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Abstract

We study the dynamics of a spin-1
2 XXZ chain which is initially prepared in a domain-wall

state. We compare the results of time-dependent Density Matrix Renormalization Group
simulations with those of an effective description in terms of a classical anisotropic
Landau-Lifshitz (LL) equation. Numerous quantities are analyzed: magnetization (x ,
y and z components), energy density, energy current, but also some spin-spin correla-
tion functions or entanglement entropy in the quantum chain. Without any adjustable
parameter a quantitative agreement is observed between the quantum and the LL prob-
lems in the long time limit, when the models are close to the isotropic point. This is
explained as a consequence of energy conservation. At the isotropic point the mapping
between the LL equation and the nonlinear Schrödinger equation is used to construct a
variational solution capturing several aspects of the problem.
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1 Introduction

The study of out-of-equilibrium quantum systems constitutes a major research field in con-
densed matter and quantum statistical physics. The understanding of the dynamics of iso-
lated quantum many-body systems after a quench is one of the important questions in this
domain [1, 2]. It addresses the long-time behavior of the system after a sudden change of
some external parameter at time t = 0, and, for instance, the possible relaxation of local
observables to steady values, and the characterization of the associated steady state.

In the field of quantum quenches, the situation of integrable systems is very peculiar [3].
Their dynamics is qualitatively different from that of generic models where the only local
conserved quantities are the energy and the momentum. Indeed, in integrable systems the
large number of local conserved quantities represents an enhanced memory of the initial state.
In situations where a non-integrable system would approach a Gibbs state characterized by a
single quantity – the temperature or the energy – an integrable system will keep a much more
detailed memory of its initial conditions. When the system is spatially homogeneous, this
can give rise to so-called generalized Gibbs ensembles [4]. This also leads to unconventional
transport properties (see, e.g., Ref. [5–7]).

In the case of an inhomogeneous quench, the system is initially prepared at t = 0 in a
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state which is spatially inhomogeneous, while the Hamiltonian driving the unitary evolution
at t > 0 can be taken to be translation invariant. As an example one may suddenly join at
t = 0 two macroscopically different and homogeneous states, having, for instance, different
particle densities, different magnetizations or different temperatures.

Such protocols are interesting because they can produce current-carrying states, and they
allow to address questions about transport (ballistic or diffusive?) or to test hydrodynamic
descriptions. In integrable one-dimensional systems, like the spin-1

2 XXZ chain or the Bose
gas with δ interactions [8], an important progress has been made recently concerning the
dynamics of inhomogeneous states. An hydrodynamic description taking into account the local
conserved quantities was developed, which is now called “generalized hydrodynamics" (GHD)
[9, 10]. It has lead to many fruitful developments in the last few years [7, 11–14, 14–21],
including on the experimental side [22].

One of the applications of GHD is a classic inhomogeneous quench problem [23–25], where
an XXZ spin chain is prepared at time t = 0 in a domain-wall state where all the spins in the
left half of the chain are pointing “up”, and the spins in the right half are pointing “down”.
This setup leads to three regimes, depending on the anisotropy parameter ∆ in the Hamilto-
nian of the chain. For |∆| < 1 (easy-plane) the dynamics creates a z-magnetization profile
which extends ballistically with time. ∆= 0 is a simple limit (Jordan-Wigner mapping to free
fermions) where such a ballistic transport can be compared with exact calculations [23]. For
|∆| > 1 (easy-axis) this profile gets frozen at long time [24, 25]. While the GHD can be used
to study the system in the ballistic cases in details, it does not predict much more than the
absence of ballistic transport for |∆| ≥ 1. Numerical simulations however suggests a diffusive
behavior with logarithmic corrections at the isotropic point ∆= 1 [26].

In a recent paper Gamayun el al. [27] (we also mention [28]) considered the domain
wall problem in a different model, which is a classical ferromagnetic chain in the continuum
limit. There, the magnetization ~M is a classical unit vector which depends on time and on
a continuous space variable r, and its (precession) dynamics is described by the celebrated
anisotropic Landau Lifshitz (LL) equation. The initial condition taken in Ref. [27] is a smooth
function or r interpolating between ~M = ~ez at r = −∞ to ~M = −~ez at r = +∞, which is the
continuum analog of the domain wall in the context of lattice spin chains. The main result
of [27] is that the dynamics of M z(r, t) follows three regimes, and is qualitatively similar to the
quantum case: ballistic in the easy-plane regime, frozen in the easy-axis, and diffusive with
logarithmic correction in the isotropic model.

In the present paper we present some quantitative comparisons for the domain wall prob-
lem i) in the XXZ chain, and ii) in the anisotropic LL system. We investigate numerous quanti-
ties: the magnetization (z component but also x and y components), the energy density, the
energy current, but also some spin-spin correlation functions or the entanglement entropy in
the quantum chain. We analyze the “diffusion” region, of size

p
t (with multiplicative loga-

rithmic corrections), but also the regime where r/t is finite, and where both the LL and XXZ
problems show some nontrivial behavior. These results are obtained using time-dependent
density-matrix renormalization group (tDMRG) simulations of the spin-1

2 model, as well as
numerical and analytical calculations for the LL problem (hydrodynamic approximation, per-
turbative expansion, or mapping to the nonlinear Schrödinger equation (NLS) and variational
ansatz). As an important result, we observe that the similarities between the quantum spin
chain and the LL problem are not only qualitative, but semi-quantitative (or even quantitative)
close to the isotropic point, in the long time limit, and without any adjustable parameter. As
explained in Sec. 3, we argue that this is a simple consequence of energy conservation. Sec. 4
deals with the easy-plane case. It is shown that the LL problem gives a linear z-magnetization
profile which is identical to that of XXZ problem in the limit ∆ → 1−. While the presence
of a linear profile in the long time limit was known for these two models, we show that they
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have exactly the same slope in the limit ∆→ 1−, and similar finite-time corrections. In Sec. 5
we analyze the LL problem in the limit where the magnetization is close to M z = ±1. This
perturbative expansion turns out to correctly describe the regime when |r|/t is large for LL,
with small amplitude oscillations of ~M around the z axis. But it also describes some aspects
of the XXZ problem, like the tail of the 〈Sz〉 or energy density profiles. In Sec. 6 we discuss
the spatial width of the stationary profile in the easy-axis case, and characterize the scaling of
long-lived oscillations around this stationary profile, both in LL and XXZ. Section 7 is devoted
to the isotropic models (∆= 1). We compare the z-component of the magnetization profile in
both problems, and we confirm the finding of [26] and [27] concerning respectively a logarith-
mic correction to diffusion in the quantum case and in the classical LL case. We also consider
the x and y components of the LL magnetization, which show small amplitude oscillations ex-
tending beyond the diffusion scale, up to r/t of order one. While the in-plane magnetization
is zero (by symmetry) in the quantum problem, the in-plane magnetization of the LL problem
can be quantitatively compared with spin-spin correlations in the quantum chain (Sec. 7.3).
An heuristic argument concerning the (logarithmic) growth of the entanglement entropy in
the spin-1/2 model is also given. In Sec. 7.7 we exploit the mapping between the isotropic
LL equation and the NLS equation to construct a variational solution which captures several
aspects of the isotropic domain problem: not only the diffusive-like expansion of the z com-
ponent of the magnetization profile, but also the larger scale behavior of several geometrical
quantities like the curvature or the torsion associated to the LL to NLS mapping. Finally, the
relevance of the self-similar solutions of the isotropic LL equation to the present domain-wall
problems is discussed. The mapping from LL to NLS is recalled in Appendices A and B. An
explicit calculation of self-similar solution of the LL equation is given in Appendix C.

2 The model: domain wall problem in the XXZ chain

2.1 XXZ model

We study the evolution of a quantum XXZ spin-1/2 chain, prepared at time t = 0 in a domain
wall state |DW〉= |↑↑ · · · ↑↑↓↓ · · · ↓↓〉 where all the spins in the left half of the system are “up”
(Sz = 1

2) and those in the right half are “down” (Sz = −1
2). At time t > 0 the wave function

then evolves according to
|ψ(t)〉= exp

�

−iĤ t
�

|DW〉 , (1)

where the Heisenberg Hamiltonian Ĥ is that of a XXZ chain of length L with open boundary
conditions,

Ĥ = −
∑

r

�

Ŝ x
r Ŝ x

r+1 + Ŝ y
r Ŝ y

r+1 +∆
�

Ŝz
r Ŝz

r+1 −
1
4

��

, (2)

and ∆ is the anisotropy parameter.1 r ∈ Z labels the lattice sites, but in the next section r will
be treated as a continuum variable.

This problem was first studied by Antal et al. [23, 29] in the free fermion case (∆ = 0),
where an exact analytical solution for the long-time limit of the magnetization profile was ob-
tained. A few years later the problem with∆ 6= 0 was studied numerically by Gobert et al. [24]
using the time-dependent density-matrix renormalization group (DMRG). For |∆| < 1 an ex-
act solution for the long-time limit of the magnetization profile was recently obtained [19]

1The constant term − 1
4∆ is introduced here to set at zero the energy of a fully polarized state in the z direction.

The global minus sign in the definition of Ĥ is here to simplify the connection with the classical ferromagnetic LL
description, but it has no influence on the dynamics when starting from |DW〉 at t = 0.

4

https://scipost.org
https://scipost.org/SciPostPhys.7.2.025


SciPost Phys. 7, 025 (2019)

using GHD [9, 10]. Despite some recent analytical progresses [30], the precise scaling of the
front remains unknown at the Heisenberg point∆= 1, even though recent large-scale numer-
ics suggest that it shows some diffusive behavior, possibly with a multiplicative logarithmic
correction [26].

In the following, the data for the XXZ spin chain are obtained using a tDMRG algorithm [31,
32], implemented using the iTensor library [33], as in Ref. [26]. Technically, we typically use
systems of size L = 800 sites, Trotter time-step d t = 0.2 (matrix-product operator scheme
W I I [34] at order 4 [35]), a matrix-product state (MPS) truncation parameter equal to 10−10

or 10−11 and maximum bond dimension from 1000 to 2500. These state-of-the art simulations
are pushed up to t = 300. On the LL side, the calculations are performed using the software
Maple (pdsolve) with systems size up to L = 3200, and space and time discretization steps
d x = d t from 0.01 to 0.05. We checked that, at the scale of the plots, the results presented
here are essentially free of finite-step of finite size errors.

2.2 Anisotropic Landau Lifshitz equation

From a different perspective, one can study an analogous domain-wall problem for a classical
spin model. To this end, we consider the anisotropic Landau-Lifshitz (LL) equation. It describes
the (precession) dynamics of a classical XXZ model in the continuum limit [36,37]:

~Ωt = ~Ω∧
�

~Ωr r +δ (Ω
z~ez)

�

, (3)

where δ is the anisotropy parameter, and r has become a continuous variable.2 Note that the
z component of the equation above can be re-written

Ωz
t + Ir = 0, (4)

where
I(r, t) = ΩyΩx

r −Ω
xΩy

r (5)

is the current associated to the z-component of the magnetization.
Since we wish to make some quantitative comparison between the local magnetization 〈Sz〉

of the XXZ chain with Ωz , we set the norm of the LL magnetization vector to |~Ω| = 1/2, and
one can easily check that the anisotropy should be set to

δ = 2(∆− 1). (6)

The above equations of motion can also be obtained from the following classical Hamiltonian:

HLL =
1
2

∫

�

�

∂r ~Ω
�2 −δ

§

(Ωz)2 −
1
4

ª�

dr. (7)

The constant term ensures, as in the quantum case, that a uniform state polarized in the z
direction has zero energy. δ > 0 corresponds to easy-axis cases, δ < 0 to easy-plane, and δ = 0
to the isotropic model. The isotropic LL model is also often called the classical Heisenberg
model.

