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Abstract

We present detailed calculations for the partition function and the free energy of the
finite two-dimensional square lattice Ising model with periodic and antiperiodic bound-
ary conditions, variable aspect ratio, and anisotropic couplings, as well as for the cor-
responding universal free energy finite-size scaling functions. Therefore, we review the
dimer mapping, as well as the interplay between its topology and the different types of
boundary conditions. As a central result, we show how both the finite system as well as
the scaling form decay into contributions for the bulk, a characteristic finite-size part,
and – if present – the surface tension, which emerges due to at least one antiperiodic
boundary in the system. For the scaling limit we extend the proper finite-size scaling the-
ory to the anisotropic case and show how this anisotropy can be absorbed into suitable
scaling variables.
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1 Introduction

The two-dimensional Ising model on the square lattice is by far the most examined and best
understood non-trivial system in statistical physics. Albeit there are still open questions, there
is a whole plethora of properties known exactly, starting with the exact partition function on
the torus in the thermodynamic limit calculated by Onsager [1,2], over the universal finite-size
scaling at its continuous phase transition from a ferromagnetic low-temperature to a param-
agnetic high-temperature phase [3, 4], to the exact solutions at criticality due to conformal
field theory for arbitrary geometries and boundary conditions (BCs) [5–8]. There are as many
ways to calculate all these properties as there are people working on the topic, but a few are
truly worth mentioning here. Beneath Onsager’s expansion of the transfer matrix calculation
to two dimensions, there are at least two major ideas, which are repeatedly used over last
decades; one is the mapping onto spinors, as done lately by Baxter for the case of a rect-
angular geometry with open boundaries [9] and originally introduced by Kaufman [2]. The
other one is the dimer mapping, introduced by Kasteleyn [10–12], refined by Fisher [13], and
rigorously and exhaustively examined by McCoy & Wu [14–16], see [17] for a comprehen-
sive presentation of the topic. Only quite recently, a connection between these two methods
was established [18, 19], which reduces the Pfaffians emerging in the dimer method to ma-
trices corresponding to the spinor picture even for arbitrary couplings, therefore preserving
the possibility to apply arbitrary boundary conditions in both directions [20]. Note that this
correspondence goes beyond the simpler case of translational invariant couplings, where both
methods are known to lead to the same 2× 2 matrices. The dimer mapping will be our start-
ing point, and we will be putting a lot of effort into its analysis relating the topology of the
underlying graph and the boundary conditions of the spin system.

In this work we will focus on the finite-size contributions to the free energy in systems with
periodic BCs in both directions and arbitrary couplings in one direction. This is in contrast to
the works on the infinitely extended "layered Ising model" [16, 21, 22], were the configura-
tion of couplings varies within a given number of layers and repeats periodically, without
any finite-size contributions. In our analysis we will separate the leading contribution of the
thermodynamic limit and analyse its first finite-size correction, which is responsible for the
critical Casimir effect, and calculate the corresponding finite-size scaling functions. Bound-
aries that destroy the translational invariance in one direction as well as additional surface
fields were discussed in the literature for the case of the half plane [14, 15, 23] and the slab
geometry [24–27]; its generalisation to the cylinder with finite aspect ratios will be the topic
of a subsequent paper [28].

The original inspiration for this work lies within the aforementioned universal finite-size
scaling; in the vicinity of criticality the behaviour of many systems can be sorted into associ-
ated universality classes, categorised only by some rough properties like its spatial and spin
dimensions, and split up into subcategories treating the BCs confining the system. Accompa-
nying the universality, Fisher & de Gennes [29, 30] predicted that the diverging correlation
length ξ(∞) at criticality gives, in finite systems, rise to the thermodynamic analogue of the
quantum-electrodynamic (QED) Casimir effect [31, 32]. The critical fluctuations present in
such a geometrically confined system lead to effective forces between the systems surfaces,
namely the critical Casimir forces. In contrast to the always attractive QED Casimir effect,
these thermal forces may be attractive or repulsive depending on the BCs of the surfaces, and
can even change their behaviour with the temperature. This fact together with its steering
temperature dependence makes them especially interesting as experimental model systems,
e. g., they may be used to control the interaction strength in colloidal suspensions in order to
investigate the aggregation processes [33–36]. The effect itself was first measured by Garcia
& Chan as a critical thinning of a 4He film near the λ-transition [37]. The universality of
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this measurement was first proven by Monte Carlo simulations of the X Y -model in three di-
mensional thin films with Dirichlet boundary conditions [38]. Other experiments were made
on thin films of 3He-4He mixtures near the tricritical point [39], again in the X Y -universality
class, and binary liquids, whose demixing transition is in the Ising-universality class [40]. The
latter experimental system was expanded to the direct measurement of interactions between
spherical particles and a potentially chemically striped surface as well as the observation of
aggregation processes in the above-mentioned colloidal suspensions [41].

The analytical point of view of those systems is either restricted to mean-field calcula-
tions [42], the large-n limit [43,44], renormalization group theory [45–52], or calculations at
criticality [53–60], where the systems conformal invariance opens up some fascinating possi-
bilities [61–64]; furthermore there are many works on Monte Carlo simulations of such sys-
tems [38,65–67]. Starting with the original slab geometry, where some sort of thermodynamic
integration is necessary to obtain the free energy, they were lately expanded to finite aspect
ratios [52,68] as well as to spherical objects [69–72], which establishes the opportunity to im-
plement the same protocols for a direct measurement of the free energies due to the probability
distributions of the positions of the objects.

