O behavior at small q.

There are a few observations and comments to be made:

1. This construction unambiguously fixes the overall coefficient of the bulk AdS-representation.
More explicitly,

∫

dd+1 yG
∆φ
b∂ (y; x∞)G

∆O
bb (y, q)

= C∆O
C∆φ





πd/2Γ
�

∆φ
2

�

2Γ
�

∆O −
∆φ
2

�

Γ
�

− d
2 +∆O +

∆φ
2

�

2Γ (∆O)2Γ
�

∆φ
�



F∆φ ;∆O
(q) . (54)

This overall factor will be verified explicitly in the next section, when we compute the
AdS integral.
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2. In fact, without resolving to an AdS representation of the three-point function, one
should be able to directly compute the conformal block using the last line of Eq. (42)
by performing the integral over the three-point function. To obtain the physical confor-
mal blocks, we need to further perform the monodromy projection [33]. It would be
interesting to do this calculation directly and obtain the explicit conformal blocks.

3. Finally, we used the regular Witten diagram representation of the CFT three-point func-
tion in our construction. We could have instead used a “geodesic Witten diagram” bulk
representation, by writing a boundary three-point function as a bulk geodesic integral.
However, since we have only inserted one boundary external operator φ, and the rest of
the calculation involves integrating over the insertion point of O (or Õ), the final form
of the integral will not involve an integral over fixed geodesics (as in the flat space four-
point block case) but rather over geodesics anchored on at least one boundary point
integrated over the boundary. This might prove useful for some purposes, but at the
moment it seems like a more cumbersome representation than the one given above.

4. Just as the shadow formalism was useful in constructing the AdS-integral representation
of the flat space spinning conformal blocks [27,28,43], it will be interesting in the future
to generalize the discussions in this section to operators with spin.

3.3 Explicit AdS integral representation

We shall evaluate the RHS of Eq. (35) in the case of zero angular potential. We use global
coordinates (t, r,Ωd−1) on global EAdSd+1 with metric

ds2 = (1+ r2)d t2 + (1+ r2)−1dr2 + r2dΩ2
d−1 . (55)

We must integrate the product of a bulk-to-bulk propagator and a bulk-to-boundary propaga-
tor. The AdS bulk-to-bulk propagator is (using embedding coordinates X and Y ):11

GAdS,∆
bb (X , Y ) = C∆u−∆ 2F1

�

∆,
2∆− d + 1

2
; 2∆− d + 1;−4u−1

�

, u= (X − Y )2 . (56)

We need to compute the geodesic distance between a point X and its thermal translation Xβ .
Using the relations between the embedding coordinates X and the global coordinates

U =
p

1+ r2 sinh t, V =
p

1+ r2 cosh t,

X i = rΩi , i = 1, . . . , d,
d
∑

i=1

Ω2
i = 1, (57)

where
∑d

i=1 X 2
i + U2 − V 2 = −1 we have

X · Xβ = −(1+ r2) cosh(β) + r2, (58)

so we obtain

u =
(1− q)2

q
(1+ r2), −

4
u
= −

4q
(1− q)2(1+ r2)

. (59)

We see that G∆1 (x , q) ≡ GAdS,∆
bb (X , Xβ) is a function only of r, not t and Ωi . Thus the bulk

integral over t and Ω can be performed by just focusing on the bulk-to-boundary part. To
proceed, recall that the bulk-to-boundary propagator is given by

G
AdS,∆φ
b∂ (t, r,Ω; t∞,Ω∞) = C∆φ2−∆φ

�p

1+ r2 cosh(t − t∞)− r cosΘ(Ω,Ω∞)
�−∆φ

. (60)

11We will follow the conventions in Appendix B.1 of [46].
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Θ is the relative angle between Ω̂∞ and Ω̂ on the sphere Sd−1. Collecting all the ingredients,
the integral in Eq. (35) is explicitly given as:

I = C∆O
C∆φ2−∆φ

∫ ∞

−∞
d tdrdd−1Ω rd−1

�

(1− q)2

q
(1+ r2)

�−∆O

× 2F1

�

∆O,
2∆O − d + 1

2
; 2∆O − d + 1;−

4q
(1− q)2(1+ r2)

�

×
�p

1+ r2 cosh(t − t∞)− r cosΘ(Ω,Ω∞)
�−∆φ

. (61)

For the integral over Ω, by spherical symmetry, we can rotate the axis parallel to Ω∞,
and the integral reduces to one only over an angular variable Θ from 0 to π. Including the
appropriate angular measure, this part of the integral becomes12

J ≡
∫ ∞

−∞
d t dd−1Ω

�p

1+ r2 cosh(t − t∞)− r cosΘ(Ω,Ω∞)
�−∆φ

=
2π

d−1
2

Γ
� d−1

2

�

∫ ∞

−∞
d t

∫ π

0

dΘ sind−2Θ
�p

1+ r2 cosh t − r cosΘ
�−∆φ

=
2π

d+1
2

Γ
� d

2

�

Γ
�

∆φ
2

�

Γ
�1

2

�

∆φ + 1
��

�

1+ r2
�− 1

2∆φ
2F1

�

∆φ

2
,
∆φ

2
;

d
2

;
r2

r2 + 1

�

. (62)

With this part of the integral done, the full integral is then reduced to

I = C∆O
C∆φ2−∆φ

2π
d+1

2

Γ
� d

2

�

Γ
�

∆φ
2

�

Γ
�1

2

�

∆φ + 1
��q∆O(1− q)−2∆O ×

∫ ∞

0

dr rd−1
�

1+ r2
�− 1

2∆φ−∆O

× 2F1

�

∆φ

2
,
∆φ

2
;

d
2

;
r2

r2 + 1

�

2F1

�

∆O,
2∆O − d + 1

2
;2∆O − d + 1;−

4q
(1− q)2(1+ r2)

�

= C∆O
C∆φ





π
d
2 Γ
�

∆O −
∆φ
2

�

Γ
�1

2

�

∆φ − d
�

+∆O
�

Γ
�

∆φ
2

�2

2Γ (∆O) 2Γ
�

∆φ
�



q∆O(1− q)−2∆O

× 3F2

�

−
d
2
+∆O +

1
2

,∆O −
∆φ

2
,−

d
2
+
∆φ

2
+∆O;∆O,−d + 2∆O + 1;−

4q
(q− 1)2

�

.

(63)

This is an explicit representation of the thermal one-point block. Note that the overall factor
(i.e. square bracket terms in the second to last line) agrees with that coming from the shadow-
block construction (see Eq. (54)). Furthermore, we have verified that the last line agrees with
the explicit evaluation of the blocks up to order q4 given in Eq. (119) for d = 3. Note that in
performing various integrals we have assumed that ∆φ + 2∆O > d and ∆O >

∆φ
2 . Together,

these conditions can be combined to give ∆O >
d
4 .