As proposed in Refs. [27,28], for the LL model a natural counter part of the lattice domain
wall state is the following smooth initial condition:

~M(r, t = 0) = 2 ~Ω(r, t = 0) =





1/ cosh(ar)
0

− tanh(ar)



 . (8)
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Figure 1: Ωx and Ωz magnetization profiles for the isotropic LL model (∆ = 1) at
t = 200 and t = 800 (initial condition given in Eq. (8)).

It describes some smooth domain wall which interpolates between ~Ω = 1
2~ez at r → −∞ and

~Ω= −1
2~ez at r → +∞; a is the inverse width of the initial profile.

For δ 6= 0 it is convenient to define a new space variable ζ= r |δ|
1
2 and a new time variable

τ= 1
2 |δ| t, so that the LL equation becomes:

~Mτ = ~M ∧ ~Heff , where ~Heff = ~Mζζ + sign(δ)Mz ~ez . (9)

Now, the inverse width a of the initial conditions is changed to ã = a/
p

|δ| in the variable
ζ. In other words, in the case |δ| � 1 we are interested in, we may consider Eq. (9) with an
anisotropy parameter fixed to±1, but with a very narrow initial profile in terms of ζ (ã→∞).

3 Energy conservation and classical behavior close to ∆= 1

We give here a heuristic argument based on energy conservation, arguing that the behavior of
the quantum XXZ chain for ∆ close to 1 gets closer and closer to that of a classical LL problem
as the energy and the 〈Sz〉 profile spread over larger distances.

3.1 Energy in the domain wall problem

For the quantum XXZ chain [Eq. (2)], the energy density on one bond can be written as

Ĥr = H iso
r + (∆− 1)Vr , (10)

with

H iso
r =

1
4
− ~Sr · ~Sr+1

Vr =
1
4
− Sz

r Sz
r+1.

The largest eigenvalue of ~Sr · ~Sr+1 is 1
4 , corresponding to the triplet states (three-fold degen-

erate). As for Sz
r Ŝz

r+1, its largest eigenvalue is also 1
4 , and it corresponds to | ↑↑〉 and | ↓↓〉

(two-fold degenerate). So, the mean values of two terms H iso
r and Vr appearing in Ĥr are

necessarily ≥ 0. The total mean energy EXXZ = 〈ψ(t)| Ĥ |ψ(t)〉 is conserved along the time

2We use here the compact notations ∂ 2
r (Ω

α)→ Ωαr r and ∂tΩ
α→ Ωαt for the space and time derivatives.
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evolution and its value is easily computed at t = 0, where only the central bond contributes:
EXXZ = 〈DW| Ĥ |DW〉= 1

2∆.
We now assume that there exists some length scale R∆(t) over which the energy is spread

after time t. We further make the simplifying assumption that the energy density is finite and
that it varies smoothly with position in this region, and that the energy outside [−R∆(t), R∆(t)]
is negligible. The total energy EXXZ can then be written as EXXZ = 2e(t)R∆(t), where

e(t) =



H iso
�

+ (∆− 1) 〈V 〉 (11)

is a mean energy density, and 〈· · · 〉 denotes a quantum average as well as a spatial average
over the bonds in the nontrivial region of the system, where the energy is distributed. We
conclude that

∆

4R∆(t)
=



H iso
�

+
δ

2
〈V 〉 . (12)

Let us examine the implications of this relation when R∆(t) tends to infinity.

• If ∆ = 1 (δ = 0), we know [26] that the 〈Sz〉 profile extends in a diffusive way, with
logarithmic corrections. This implies that the energy spreads over a distance which is at
least as large as O(

p
t), and thus R∆(t) →∞. The energy density therefore tends to

zero everywhere when t →∞. We will see later (in Sec. 7.4) that the energy density in
the isotropic spin chain goes to zero as 1/t, possibly with logarithmic corrections. From
Eq. (12) we get that 〈H iso〉 vanishes when t →∞. We conclude that, in the nontrivial
region [−R∆(t), R∆(t)], the nearest-neighbor correlations asymptotically become that
of a ferromagnetic state. The spins thus become locally aligned, but the direction of the
magnetization is unconstrained.

• If ∆ > 1 (δ > 0) the two terms in the right-hand side of Eq. (12) are positive. If we
further assume that R∆(t) is large, then 〈H iso〉 (as well as δ〈V 〉) will be small, of order
O
�

R∆(t)−1
�

. We will see below (Sec. 6) that the 〈Sz〉 profile extends over a distance of

the order of δ−
1
2 . So, even though R∆(t) may not diverge when t →∞ at fixed ∆> 1,

we have limt→∞ R∆(t) > O
�

δ−
1
2

�

. So, in the limit of a weak easy-axis anisotropy
(δ� 1), the state again approaches locally a ferromagnetic state.

• If ∆ < 1 we will see that there is a ballistic propagation of the front at velocity
vXXZ =

p
1−∆2, and thus R∆(t) ' t vXXZ →∞. So, at long times 〈H iso〉 ' (1−∆)〈V 〉

and thus 0 ≤ 〈H iso〉 ≤ 1
4 |δ| since 〈V 〉 ≤ 1

2 . We see here that when ∆ approaches 1−, the
nearest-neighbor correlations again become that of a ferromagnetic state.

In all the cases above, where the nearest-neighbor correlation become asymptotically that
of a ferromagnetic state, we expect that the spins will become ferromagnetically aligned over
large distances. These large, almost ferromagnetic, segments of the chain will have a large
total spin and should therefore behave semi-classically. This should occur at large times for
∆ = 1, but also if we consider the regime where one simultaneously takes the limit of large
time and ∆ → 1. In such situations we conjecture that the quantum effects as well as the
lattice effects will become weaker and weaker, and that the classical (anisotropic) LL description
should become quantitatively accurate when compared to the XXZ problem. This conjecture is
supported by the data presented below, where we compare the numerical solutions of the
(classical) LL equations to numerical results obtained for the (quantum) XXZ spin chain with
∆ close to 1.

Of course the short-time dynamics of the XXZ model is not classical, and we should there-
fore expect a quantitative agreement between the lattice quantum problem and the classical
LL model only for quantities that are independent of the short-distance properties of the initial
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domain wall. Another important consequence of the lattice is the existence of a maximum
Lieb-Robinson velocity in the quantum chain, whereas arbitrarily high velocities can in prin-
ciple be observed in the continuum limit. Weak quantum fluctuations will also be present at
any finite time, since the energy density is never strictly zero for t <∞. Analyzing in detail
the quantum corrections to the classical dynamics is beyond the scope of this paper, but the
numerical data presented in this study show that many observables in the XXZ chain behave
almost classically at long times.

3.2 Initial width of the LL domain wall

Using Eq. (7) one finds that the energy of the initial condition given in Eq. (8) is

ELL =
1
4
(a+δ/a). (13)

Being conserved by dynamics, the value of this energy will constrain the evolution of the
system. In order to be able to make some quantitative comparison between the dynamics of
the quantum system and that of the classical system, we chose a such that the classical energy
is the same as that of the quantum problem, which is equal to EXXZ =

1
2∆. In what follows we

therefore take a(∆) to be solution of a+ 2(∆− 1)/a = 2∆. This implies in particular that for
∆→ 1 we have a→ 2.

We will successively discuss the three regimes: easy-plane (0≤∆< 1), easy-axis (∆> 1)
and finally the isotropic model (∆= 1).

4 Easy plane regime ∆< 1

It has recently been shown [27] that in the long time limit, the easy-plane LL equation admits
solutions of the form Ωz(r, t) = − r

2t |δ|
− 1

2 for |r| ≤ t
p
−δ, and Ωz = ±1/2 outside this interval.

Or, equivalently: M z(ζ,τ) = − ζ
2τ for |ζ/τ| ≤ 2. We give below a simple derivation of this

solution. In Sec. 4.2 we show that, for∆→ 1−, the above linear profile in the LL model exactly
matches that derived from GHD for the easy-plane XXZ chain. This is the first manifestation
of the asymptotic classical behavior conjectured in Sec. 3.1.

4.1 Solution of LL – neglecting dispersion effects

When ~M is parametrized using spherical coordinates

~M =





sinθ cosϕ
sinθ sinϕ

cosθ



 , (14)

the Eq. (9) becomes [38]

θτ = −2θζϕζ cosθ −ϕζζ sinθ , (15a)

ϕτ = − cosθ
�

ϕ2
ζ + sign(δ)

�

+
θζζ

sinθ
, (15b)

where sign(δ) = −1 in the easy-plane regime, sign(δ) = 1 in the easy-axis regime and
sign(δ) = 0 for the isotropic Heisenberg case.

The term
θζζ

sinθ in (15b) represents dispersive effects. We refer, for instance, to the discussion
in [39,40], where the so-called “Riemann problem” for the easy-plane LL equation was studied
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in the context of two-component Bose-Einstein condensates. We now make the assumption
that it can be neglected in the long time limit. Next, in view of the ϕ2

ζ
−1 factor, we look for a

solution where ϕζ = −1. This means that the projection of ~Ω in the x − y plane forms a spiral
with a constant pitch, which is perfectly consistent with the data shown in the right panel of
Fig. 2.
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 0

 0.2
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 0  0.5  1  1.5  2

Ω
x (r

,t)

r/t

LL Δ=0.8 t=100
t=200
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XXZ  4<Sx(0) Sx(r)> Δ=0.8 t=70
XXZ  4<Sx(0) Sx(r)> Δ=0.8 t=100

Figure 2: Left panel: Ωx(r, t) as a function of the rescaled position r/t for ∆ = 0.8
for different times t = 100 and t = 200. The envelope of the oscillations is approxi-
mately the same at t = 100 and t = 200 (this follows from the fact that Ωz scales as
r/t, see Fig. 3). Right panel: when plotted as a function of r

p

|δ|= r
p

2(1−∆) = ζ,
the period of the first oscillations turns out to be almost independent of time and ∆,
and is numerically close to 2π. This can be understood using the asymptotic solution
discussed in Sec. 4.1, which predicts that |ϕζ|= 1. The crosses are spin-spin correla-
tions in the XXZ chain at ∆ = 0.8, t = 70 and t = 100. See Sec. 7.2 for the relation
between spin-spin correlations in the quantum chain and the in-plane component of
the LL magnetization.