For the present work, in Section 2 we first recapitulate the mapping between the two-
dimensional Ising model and closest-packed dimers on a carefully chosen lattice as proposed
by Kasteleyn, and expand the argumentation to arbitrary nearest-neighbour couplings between
each pair of sites. Therefore we will refine the argumentation by McCoy & Wu and, in con-
trast to the calculations for the rectangular system with open boundary conditions, we will
implement translational invariance in one direction to simplify the problem further as done
in [16], which leaves us with the toroidal and the cylindrical topology, where the latter one
will be the topic of a subsequent paper [28]. Allowing anisotropic couplings, we will show
how the introduction of dual couplings leads to a much more natural calculation compared to
one of our previous works [73]. Later on, the general calculation of the emerging determinant
gives us the opportunity to implement several different boundary conditions, but also makes
a recapitulation of the scaling theory necessary, especially for the anisotropic case, which will
be done in Section 3. Here we will also recapitulate the relation between the different points
of view concerning the preferred direction within the system, e. g., the direction in which the
critical Casimir force is measured, as well as the relations between the scaling functions for
the free energy and the critical Casimir force.

Afterwards we will start with the calculation of the partition function for the anisotropic
toroidal case in Section 4, which will be a crucial point for the calculation for the symmetric
(++) and the antisymmetric (+−) boundary fields in [28], as it enlightens the interdependency
of the dimer mapping and the distinction of periodic and anti-periodic boundary conditions.
Additionally it gives us a good opportunity to identify the bulk contribution, which is present in
all cases examined later on. We apply the anisotropic scaling theory to the Onsager dispersion
relation in order to obtain the scaling forms of the relevant terms and introduce its hyperbolic
parametrisation, which allows us to regularise the infinite sums by rewriting them as contour
integrals over singly periodic functions in the complex plane, giving a modified Abel-Plana
formula, and reproduce the free energy scaling function for the toroidal case [68, 73, 74].
With at least one antiperiodic boundary the system forms a domain wall, which introduces a
surface tension contribution to the residual free energy, giving us a first glimpse on its general
form. The cylindric geometry and boundary field effects will be discussed in [28].
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Figure 1: The square lattice with toroidal geometry for M = 4 and L = 6.

2 The dimer representation

We will start with a brief summary of the dimer representation of the two-dimensional Ising
model as it was introduced by Kasteleyn [10, 11] and refined by Fisher [13] and McCoy &
Wu [16], as well as an explanation of how the corresponding matrices are constructed. Then
we will assume translational invariance in one direction and reduce the calculation of the
determinant successively by two Schur reductions. This makes it convenient to introduce
the dual couplings, which lead to a more readable and natural form. Eventually we obtain
the determinant of a (quasi-)cyclic tridiagonal matrix, which can be calculated in terms of a
simple 2 × 2 transfer matrix. This step will be our starting point for all further calculations,
as the various BCs can be simply introduced in the reduced matrix and thus form such 2× 2
matrices for the boundary terms. Finally we assume translational invariance in both direction,
reproducing the result of McCoy & Wu.

The two-dimensional Ising model on a finite L ×M square lattice with periodic boundary
conditions (p) in both directions as depicted in Fig. 1, i. e., on the torus, is described by the
reduced Hamiltonian (in units of kBT , with Boltzmann constant kB)

H(p,p) =−
L
∑

`=1

M
∑

m=1

K⊥`,mσ`,mσ`+1,m + K`,mσ`,mσ`,m+1, (2.1)

where K⊥
`,m and K

`,m are the reduced couplings between the nearest neighbours in perpendic-
ular and parallel direction, respectively, and σ`,m ∈ {−1,+1} are spin variables with periodic

indices, i. e., σ`+L,m ≡ σ`,m ≡ σ`,m+M . The partition function Z (p,p) = tr e−H
(p,p)

can be rewrit-
ten into a high-temperature expansion [75]

Z (p,p)

Z (p,p)
0

=
1

2LM

∑

{σ}

L
∏

`=1

M
∏

m=1

�

1+ z⊥`,mσ`,mσ`+1,m

��

1+ z`,mσ`,mσ`,m+1

�

, (2.2)

with zδ
`,m = tanh Kδ

`,m (δ =⊥, ) and with the non-singular part

Z (p,p)
0 =

L
∏

`=1

M
∏

m=1

2cosh K⊥`,m cosh K`,m. (2.3)
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Figure 2: Example for the dimer representation of the graphical interpretation of the
partition function on a (L = 4)×(M = 3) lattice. The original lattice sites are depicted
as large circles, while the orange lines are one example for a polygon configuration.
All eight possible dimer configurations can be seen. The corresponding term in the
sum in (2.2) is z⊥1,1z⊥2,1z⊥2,2z⊥3,2z⊥1,3z⊥3,3 z‖1,1z‖1,2z‖2,2z‖3,1z‖3,2z‖4,2.

Here we used the identity

eKσiσ j = cosh K +σiσ j sinh K , (2.4)

as σiσ j = ±1 depending on whether the spins are aligned or unaligned.
Expanding the sum and both products leaves only even powers of the σ`,m, which are

always equal to one, and a factor of 2LM , which we already included in Z (p,p)
0 . This can be

interpreted as follows: Each term in the sum gives a possible configuration of closed and
commonly intersecting polygons on the original lattice, where every z⊥/

`,m gives the position of
a perpendicular/parallel link that has to be drawn, see Fig. 2 for an example.