There are a few simple limits of the blocks that are of interest:

• The simplest one is the high temperature limit: When we take the limit q→ 1, the blocks
behave as

(1− q)−max(∆φ ,d−∆φ ,d−1) . (64)
12See Appendix F for more details on carrying out the integrals in Eq. (62)-(63).
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• Another simple limit is the ∆φ → 0 limit, where it should reproduce the character.
Indeed, setting ∆φ = 0 in (63) gives

F = q∆O(1− q)−2∆O
3F2

�

−
d
2
+∆O +

1
2

,∆O,−
d
2
+∆O;∆O,−d + 2∆O + 1;−

4q
(q− 1)2

�

= q∆O(1− q)−2∆O
2F1

�

−
d
2
+∆O +

1
2

,−
d
2
+∆O;−d + 2∆O + 1;−

4q
(q− 1)2

�

.

(65)
At this point we can use the following identity for the hypergeometric function when
|z|< 1:

2F1

�

a, b; 2b;
4z

(z + 1)2

�

= (z + 1)2a
2F1

�

a, a− b+
1
2

; b+
1
2

; z2
�

(66)

to rewrite the expression for the block as

q∆O(1− q)−d
2F1

�

−
d
2
+∆O, 0;−

d
2
+∆O + 1; q2

�

= q∆O(1− q)−d . (67)

This is precisely the character of the conformal algebra, as expected.

• Finally, we note that in d = 2 case our formula reduces to the square of 2F1, which
matches precisely previously obtained expressions for thermal blocks in two dimensional
CFTs (given in e.g. [18]).

To understand more complicated limits, we first note that our block F satisfies the differ-
ential equation

0 = F (3)(q) + (d + 4)q+ d − 2
(q− 1)q

F ′′(q)

+q−2
�

−m2
O +

q
(q− 1)2

�

(d + 1)(d − 2+ 2q)−m2
φ

�

�

F ′(q)

−
1
2
(q− 1)−3q−3(q+ 1)

�

2(q− 1)2m2
O + (d − 1)m2

φq
�

F(q), (68)

where m2
φ
≡ ∆φ(∆φ − d) and m2

O ≡ ∆O(∆O − d). With this equation at hand, let us study
two other limits.

3.3.1 WKB limit

We first consider a particular WKB limit, where the block will be given by the action of a heavy
particle following a geodesic in AdS. We will let ρ ≡ ∆φ/∆O and take ∆O →∞ with fixed
ρ. Inserting the ansatz F = q∆O e−∆φG into the differential equation we obtain, at large ∆O,

0=
�

G′(q)−
1

qρ

��

qG′(q)2 − 2ρ−1G′(q)−
1

(q− 1)2

�

. (69)

Two of the solutions for G behave as log q near q→ 0, so are discarded. The log-free solution
is

G′ =
1

qρ
+

p

q2 + (ρ2 − 2)q+ 1
(q− 1)qρ

, (70)

and gives the asymptotic behaviour of the conformal block in this limit. Note that the d-
dependence drops out, so this reduces to the same equation as in d = 2 discussed in [21].
Indeed, this result reproduces the AdS-bulk geodesic computation since when there are no
angular potentials the AdSd+1 geodesic computation is also independent of d.13 This WKB
limit can also be studied using the Casimir equation, as described in Appendix D.1.

13We thank Henry Maxfield for making the observation, and bringing to our attention the fact that the AdSd+1

geodesic computation is independent of d.

16

https://scipost.org
https://scipost.org/SciPostPhys.7.2.015


Select SciPost Phys. 7, 015 (2019)

3.3.2 Large ∆O limit

Here we study the limit of large∆O with∆φ fixed. This will be useful for deriving asymptotic
OPE coefficients in Sec. 4.3. Let us start with the ansatz F(q) = q∆O f (q). Taking the limit
∆O→∞, we obtain the leading differential equation:

0= d f (q) + (q− 1) f ′(q) ⇒ F(q)→ q∆O(1− q)−d , (71)

which is just the character. To study the first correction, we substitute the ansatz F(q) =
q∆O

�

f +∆−1
O g + . . .

�

to obtain the differential equation for g

0= g ′(q) +
d

q− 1
g −

1
2
(1− q)−d−2m2

φ . (72)

With boundary condition g ∼ q1 near q = 0, we have

g =
m2
φ

2
q

(1− q)d+1
. (73)

For d = 3, this can also be derived using the Casimir differential equation, as is done in
Appendix D.2.

Finally, note that this approximation is valid when f (q)� g(q)/∆O, which occurs when
β∆O� 1.

4 An application: asymptotics of OPE coefficients

In this section we will study the asymptotic behaviour of the light-heavy-heavy OPE coeffi-
cients for primary operators. We will start by reviewing a simple and well-known estimate
for the high energy density of states in a CFT. We will then study the high temperature limit
of thermal one-point functions in CFTd for d > 2. This leads to an asymptotic expression for
the average value of a light-heavy-heavy OPE coefficient, averaged over the dimension of the
heavy operator. We will first consider the average over all operators, before using our knowl-
edge of conformal blocks to compute the average over primary operators. Our final result for
the average over primary operators will be the same as for the average over all operators. Note
that in this section we shall use

〈φ〉β ≡
1

Z(β)
Tr
�

φ e−βD
�

(74)

to denote the normalized cylinder thermal one-point function.

4.1 Density of states in general dimensions

Before studying one-point functions, we first need to understand the asymptotic density of
states of a CFT in d dimensions.14 We will write the finite temperature partition function on
Sd−1 as

Z(β) =
∑

O
e−

β
R∆O =

∫

d∆ρ(∆)e−
β
R∆ , (75)

where ρ(∆)≡
∑

O δ(∆−∆O) is the density of states. Here R is the radius of the sphere Sd−1.
We will not set R= 1 in this section, in order to emphasize the scaling behaviour of our results.