Then Eq. (15b) simplifies to ϕτ = 0, and (15a) becomes

θτ = 2θζ cosθ . (16)

For |ζ/τ| ≤ 2 an obvious solution of the equation above is then

cosθ = −
ζ

2τ
, (17)

which corresponds to M z = − ζ
2τ . One can check a posteriori that, in this solution, θζζ is

of order O(τ−2) and thus becomes negligible at long times. For |ζ/τ| ≤ 2, the solution lies
at the boundary of the hyperbolicity domain of the easy axis LL system, and is sometimes
referred to as a “vacuum region” [41]. Indeed, for this range of values of θ and φζ, the model
can be mapped onto a system of shallow-water Kaup-Boussinesq equations [40] for which the
condition |ϕζ|= 1 corresponds to the absence of the fluid [42]. For |ζ/τ|> 2 the linear profile
makes room for a constant magnetization with cosθ = ±1. Going back to the original r and t
variables, this corresponds to a front which propagates at the velocity

vLL =
p

−δ =
Æ

2(1−∆). (18)

As can be seen in Fig. 3, the transient time needed to converge to such a profile increases
when ∆ approaches 1−. Indeed, at ∆= 0.99 and t = 100 for instance, the LL profile (as well
as the XXZ one) is still relatively far from the asymptotic result. These finite time corrections
are the largest in the region corresponding to the r/t ' vLL where the linear part of the profile
connects to the constant part. Looking at Ωx (Fig. 2), the numerical solutions also confirm
that ϕζ ' −1, as predicted above.
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Figure 3: Ωz(r, t) from the solution of the classical LL equation, as a function of the
rescaled position r/t for ∆= 0.8, ∆= 0.9, ∆= 0.95 and ∆= 0.99 and for different
times from t = 100 to t = 800. The black lines, labeled GHD, represent the long-time

limit of the profile for the XXZ chain, 〈Sz〉 = − r
2t

�

1−∆2
�−1/2

= − r
2t (vXXZ)−1 [19],

as predicted by GHD. In the panels associated to ∆= 0.8,9 and ∆= 0.99, the black
crosses represent tDMRG data for the XXZ chain.

4.2 Easy plane LL and GHD

For the XXZ spin chain the exact form of the 〈Sz〉 profile has been computed in the framework
of GHD. For a generic values of ∆ 3 it turns out that this profile is a simple linear function of
r/t [19]:

〈Sz〉= −
r

2vXXZ t
. (19)

with a velocity given by:
vXXZ =

p

1−∆2. (20)

So, the LL and XXZ problems both show a linear profile for the z component of the magneti-
zation.

But, in addition, we observe that the slopes of the profiles become identical in the limit
∆ → 1, since vXXZ/vLL =

p

(∆+ 1)/2. We argue that this is not an accidental coincidence
but a manifestation of the asymptotic classical behavior discussed in Sec. 3.1. Naturally, this
match relies on the fact that, on the LL side, the initial configuration has the same energy as
the domain wall for the quantum chain.

While the emergence of a linear profile is quite easily understood for the LL model (Sec. 4.1),
the fact that such a simple profile emerges from such a complicated model as the XXZ chain
(for a generic value of ∆) and from the the GHD equations is quite remarkable. Clearly, the
asymptotic equivalence with LL when ∆→ 1− – as argued in Sec. 3 – sheds some light on this

3∆ may be parametrized as ∆ = cos(Θ). We then call generic the values of ∆ for which the angle Θ is not of
the form Θ = πQ/P, with Q and P coprime integers satisfying 1≤Q < P.
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question. It would also be interesting to compare further the finite-time behavior of the LL
magnetization profile with that of the XXZ chain, in the light of the finite-time corrections to
the asymptotic profile close to the edge at r/t = vXXZ, as studied in Refs. [19,43].

5 Perturbative expansion

We consider here the classical LL problem and focus on the region where ~M is close to −~ez . At
a given time, this is supposed to hold for sufficiently large r. We can therefore write

~M = 2 ~Ω(r, t) = α(r, t)~ex + β(r, t)~ey −
Æ

1−α2 − β2~ez , (21)

with α and β � 1. The equation (3) can be expanded to first order in α and β . Using the
complex variable z = α+ iβ , the linearized equation reads

2zt = −izr r + iδz, (22)

and admits the following plane wave solutions

z(r, t) = z0 exp (i [ω(k)t − kr]) , (23)

where the frequency ω(k) is related to the wave vector k through the dispersion relation

ω(k) =
1
2

�

k2 +δ
�

. (24)

These are right moving solutions, and the left moving ones can be obtained from the expres-
sions above by replacing k by −k in the expression of z [Eq. (23)].

Eq. (22) being linear, a general solution can be constructed by superposition of these plane
waves:

z(r, t) =

∫ ∞

−∞

dk
2π

z0(k)exp (i [ω(k)t − kr]) , (25)

where z0(k) is the Fourier transform of the initial condition at t = 0. Consider now the long-
time and long-distance limit, with x = r/t fixed:

z(r, t) =

∫ ∞

−∞

dk
2π

z0(k)exp (i t [ω(k)− kx]) . (26)

When t →∞ the integral above is dominated by the vicinity of a saddle point located at a
wave vector k0 determined by

ω′(k0) = x , (27)

which gives
k0 = x = r/t. (28)

The saddle point integration then gives

z(r, t)'

√

√2iπ
t

z0(k0)
2π

exp
�

−ir2/(2t) + i tδ/2
�

. (29)

It is interesting to note that the complex phase in the equation above is independent of the
initial condition; it describes (small) oscillations around the z direction with an angle (in the
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(1) (2)

(3) (4)

Figure 4: Panel 1 : Ωxpt for ∆ = 1 as a function of r/t (LL). With this scaling the
different curves (t = 200, 400, 600 and 800) appear to have the same envelope. The
thin black line is a fit of the envelope in the region where r is of the order of

p
t (thus

small r/t). In this region, the envelope of Ωxpt appears to scale as ∼ t/r. Panel 2:
p

(Ωx)2 + (Ωy)2
p

t in log scale. The thick black line is a fit in the region of large r/t,
where the amplitude of the magnetization in the x − y plane decays exponentially.
This plot suggests that

p

(Ωx)2 + (Ωy)2 =
p

1/4− (Ωz)2 scales as exp(−cr/t)/
p

t
for large r/t, which is consistent with Fig. 6. Panels 3 and 4: Ωx as a function of
r2/(2t). With this scaling, the period of the oscillations is almost the same for the four
curves, and is found to be numerically close to 2π. This behavior is observed both
for small r2/t (panel 3), as well as large r2/t (panel 4). Ωx can thus be described
by an oscillatory factor cos(r2/(2t) + cst), in agreement with Eq. (29).

x-y lane) varying as ϕ(r, t) = −r2/(2t) + tδ/2. This is in agreement with the data plotted in
Fig. 4 (bottom panel) for ∆= 1 (δ = 0) or Fig. 5 at ∆= 1.2.

The initial condition given by Eq. (8) does not correspond to a small |z| close to the ori-
gin at r = 0, but let us nevertheless consider the dynamics obtained with the linear equation
[Eq. (22)], starting from this initial condition. The Fourier transform z0(k) of the initial condi-
tion can be computed explicitly, and also takes the form of the inverse of an hyperbolic cosine:

z0(k) =
1
2

∫ ∞

−∞

dr
cosh(ar)

exp (ikr) =
π

2a
1

cosh(πk/(2a))
, (30)

plugging the equation above into Eq. (29) gives

z(r, t) '

√

√2iπ
t

1
4a cosh(πr/(2at))

exp
�

−ir2/(2t) + i tδ/2
�

. (31)

In this linear approximation, the amplitude |z| appears to be a function of r/t. This is in
agreement with the upper panels of Fig. 4, which show that the envelope of the oscillations
in Ωx ×

p
t is a function or r/t. The analytical result shows that this amplitude scales as

|z| ∼ exp (−πr/[2at])/
p

t for large r/t, which is also in agreement with the data (upper right
panel of Fig. 4). The numerical value of the constant c ' 1.25 obtained by a fit is however
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Figure 5: Large distance behavior of Ωx(r, t) for ∆ > 1 and three different times.
Left panel: Ωx(r, t) as a function of the position r for ∆ = 1.2. Right: Same data
plotted as a function of r2/(2t)− tδ/2 with δ given in Eq (6). The latter shows that
the phase of the oscillations is well described by the argument of the exponential in
Eq. (29).

different from the constant c′ = π/(2a) = π/4 predicted by the analytical argument above.
This quantitative discrepancy for the rate of the exponential decay is presumably due to the
fact that the initial condition is not in the linear regime close to the origin.
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Figure 6: Zoom on the tail of the profile for ∆ = 1. For the LL model, we plot the
quantity t · (Ωz + 1/2). The almost perfect collapse of the curves for different times
shows that, at long times and large distances, we have Ωz+1/2' 1

t exp(−cr/t). For
XXZ the black and blue lines correspond to the quantity




Sz
r

�

+ 1
2 in the Heisenberg

chain (tDMRG) at t = 135 and t = 270 (the two curves are almost on top for of
each other). The data are consistent with the scaling observed for LL. The vertical
dotted lines are at r/t = 1

4 , 1
3 , 1

2 , 1, and correspond to the maximum group velocities
of bound-states of 4, 3, 2 and 1 magnons.

The modulus |z| can also be extracted from the z component of the magnetization, since
M z = −

p

1− |z|2. Fig. 6 indeed shows an exponential decay which is compatible with the
result of the perturbative expansion. But importantly, the quantum chain shows a similar be-
havior. Although the latter displays additional oscillations [44], the tail of the z-magnetization
profile exhibits some exponential-like decay in r/t (black and blue lines in Fig. 6 correspond to
different times and are almost on top of each other). This decay is however cut off af r/t ' 1,
because of the maximal velocity in the chain. A qualitatively similar behavior is also observed
in the XXZ chain for ∆ > 1 (data not shown). This exponential decay is however cut for
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r/t > 1, which corresponds to the largest velocity in this lattice model: the maximum group
velocity of an “up” spin in a background of down spins is indeed equal to unity. Similarly, we
observe some “bumps” in the tail of the magnetization profile at r/t ' 1

4 , 1
3 , 1

2 , and these cor-
respond to the maximal group velocities of bound-states of 4, 3 and 2 magnons propagating
in the vacuum (i.e., down spins) for ∆ = 1 [45]. Such bumps have also been observed in the
Von Neumann entropy profiles [26]. Of course these are lattice effects and have no analog in
the continuum.

6 Easy axis regime ∆> 1

In the early study of the XXZ domain wall problem by Gobert et al. [24], the current
I(t) ≡ I(r = 0, t) associated to the transfer of the z-component of the magnetization (from
the left half to the right half of the chain) was observed to vanish at long time for ∆> 1. This
absence of spin transport is consistent with exact Bethe ansatz results for the return probability
(or Loschmidt echo) [25]. As for the LL problem, the z magnetization profile was observed
to freeze at long times [27, 28], and to be described by a soliton solution of the easy-axis LL
equation. This was explained analytically by the fact that the associated inverse scattering
problem involves a stable static kink in the easy-axis case [27].

In this section we show that, in the limit ∆ → 1+ both problems have the same soliton-
like stationary magnetization profiles, with a spatial width scaling as δ−1/2 and which thus
diverges when ∆→ 1+. The oscillations about the stationary profile appear to have a period
proportional to δ−1, which can be understood from a dimensional analysis of easy-axis LL
equation. Finally, as discussed in Sec. 5, at larger distances the perturbative analysis still holds
and small amplitude oscillations around the z axis propagate much further than the soliton
width, but decay exponentially in r/t.