Dimers

If we replace each site of the lattice with a properly chosen cluster, this problem is equivalent
to finding the generating function of the closest-packed dimer configuration on the expanded
lattice [10, 11, 14]. In this context a dimer is a two-atomic construct, which always occupies
two sites and the connecting bond of the lattice. Fisher introduced a six-site cluster for this
replacement [13], see Fig. 3(a), which can be further reduced to a four-site cluster [11], see
Fig. 3(b). The dimers can be arranged in such a way that they reflect the polygon structure
in a biunique way, occupying either an original lattice edge or lying within the cluster, thus
leaving the edge unoccupied, see again Fig. 2.

The problem of finding the generating function of the closest-packed dimer configurations
on an arbitrary planar graph was solved by Kasteleyn in terms of Pfaffians, as it gives the
number of perfect matchings of a given directed planar graph with an even number of sites. This
is especially powerful because of the connection between the Pfaffian and the determinant,
namely

(PfA)2 = detA. (2.5)
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Figure 3: The six-site (a) and the four-site (b) cluster that may be used to expand
the lattice for the dimer mapping.

To apply this method, we have to construct a suitable skew-symmetric matrix, which corre-
sponds to the directed graph of the lattice; the construction of this matrix will be the topic
of this section, were we choose a different way than the original works of Kasteleyn and Mc-
Coy & Wu (c. f. chapter IV and section 2 of chapter V in [17]) and start with matrices with
only positive entries and later antisymmetrise them. The directed graph we need has to fulfil
some restrictions, the most important and fundamental being that each elementary polygon
is clockwise odd, that is, the number of edges pointing in clockwise direction has to be odd.
This is naturally satisfied for the cluster expanded lattice, and guarantees that every term in
the Pfaffian will have the same sign on any given planar graph. Consequently, for the toroidal
topology of the original lattice, one Pfaffian is not sufficient, since the argument aforemen-
tioned originates in the need that every transitions cycle, which describes the transition from
one dimer configuration to another, needs to be odd, see [17, Chapter 4.3-4.5] for details. On
a torus this cannot be accomplished by a single but by a superposition of four Pfaffians, corre-
sponding to the four possible combinations of periodic and anti-periodic boundary conditions
in the two directions, that cancels out the redundant terms and besides gives the correct signs
for the transition cycles that wind around the torus in either or both directions [76]. These
four combinations of periodic and anti-periodic BCs are implemented by reversing the direc-
tion of the directed graphs in the lines responsible for the periodicity. This last point will be
discussed in detail in Section 4, where the interplay of the dimer mapping and periodic and
anti-periodic boundaries will be discussed in more detail, as well as later on in the upcoming
second part of this paper [28], where we will map the (++) and the (+−) boundary conditions
onto periodic and anti-periodic BCs on a suitably extended lattice.

To construct the matrix we will first take a look at the adjacency matrix of the graph, which
decomposes into the clusters replacing the original sites and the two direction of the lattice.
Using the common labels for the cluster as shown in Fig. 3(a), the graph can be represented
as

C0
6 =





















R L 1 2 U D

R 0 0 0 1 0 0

L 0 0 1 0 0 0

1 0 0 0 1 0 1

2 0 0 0 0 1 0

U 1 0 0 0 0 0

D 0 1 0 0 0 0





















. (2.6)

To simplify the problem further, the graph can be reduced into a non-planar one with only four
sites, eliminating the two interior sites labeled 1 and 2, e. g., as the Schur complement (2.25)
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of the antisymmetric form of (2.6) with respect to the central 2× 2 block. The related cluster
is depicted in Fig. 3(b), and its adjacency matrix is

C0
4 =











R L U D

R 0 1 0 0

L 0 0 1 0

U 1 0 0 1

D 1 1 0 0











. (2.7a)

Nevertheless, this reduction introduces two additional terms for each lattice site of the original
system that is not part of any polygon, as there are now three combinations on the Kasteleyn
cluster for those cases. But if each bond within the clusters has a weight equal to 1, those
additional terms cancel each other and we ensure that no cluster has an influence on (2.2).
On this resolution, the coupling in parallel and perpendicular direction are represented by the
two matrices

C4 =











R L U D

R 0 1 0 0

L 0 0 0 0

U 0 0 0 0

D 0 0 0 0











and C⊥4 =











R L U D

R 0 0 0 0

L 0 0 0 0

U 0 0 0 1

D 0 0 0 0











, (2.7b)

respectively. The nearest-neighbour structure in a row and a column are both represented by
the n× n matrix

Hb,n =













0 1 0 · · · 0
0 0 1 0
...

. . .
...

0 0 0 1
−b 0 0 · · · 0













, (2.8)

with b ∈ {+1,0,−1} accounting for different BCs, i. e., b = 0 for open, b = +1 for periodic,
and b= −1 for anti-periodic boundaries of the Ising system, concerning the necessity of tran-
sition cycles on the graph to be odd. Note, that b = −1 accounts for periodic boundaries on
the directed graph, i. e., in the dimer system, in the sense that all edges are likewise aligned,
while it accounts for antiperiodic BCs in the Ising model. However, the topology of the un-
derlying directed graph is not representative for the Ising model, which is emphasised by the
fact that the Ising partition function is a combination of four Pfaffians. The identification with
periodicity and antiperiodicity for the values of b stems solely from the identification within
the open cylinder, see [28, 73], and thus we will use “+" to mark periodic and “−" to mark
antiperiodic BCs. If we give each bond a different weight, see Fig. 1, we can represent the
parallel and perpendicular couplings by