14The analysis in this section is not new; see, e.g. section 4.3 of [47] for a nice summary.
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In the thermodynamic limit, the free energy must be proportional to the spatial volume
Ad−1Rd−1, where Ad−1 = 2πd/2/Γ

� d
2

�

is the area of the unit (d − 1)-sphere. Scale invariance
then fixes the free energy at high temperature to be

F = −c̃Ad−1Rd−1β−d + . . . , (76)

where c̃ is a theory-dependent dimensionless constant. In d = 2, c̃ is the central charge.
In higher dimensions, c̃ is best understood as a “normalized entropy density” [48], which is
generally not equal to a coefficient appearing in stress tensor two or three point functions. We
can then perform an inverse Laplace transform of the partition function to obtain the density
of states

ρ(∆)≈
1

2πiR

∮

dβ e c̃Ad−1

�

β
R

�1−d
+ βR∆ . (77)

For large ∆, this integral can be evaluated in a saddle point approximation. The saddle is at
β
R =

�

(d−1)c̃Ad−1
∆

�
1
d and the result is

ρ(∆)≈
1

p

2πd(d − 1)c̃Ad−1

�

(d − 1)c̃Ad−1

∆

�

d+1
2d

ed(d−1)
1
d −1(c̃Ad−1)

1
d ∆

d−1
d . (78)

4.2 Asymptotics for generic operators

The (normalized) thermal expectation value of an operator is defined as

〈φ〉β =
1

Z(β)

∑

O
〈O|φ |O〉 e−

β
R∆O . (79)

Even thoughφ is a scalar, the sum over O includes all states in the theory, including those with
large spin. However, the existence of a thermodynamic limit implies that the sum in Eq. (79) is
dominated by states with small spin, so we can neglect the large spin states in this expression.
The reason is the following. Eq. (79) can be viewed as an expectation value in an ensemble
with fixed temperature and zero angular potential. We can also consider another ensemble
with fixed temperature and zero angular momentum, rather than zero angular potential. In
the high temperature limit, the equivalence of canonical and microcanonical ensembles implies
that the system with zero angular momentum potential and zero angular momentum should
be the same. More precisely, in the thermodynamic limit only those states with

`O/∆O� 1, as ∆O� 1 (80)

will dominate the sum. So the sum in Eq. (79) will be dominated by operators O with small
spin.15

We can now rewrite the RHS as

〈φ〉β =
1

Z(β)

∫

d∆ Tφ(∆)e
− βR∆, (81)

where
Tφ(∆)≡

∑

O
〈O|φ |O〉δ(∆−∆O) (82)

is the “density of OPE Coefficients," in analogy with the density of states.

15We are grateful to N. Lashkari for discussions related to this point.
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At high temperature, on general grounds we expect Eq. (79) to behave as

〈φ〉β ≈ αφ
�

β

R

�−∆φ
, as β → 0. (83)

The constant αφ is dimensionless and depends on the operator φ as well as the theory being
studied. Eq. (83) is simply the statement that in the high temperature limit the thermal one
point function on Sd−1 will go over to that on Rd−1, which is proportional to β−∆φ by scale
invariance. In general, it is possible for the coefficient αφ to vanish, but we generically expect
αφ 6= 0 unless it is set to zero by some symmetry. We will therefore just assume that αφ 6= 0,
so that Eq. (83) determines the high energy behaviour.

Combining Eq. (83) and Eq. (79), we get

αφ

�

β

R

�−∆φ
e c̃Ad−1(β/R)1−d

=

∫

d∆ Tφ(∆)e
− βR∆ , (84)

which can be inverted as before to get

Tφ(∆) =
αφ

2πiR

∮

dβ
�

β

R

�−∆φ
e c̃Ad−1

�

β
R

�1−d
+ βR∆ , (85)

which is dominated again by the saddle point βR =
�

(d−1)c̃Ad−1
∆

�
1
d when ∆ is large. The result

is

Tφ(∆)≈
αφ

p

2πd(d − 1)c̃Ad−1

�

(d − 1)c̃Ad−1

∆

�

d+1
2d

ed(d−1)
1
d −1(c̃Ad−1)

1
d ∆

d−1
d

�

∆

(d − 1)c̃Ad−1

�

∆φ
d

.

(86)
Combining this with the result for the density of states, we can deduce the average value of
the three-point function coefficient:

〈O|φ |O〉 ≡
Tφ(∆)

ρ(∆)
≈ αφ

�

∆

(d − 1)c̃Ad−1

�

∆φ
d

. (87)

This is simply the thermal expectation value ofφ evaluated at the saddle point. The corrections
to this equation will depend on the details of the theory, and in particular on the finite size
corrections appearing in Eq. (83). This formula also makes an appearance as the diagonal
part of the Eigenstate Thermalization Hypothesis, as described in [34,49,50].

4.3 Asymptotics for primaries

We can now take this one step further, and write the thermal one-point function of a scalar
operator as a sum only over primary operators, along with an appropriate conformal block:

〈φ〉β =
1

Z(β)

∑

primariesO
〈O|φ |O〉F∆φ ,∆O

(q)e−
β
R∆O . (88)

Note that, as discussed above, the existence of a thermodynamic limit means that this sum will
be dominated by operators O with small spin.16 So we can safely use the scalar block F∆φ ,∆O

in this expression.17

16In particular, we meant that the spin-energy ratio satisfies Eq. 80. Moreover, given such a primary operator,
its descendants will also satisfy Eq. 80 since their spins do not scale as ∆O. Since the number of descendants do
not scale exponentially as their energy is taken to be large, the thermodynamics argument still applies.

17Note that the conformal block with non-zero (but small) `O is the same as the scalar block in the limit∆O � 1.
This is because the conformal block with internal spin satisfies the same differential equation as that without spin,
but with a new Casimir value of O given by ∆O(∆O − d)+ `O(`O + d −2). In the limit of `O �∆O, this reduces
to the same Casimir as the scalar case.
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We again take the large temperature limit of the LHS and write the RHS as an integral:

αφ

�

β

R

�−∆φ
e c̃Ad−1(β/R)1−d

=

∫

d∆ T prim
φ
(∆)F∆φ ,∆(q)e

− βR∆ , (89)

where T prim
φ
(∆) is the sum of OPE coefficients 〈O|φ |O〉 for all the primaries O of dimension

∆, defined as in Eq. (82). As in the previous cases, the integral will be dominated by large
∆. We studied the conformal blocks in this limit in Section 3.3.2; restoring factors of R, they

go like F∆φ ,∆(q) ∼
�

β
R

�−d
at high temperature. We can then invert this expression using

a saddle point exactly as before to find an asymptotic formula for T prim
φ
(∆). The result is

exactly as in (86) except that, because of the contribution of the blocks, we must shift the
external dimension ∆φ by −d.