6.1 Numerics for LL and XXZ

The z component of the magnetization profiles is plotted in Fig. 7 for a few values of ∆ > 1.
The width of the stationary (or mean) profile grows when approaching the isotropic point.
It nevertheless remains relatively limited even at ∆ = 1.05, where it does not exceed 20. In
addition to the absence of propagation at long times, we observe oscillations with an amplitude
which grows when∆ approaches 1. In the panel of Fig. 7 corresponding to∆= 1.05 we indeed
see that the profile keeps changing up to t = 400. Remarkably we have a good quantitative
agreement between the quantum chain and LL, without any adjustable parameter. Again, this
should be viewed as a consequence of the energy conservation argument exposed in Sec. 3.
The oscillations are easier to see in the current (defined in Eq. (5)), plotted in Fig. 8 for the LL
and XXZ models. In this figure, the left panel shows some XXZ data for several values of ∆ in
the easy-axis regime. The current has some transient regime, after which it oscillates around
zero. When multiplied by

p
t (right panel of Fig. 8) the amplitude of the oscillations appear

to be approximately constant. The data are thus compatible with a slow t−1/2 decay of the
oscillations, at least in the LL case. The situation for XXZ is slightly less clear and longer runs
would be needed to establish firmly the form of the decay.

Concerning the temporal period of the oscillations, they appear to be proportional to δ−1.
This can be seen in the middle panel of Fig. 8, where an approximate collapse of the current
oscillations is achieved using a rescaled time τ = δt. For the XXZ data at different values of
∆, as well as for an easy-axis LL solution. Here again, we get a reasonable agreement between
the classical and quantum models, without any adjustment.
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Figure 7: Ωz(r, t) and 〈Sz(r, t)〉 as a function of the position r for ∆ = 1.4 (top),
∆ = 1.2 (middle) and ∆ = 1.05 (bottom) and for different times from t = 100 to
t = 400. The LL solution shows some long-lived oscillations around some mean pro-
file. These are visible (larger amplitude) for ∆= 1.05. The full black line represents
the static soliton of Eqs. (32). Black crosses: expectation value 〈Ŝz〉 in the quantum
XXZ chain (tDMRG simulations). To visualize the amplitude and the period of these
oscillations, see Fig. 8.

6.2 Easy-axis LL soliton

The observation made in the previous paragraph can be explained from the LL point of view,
using the rescaled equation Eq. (9) and the rescaled time 2τ= |δ|t.

One can easily check (see, e.g., Ref. [36]) that the following profile is an exact static solu-
tion when ∆> 1 (δ > 0):

2Ωx(r) = 1/ cosh
�

r
p

δ
�

(32a)

Ωy(r) = 0 (32b)

2Ωz(r) = − tanh
�

r
p

δ
�

. (32c)

It is a topological soliton, which lies in the x-z plane. It corresponds to Eqs. (8) with a =
p
δ,

but this is not the value a(∆) which ensures that the energy is that of the domain wall of the
XXZ chain (see Sec. 3.2). The energy density of this solution is ε(r) = 1

4δ
�

cosh(
p
δx)

�−2
and

its total energy is ES =
1
2

p
δ. This energy is always lower than the XXZ energy EXXZ =

1
2∆.

Nevertheless, the numerical results of Figs. 7-8 show that the LL and XXZ profiles oscillate
around, and then converge to, the soliton solution above. This convergence becomes very slow
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Figure 8: Left panel: Current I(t) for different values of ∆, from 1.01 to 1.4, in the
XXZ chain. Data obtained from tDMRG simulations on a chain with L = 600 or 800
sites and maximum bond dimension between 1000 and 2000. Middle panel: same
data plotted as a function of τ= (∆−1)t. The relatively good collapse of the curves
associated to different values of the anisotropy can be understood in the framework
of the easy-axis LL model, thanks to the rescaling defined in Eqs. (9) which absorbs
the anisotropy δ = 2(∆− 1) into a definition of a new time variable τ = 1

2 |δ|t. For
comparison, the current obtained from the LL equation at ∆ = 1.05 is also shown
(black line). Right panel: same data multiplied by

p
t, which gives oscillations with

an approximately constant amplitude.

as ∆ approaches 1. So, as argued in Ref. [27], we find that the excess energy is radiated away
and that the central region of the system approaches the static soliton configuration. The scal-
ing in Eq. (32) then naturally explains the observed width of the steady profile, proportional to
δ−1/2. The rescaled time in Eq. (9) shows that the natural time scale is ∼ δ−1, as the observed
period of the oscillations in I(t), both for LL and XXZ.

7 Isotropic model ∆= 1

For the quantum chain, the domain wall problem in the isotropic case has already attracted a
lot of attention. Although some studies [24,46] concluded that the expansion of 〈Sz〉 could be
superdiffusive, a diffusive behavior with a logarithmic correction now seems more likely [26,
30] (still, some anomalous diffusion is possible when starting from a different initial condition
that is close to an equilibrium state [46–49]). The same behavior was recently found of the
isotropic LL model [27], and we provide below a detailed quantitative comparison of quantum
spin chain with the LL model. This section being relatively long, we begin by a summary of
the results.

First, we confirm numerically the findings of Ref. [27] concerning log-corrected diffusion
of the z component of the magnetization in LL. But we go further and provide a detailed
analysis of the x and y components, the energy density, and the energy current in particular.
We find that, both for the quantum spin chain and the LL problem, two regimes should be
distinguished in the long time limit. First, a region where r/

p
t (up to ln t factors) is finite,

where the z component is different from ±1
2 , and where the energy density is independent of r

and proportional to ln(t)/t. In this region the magnetization can be described by a self-similar
solution with an effective time-dependent energy density. We also characterize the regime of
r/t finite, which may be called the ballistic regime. There, 〈Sz〉 as well asΩz approach±1

2 with
corrections which scale as ∼ exp(−cr/t). r/t appears to be the appropriate scaling variable
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for these quantities, as well as for the energy or the energy current, contrary to what the
behavior of the z component could naively suggest. We also discuss an important difference
between the quantum and the LL problems: the quantum state is invariant under rotation
about the z axis (hence




S x
r

�

=



S y
r
�

= 0), while the classical state is not. This symmetry
difference enables us to conjecture some logarithmic growth of the entanglement entropy in
the quantum chain (Sec. 7.2). We could also find a counterpart of the x and y components of
the LL magnetization in the quantum side by using two-point correlations (Sec. 7.3). We also
discuss (Sec. 7.5) the point of view where the LL magnetization ~M is the tangent vector of a
curve in the three dimensional space. As an interesting finding, we observe that the torsion
of this curve is remarkably simple and equal to r/t at long times, in the diffusive as well as in
the ballistic regime. We finally explain some of these findings by exploiting the mapping from
the isotropic LL equation to the NLS equation, and constructing a variational solution to the
latter.

7.1 z component: current and diffusion with logarithmic correction

Solving numerically the isotropic (∆= 1) Landau-Lifshitz equation

~Ωt = ~Ω∧ ~Ωr r , (33)

with the initial condition (8) reveals some diffusive behavior for the expansion of theΩz profile,
with some (multiplicative) logarithmic correction. This confirms the finding of Ref. [27].

This can be seen by analyzing the current I(t), as summarized in Figs. 9 and 10. For a
conventional diffusive behavior, I(t) would decrease as t−

1
2 , and I(t)

p
t would converge to a

constant at long times. We instead see (left panel of Fig. 9) that it does not saturate, at least
up to t = 800. The data are then fitted to (a) a constant minus a 1/

p
t correction, (b) a power

low (i.e. superdiffusion) and (c) to a logarithm. The latter offers the best fit, and agrees with
the LL solution far beyond the time interval [300, 400] where the fit was performed (interval
marked by the vertical dotted lines).4 As can be seen in the right panel of Fig. 9, the agreement
can be further improved by adding an additional 1/t correction [curve (d)].

Since the form I(t) ∼ ln(t)/
p

t offers the best match with the data, this Ansatz for the
current can be integrated over time to give the transfered magnetization from the left to the
right since the initial time, and the result is g(t) '

p
t(ln(t) + a). As shown in the bottom

panel of Fig. 10, once the magnetic profiles Ωz(r, t) and



Sz
r (t)

�

are plotted as a function of
r/g(t), the data obtained at different times collapse onto the same curve. The collapse is in
particular much better than if one simply plots




Sz
r (t)

�

(or Ωz(r, t)) as a function of r/
p

t, as
done in the upper panel of Fig. 10.

The stationary profiles obtained in the bottom of Fig. 10 appear to be slightly different for
the LL problem and the quantum spin chain. From the conjectured asymptotic equivalence of
the two problems one could have expected to see the very same profile in the two cases. But
instead we may attribute the discrepancy to some memory of the initial state and of the short
time evolution, where the energy density is finite and the two problems still inequivalent.

7.2 U(1) symmetry and entanglement entropy in the XXZ chain

The states described by the LL equation break the rotational invariance about the z axis.
This is particularly obvious for the initial condition (8) where Ωx(r = 0, t = 0) = 1

2 and
Ωy(r, t = 0) = 0. On the other hand, the domain wall state used as an initial condition for
the quantum chain is invariant under rotations about the z axis, and the state |ψ(t)〉 therefore
remains an eigenstate of Ŝz

tot =
∑

r Ŝz
r at any time.

4Note that (c) is equivalent to Eq. (7) in Ref. [26], and was advocated to describe the behavior of the domain
wall problem in the quantum Heisenberg chain.
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Figure 9: Left: LL current I(t) [Eq. (5)] multiplied by
p

t as a function of time, for
∆ = 1. The numerical solution is compared with three fitting functions. These fits
are done using only the interval [300,400] (dotted vertical lines), and the quality of
these fits can be judged by the discrepancy between the data and the fitting functions
outside this interval. Fit (a) corresponds to I(t) '

p
t + cst/t. Fit (b) represents a

superdiffusive behavior I(t)' tα with α > 0.5. The third one, (c), corresponding to
I(t)' ln(t)/

p
t, appears to provide the best fit, and is in agreement with the results

of Ref. [27]. The right panel shows the absolute value of the difference between
the LL solution and the three fitting functions. Among the three fits (a),(b) and (c),
the fit (c), which corresponds to a diffusive behavior with a multiplicative logarithm
shows the best agreement with the numerical solution of the LL equation. Fit (d):
including an additional 1/t correction to the function of fit (c) makes the agreement
almost perfect at the scale of this plot.

We may thus take the classical LL state, and the associated magnetization vectors for all
the integer values of the position r, and promote it to a (quantum) product state |ψ(t)LL〉 for
the spin chain. In order to restore the U(1) symmetry, we can rotate it (globally) about the z
axis, and perform a linear combination of different rotated copies of this state. The resulting
state could then be written a |ψ(t)LL,sym〉 =

∫ 2π
0 dθ exp

�

iθ Ŝz
tot

�

|ψ(t)LL〉 [50, 51]. It is then
clear that this U(1)-symmetric state is no longer a product state. The symmetrization thus
introduced some quantum entanglement in the system.