Z⊥α = Z⊥
�

Hα,L ⊗ 1M

�

, (2.9a)

Zβ = Z
�

1L ⊗Hβ ,M

�

, (2.9b)

with Zδ = diag(zδ1,1, zδ1,2, . . . , zδL,M ) and the n × n identity matrix 1n. The final 4LM × 4LM
adjacency matrix of the graph then reads

Aαβ = C0
4 ⊗ 1LM +C⊥4 ⊗Z⊥α +C4 ⊗Zβ (2.10)
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and, since two vertices are connected at most by a single edge, we can expand it to a skew-
symmetric block form1

A
αβ
= A

αβ
− Aᵀ

αβ
=









0 1+Zβ −1 −1
−(1+Zβ)

ᵀ 0 1 −1
1 −1 0 1+Z⊥α
1 1 −(1+Z⊥α )

ᵀ 0









(2.11)

to calculate the partition function of the torus as

Z (p,p)

Z (p,p)
0

=
1
2
(PfA+ + + PfA+ − + PfA− + − PfA− −) . (2.12)

Translational invariance

Since we are interested only in the boundary conditions along the parallel direction, we now
assume translational invariance in this direction and thus present an alternative solution to the
problem of the layered Ising model presented in [16]. In contrast to the original calculations
we do not restrict ourselves to the cylindrical case but include it as the special case of the
torus, with β = 0. The Ising model on the rectangle with open boundaries in both directions
is discussed in [9, 18, 19] for all temperature and in [77, 78] for the critical case. To account
for the translational invariance in parallel direction, all M couplings in each column are the
same, zδ

`,m ≡ zδ
`
∀ m, and the matrices Zδ simplify to

Zδ = zδL ⊗ 1M , δ = ,⊥, (2.13)

with zδL = diag(zδ1 , . . . , zδL ). Additionally we note that Hb is a normal matrix for b = ±1,
therefore it commutes with its transposed,

H±Hᵀ± −Hᵀ±H± = 0, (2.14)

and thus the unitary matrix U± that diagonalises H± also does so for Hᵀ±. For convenience we
decompose the matrix Aαβ into its three contributions (2.10) as

Aαβ =A0 +A⊥α +Aβ , (2.15)

where

A0 = C0
4 ⊗ 1L ⊗ 1M − (transposed), (2.16a)

A⊥α = C⊥4 ⊗
�

z⊥L Hα,L

�

⊗ 1M − (transposed), (2.16b)

Aβ = C4 ⊗ zL ⊗Hβ ,M − (transposed). (2.16c)

In the expanded space, Uβ=± becomes

Uβ = 14 ⊗ 1L ⊗Uβ ,M (2.17)

and has no influence on the first two contributions as they commute,

A0Uβ −UβA0 = 0, (2.18a)

A⊥αUβ −UβA⊥α = 0. (2.18b)

1In the following we drop the size subscript from matrices if it can be derived from the context.
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For the parallel contribution, we obtain the diagonal matrices

U−1
β H

β
U
β
= diag

�

e+iϕ(β)0 , . . . , e+iϕ(β)M−1

�

, (2.19a)

U−1
β Hᵀ

β
U
β
= diag

�

e−iϕ(β)0 , . . . , e−iϕ(β)M−1

�

, (2.19b)

with

ϕ(β)m =

¨

2mπ/M if β = −1

(2m+ 1)π/M if β = +1
(2.20)

for m ∈ {0, 1,2, . . . , M−1}, and thus we will call β = −1 even and β = +1 odd. Note that the
eigenvalues lie equidistantly on the unit circle and thus we have a free shifting parameter for
the spectrum. We have chosen it in such a way, that the eigenvalue ϕ(−)0 = 0 appears in the
even spectrum; a shift by −π on the other hand would have given rise to a dependency on
whether M is even or odd. For completeness we present the characteristic polynomials

P±β (M ;ϕ) =
M−1
∏

m=0

�

e±iϕ − eiϕ(β)m

�

= e±iMϕ + β (2.21)

here, as we will need them later, too. Note that we have chosen to use the normalised version
of P±

β
to omit the aforementioned dependency on whether M is even or odd.

Since det(A⊗B) = det(B⊗A), we can rearrange the matrices such that the product is block
diagonal, simplifying its determinant to the form

detAαβ =
M−1
∏

m=0

detBα(ϕ(β)m ), (2.22)

with the 4L × 4L block matrices

Bα(ϕ(β)m ) =









0 J+
β
−1 −1

J−
β

0 1 −1
1 −1 0 Jα
1 1 −Jᵀα 0









, (2.23)

where we defined Jα = 1 + z⊥Hα for the perpendicular direction and the diagonal matrices

J±
β
= 1± z e±iϕ(β)m for the parallel one.

At this point we introduce the dual couplings t` ≡ (z`)
∗, which can be defined within the

low-temperature expansion of the partition function analogous to (2.2), but on the dual lattice.
They are connected to the couplings z

`
via the self-inverse duality transform x∗ of an arbitrary

quantity x ,

x∗ ≡
1− x
1+ x

, (x∗)∗ = x . (2.24)

Thus we will omit the superscripts in the following and write z` ≡ z⊥
`

and rewrite the parallel
couplings z

`
through their duals t∗

`
. In the following we will, if necessary, mark a dual coupling

by an asterisk as shown in (2.24). Consequently we may also rewrite the two matrices z⊥ 7→ z
and z 7→ t ∗.