Finally, in order to compute the average value of the OPE coefficient we need the asymp-
totic density of primary states ρprim(∆). The computation is exactly as in the computation of
the density of states, except that we now have to invert

e c̃Ad−1

�

β
R

�1−d

=

∫

d∆ρprim(∆)
�

β

R

�−d

e−
β
R∆ . (90)

Here the factor of
�

β
R

�−d
comes from the behavior of the conformal characters at high tem-

perature. We can again invert this using a saddle point approximation, and use this to find an
expression for the average primary operator coefficient. The result is

〈O|φ |O〉primar y ≡
T prim
φ
(∆)

ρprim(∆)
≈ αφ

�

∆

(d − 1)c̃Ad−1

�

∆φ
d

. (91)

Note that the extra contribution from the blocks appearing in (89) exactly cancels that from
the characters in (90). The result is an asymptotic expression for the average primary operator
OPE coefficient which exactly matches that for the average over all OPE coefficients given in
(87).18
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A Conformal algebra and representations: notations and conven-
tions

Consider a Euclidean CFTd on Rd with coordinates xµ (µ= 1, . . . d) and work in radial quanti-
zation. The notation used is the same as in [4]. The conformal algebra is composed of transla-
tions Pµ, dilatations D, special conformal transformations Kµ, and rotations Mµν, which satisfy
the following commutation relations

�

D, Pµ
�

= Pµ ,
�

D, Kµ
�

= −Kµ ,
�

Kµ, Pν
�

= 2δµνD− 2Mµν ,
�

Mµν, Pρ
�

= δνρPµ −δµρPν ,
�

Mµν, Kρ
�

= δνρKµ −δµρKν ,
�

Mµν, Mρσ

�

= δνρMµσ −δµρMνσ +δνσMρµ −δµσMρν , (92)

while other commutators vanish. The commutators involving only the Mµν are recognized to
be the SO(d) algebra. Note that the generators satisfy D† = D, M†

µν = −Mµν, P†
µ = Kµ, and

K†
µ = Pµ.

The states in a CFT are classified either as primaries or descendants and are labelled by
their dilatation eigenvalue∆ and their SO(d) representation Sµν. A primary state |O〉 satisfies
D |O〉 = ∆ |O〉, Mµν |O〉 = Sµν |O〉 (spin indices suppressed) and Kµ |O〉 = 0. The rest of the
states are descendants, which are build out of primaries in highest-weight representations by
applying momentum generators. The states at level n, built from the application of n momenta
on |O〉, all have dimension ∆+ n and states in different levels are orthogonal. Explicitly, we
can label the descendants at level N by a d-tuple ~n = {n1, ..., nd} with ni ∈ {0, ..., N} and
|~n| ≡

∑d
i=1 ni = N . The descendant states can be expressed as

|O, ~n〉=
d
∏

i=1

Pni
i |O〉 . (93)

Note, however, that in this basis the descendants are not orthogonal. The set of states that
includes a primary and its descendants is called a conformal family.

These generators can also be taken to act on operators. On a primary O(x), we have

[D,O(x)] = (∆φ + xµ∂µ)O(x)≡DO(x) ,
�

Pµ,O(x)
�

= ∂µO(x)≡ PµO(x) ,
�

Kµ,O(x)
�

= (2xµ∆φ + 2xµxν∂ν − x2∂µ − 2xνSµν)O(x)≡KµO(x) ,
�

Mµν,O(x)
�

= (xν∂µ − xµ∂ν + Sµν)O(x)≡MµνO(x) . (94)

Conformal symmetry completely fixes the three-point functions of primary operators. For
example, correlators of scalar primaries take the form

〈0|φ1(x1)φ2(x2)φ3(x3) |0〉=
Cφ1φ2φ3

x∆1+∆2−∆3
12 x∆1+∆3−∆2

13 x∆2+∆3−∆1
23

, (95)

where Cφ1φ2φ3
are the OPE coefficients and x i j = |x i − x j|. Using this and the fact that the

operator/state correspondance says that |O〉=O(0) |0〉 and 〈O|= limy→∞ y2∆O 〈0|O(y), we
find

〈O|φ(x) |O〉= COφO(x
2)−

∆φ
2 . (96)

B Casimir equation in general dimensions

In this section we use the orthonormal basis for the generators of the conformal algebra to de-
rive the differential equation satisfied by the scalar-scalar conformal blocks in any dimension.
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B.1 Orthonormal basis of the conformal algebra

In this appendix, we detail the orthonormal basis for the conformal generators that is used in
Section B.2. This is essentially a review of [51], although we use a different normalization
for the generators. As usual when discussing rotation groups, we will have to distinguish the
cases of even and odd dimension.

B.1.1 Even dimension

We start by obtaining the basis for the rotations Mµν. In even dimensions d = 2r, the rota-
tion group SO(2r) has r mutually commuting Cartan generators which can be simultaneously
diagonalized. We will choose them to be

H j = −iM2 j−1 2 j , j = 1, ..., r . (97)

These are rotations in the {x2 j−1, x2 j} planes. The rest of the generators can be organized into
raising and lowering operators for the eigenvalues of the Cartans. We introduce the antisym-
metric generators

Eεηjk ≡ −iM2 j−1 2k−1 + εM2 j 2k−1 +ηM2 j−1 2k + iηεM2 j 2k , ε,η= ±1 , j 6= k , (98)

which raise or lower the eigenvalue of H j and Hk depending on the values of ε and η respec-
tively, as can be seen from the commutation relations

�

Hi , Eεηjk
�

= (εδi j +ηδik)E
εη

jk ,
�

Eεηjk , Eε
′η′

jk

�

= (ε− ε′)(1−ηη′)H j + (η−η′)(1− εε′)Hk .
(99)

Note that there are no sums over repeated indices here and we omit other commutators that
are not useful to us. Note that (Eεηjk )

† = E−ε−ηjk . The inverse of (98) can easily be found to be,
for j 6= k,

M2 j−1 2k−1 =
i
4

∑

ε,η=±1

Eεηjk , M2 j 2k−1 =
1
4

∑

ε,η=±1

ηEεηjk ,

M2 j−1 2k =
1
4

∑

ε,η=±1

εEεηjk , M2 j 2k = −
i
4

∑

ε,η=±1

εηEεηjk .
(100)

When we consider the rest of the conformal group, we need to include an extra Cartan
generator, the dilation operator D, which commutes with rotations. The momentum and spe-
cial conformal transformation generators are organized again in terms of {x2 j−1, x2 j} planes
such that they act nicely on the Cartans. The explicit expressions are

Pj± ≡ P2 j−1 ± iP2 j , K j± ≡ K2 j−1 ± iK2 j , (101)

�

Hi , Pj±
�

= ±δi j Pj± ,
�

Hi , K j±
�

= ±δi jK j± . (102)

These act the usual way on the eigenvalues of D.