How can we estimate the Von Neumann entropy associated to a left-right partition on the
chain ? We should first estimate the number of linearly independent states which are generated
by the rotations above. For a macroscopic quantum spin of large size S, the rotations would
span a space of dimension O(S) [50,51]. We may use a similar argument for |ψ(t)LL〉, which
we assume here to be nontrivial only over a spatial region [−R(t), R(t)], and which is therefore
a state involving different spin quantum numbers up to Smax ∼O(R(t)). We may thus consider
that the symmetrized state |ψ(t)LL,sym〉 is actually a linear combination of O(R(t)) states which
are orthogonal to each other. In turn, we may take the log of this dimension to estimate the
von Neumann entropy. For large R(t) we would thus have SvN ∼ ln(R(t)).

We plot in Fig. 11 the entanglement entropy up to t = 400 at∆= 1, compared with 1
2 ln(t).

The latter would be the leading term in the entropy generated by symmetrization for a region
of length ∼

p
t, corresponding to diffusion.5 As already mentioned in Ref. [26], the entangle-

5 The present argument does not apply away from ∆= 1. In particular for ∆< 1 the nearest-neighbor correla-
tions deviate from those of a perfectly ferromagnetic state (by an amount which is O(|δ|), see Sec. 3), even at long
times. Although these small deviations may only weakly affect the local magnetization or the energy density, they
change completely the entanglement entropy. This can be illustrated, for instance, by considering a much simpler
case: the homogeneous ground-state of the xx chain, with a magnetization per site m close (but not equal) to−1/2.
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Figure 10: Ωz magnetization profile for LL at∆= 1, and comparison with 〈Sz〉 in the
XXZ chain (tDMRG simulations L = 800 sites, maximal bond dimension χ = 2000
and time t = 270). The horizontal axis is r/

p
t in the top panel, and r/g(t) with

g(t) =
p

t [ln(t) + 6.28] in the lower panel. The latter, gives a good collapse of the
curves obtained at different time. The same multiplicative logarithmic correction to
a diffusive behavior was also observed in Ref. [26] for the XXZ chain and in Ref. [27]
for LL. Remark: the constant 6.28 in g(t) is equivalent to the function (c) in Fig. 9,
since 0.07 d

d t

�

(ln(t) + 6.28)
p

t
�

= [0.29+ 0.035 ln(t)]/
p

t.

ment entropy data appear to be compatible with ∼ ln(t), but, with the times accessible to our
simulations, the coefficient of the logarithm seems slightly larger than 0.5 (see fits (A) and (A’)
in Fig. 11). But we should stress that a power-law behavior can also not be excluded [26,46].
In particular, the present data appear to be well described by SvN ∼ t0.16, as shown by the fit
(B’) in the bottom panel of Fig. 11. In any case, 1

2 ln(t) is only the semiclassical contribution
to the entanglement, and it appears that some other contribution(s) to the entanglement en-
tropy need to be included, like for instance that carried by the ballistic magnons (and bound
states of magnons) in the region where r/t is finite. We leave for future studies the task of
determining the precise law of entanglement growth in this problem at ∆ = 1, but the U(1)
symmetry argument above should provide a starting point.

The spin-spin correlations can be made arbitrarily close to that of a ferromagnet by taking m to −1/2. Nevertheless
the quantum state is a (low but finite density) Fermi sea. In such a case the entropy of a long segment of length
l scales as ∼ log(l)/3. This is clearly very different from the situation with m = −1/2 exactly, which is a product
state. Going back to the domain wall problem, the free fermion case ∆= 0 indeed gives SvN ∼

1
6 ln(t) [52,53]. As

for tDMRG results (data not shown) at ∆ = 0.5 and 0.7 (up to t ∼ 200) suggest that this scaling may hold for all
∆< 1.
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Figure 11: Von Neumann entanglement entropy for the quantum model at ∆ = 1,
for a partition in the center of the chain. Top: tDMRG calculations with L = 800,
time step d t = 0.2, maximum bond dimension χ = 2500, MPS truncation parameter
10−11, with time up t = 286 (brown line). At the scale of the plot the results are
unchanged when taking d t = 0.3, χ = 2000 and the truncation parameter to 10−10

(data shown up to t = 400, red line), which indicates a good convergence. We
also show 1

2 ln(t) (see Sec. 7.2), which however underestimates the entropy growth
at large times. Middle: two-parameter fits of the entanglement entropy, with (A)
a ln(t)+ b or (B) a power law c td . Bottom: three-parameter fits of the entanglement
entropy, with (A’) a ln(t)+b+c/t or (B’) c td+e. The fit (B’), with an exponent close to
1/6, seems to offer the best description of the data, but a logarithmic growth cannot
be excluded. All the fits are performed in the interval [50, 150] (dashed vertical
lines).

7.3 Correlations in the quantum chain and x and y components of the LL mag-
netization

As explained above, there is a U(1) symmetry in the spin-1
2 chain, and this implies that

〈Ŝ x
r 〉 = 〈Ŝ

y
r 〉 = 0 at any time. On the other hand, the states described by the LL equation

break the rotational invariance about the z axis.
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It is nevertheless possible to compare Ωx or Ωy computed in the LL framework with data
from the quantum chain. To do so, one has to consider the two-point spin-spin correlations
in the quantum chain, like 〈Ŝ x

0 Ŝ x
r 〉. One can obviously write Ŝ x

0 = P̂x −
1
2 , where P̂x = Ŝ x

0 +
1
2

projects onto states where S x
0 =

1
2 . Thanks to the rotational invariance mentioned above, we

have 〈Ŝ x
0 Ŝ x

r 〉 = 〈P̂
x
0 Ŝ x

r 〉. Since P x
0 = 1 with probability 1

2 (again due to rotational invariance),
and zero otherwise, it is natural to compare 〈Ŝ x

0 Ŝ x
r 〉 with Ωx in the LL problem, where, by con-

struction, Ωx(r = 0, t) = 1/2. Concerning the normalization, consider the ferromagnetic state
of N spins 1/2 that has Sz

tot = 0 (but total spin Stot = N/2). Such a state is the symmetrized
version of the ferromagnetic state pointing in the (say) x direction. In such state one can easily
compute the spin-spin correlations: 〈Ŝ x

0 Ŝ x
r 〉 = 〈Ŝ

y
0 Ŝ y

r 〉 = N
8(N−1) for r 6= 0, which approaches

1
8 for a large system. We should then compare 4〈Ŝ x

0 Ŝ x
r 〉 with Ωx(r, t), and similarly, 4〈Ŝ x

0 Ŝ y
r 〉

with Ωy(r, t).
The result is displayed in Fig. 12. First we see in the upper panel that 4〈Ŝ x

0 Ŝ x
r 〉 approaches

1
2 when r → 0, in agreement with the argument above and the fact that, in the center of the
system and at long times, the quantum chain resembles locally a symmetrized ferromagnetic
state with




Sz
r

�

= 0. For larger r we observe some some semi-quantitative agreement between
the quantum and classical models, without any adjustable parameter. In particular, the period
of the spatial oscillations in the correlations of the quantum systems is quite close to the period
of the oscillations in the LL magnetization. An even better agreement between correlations in
the spin-1

2 chain and in-plane magnetization of the LL problem is shown in the bottom panel
of Fig. 2 in an easy-plane case. The amplitude of the correlations in Fig. 12 appears however
to decay faster than the LL magnetization. We note that this may be due in part to the fact,
for r > 0, the 〈Ŝz〉 profile lies slightly below Ωz , as can be seen in Fig. 10. Another source
of discrepancy is the fact that, in the quantum chain, the center of symmetry is in the middle
of a bond, at r = 1/2, while it is at r = 0 in the LL model. Finally, it is plausible that some
quantum effects remain here for this observable, even at long times.

For r/t finite and ∆ = 1, the z component of the magnetization tends to ±1
2 , both in

the quantum and classical problems. This is a regime where the expansion of Sec. 5 applies
and the oscillations of the x and y components of the magnetization in LL are described by an
azimuthal angle ϕ(r, t) = − r2

2t . This regime is realized in the right part of Fig. 12. On the other
and, for r of the order of

p
t (or even

p
t ln t), which corresponds to the first few oscillations

in the left of Fig. 12, a different behavior of ϕ is observed, as discussed in the next paragraph.

7.4 Energy density

For the isotropic LL model the energy density [Eq. (7)] is ε(r, t) = 1
2

�

~Ωr

�2
. This quantity is dis-

played in Figs. 13 and 15. The top panel of Fig. 13 shows that, at least for sufficiently large r/t,
the energy density multiplied by time is well described by a function of r/t: ε(r, t) = 1

t K(r/t).
For small r/t, the collapse of the energy curves associated to different values of t is not good,
and this indicates that K is singular at the origin. The data plotted in Fig. 16 indicate a log-
arithmic divergence of t · ε(r = 0, t) with time. From this we may infer that (in the limit of
infinite time) the function K exhibits a logarithmic divergence: K(u)∼ | ln u| at small u= r/t.

The energy density of the spin-1
2 Heisenberg model at r = 0, measured through


1
4 − ~S0 · ~S1

�

on the central bond of the chain, is also represented in Fig. 16, as a function of time. It displays
oscillations, but otherwise follows relatively well the LL behavior, namely
ε(r = 0)∼ 0.06 [ln(t) + 2.4]/t (see the fitting function in Fig. 16).

In the right panel of Fig. 13 the spatial variations of the energy density for LL is compared
to those of the Heisenberg chain. Although the energy density of the quantum chain shows
some important oscillations (their scaling in the vicinity or r/t = 1 is discussed in [44]), it
follows the LL data relatively well, and it certainly extends beyond the diffusive scale. It should
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Figure 12: Comparison between some two-point correlations in the spin-1
2 chain with

Ωx ,y(r, t) in the isotropic LL problem. Upper panel: Ωx versus 〈Ŝ x(0)Ŝ x(r 6= 0)〉.
Bottom panel: Ωy versus 〈Ŝ x(0)Ŝ y(r 6= 0)〉. Both taken at time t = 200. See Sec. 7.3.

be noted that there is again no adjustable parameter here, except for the fact that the width
the of LL profile at t = 0 was chosen to ensure a total energy equal to that of the quantum
chain (Sec. 3.2).

After averaging the short-distance oscillations, this energy density shows a maximum in
r/t ' 1 and r/2 ' 0.5. As observed already in Fig. 6, these two velocities correspond respec-
tively to the maximum group velocity of a single magnon, and to the maximum group velocity
of a bound state of two-magnons. The effects of these discrete velocities are specific to the
quantum chain and have no direct analog in the LL problem.