As shown in [73] the determinant of the matrix Bα(ϕ
(β)
m ) can be reduced further by two

successive Schur reductions according to

det

�

a11 a12
a21 a22

�

= det a11 det
�

a22 − a21a−1
11 a12

�

, (2.25)
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where we will make the reduction with respect to upper left 2×2 block matrix, as for the first
step this part solely represents the couplings in the translationally invariant, parallel direction.
The first reduction gives

detBα(ϕ(β)m ) =det

�

0 J+
β

J−
β

0

�

det

�

−K+
β

Jα − K−
β

K−
β
− Jᵀα K+

β

�

, (2.26)

with the matrices K±
β
= (J+

β
)−1±(J−

β
)−1. As both J±

β
are diagonal, the first determinant simply

becomes

det

�

0 J+
β

J−
β

0

�

=
L
∏

`=1

�

1+ t∗`e
iϕ(β)m

��

1+ t∗`e
−iϕ(β)m

�

. (2.27)

For the second determinant in (2.26) we apply a second Schur reduction with respect to the
upper left block matrix, which yields

det

�

−K+
β

Jα − K−
β

K−
β
− Jᵀα K+

β

�

= det
�

−K+β
�

det
�

K+β +
�

K−β − Jᵀα
��

K+β
�−1�

Jα − K−β
�

�

. (2.28)

Again, the first determinant is rather simple,

det
�

−K+β
�

=
L
∏

`=1

 

1

1+ t∗
`
e−iϕ(β)m

−
1

1+ t∗
`
eiϕ(β)m

!

, (2.29)

and can be combined with (2.27) to

det
�

−K+β
�

det

�

0 J+
β

J−
β

0

�

=
L
∏

`=1

2it∗` sinϕ(β)m . (2.30)

We finally find

detBα(ϕ(β)m ) = det C̃α(ϕ(β)m )
L
∏

`=1

2t∗` , (2.31)

with

C̃α(ϕ(β)m ) = i sinϕ(β)m

�

K+β +
�

K−β − Jᵀα
��

K+β
�−1�

Jα − K−β
�

�

. (2.32)

The L × L matrix C̃α is a symmetric tridiagonal (quasi-)cyclic matrix of the form

C̃α(ϕ(β)m ) =











a1 b1 bL

b1 a2
. . .

. . . . . . bL−1
bL bL−1 aL











, (2.33a)

with matrix elements

a`>1 = z2
`−1µ

−
`−1 −µ

+
` , (2.33b)

b`<L =
z`
(t`)−

, (2.33c)
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and the special cases concerning whether the couplings in the perpendicular direction are
periodic, anti-periodic, or open,

a1 = α
2z2

Lµ
−
L −µ

+
1 , (2.33d)

bL = −
αzL

(tL)−
. (2.33e)

Here we have used the convenient abbreviation [18]

x± ≡
x ± x−1

2
, (2.34)

for an arbitrary quantity x , as well as

µ±` (ϕ
(β)
m ) = cosϕ(β)m ±

(t`)+
(t`)−

, (2.35)

which solely covers the ϕ(β)m -dependency.
The matrix C̃α in (2.33) will be our starting point for the different BCs, but as we are hardly

interested in the case of every line having a different coupling, we will apply the changes
due to the corresponding boundary conditions and then frankly assume homogenous but still
anisotropic couplings. The determinant of a matrix of the form (2.33) can be easily calculated
with a 2× 2 transfer matrix ansatz, namely

det C̃α = tr
�

T L · · ·T 2T 1

�

− 2(−1)L
L
∏

`=1

b`, (2.36)

while for bL = 0 the formula simplifies to

det C̃α = 〈1,0|T L · · ·T 2T 1 |1, 0〉 , (2.37)

with the transfer matrices (b0 ≡ bL)

T ` =
�

a` −b2
`−1

1 0

�

, (2.38)

analogous to [14] for a system with open boundaries in one direction. Note that this formula
is formally equivalent to the more general form in [18], where no translational invariance in
the direction perpendicular to the open boundaries is assumed. Luckily the b` are all negative,
giving an additional factor (−1)L to (2.36) and thus eliminating the dependency on whether
L is even or odd. Thus our results are correct for arbitrary integer L and M .

If we assume translational invariance in both directions, we may reduce the coupling ma-
trices further to z⊥ = z⊥1 and z = z 1 and diagonalise the perpendicular direction, too. Then
the determinant becomes

detAαβ =
M−1
∏

m=0

L−1
∏

`=0

det











0 1+z eiϕ(β)m −1 −1

−1−z e−iϕ(β)m 0 1 −1

1 −1 0 1+z⊥eiϕ(α)
`

1 1 −1−z⊥e−iϕ(α)
` 0











(2.39a)

=
M−1
∏

m=0

L−1
∏

`=0

4z⊥z
�

z⊥+ z+ + z⊥− cosϕ(α)m + z− cosϕ(β)
`

�

, (2.39b)

which is just the result by McCoy & Wu for the anisotropic torus [17, Eq. (V.2.22)].
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3 Scaling theory

The two-dimensional Ising model is one of the simplest systems showing a temperature-driven
continuous phase transitions in the absence of a bulk magnetic field. Albeit this work focuses
on the two-dimensional case, the following statements can be generalised to d > 2. We assume
an L × M rectangular system, where L is its extent in the perpendicular (⊥) direction and M
the extent in parallel ( ) direction, for reasons that will be clear later on. In the vicinity of the
phase transition the thermal fluctuations of the medium become long-ranged, but by imposing
some sort of BCs, even (anti-)periodicity, they are confined by the geometry. The reduced
free energy2 for arbitrary BCs α in perpendicular direction and translationally invariant BCs
β ∈ {p,a} in parallel direction, F (α,β) = − ln Z (α,β) (again in units of kBT), may be decomposed
into an infinite volume term and a residual contribution [19]

F (α,β)(L, M) = F (α)∞ (L, M) + F (α,β)
∞,res(L, M), (3.1)

where the first term

F (α)∞ (L, M) = LM fb +M f (α)s , (3.2)

with bulk and surface free energy densities fb and f (α)s , describes the leading behaviour in the
thermodynamic limit L, M →∞, while the latter one covers the finite-size effects.