B.1.2 Odd dimension

In odd dimensions d = 2r+1, the r Cartan generators are the same but there are extra ladder
operators. In the rotation group, we need to include the following operators

E±j ≡ iM2 j 2r+1 ±M2 j−12r+1 , (103)
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�

Hi , E±j
�

= ±δi j E
±
j ,

�

Eεj , Eηj
�

= (ε−η)Hi , (104)

which raise or lower the eigenvalue of each Cartan separately. The inverse of this change of
basis is

M2 j 2r+1 =
E+j + E−j

2i
, M2 j−1 2r+1 =

E+j − E−j
2

. (105)

The extra momentum and special conformal transformation generators are just renamed, and
do not act on the rotations at all since they act on a different plane:

P0 ≡ P2r+1 , K0 ≡ K2r+1 . (106)

B.2 Casimir equation

In this section we use the orthonormal basis for the generators of the conformal algebra dis-
cussed in Appendix B.1 to derive the differential equation satisfied by the scalar-scalar confor-
mal blocks in any dimensions. The object that we are interested in studying is the contribution
to the thermal expectation value of a scalar operator from the conformal family of another
scalar. More precisely, define the projection operator

PO =
∑

i, j=O,PO,P2O,...

|i〉 (B−1)i j 〈 j| , (107)

which sums only over the states in the conformal family of O. We can insert this into the
original trace to obtain

H∆φ ,∆O
(q) = Tr

�

POφ(x)q
D
�

≡ TrO
�

φ(x)qD
�

. (108)

This is, up to an OPE coefficient, the conformal block that we are looking for. To compute
this object, we will use the fact that the quadratic Casimir of the conformal group has a fixed
value when acting on states of a given conformal family. We can insert the Casimir operator in
the trace and convert it into a differential operator acting on H∆φ ,∆O

(q) to obtain a differential
equation. It is necessary to turn on a chemical potential yi for each of the Cartan generators
Hi of the rotation group in order to obtain a differential equation. The result will have the
form

Tr



POCφ(x)qD
rank[SO(d)]
∏

i=1

yHi
i



=∆O(∆O − d)H∆φ ,∆O
(q, ~y) = CH∆φ ,∆O

(q, ~y) , (109)

with C the differential operator associated with the Casimir operator.
The first step in getting the differential operator is to express the conformal Casimir in

terms of the orthonormal basis introduced in Appendix B.1. In general dimension, the Casimir
takes the form

C = D(D− d) + J2 − PµKµ ,

J2 = −
1
2

MµνMµν .
(110)

In odd dimensions d = 2r + 1, it is straightforward to get

PµKµ = [P0K0] +
1
2

r
∑

i=1

(Pi+Ki− + Pi−Ki+) , (111)
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J2 =

� r
∑

i=1

�

Hi + E−j E+j
�

�

+
r
∑

i=1

H2
i +

1
4

r
∑

i, j=1
i 6= j

�

E−+i j E+−i j + E−−i j E++i j

�

. (112)

In even dimensions d = 2r, we simply omit the extra terms in the brackets. Using this, the
Casimir trick relies on the fact that we know exactly how each operator in this basis acts on
the eigenvalue of the Cartans:

Pi± qD
∏

k

yHk
k = qD−1 y∓1

i

∏

k

yHk
k Pi± , P0 qD

∏

k

yHk
k = qD−1

∏

k

yHk
k P0 ,

Ki± qD
∏

k

yHk
k = qD+1 y∓1

i

∏

k

yHk
k Ki± , K0 qD

∏

k

yHk
k = qD+1

∏

k

yHk
k K0 ,

Eεηi j qD
∏

k

yHk
k = qD y−εi y−ηj

∏

k

yHk
k Eεηi j ,

E±i qD
∏

k

yHk
k = qD y∓1

i

∏

k

yHk
k E±i . (113)

We now have everything we need to calculate the differential operator C. The first thing to note
is that inserting D in the trace TrO

�

φ(x)qD
∏

i yHi
i

�

is equivalent to acting on it with q∂q. So
we can convert the first term of the Casimir (110) into derivatives. Similarly, we can convert
other terms by using the fact that inserting Hi is the same as acting with yi∂yi

. This is the
reason why we need to include the chemical potentials in the trace. For the other operators,
we use the commutation relations (94) along with (113) and the conformal algebra to bring
the operators to the right of φ(x). The cyclicity of the trace allows us to combine terms and
convert the quantum operators to differential operators. For example,

Tr

�

P0φqD
∏

k

yHk
k

�

= Tr

�

φP0qD
∏

k

yHk
k

�

+P0Tr

�

φqD
∏

k

yHk
k

�

= q−1Tr

�

φqD
∏

k

yHk
k P0

�

+P0Tr

�

φqD
∏

k

yHk
k

�

⇒ Tr

�

P0φqD
∏

k

yHk
k

�

=
1

1− q−1
P0H∆φ ,∆O

(q, ~y) .

(114)

The result is the Casimir equation

∆O(∆O − d)H =
�

(q∂q)
2 − d q∂q

�

H +
�

2
(1− q−1)

(q∂q)H −
1

(1− q−1)
1

(1− q)
P0K0H

�

r
∑

i=1

(yi∂yi
)2H +

�

−
1+ yi

1− yi
(yi∂yi

)H +
1

(1− yi)
1

(1− y−1
i )

E−i E+i H

�

+
2

1− (q yi)−1
[(q∂q) + (yi∂yi

)]H −
1
2

1

(1− q−1 y−1
i )

1
(1− q yi)

Pi+Ki−H

+
2

1− q−1 yi
[(q∂q)− (yi∂yi

)]H −
1
2

1
(1− q−1 yi)

1

(1− q y−1
i )

Pi−Ki+H

+
r
∑

j,k=1
j 6=k

1

1− y−1
j yk

[(y j∂y j
) + (yk∂yk

)]H +
1
4

1

(1− y−1
j yk)(1− y j y−1

k )
E−+jk E+−jk H

1
1− y j yk

[(y j∂y j
) + (yk∂yk

)]H +
1
4

1

(1− y j yk)(1− y−1
j y−1

k )
E−−jk E++jk H .
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In d = 3, for example, this equation becomes

∆O(∆O − 3)H =
�

(q∂q)
2 − 3q∂q

�

H + (y∂y)
2H

−
1+ y
1− y

(y∂y)H +
1

(1− y)
1

(1− y−1)
J−J+H

+
2

(1− q−1)
(q∂q)H −

1
(1− q−1)

1
(1− q)

P0K0H

+
2

1− (q y)−1
[(q∂q) + (y∂y)]H −

1
2

1
1− (q y)−1

1
(1− q y)

P+K−H

+
2

1− q−1 y
[(q∂q)− (y∂y)]H −

1
2

1
1− q−1 y

1
1− q y−1

P−K+H, (115)

which reduces to (27) acting on f ≡ C−1
OφOq∆O(x2)∆φ/2H.