For the isotropic LL model, the energy density can be written using the polar angles
[Eq. (14)] and their space derivatives:

ε=
1
2

�

~Ωr

�2
=

1
8

�

~Mr

�2
=

1
8

�

(θr)
2 + (sinθ ϕr)

2
�

. (34)

From Fig. 10 (bottom panel) we know that the spatial scale for the variation of Ωz is ∼
p

t ln t.
As a consequence, the gradient θr must scale as ∼

�p
t ln t

�−1
in this region. So, the observed

logarithmic divergence in t ·ε(r = 0, t) is not associated to the (θr)2 term, but must come from
the second term in Eq. (34). We conclude that the gradient of the azimuthal angle should scale
as |ϕr |r=0| ∼

p

ln t/t. Numerically we indeed find that |ϕ| ' 0.22πr
p

(ln t + 2.5)/t fits the
data relatively well for small r/

p
t, corresponding roughly to one full rotation about the z axis

(−π < ϕ < π).
In the limit whereΩz is close to±1

2 the energy density given in Eq. (34) is dominated by the
term proportional to (ϕr)2. From the perturbative expansion of Sec. 5 we have
ϕ = −r2/(2t)+ tδ/2 and ϕr = −r/t. Since, by definition, sin(θ ) = 2

p

(Ωx)2 + (Ωy)2, we can
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Figure 13: Left panel: LL energy density ε(r, t) = 1
2

�

~Ωr

�2
multiplied by t, as a func-

tion of r/t for δ = 0 (isotropic model). At sufficient large r/t, the curves associated
to different times are practically on top of each other. The growth of ε(r = 0, t) with
t is compatible with a logarithmic time dependence (∼ ln t behavior, see Fig. 16).
Right panel: The LL results are compared with XXZ data (black line) at t = 100
(longer times give a similar curves). For the latter there is a maximum group veloc-
ity equal to one, which explains why the “signal” is essentially zero for |r/t| > 1.
Thanks to the energy conservation, the area of all these curves (LL and XXZ) is equal
to 1

2 .

write the energy density in the perturbative approximation as:

εSW =
1
2

�

(Ωx)2 + (Ωy)2
�

(r/t)2 . (35)

In other words, the ratio

εSW/ε=

�

(Ωx)2 + (Ωy)2
�

r2

2t2ε
(36)

should approach 1 when the perturbative approximation becomes asymptotically exact. This
quantity is plotted in Fig. 14. As expected, the length scale beyond which the perturbative
calculation becomes accurate is ∼

p
t ln t, since this scale governs how Ωz approaches ±1

2 .
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Figure 14: Ratio of the energy density computed in the perturbative approximation to
the actual energy density. See text and Eq. (35) for details. The good curve collapse
observed in the right panel indicates that this ratio obeys a scaling form similar to
that of Ωz (compare with the bottom panel of Fig. 10).
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7.5 Vortex filament, torsion and self-similar solutions

As noted by Lakshmanan et al. [38], it is useful to interpret r → ~M(r, t) = 2~Ω(r, t) (at fixed
t) as the tangent vector of a curve C parametrized by r. The LL energy density is then simply
related to the curvature κ of C:

κ= || ~Mr ||=
p

8ε. (37)

Another important geometrical property is the torsion τ of C (τ should not to be confused
with the rescaled time defined in Sec. 2.2). Using the LL variables it reads

τ= κ−2 ~M ·
�

~Mr ∧ ~Mr r

�

= ε−1 ~Ω ·
�

~Ωr ∧ ~Ωr r

�

. (38)

This quantity is plotted in Fig. 18 for the LL solution we are interested in at∆= 1. The energy
current J = ~Ω ·

�

~Ωr ∧ ~Ωr r

�

is also plotted in Fig. 17. The torsion data show that, at sufficiently
long times, the LL solution is well descried by a remarkably simple relation τ ' r/t. As
discussed below, this is reminiscent of some particular solutions of the LL problem.

The equation of motion for the magnetization is Eq. (33), which is equivalent to
2 ~Mt = ~M ∧ ~Mr r , or to the more conventional ~M t̃ = ~M ∧ ~Mr r with 2 t̃ = t. The induced dynam-
ics for the curve C is the so-called binormal flow [54], which describes the motion of a vortex
filament in the local induction approximation. Some particular attention has been devoted
to special solutions where ~M(r < 0, t = 0) = ~ez and ~M(r > 0, t = 0) = cos(γ)~ez + sin(γ)~ex
[27, 38, 54–58]. This is an singular initial condition, where the curve C forms a sharp corner
with angle γ at r = 0. It then evolves to a smooth ~M(r, t) and C(t) for t > 0. This problem can
be solved analytically for γ < π, and gives a self-similar solution where ~M(r, t) is a function of
r/
p

t (see Appendix C for an explicit expression of the self-similar solutions in terms of Kum-
mer confluent hypergeometric functions). It is characterized by a spatially uniform curvature
κ = E/

p
t̃ = E/

p

t/2 and linear torsion τ = r/(2 t̃) = r/t [38]. The constant E is related
to the corner angle through the relation e−πE2/2 = cos(γ/2) [54]. Since E diverges when γ
approaches π – which is precisely the situation we are interested in – the self-similar solution
breaks down in that limit. It is thus natural to trace back the appearance of a logarithmic
correction to diffusion at γ= π to this singularity in E [27].

There is nevertheless a similarity between the self-similar solutions at γ < π and our case
(smooth initial condition and asymptotic angle γ = π): the energy density is ∼ cst/t for the
self-similar solutions (at any r/t), while we showed that in our case that it is ∼ ln t/t for
r � t. But the torsion τ (Fig. 18) shows a more striking analogy, since we have τ = r/t in
both cases, in the regime r ∼

p
t as well as for r/t ∼O(1).

Fig. 19 shows a comparison between the smooth domain wall problem at t = 200 and
the self-similar solution with the same energy density at r = 0 (or same curvature κ). This
is achieved by taking the parameter E of the self-similar solution to be E2 = 4t · ε(r = 0, t).
The two states agree by construction when r/

p
t is small, but differ otherwise. In particular,

oscillations in the z component are present in the self-similar solution, but absent from the
LL we are interested in. We can also, by inspecting the behavior of the M y component, see
that the asymptotic direction of the magnetization (when r → ±∞) is not ~M = ±~ez in the
self-similar profile. This due to the fact that E is finite and therefore γ < π. Repeating this
comparison for much larger t would give a larger effective E ∼ ln(t), an angle γ closer to π,
and a larger range of r/

p
t where the the two solutions are close to each other. We thus find

that one can describe the LL magnetization profile in the regime where r/
p

t is of order one
(but r � t) by self-similar solutions with an effective time-dependent parameter E(t)∼ ln(t).
This can however not describe the system in the region where r/t is finite, where the energy
density is no longer constant.
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Figure 15: Left panel: LL energy density multiplied by t in the isotropic case
(∆ = 1). Away from the center the energy density appears to decay as exponen-
tially, ε(r, t)t ∼ exp(−cr/t) with c ' 1.6. See Sec. 7.7 for an explanation of this
behavior (variational approach). Right panel: LL energy density multiplied by t in
an easy-axis case (∆ = 1.2). At long times we again have ε(r, t)t ∼ exp(−c′r/t) for
r/t > 0, but a different behavior for |r| � t (see Sec. 6).

7.6 Nonlinear Schrödinger equation

The isotropic LL equation is well known to be equivalent to the Nonlinear Schrödinger (NLS)
equation [59–61]. The mapping, also known as the Hasimoto transform, can be summa-
rized as follows (more details in Appendix A). As explained above, we start from a solution
of 2 ~Mt = ~M ∧ ~Mr r , or equivalently ~M t̃ = ~M ∧ ~Mr r (with 2 t̃ = t). One then constructs the
associated curve C (the vortex filament) and obtains its curvature κ(r, t) and torsion τ(r, t).
Then one defines the following “filament function” (or NLS wave-function):

u(r, t) = κ(r, t)exp

�

i

∫ r

0

τ(r ′, t)dr ′
�

. (39)

On can then show that u(r, t) satisfies a NLS equation:

iu t̃ = 2iut = −ur r −
1
2

u
�

|u|2 −Λ(t)
�

, (40)

where Λ(t) only depends on time, and is explicitly given in terms of the curvature and the
torsion close to the origin:

Λ(t) =

�

2
(τ2)r r −κτ2

κ
+ κ2

�

|r=0

. (41)

Alternatively, one can define another wave-function ψ:

ψ(r, t) = u(r, t)exp

�

i
4

∫ t

0

Λ(t ′)d t ′
�

, (42)

which is then solution of a cubic NLS equation

2iψt = −ψr r −
1
2
|ψ|2ψ. (43)

If the LL magnetization initially lies in a plane, the torsion vanishes and the correspond-
ing NLS wave-function can be taken to be real at t = 0. We may thus write (at t = 0)
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Figure 16: Energy density ε(r = 0, t) in the center of the system and multiplied by
t, plotted as a function of t (logarithmic scale). The green crosses correspond to the
LL model and the purple curve corresponds to the quantum chain (both at ∆ = 1).
The data are compatible with a logarithmic increase with time (see fitting function
in the legend, blue line).
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�

at ∆ = 1, plotted as a
function of the position r for different times. Right panel: same data, multiplied by
t and plotted as a function r/t. An excellent collapse is observed for r/t ¦ 1.5.

~M = (cos(θ (r)), sin(θ (r)), 0) and the curvature is given by κ = |θr |. If we further assume
that θr > 0 everywhere, the filament function is simply given by u = θr . As a consequence,
the integral of u gives the angle difference γ between r = −∞ and r =∞:

γ=

∫ ∞

−∞
u(r, t = 0)dr. (44)

With the initial condition given in Eq. (8) and a = 2, we have κ= 2/ cosh(2r) and

ψ(r, t = 0) = u(r, t = 0) = κ(r, t = 0) =
2

cosh(2r)
. (45)

This type of initial condition for the NLS equation was first analyzed by Satsuma and Ya-
jima [62], using inverse scattering methods. From the above remark about the integral of u
one can check that γ= π. Importantly, for this precise value of the angle the inverse scattering
approach is complicated by the presence of divergences [27] and we are not aware of an exact
analytical treatment of this case. These divergences are also responsible for the logarithmi-
cally enhanced diffusion of the z magnetization. One can however treat the case of an angle
slightly below π [27].

26

https://scipost.org
https://scipost.org/SciPostPhys.7.2.025


SciPost Phys. 7, 025 (2019)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

τ
 =

 J
 / 
ε

r/t

LL Δ=1 t=50
t=100

t=200 
t=300

Figure 18: LL torsion τ plotted as a function of r/t. The good data collapse shows
that, at long times, one simply has τ= r/t.

7.7 Variational solution

In this section one considers the focusing NLS equation

iψt = −
1

2 m
ψr r − g |ψ|2ψ , with m> 0 and g > 0 . (46)

Eq. (40) is recovered by taking m = 1 and g = 1/4. To facilitate comparisons with other
conventions, we will however keep m and g general in the calculation below. Equation (46)
is associated with the Lagrangian density

L =
i
2

�

ψ∗ψt −ψψ∗t
�

−
1

2m
|ψr |2 +

g
2
|ψ|4 = −Im(ψ∗ψt)−

1
2m
|ψr |2 +

g
2
|ψ|4 , (47)

and has a soliton solution of the form

ψsol(r, t) =
1
p

gm
A0

cosh(A0r)
exp{iA2

0 t/2m} , (48)

where A0 is an arbitrary constant.
One considers a variational ansatz parametrized by 4 time-dependent quantities: A(t),

B(t), C(t) and D(t):

ψvar(r, t) =
1
p

gm
B

cosh(Ar)
exp{i(C + Dr2)} . (49)

Following the variational method proposed in Ref. [63], we insert the form (49) into the La-
grangian density (47). It yields a Lagrangian for the quantities A, B, C and D:

L =

∫

R
dr
§

−(Ċ + Ḋr2)|ψvar|2 −
1

2m
|ψvar|2

�

A2 tanh2(Ar) + 4D2r2
�

+
g
2
|ψvar|4

ª

=
1

3gm

�

−6
ĊB2

A
−
π2

2
ḊB2

A3
−

1
m

AB2 −
π2

m
B2D2

A3
+

2
m

B4

A

�

=
1

3gm

�

−6 Ċ E −
π2

2
ḊE
A2
−

1
m

A2E −
π2

m
ED2

A2
+

2
m

AE2

�

.