Another way to decompose the free energy [18,19] is into contributions F (β)b for the bulk,

F (α,β)
s for the two surfaces, and F (α,β)

st,res for the respective strip finite-size part as

F (α,β)(L, M) = LF (β)b (M) + F (α,β)
s (M)

︸ ︷︷ ︸

F (α,β)
st (L,M)

+F (α,β)
st,res (L, M). (3.3)

Here, F (α,β)
st (L, M) describes the strip limit L →∞ with M fixed. Combining those two de-

compositions splits the contributions further, namely the bulk free energy per slice F (β)b reads

F (β)b (M) = M fb + F (β)b,res(M), (3.4)

with residual part F (β)b,res. Analogously, we find for the surface

F (α,β)
s (M) = M f (α)s + F (α,β)

s,res (M), (3.5)

with the corresponding residual surface free energy F (α,β)
s,res (M). Both terms depend explicitly

on the BC α (e. g., open boundaries or surface fields), while the residual contribution also
accounts for the BC β , as these define the discrete spectrum for the finite system. Thus we can
rewrite the residual contribution in (3.1) as

F (α,β)
∞,res(L, M) = LF (β)b,res(M) + F (α,β)

s,res (M) + F (α,β)
st,res (L, M), (3.6)

cf. [19]. Note that it is possible to impose boundaries in more than one direction, introducing
edges and corners and suitable contributions depending on the dimension of the hypercuboid;
for the two dimensional case of the Ising model on the open rectangle the necessary calcu-
lations were done lately with the dimer approach presented above [18, 19], while the corre-
sponding leading term F∞(L, M) was analysed in detail within the spinor representation by
Baxter [9].

2In the following we will omit the explicit dependency on the temperature T .
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General scaling behaviour

Near criticality the bulk correlation length in direction δ diverges as

ξ
(∞)
δ
(τ)

τ>0
' ξ̂δτ

−ν, (3.7)

where τ = T/Tc − 1 is the reduced temperature and ξ̂δ is the correlation length amplitude
in the unordered phase, while ν is the associated scaling exponent, with ν = 1 for the two-
dimensional case. In the region around Tc where the correlation length is the dominant length
scale, the residual free energy F (α,β)

∞,res only depends on the two length ratios L/ξ(∞)⊥ (τ) and

M/ξ(∞)(τ), where we assume the bulk correlation length amplitudes differ depending on the
direction because of the anisotropic couplings. Following Fisher & de Gennes [29], the residual
free energy thus fulfils the scaling ansatz

F (α,β)
∞,res(L, M)' Θ(α,β)(x⊥, x ), (3.8)

where Θ(α,β) is the total residual free energy scaling function, depending on the two temper-
ature scaling variables

x⊥ ≡ τ
�

L

ξ̂⊥

�1/ν

, x ≡ τ
�

M

ξ̂

�1/ν

, (3.9)

which are related by the reduced aspect ratio

ρ ≡
L/ξ̂⊥
M/ξ̂

(3.10)

via the relation

x⊥ = ρ
1/νx . (3.11)

Additionally, it is sometimes [68] advantageous to consider scaling functions depending on a
volume-like scaling variable

x◦ ≡ τ
�

LM

ξ̂⊥ξ̂

�
1

2ν

. (3.12)

Consequently, we may change our focus onto either one of the two directions or the volume
and rewrite the scaling functions accordingly into a perpendicular (⊥), a parallel ( ), or a
volume (◦) form

F (α,β)
∞,res(L, M)' Θ(α,β)

◦ (x◦,ρ) = ρ
−1Θ

(α,β)
⊥ (x⊥,ρ) = ρΘ(α,β)(x ,ρ). (3.13)

The critical Casimir force is defined as derivative of the residual free energy with respect
to the corresponding system length, e. g. in perpendicular direction,

F (α,β)
C (L, M)≡ −

1
M
∂

∂ L
F (α,β)
∞,res(L, M) (3.14)

and analogously to (3.13) scales as

F (α,β)
C (L, M)' (LM)−1ϑ(α,β)

◦ (x◦,ρ) = L−2ϑ
(α,β)
⊥ (x⊥,ρ) = M−2ϑ

(α,β)(x ,ρ). (3.15)
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The residual free energy and the Casimir force scaling functions are connected by the
relations [68,79]

ϑ
(α,β)
⊥ (x⊥,ρ) = −

�

−1+
x⊥
ν

∂

∂ x⊥
+ρ

∂

∂ ρ

�

Θ
(α,β)
⊥ (x⊥,ρ), (3.16a)

ϑ
(α,β)(x ,ρ) = −

�

1+ρ
∂

∂ ρ

�

Θ
(α,β)(x ,ρ), (3.16b)