C Brute force calculation of the blocks

In this section, we will describe an algorithm to obtain coefficients in the q-expansion of the
conformal blocks, and use it to obtain low-level coefficients. This can be implemented in any
dimension; we illustrate the case of scalar blocks in d = 3.

The scalar blocks are defined in (8) as

F∆φ ;∆O
(q) = q∆O

∞
∑

k=0

qk
∑

|m|=|n|=k

〈O, ~m|φ(1) |O, ~n〉
COφO

(B−1) ~m,~n ≡ q∆O

∞
∑

k=0

ckqk, (116)

where B is the norm matrix at level k. The coefficient ck ’s are just numbers fixed by conformal
symmetry and are defined as

ck ≡
∑

|m|=|n|=k

〈O, ~m|φ(1) |O, ~n〉
COφO

(B−1) ~m,~n . (117)

Note that c0 = 1.
Using the conformal algebra reviewed in Appendix A, one can easily obtain the following

recursion relation:

〈O|Km3
3 Km2

2 Km1
1 φPn1

1 Pn2
2 Pn3

3 |O〉
= −P1 〈O|Km3

3 Km2
2 Km1

1 φPn1−1
1 Pn2

2 Pn3
3 |O〉

+m1 (2∆O + 2mtot −m1 − 1) 〈O|Km3
3 Km2

2 Km1−1
1 φPn1−1

1 Pn2
2 Pn3

3 |O〉
− (m2 − 1)m2 〈O|Km3

3 Km2−2
2 Km1+1

1 φPn1−1
1 Pn2

2 Pn3
3 |O〉

− (m3 − 1)m3 〈O|Km3−2
3 Km2

2 Km1+1
1 φPn1−1

1 Pn2
2 Pn3

3 |O〉 , (118)

where ntot = n1+n2+n3 and mtot = m1+m2+m3. An equivalent recursion can be found for
dimensions other than 3, where there would be d different mi ’s and ni ’s. This relation can be
implemented in Mathematica for a given level with c0 = 1 as the initial condition. At low k,
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defining m2
φ
≡∆φ(∆φ − 3), the ck ’s are given by

c0 = 1,

c1 = 3+
m2
φ

2∆O
,

c2 = 6+
m2
φ

22(∆O + 1)(∆O)(2∆O − 1)

�

m2
φ∆O + 2

�

8∆2
O +∆O − 2

�

�

,

c3 = 10+
m2
φ

3× 23(∆O + 2)(∆O + 1)∆O(2∆O − 1)

�

m4
φ
(∆O + 1)

+2m2
φ(15∆2

O + 20∆O − 1) + 20(12∆3
O + 21∆2

O −∆O − 4)
�

,

c4 = 15+
m2
φ

6× 24∆O(∆O + 1)(∆O + 2)(∆O + 3)(2∆O − 1)(2∆O + 1)

×
�

m6
φ(∆O + 1)(∆O + 2) + 4m4

φ
(∆+ 1)

�

12∆2
O + 31∆O + 8

�

+4m2
φ

�

180∆4
O + 750∆3

O + 829∆2
O + 201∆O − 22

�

+240
�

16∆5
O + 78∆4

O + 105∆3
O + 26∆2

O − 17∆O − 6
��

. (119)

A simple consistency check is that in when mφ = 0 this reduces to the character

(1− q)−3 = 1+ 3q+ 6q2 + 10q3 + 15q4 + 21q5 + . . . (120)

counting the number of states at each level.

D Various limits of the 3D conformal block using Casimir equa-
tions

The differential equation Eq. (27) is difficult to study in general, so we now describe two limits
which are easier to study. This will give us a slight generalization of the results of Secs. 3.3.1
and 3.3.2.

D.1 WKB Limit

We first consider the WKB limit. Let ∆φ → ∞ and ∆O → ∞ with fixed ρ = ∆O/∆φ .
Inserting the ansatz f = e−∆φG into the differential equation we obtain the leading equation

0 = q2(∂qG)2 + u(u+ 4)(∂uG)2 − 2qρ−1(∂qG)− 4u−1s(s− 1)(∂sG)
2

+(s− 1)
q

(1− q)2
�

1− 4s(∂sG) + 4s2(∂sG)
2
�

+

�

q(q(q(u+ 2)− 4) + u+ 2)

2 (q2 − q(u+ 2) + 1)2

�

�

−s+ 4s(s− 1)(∂sG)− 4s(s− 1)2(∂sG)
2
�

.

(121)

Now we expand G =
∑

Gkuk to obtain (the leading equation implies that ∂sG0 = 0):

0 = q(∂qG0)
2 − 2ρ−1(∂qG0)−

1
(1− q)2

⇒ ∂qG0(q) =
1

qρ
+

p

q2 + (ρ2 − 2)q+ 1
(q− 1)qρ

,

(122)
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where we have picked a particular sign in solving the quadratic equation to ensure that there
is no log q term in G0(q). This agrees with Eq. (70).

D.2 Large ∆O limit

We now consider the differential equation (27) in the limit where∆O→∞ while∆φ is fixed.
Most of the terms in the equation are subleading in this limit, and we get

0= ∂q f +

�

3q2 − 2q(u+ 3) + u+ 3
�

(q− 1)3 − (q− 1)qu
f . (123)

The solution is

f (q, u, s) =
1

(1− q)3 − (1− q)qu
, (124)

where we have used the q→ 0 limit to fix the boundary condition. This reproduces the result
of Section 3.3.2 when u= 0, in the case d = 3.

To calculate the first correction in the 1/∆O expansion, we need to expand in the s and u
variables as

f (q, u, s) =
1

(1− q)3 − (1− q)qu
+
∞
∑

a=1

∞
∑

b,c=0

f (a)b,c (q)∆
−a
O ubsc . (125)

Since we care about the usual blocks obtained by setting u = 0, we only want to calculate
f (1)0,0 (q). Using this expansion in (27) and asking that f (1)0,0 (0) = 0 (the contribution from the
primary doesn’t depend on ∆O), we quickly find that

f (1)0,0 (q) =
∆φ(∆φ − 3)

2
q

(1− q)4
. (126)

Again this agrees with Section 3.3.2.

E AdS-integral representation satisfies the Casimir differential equa-
tion

In this section we will prove the AdS integral representation of the conformal block for thermal
one point functions by showing that it satisfies the Casimir equation derived in Sec. 2 for d = 3,
and in Appendix B for general dimension. The fact that the AdS-integral obeys the correct
boundary condition follows by the same arguments as in Sec. 3.

E.1 Field theory considerations

As in the previous sections, the Casimir equation can be derived by inserting a Casimir operator
into the thermal block. On the one hand, the Casimir operator gives the same value for all the
states in a representation; on the other hand, by Ward identities, the insertion of an operator
can be transformed into a set of derivatives on the conformal block. In this subsection we will
derive a recursion relation for this operator, which will be related to Witten diagrams in the
next subsection.