(50)
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Figure 19: Components of the magnetization ~M(r, t) in the isotropic LL problem at
t = 200 (green lines) compared with a self-similar solution (see text) parametrized
by E (purple lines). The value of E is chosen so that both profiles have the same
energy density at r = 0 (and t = 200). For t = 200 we have ε(r = 0, t) · t ' 0.4798
(as can be seen in the upper panel of Fig. 13), and E =

p
4ε · t ' 1.3854.

In the last expression one has written B =
p

AE. The Lagrange equations of motion corre-
sponding to the Lagrangian L show that E is constant (this corresponds to the conservation of
the norm

∫

|ψvar|2dr = 2E/(gm)) and that

6 Ċ = −
π2

2
Ḋ
A2
−

A2

m
−
π2

m
D2

A2
+

4AE
m

, (51a)

d
dt

�

E
A2

�

=
4
m

DE
A2

, (51b)

0=
π2ḊE

A3
−

2
m

AE +
2π2

m
D2E
A3
+

2
m

E2 . (51c)

A simple check is in order here: if one takes the initial condition A(0) = A0, E(0) = A0, C(0) = 0
and D(0) = 0 one indeed finds the soliton solution (48) with C(t) = A2

0 t/2m.
In the general case, one will take A(0) = A0, C(0) = D(0) = 0 and E(0) = α2A0 ≡ E0,

where α is a positive constant, so that one has initially

ψvar(r, 0) = αψsol(r, 0) . (52)

It is well known that for α an integer greater than one, the initial state (52) evolves into
an oscillating bound state of α solitons [62]. The above variational ansatz cannot treat such
cases. On the other hand, for α close to 1 we expect this approximation to correctly describe
the nonlinear dynamics. In terms of the LL description, α parametrizes a family of planar
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initial magnetization profiles

~M(r, t = 0) =





sinθ (r)
0

cosθ (r)



 with θ (r) = 2αarccos (tanh(−A0r)) , (53)

with an angle difference γ= 2απ (as expected from (44)).
Here we will push the approximation to α= 1

2 , which is the case of interest since the initial
condition of Eq. (45) corresponds to A0 = 2 and α= 1/2. Said differently, we consider a case
where ψ(t = 0) is “half” of a static soliton solution.

The next section explains how to solve the equations Eqs. (51). The comparison with the
numerical results will be done in Sec. 7.7.2.

7.7.1 Solution of the variational dynamics

Factorizing out E = E0 from Eq. (51c) and rewriting (51a) and (51c) one gets

−
π2

2A2

�

Ḋ+
2D2

m

�

+
A
m
(4E0 − A) = 6 Ċ , (54a)

π2

A3

�

Ḋ+
2D2

m

�

+
2
m
(E0 − A) = 0 , (54b)

which shows that
6 Ċ =

A
m
(5E0 − 2A) . (55)

Eq. (51a) shows that
D = −mȦ/(2A) , (56)

which, when inserted into (54b) yields

d
dt

�

−
Ȧ
A2

�

+
4A2

m2π2
(E0 − A) = 0 . (57)

Defining the width W = 1/A of the variational solution (49), this reads

Ẅ +
4

m2π2W 2

�

E0 −
1
W

�

= 0, (58)

which admits the first integral

Ẇ 2

2
+ Γ (W ) = Γ0, (59)

where Γ (W ) =
2

m2π2

�

1
W
−α2A0

�2

, (60)

and Γ0 =
2A2

0

m2π2
(α2 − 1)2 . (61)

It is easy to see that if α < 1/
p

2 one has Γ0 > Γ (+∞) and the motion is not bounded. Such
a situation is illustrated in Fig. 20. Since the case of interest is α = 1/2 we are in a situation
of this type.

The exact dynamics indeed shows two regimes, depending on the value of α. For α ≤ 1
2

the solution spreads monotonously, while for 3
2 > α >

1
2 the nonlinear structure oscillates

around a one-soliton solution [62, 64]. The variational approach thus qualitatively captures
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Figure 20: Effective potential Γ for the width W (t) [see text and Eq. (59)] for m= 1,
g = 1/4, A0 = 2 and α= 1/2.

the two regimes, but not the exact value of the transition point. Still, for α= 1/2, the present
variational calculation correctly predicts an unbounded spreading.

To get the time evolution of W one writes
p

2 dt = dW/
p

Γ0 − Γ (W ). In the case α = 1/2
we are interested in, defining

w=W/W0 = A0W, (62)

one finds
p

2

mπW 2
0

∫ t

0

dt =

∫ w

1

w dw
p

(w− 1)(w+ 2)

=
p

w2 +w− 2−
1
2

ln
�

1+ 2w+ 2
p

w2 +w− 2
�

+
ln 3
2

. (63)

This implies that, at large times, W (t)∝ t with (additive) logarithmic corrections. Then (56)
yields

D(t) =
m
2

ẇ
w
=

p

(w− 1)(w+ 2)

π
p

2 W 2
0 w2

, (64)

which implies that, at large times, D ∝ t−1 with logarithmic corrections. For solving the
variational problem one just needs to invert Eq. (63) to get w = w(t); then A = A0/w, D is
given from (64) and from (55) one gets

dC
dw
=

π

6
p

2

1
p

(w− 1)(w+ 2)

�

5
4
−

2
w

�

, (65)

which makes it possible to express C as a function of w. The expression is cumbersome, but
at large t it is of the form cst+ ln(t).

7.7.2 Comparison with numerics

As we explain now, the variational treatment discussed above reproduces a number of impor-
tant features of the numerical solution. The modulus of the NLS wave-function is the curvature
κ in the LL problem: |ψ| = κ. In the variational approach we have

|ψvar| =
r

E0
gmW (t) {cosh (r/W (t))}−1. Since the LL energy density is ε = 1

8κ
2 we can express

the energy density using W (t): ε−1 ' 4W (t) cosh (r/W (t))2 (we have used E0 = 1/2). Since
W (t) grows linearly with time, the variational treatment correctly finds that ε · t is a function
of r/t.
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For r � t, |ψvar| and the curvature κ are approximately independent or r, and equal

to κ =
r

E0
gmW (t) , which goes to zero as 1/

p
t. On the other hand, when the curvature is

constant in space we may estimate the length scale over which the magnetization goes from
the vicinity of +~ez to the vicinity of −~ez by κ−1.6 Here this length scale is proportional to

p
t.

In other words the variational approximation predicts a diffusive expansion of the M z profile.
As discussed previously this is correct up to logarithmic correction.

Going back to the energy density away from the origin, the variational approximation gives
an exponentially decay at large r/t, which is in agreement with the exact result discussed in
Sec. 7.4. Using Eq. (63) we find

W (t)'
2
p

1− 2α2

mπW0
t , when t → +∞ . (66)

For α = 1/2, W0 = 1/2 and m = 1 this gives W (t) ∼ t · 2
p

2/π. For large r/t we get
ε · t ∼ exp(−c r/t) with c = π/

p
2 ' 2.22, to be compared to ' 1.6 obtained from the

fit in Fig. 15. This technically simple and physically intuitive approach thus reproduces the
scaling of the energy profile at large distance. The modulus squared of the NLS wave-function,
|ψvar|2/8, is compared with the energy density of the (isotropic) LL problem in Fig. 21. By
construction the two curves coincide at t = 0 (not shown), and they remain close to each
other at short times. The variational solution captures qualitatively the spread of the energy
at long times. It does however not capture the logarithmic term observed in Fig. 16, hence
the fact that the LL energy density at r = 0 decays more slowly with time (∼ ln(t)/t) than the
variational estimate (∼ 1/t).

It is also useful to consider the NLS current J = 1
m Im(ψ∗ψx). With the variational Ansatz

it becomes

Jvar(r, t) =
2
m

D r|ψvar|2 . (67)

Eqs. (66), (56) and the above show that D(t) = m
2 d ln (w)/dt ' m/(2t) at large t. These

asymptotic estimates combined with (67) yield

Jvar/|ψvar|2 ' r/t, (68)

independently of the value of α and W0. Since this ratio is also the space derivative θr of the
complex argument of ψ, it gives, according to Eq. (39), the LL torsion. We thus recover the
relation τ' r/t obeyed by the solution of the LL problem (Fig. 18).

8 Conclusion

In this work we argued that the dynamics of the domain wall problem for a spin-1
2 XXZ chain

close to the isotropic point behaves semiclassicaly at long time, and can asymptotically be
described in the framework of an LL equation. This picture is supported by the systematic
numerical comparison we made between the quantum and the classical problems, including
an analysis of the in-plane component of the magnetization, the energy density or the energy
current.

We identified the different scaling regimes for all these quantities, from the shortest length
scale with r ∼ O(1) to larger distances, from r ∼ O(

p
t) to r ∼ O(t). The latter regime, that

we call ballistic, is present in the LL problem as well as in the quantum model, in the easy-
plane, isotropic and easy-axis cases. This regime, where the magnetization is almost pointing

6This amounts to approximate this part of the curve by a half circle.
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Figure 21: Energy density ε in the isotropic LL model compared with |ψvar|2/8 from
the variational solution of the NLS equation [Eq. (49)].

along the z axis, can be captured by a perturbative expansion or, at ∆ = 1, by a simple varia-
tional calculation based on the isotropic LL to NLS mapping. The latter approximation predicts
a diffusive expansion of the z magnetization profile but misses the observed logarithmic cor-
rection (in the energy density, or in the width of the z profile). Still at ∆= 1, we showed that
the LL magnetization in the diffusive regime can be described by a self-similar solution with
an effective time-dependent curvature which incorporates the logarithmic enhancement. But,
although a logarithmic divergence was identified in the inverse scattering data of the isotropic
LL problem [27], it seems that a simple and/or intuitive explanation for the appearance of
the logarithmic terms at ∆ = 1 is still missing, as well as an analytical expression for the
asymptotic magnetization profile.

There are several possible future directions for developing the line of research exposed
in the present work. The anisotropic LL problem has a great richness and can give rise to
several other types of nonlinear phenomena, like dispersive shock waves or rarefaction wave,
see for instance Ref. [40]. We could also mention some fascinating polygonal structures that
can emerge in the isotropic case for particular initial conditions [65]. It would be interesting
to investigate if some other initial conditions in the quantum spin chain could realize these
phenomena.