ϑ(α,β)
◦ (x◦,ρ) = −

�

x◦
2ν

∂

∂ x◦
+ρ

∂

∂ ρ

�

Θ(α,β)
◦ (x◦,ρ). (3.16c)

In the following we will focus on the scaling functionΘ(α,β)(x ,ρ) for the parallel direction,
as it arises naturally within our calculations from the product in (2.22). Just like the residual
free energy can be decomposed into its bulk, surface, and strip contribution in (3.6), the scaling
function consists of such parts [19], which can be written as

ρΘ
(α,β)(x ,ρ) = ρΘ(β)b (x ) +Θ

(α,β)
s (x ) +Ψ(α,β)(x ,ρ), (3.17)

with

LF (β)b,res(M)' ρΘ
(β)
b (x ), (3.18a)

F (α,β)
s,res (M)' Θ

(α,β)
s (x ), (3.18b)

F (α,β)
st,res (L, M)' Ψ(α,β)(x ,ρ). (3.18c)

For the torus and the other systems with translational invariance in both directions there is no
surface and thus Θ(α,β)

s (x )≡ 0 for α,β ∈ {p,a}, all other cases will be discussed in the second
part of this paper [28].

Anisotropic scaling

Now we need to discuss the influence of the weakly anisotropic couplings on the scaling be-
haviour. Here the critical point expands to a critical line as we may rewrite the condition of
criticality [80] as

sinh(2K⊥) sinh(2K ) = 1 ⇔ t = z, (3.19)

which again becomes a point by fixing the couplings by a factor κ as

K = κK⊥. (3.20)

In terms of t and z this becomes

t = (z∗)κ , (3.21)

and we can identify the critical point with the equation

zc(κ) =
�

1− zc(κ)
1+ zc(κ)

�κ

. (3.22)

The correlation lengths along the two directions read [17]

ξ
(∞)
⊥ (z, t) =

�

ln coth K⊥ − 2K
�−1
= ln−1 t

z
, (3.23a)

ξ
(∞)(z, t) =

�

ln coth K − 2K⊥
�−1
= ln−1 z∗

t∗
, (3.23b)
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with the dual couplings z∗ and t∗ from (2.24). This form emphasises the choice of the reduced
temperatures in the two directions as

τ⊥ =
t
z
− 1, τ =

z∗

t∗
− 1. (3.24)

The amplitude ratio rξ ≡ ξ̂⊥/ξ̂ ' ξ
(∞)
⊥ /ξ

(∞) from [81] can be expanded around criticality
t = z using log(1+ x)' x to give rξ ' τ /τ⊥, such that the scaling variables fulfil

x⊥ ' Lτ⊥, x ' Mτ . (3.25)

4 The torus

After we have calculated the partition function on the finite lattice, we will carve out the
bulk properties and calculate its thermodynamic limit. Afterwards we will see how the dimer
approach and the choice of signs distinguishes between periodicity and antiperiodic BCs as a
consequence of its interplay with the directed graph being subject to the Pfaffian.

Let us return to (2.33), for which we now assume independent homogeneity in both di-
rections, i. e., z` ≡ z ∀ ` and t` ≡ t ∀ `, as well as µ±

`
(ϕ) ≡ µ±(ϕ)∀ `. Then it is comfortable

to factorise the homogeneous factor −z/t−, leaving every non-zero off-diagonal element but
bL equal to −1. Due to this procedure, the diagonal entries simplify to

t−
z

�

µ+(ϕ(β)m )− z2µ−(ϕ(β)m )
�

= 2
�

t+z+ − t−z− cosϕ(β)m

�

, (4.1)

which can be parameterised into the anisotropic Onsager dispersion relation

coshγ(β)m ≡ t+z+ − t−z− cosϕ(β)m . (4.2)

Thus the matrix for the torus has the form

C(α)L (ϕ
(β)
m ) =













2coshγ(β)m −1 α

−1 2coshγ(β)m
. . .

. . . . . . −1
α −1 2 coshγ(β)m













, (4.3)

which is connected to (2.33) by

det C̃α(ϕ(β)m ) =
�

−
z
t−

�L

detC(α)L (ϕ
(β)
m ). (4.4)

To calculate this determinant, we use the transfer matrix approach (2.36) to find

detC(α)L (ϕ
(β)
m ) = tr

�

T L(γ(β)m )
�

+ 2α, (4.5)

with the transfer matrix

T (γ(β)m ) =

�

2 coshγ(β)m −1
1 0

�

. (4.6)

The eigenvalues of T are e±γ
(β)
m and, depending on α= ±1, the determinant thus reads

detC(α)L (ϕ
(β)
m ) =

�

e
L
2 γ
(β)
m +αe−

L
2 γ
(β)
m

�2
. (4.7)

15

https://scipost.org
https://scipost.org/SciPostPhys.7.3.026


SciPost Phys. 7, 026 (2019)

In the following we will omit the superscript of the γ, since the parity is encoded in the product
over either even or odd numbers. Having said that, we denote the parity in the other direction
with ± to account for the dependency on α, and thus we use

Z±e/o =
∏

0≤m<2M
m even/odd

�

e
L
2 γm ± e−

L
2 γm
�

, (4.8)

where we have incorporated the square root of (2.5). Then the non-regular part of the partition
function reads

Z (p,p)

Z (p,p)
0

=
1
2

�

2z
1+ t+

�
LM
2 �

Z+o + Z−o + Z+e − sgn (t − z) Z−e
�

, (4.9)

with Z (p,p)
0 from (2.3), where the sgn(t− z) stems from the root in (2.5), too, and assures that

for arbitrary anisotropy κ the contribution is a monotonic function in temperature. This can
be easily understood by looking at the critical value of Z−e : There γ0 = 0 and thus one of the
factors becomes zero, but as we have taken the square root in (4.9), we have to correct the
respective sign. Of course this is just exactly the result by Kaufman [2].