In a CFTd , we can separate the conformal algebra into two sets of operators, Ha and Si .
Ha is the Cartan subalgebra, including the dilation operator and the Cartan subalgebra of
the rotation group SO(d). Comparing with Appendix B.2, we call the dilation operator H0 in
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order to simplify our notation. The remaining operators Si are chosen to satisfy the eigenvalue
equation (no sum over repeated indices)

[Ha, Si] = wi,aSi . (127)

The wi,a are the roots, which tell us how the Si change the Ha eigenvalues of a state. We wish
to calculate

F = TrO

�

φ(x)
r
∏

a=0

yHa
a

�

, (128)

where the trace is only over the conformal family of the scalar O and y0 is the variable q used
earlier. The number r is the rank of the conformal algebra. As in Section 2, the conformal block
for the thermal expectation value of the scalar φ(x) is given by the limit ya→ 1 for a 6= 0. In
the rest of this section we will suppress the product symbol for simplicity, so anything of the
form yAa

a implies a product over a.
Now we are ready to define the quantity

F(V )≡ TrO
�

Vφ(x)yHb
b

�

, (129)

which is the trace with insertion of an operator V . In what follows, we will derive a recursion
relation which transforms an insertion of V into derivatives acting on the conformal block.
The first important relation is simply

F(HaV ) = TrO
�

HaVφ(x)yHb
b

�

= ya
∂

∂ ya
TrO

�

Vφ(x)yHb
b

�

= ya
∂

∂ ya
F(V ) . (130)

The second relation is obtained by using the roots to pass Si through Ha:

F(SiV ) = TrO
�

yHb
b SiVφ(x)

�

= y
wi,a
a TrO

�

Si yHb
b Vφ(x)

�

= y
wi,a
a TrO

�

yHb
b Vφ(x)Si

�

= y
wi,a
a TrO

�

yHb
b VSiφ(x)

�

+ y
wi,a
a TrO

�

yHb
b V [φ(x), Si]

�

= y
wi,a
a (F(SiV )−F([Si , V ]))− y

wi,a
a SiF , (131)

so we have
(1− y

wi,a
a )F(SiV ) = −y

wi,a
a F([Si , V ])− y

wi,a
a SiF . (132)

Using these relations recursively, we can easily transform the insertion of Casimir operator into
a second order derivative on the conformal block and derive the Casimir equation.

E.2 Solution to Casimir differential equation

In this section, we will show that the Witten diagram in global AdSd+1 obeys a similar set of
recursion relations. In this subsection, the bulk field dual to the boundary scalar φ will be
denoted φ̂, x denotes a boundary point, and y denotes a bulk point. The internal bulk scalar
that runs in the loop and is dual to O will be called Ô.

The propagators can be written as scalar two-point functions in AdSd+1 space. The bulk
to bulk propagator between two bulk points y and y ′ is

G∆O
bb (y, y ′) = 〈Ô(y)Ô(y ′)〉 . (133)

We can then obtain the bulk to boundary propagator by taking one bulk field to the boundary
and removing the scaling factor.
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The crucial point is that the isometries of AdSd+1 are the conformal transformations of a
CFTd . The generators of these isometries (using a hat to distinguish them from the analogous
CFT operators) act on a bulk scalar field as

[ L̂,Φ(y)] = L̂Φ(y) (134)

for some differential operator L̂. The (bulk) Casimir operator Ĉ of the conformal group can
be expressed in terms of these differential operators in the same way as in the CFT. The bulk-
to-bulk propagator satisfies by definition the equation

Ĉy G(O)BB (y, y ′) =∆O(∆O − d)G(O)BB (y, y ′) . (135)

The left hand side of this equation can be rewritten as
¬

Ô(y ′)
�

Ĉ , Ô(y)
�

Adj
¶

=



Ô(y ′)ĈÔ(y)
�

, (136)

where the subscript Adj indicates that we are acting on the operator in the adjoint represen-
tation. As the vacuum is invariant under the isometries, the terms with isometry operators on
the right hand side vanish. We then just need to convert the quantum operators into deriva-
tives, just as in our CFT discussion. To do so, we will need a few relations for the propagator
which we derive below.

To begin, let us write our proposed integral formula for the one point conformal block as

F̂ =
∫

d yd+1
Æ

g(y)〈e−iλa ĤaÔ(y)eiλb ĤbÔ(y)〉G(φ)B∂ (y, x). (137)

Here ya ≡ eiλa
are the thermodynamic potentials for the Cartans Ha; as above the product

over a is implied. The Killing generators annihilate the vacuum, so we can ignore the e−iλa Ĥa

term. We further define

F̂(V̂ ) =
∫

d yd+1
Æ

g(y)〈Ô(y)y Ĥb
b V̂ Ô(y)〉G(Ô)B∂ (y, x), (138)

which allows us to obtain the desired recursion relations. The first one is simply

F̂(Ĥa V̂ ) =

∫

d yd+1
Æ

g(y)〈Ô(y)y Ĥb
b Ĥa V̂ Ô(y)〉G(φ)B∂ (y, x) = ya

∂

∂ ya
F̂(V̂ ) . (139)

We can also insert the Ŝi operators and use the roots of the conformal algebra along with the
fact that Ŝi kills the vacuum to write
D

Ô(y)y Ĥb
b Ŝi V̂ Ô(y)

E

= y
wi,a
a

D

Ô(y)Ŝi y Ĥb
b V̂ Ô(y)

E

= y
wi,a
a

D

�

Ô(y), Ŝi

�

y Ĥb
b V̂ Ô(y)

E

= −y
wi,a
a

D

�

ŜiÔ(y)
�

y Ĥb
b V̂ Ô(y)

E

= −y
wi,a
a Ŝi

D

Ô(y)y Ĥb
b V̂ Ô(y)

E

+ y
wi,a
a

D

Ô(y)y Ĥb
b V̂

�

ŜiÔ(y)
�

E

= −y
wi,a
a Ŝi

D

Ô(y)y Ĥb
b V̂ Ô(y)

E

+ y
wi,a
a

D

Ô(y)y Ĥb
b V̂

�

Ŝi , Ô(y)
�

E

= −y
wi,a
a Ŝi

D

Ô(y)y Ĥb
b V̂ Ô(y)

E

+ y
wi,a
a

D

Ô(y)y Ĥb
b V̂ ŜiÔ(y)

E

.