Exploring the quantum corrections to the classical behavior in the quantum chain also
seems a promising direction for future studies, and could take the form of some 1/S expansion.
As for the entanglement entropy, while the heuristic argument given in Sec. 7.2 in favor of
SvN ∼

1
2 ln t is simple and appealing, this prediction does not fully agree with the present

numerics. The entanglement growth is certainly one of the interesting open questions in the
domain wall problem at ∆= 1.
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A From isotropic LL to NLS

For completeness we provide here a detailed and self-contained derivation of the mapping
from the isotropic LL equation to NLS [59–61]. The starting point is the isotropic LL equation:

2m ~Mt = ~M ∧ ~Mr r , (69)

with ~M2(r, t) = 1. The parameter m was introduced to simplify the comparison with other
possible conventions. To match the convention used in Sec. 7.5 one has to take m= 1.

To the 3-vector ~M = (M1, M2, M3) we associate a 2× 2 matrix

M= M1σ1 +M2σ2 +M3σ3, (70)

where σ1, σ2 and σ3 are the Pauli matrices. The magnetization ~M can be obtained by a
rotation the (0, 0,1) vector. In terms of the associated 2 by 2 matrix, we can thus write

M(r, t) = g−1 σ3 g, (71)

where g(r, t) ∈ SU(2) implements the rotation. The space derivative of M is then

Mr = g−1 [σ3,L]g, (72)

where we have defined
L(r, t) = gr g

−1. (73)

In a similar way the time derivative of the magnetization matrix reads

Mt = g−1 [σ3,M]g, (74)

where we have defined
M(r, t) = gt g

−1. (75)

There is gauge freedom in the choice of the rotation since g′ = gexp(iΘσ3) with any angle
Θ(r, t) would also be a valid choice in (71). In the following we chose a gauge such that the
matrix L defined above has zeros on its diagonal:

L=
�

0 −pgm ū(r, t)
p

gm u(r, t) 0

�

. (76)

The parameter g is arbitrary here and is simply introduced here to facilitate the comparison
with other conventions found in the literature concerning the NLS equation. Note that the
convention used in Sec. 7.5 amounts to take g = 1/4 and m= 1.

With the above gauge choice L anti-commutes with σ3 and

[σ3,L] = −2
p

gm
�

uσ+ + ūσ−
�

, (77)

with σ+ =

�

0 0
1 0

�

and σ+ =

�

0 1
0 0

�

. It is interesting to compute ~M2
r , since it proportional

to the energy energy density in LL. From (72) we have ~Mr = −det ([σ3,L]) and thus, from
(77),

~M2
r = 4gm|u|2. (78)

As a check, if we use the convention of Sec. 7.6, i.e. g = 1/4 and m = 1, the equation above
gives a curvature κ= || ~Mr ||= |u|. This is consistent with Eq. (39).
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Combining (72) and (77) we get

Mr = −2
p

gm g−1
�

uσ+ + ūσ−
�

g. (79)

Now we come back to the LL equation of motion. It can be written in terms of the magnetiza-
tion current

~J =
1

2m
~M ∧ ~Mr , (80)

such that Eq. (69) becomes ~Mt = ~Jr . From (80) we get the matrix associated to ~J as a
commutator:

J =
1

4im
[M,Mr] . (81)

Using Eqs. (71) and (79) this is expressed as

J =
−2
p

gm
4im

g−1
�

σ3, uσ+ + ūσ−
�

g=
1

im
g−1Lg =

1
im

g−1gr . (82)

As for the current gradient, it reads

Jr =
1

im
g−1Lrg. (83)

Using Eq. (74) and the equation above, we can write the equation of motion Mt = Jr as

[σ3,M] =
1

im
Lr . (84)

Using the explicit form of L (76), the equation above implies thatM must have the following
form:

M= i

�

α 1
2

q

g
m ūr

1
2

q

g
mur −α

�

, (85)

where, so far, α is unknown. The fact that M must be traceless can be obtained from (73),
since it implies that TrM = d

d t det (g). The latter derivative vanishes since det (g) = 1. At this
point we will consider two different expressions for gr t . The first one can be obtained by taking
gr from (73) and then taking the derivative with respect to time:

gr t =
d
d t
(Lg) = Ltg+Lgt = Ltg+LMg, (86)

where, in the last expression, we have written gt using (75). Now we repeat the calculation
of gr t , doing the derivations in reverse order:

gr t =
d
dr
(Mg) =Mrg+Mgr =Mrg+MLg. (87)

Comparing (86) and (87) we get the Lax equation:

Lt −Mr + [L,M] = 0. (88)

The upper left element of the matrix equation above is

−iαr −
i g
2
(uū)r = 0. (89)
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It means that α = − g
2 |u|

2 + A(t) where A is some integration constant, independent of r. We
then write down the lower left element of the Lax equation:

p
gmut −

i
2

s

g
m

ur r + 2iuα
p

gm= 0. (90)

Replacing α by its expression found above we get:

p
gmut −

i
2

s

g
m

ur r + 2iu(−
g
2
|u|2 + A(t))

p
gm= 0, (91)

and after some rearrangement:

iut = −
1

2m
ur r − gu

�

|u|2 −Λ(t)
�

, (92)

with Λ(t) = 2A(t)/g. The equation above is the same NLS equation as (40) if we set m = 1
and g = 1/4.

To finish this short review of the mapping, it is interesting to interpret geometrically the
(space- and time-dependent) SO(3) rotation induced by g, which rotates the vector (0, 0,1)
to the magnetization direction ~M . To this end one defines the orthonormal basis

�

~e1,~e2, ~M
	

which is the image of the initial basis under the rotation. We then consider the 2× 2 matrices
associated to ~e1 and ~e2:

e1 = g−1σ1g and e2 = g−1σ2g. (93)

Taking the space derivative of the equations above (as was done in (72)) we get:

e1r = g−1 [σ1,L]g and e2r = g−1 [σ2,L]g. (94)

Using the explicit form (76) of L (Eq. 76) we find

e1r = 2
p

gm Re(u)σ3,

e2r = 2
p

gm Im(u)σ3.
(95)

Going back to 3-vectors we can thus write:




~e1
~e2
~M





r

= 2
p

gm





0 0 Re(u)
0 0 Im(u)

−Re(u) −Im(u) 0









~e1
~e2
~M



 , (96)

where, to obtain the last line, we have used the fact that the 3× 3 matrix above, describing
the space derivative of the rotation which connects the initial basis to the local one, must be
antisymmetric. We see in particular that the gauge choice made in (76) does not correspond
to the local Serret-Frenet frame of the curve, but to its Bishop frame [66].

B From NLS to isotropic LL

In this section we recall how, starting from a solution of the NLS equation, one can construct
the associated solution of the isotropic LL equation. We start from a solution u(r, t) of Eq. (40)
and we wish to construct the associated LL magnetization ~M . The starting point is Eq. (73),
that we rewrite under the form

gr =

�

0 −pgm ū
p

gm u 0

�

g. (97)
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We parametrize g using two complex numbers µ and ν satisfying |µ|2 + |ν|2 = 1 as follows:

g=

�

µ −ν̄
ν µ̄

�

. (98)

Looking at the first column of Eq. (97), we get the following equations for µ and ν and their
space derivatives:7

µr = −pgm ū ν (99)

νr =
p

gm u µ. (100)

After eliminating ν from these equations we obtain a linear differential equation for µ:

µr r −µr
ūr

ū
+ gm|u|2µ= 0. (101)

Note that the above derivation has the advantage of giving directly a linear differential equa-
tion for µ. We are interested in situations where the magnetization points in the x direction
at r = 0. It is then convenient to adopt the following correspondence between the directions
1, 2,3 of Eq. (70) and the direction x , y, z: x → 3, −y → 1 and −z→ 2. In this way, g(r = 0)
is the identity and the initial condition for (101) is µ(r = 0) = 1 (and ν(r = 0) = 0). So, using
Eqs. (70) and (71) we can relate µ and ν to the magnetization:

−M1 = M y = 2 Re (µν) (102a)

−M2 = M z = 2 Im (µν) (102b)

M3 = M x = |µ|2 − |ν|2 = 2|µ|2 − 1. (102c)

C Magnetization for the self-similar solutions of the isotropic LL
equation

We provide here a detailed solution of Eq. (101), making it possible to obtain some explicit ex-
pression for the self-similar solutions of the isotropic LL equation. The final result [Eqs. (107)
and (109)] is expressed in terms of some confluent hypergeometric functions (Kummer func-
tion 1F1). Some of these results have been found previously in Refs. [54,58].

We start with the following filament function, parametrized by E:

u(r, t) =
E

2
p

t
exp

�

ir2

4t

�

. (103)

It is a solution of

iut = −ur r − gu

�

|u|2 −
E2

4t

�

. (104)

It corresponds to m= 1
2 and Λ(t) = E2

4t in Eq. (92). We then set g = 2. Since ūr/ū= −ir/(2t),
when we plug (103) into (101) we obtain [57]:

µr r +
ir
2t
µr +

E2

4t
µ= 0. (105)

7Note that (µ,ν) may be viewed a quantum state for a spin- 1
2 : |φ〉 =

�

µ

ν

�

. If we interpret r as a ficti-

tious time, the equations above describe the motion of a spin in some “time”-dependent magnetic field ~B(r).
Indeed we have i d

dr |φ〉 = H|φ〉 with an Hamiltonian H = B1σ1 + B2σ2 =
p

gm [Re(u)σ2 − Im(u)σ1], that is
~B =pgm(Re(u),−Im(u), 0).
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We then replace the variable r by z = −ir2/(4t). After a few manipulations we arrive at

µzz +µz

�

1
2
− z
�

+
iE2

4
µ= 0. (106)

With the initial condition µ(0) = 1, the solution of this equation is the Kummer (confluent
hypergeometric) function

µ(r, t) = 1F1

�

−
iE2

4
,
1
2

,−
ir2

4t

�

. (107)

We can, using Eq. (99), get the other matrix element of g, which satisfies ν(r = 0, t) = 0:

ν(r, t) = −
µr

ū
=

2
p

t
E

e
ir2
4t µr . (108)

And since d
dz 1F1(p, q, z) = p

q 1F1(p+ 1, q+ 1, z) we find [58]:

ν(r, t) =
2
p

t
E

�

−iE2

2

�

�

−ir
2t

�

e
ir2
4t 1F1

�

−
iE2

4
+ 1,

3
2

,−
ir2

4t

�

= −
ar

2
p

t
e

ir2
4t 1F1

�

−
iE2

4
+ 1,

3
2

,−
ir2

4t

�

. (109)

These expressions for µ and ν can be used to obtain the components of ~M , using Eqs. (102).
A comparison between such a self-similar solution and the solution of the LL domain wall
problem with a smooth initial condition is shown in Fig. 19 and is discussed at the end of
Sec. 7.5.

As a consistency check, one can verify that the formula above yields a curvature
|| ~Mr || = κ = E/

p
t. This is consistent with Eq. (103) and Eq. (78) with g = 2 and m = 1/2.

One can also check that the torsion τ = κ−2 ~M ·
�

~Mr ∧ ~Mr r

�

is equal to r/(2t). This implies
that the time variable t used in the calculation above is in fact t̃ in the notations of Sec. 7.5.
It is thus straightforward to convert the present formula for the self-similar solution ~M(r, t) to
the convention m= 1 by the replacement t → t/2, as was done in Fig. 19.
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