(140)
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The first term of this expression can be integrated by parts to move the differential operator
to the bulk to boundary propagator

F̂(Ŝi V̂ ) =

∫

d yd+1
Æ

g(y)
D

Ô(y)y Ĥb
b Ŝi V̂ Ô(y)

E

G(φ)B∂ (y, x)

= y
wa,i
a

∫

d yd+1
Æ

g(y)
D

Ô(y)y Ĥb
b V̂ Ô(y)

E

Ŝ(y)i G(φ)B∂ (y, x)

+y
wi,a
a

∫

d yd+1
Æ

g(y)
D

Ô(y)y Ĥb
b V̂ ŜiÔ(y)

E

G(φ)B∂ (y, x)

= −y
wi,a
a

∫

d yd+1
Æ

g(y)
D

Ô(y)y Ĥb
b V̂ Ô(y)

E

S(x)i G(φ)B∂ (y, x)

+y
wi,a
a

∫

d yd+1
Æ

g(y)
D

Ô(y)y Ĥb
b V̂ ŜiÔ(y)

E

G(φ)B∂ (y, x)

= −y
wi,a
a SiF̂(V̂ ) + y

wi,a
a F̂(V̂ Ŝi) . (141)

So
(1− y

wi,a
a )F̂(Ŝi V̂ ) = −y

wi,a
a SiF̂(V̂ )− y

wi,a
a F̂([Ŝi , V̂ ]). (142)

This is exactly the same recursion relation derived for the boundary differential operators in
the CFT. The only subtlety here is that we must convert the bulk differential operator Ŝi into
a boundary operator Si by taking the bulk field to the boundary.

As in the CFT case, these relations can be used to find a differential equation obeyed by
the block. Because the recursion relations are the same, the differential equation will also be
the same. If we impose the same boundary conditions, this then implies that our bulk integral
F̂ will then equal the conformal block F . To check the boundary condition, we just need to
investigate the low temperature behavior (q → 0). In this limit, the bulk-to-bulk propagator
simplifies, since we are computing the propagator between a point and its thermally-translated
image. As q→ 0, the geodesic distance between these points goes to e−∆Oβ = q∆O , which is
the correct behavior.

F Details of performing AdS integrals

In this section, we fill in some of the details of the calculation of the AdS integral in Sec. 3.3.
The first integral to be performed is Eq. (62), which can be carried out as follows:

J ≡
∫ ∞

−∞
d t dd−1Ω

�p

1+ r2 cosh(t − t∞)− r cosΘ(Ω,Ω∞)
�−∆φ

=
2π

d−1
2

Γ
� d−1

2

�

∫ ∞

−∞
d t

∫ π

0

dΘ sind−2Θ
�p

1+ r2 cosh t − r cosΘ
�−∆φ

=
2π

d−1
2

Γ
� d−1

2

�

∫

d tdΘ sind−2Θ
�p

1+ r2 cosh t
�−∆φ

�

1−
r

p
1+ r2 cosh t

cosΘ
�−∆φ

=
2π

d
2

Γ
� d

2

�

∫

d t
�p

1+ r2 cosh t
�−∆φ

2F1

�

1
2
∆φ ,

1
2
∆φ +

1
2

,
d
2

;
r2

(1+ r2) cosh2 t

�

=
2π

(d+1)
2

Γ
� d

2

�

∞
∑

n=0

�

∆φ
2

�

n

�

∆φ
2 +

1
2

�

n

(n!)( d
2 )n

Γ
�

n+
∆φ
2

�

Γ
�

n+
∆φ
2 +

1
2

� × r2n
�

1+ r2
�−n− 1

2∆φ
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=
2π

(d+1)
2

Γ
� d

2

�

Γ
�

∆φ
2

�

Γ
�1

2

�

∆φ + 1
��

�

1+ r2
�− 1

2∆φ
2F1

�

∆φ

2
,
∆φ

2
;

d
2

;
r2

r2 + 1

�

. (143)

In the first step, we performed the Θ-integral using
∫ π

0

dΘ [1+ c cosΘ]−b sind−2Θ =

∫ 1

−1

d x [1+ cx]−b �1− x2
�

1
2 (d−3)

=

p
πΓ
� d−1

2

�

Γ
� d

2

� 2F1

�

1
2

b,
1
2

b+
1
2

,
d
2

; c2
�

. (144)

For this integral to converge we need |c| ≤ 1, which is true in our case since c = rp
1+r2 cosh t

,

and d > 1. In the next step, we again used the fact that r2

(1+r2)
1

cosh2 t
≤ 1, so we are allowed

to use the series expansion of the hypergeometric function. Then, we performed the integral
over t using
∫ ∞

−∞
d t cosh−α t = 2

∫ ∞

0

d t cosh−α t = 2

∫ ∞

1

d x(x2 − 1)−
1
2 x−α =

p
πΓ
�

α
2

�

Γ
�

α+1
2

� ; α > 0 .

(145)
The requirement for the convergence of the integral is ∆φ > 0. Now we multiply J by

the volume factor rd−1 together with the bulk-to-bulk propagator evaluated at X and Xβ , and
obtain:

I = C∆O
C∆φ2−∆φ 2π

(d+1)
2

Γ( d
2 )

Γ
�

∆φ
2

�

Γ( 1
2(∆φ+1))q

∆O(1− q)−2∆O
∫∞

0 dr rd−1
�

1+ r2
�−∆O−

1
2∆φ

× 2F1

�

∆φ
2 ,

∆φ
2 ; d

2 ; r2

r2+1

�

2F1

�

∆O, 2∆O−d+1
2 ; 2∆O − d + 1;− 4q

(1−q)2(1+r2)

�

= C∆O
C∆φ2−∆φ 2π

(d+1)
2

Γ( d
2 )

Γ
�

∆φ
2

�

Γ( 1
2(∆φ+1))

Γ( d
2 )Γ

�

∆O−
∆φ

2

�

Γ( 1
2(∆φ−d)+∆O)

2Γ (∆O)2
q∆O(1− q)−2∆O

×3F2

�

− d
2 +∆O +

1
2 ,∆O −

∆φ
2 ,− d

2 +
∆φ
2 +∆O;∆O,−d + 2∆O + 1;− 4q

(q−1)2

�

.

(146)

In deriving the final line of Eq. (146), we have expanded the two hypergeometric functions as
a series expansion of the argument. Then using

∫ ∞

0

rd−1+2n(1+ r2)−
1
2∆φ−∆O−n−k =

Γ
� d

2 + n
�

Γ
�

− d
2 + k+

∆φ
2 +∆O

�

2Γ
�

k+ n+
∆φ
2 +∆O

� (147)

and performing the double sum, up to the overall normalization, one obtains the final line.
This integral can be used only for ∆φ + 2∆ > d and the resummation can be performed only

when ∆>
∆φ
2 . Together, these conditions can be combined to give ∆> d

4 .
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