Bulk and finite-size contribution

In section 3 we discussed how the free energy of a finite system may be decomposed into
summands describing the different contributions from volume, surfaces, and finiteness. As
a matter of fact, the toroidal geometry has no surfaces and thus the aforementioned decom-
position includes only the bulk contribution and the finite-size part. Therefore it is perfectly
suitable to identify the former one and calculate its thermodynamic limit.

We follow the procedure of Ferdinand & Fisher [74] and start by splitting the Z±e/o into
their exponentially growing and decaying parts as

Z±e/o(L, M) = p±e/o(L, M)
∏

0≤m<2M
m even/odd

e
L
2 γm , (4.10)

with

p±e/o(L, M) =
∏

0≤m<2M
m even/odd

�

1± e−Lγm
�

. (4.11)

Now we may factorise the odd product over the leading exponential in (4.9) from all four
contributions, as it is slightly larger than the one over the even numbers. The corresponding
bulk part of the free energy then simply reads

F (p)b (M) = −
M
2



ln
2z

1+ t+
+

1
M

∑

0≤m<2M
m odd

γm



 , (4.12)

thus leaving the residual part as

F (p,p)
st,res (L, M) = − ln

�

p+o + p−o
2

+
p+e − sgn (t − z) p−e

2

2M−1
∏

m=0

e(−1)m L
2 γm

�

. (4.13)

To calculate the bulk contribution to the free energy in the thermodynamic limit,

fb(t, z)≡ lim
M→∞

M−1F (p)b (M), (4.14)
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Figure 4: Bulk free energy density fb(z, t). The dashed line marks criticality for ar-
bitrary anisotropy κ= K⊥/K‖. For fixed anisotropy the two couplings are connected
by t = (z∗)κ, see (3.21), and the black lines mark the run of the corresponding curve,
where the isotropic case κ= 1 is shown in red.

we use the Euler-Maclaurin sum formula to obtain the integral representation

fb(z, t) = −
1
2

ln
2z

1+ t+
−

1
4π

2π
∫

0

dϕγ(ϕ) (4.15)

and omit all corrections of O(M−1) or higher. This is in perfect agreement with former results
by McCoy & Wu [14]. Fig. 4 shows the bulk free energy density as function of the two coupling
variables z and t. For the isotropic critical case we find

fb(zc, zc) = − ln (1− zc)−
2G
π

, (4.16)

where G is Catalan’s constant. Together with the contribution from the regular part of the
partition function, this coincides perfectly with the result by Izmailian [60].

Scaling form

As discussed in Sec. 3, in a finite system there is always not only a residual contribution present,
but this contribution can be split up into different parts as well. We start with the scaling form
of γ as it is the central quantity for the toroidal geometry, afterwards we will first calculate
the residual bulk free energy scaling function and then the one for the residual strip free
energy. Therefore we introduce the hyperbolic parametrisation based on the scaling form of γ,
which allows us to regularise the arising terms properly. At criticality the bulk residual scaling
function coincides with the change of the free energy of the associated conformal field theory
due to the projection from the plane onto the cylinder.
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For the scaling limit of γwe start with the definition for the anisotropic temperature scaling
variables in (3.24) and (3.25) and solve them for z and t to get the somehow unhandy formulas

t(rξ, M ; x ) =
1
rξ

�

1+
x

2M

�





√

√

√

√1+ r2
ξ

1+ x
rξM

�

1+ x
2M

�2 − 1



 , (4.17a)

z(rξ, M ; x ) =
t(rξ, M ; x )

1+ x
rξM

. (4.17b)

Now we use them in (4.2) together with ϕ = Φ/M , substitute M = ε−1 and expand cos(εΦ)
up to the second order in ε around ε= 0 to obtain

coshγ= 1+
ε2

2
Γ 2 + εx Φ2

r2
ξ
+ εrξx

+O(ε4), (4.18)

where we have introduced

Γ =
Ç

x2 +Φ2. (4.19)

With a Puiseux series expansion around ε= 0,

arcosh

�

1+
y2

2

�

= y +O
�

y3
�

, (4.20)

we finally find, with L = ρ rξM ,

Lγ(ϕ)' ρ lim
ε→0

 

Γ 2 + ε x Φ2

1+ ε x
rξ

!1/2

= ρ Γ . (4.21)

As we made only the most general assumptions, we can use this result throughout the whole
rest of this work. We finally note that (4.19), rewritten as

Γ 2 = x2 +Φ2 (4.22)

is the finite-size scaling form of the Onsager dispersion relation (4.2) just as in the isotropic
case [19].

Now we will turn to the characteristic polynomials (2.21). Their scaling form is quite
simple as we only have to replace ϕ = Φ/M to obtain

P±e (Φ) = e±iΦ − 1, (4.23a)

P±o (Φ) = e±iΦ + 1, (4.23b)

where the ± accounts for the two possible choices of the eigenvalue e±iϕ(β)m in (2.19). This
freedom is essential to the regularisation of the residual free energies, because if we assume
Φ to be complex to calculate the sum in terms of contour integrals, P+e/o(Φ) diverges in the
lower and P−e/o(Φ) diverges in the upper half-plane. To avoid these divergences we can switch
between the two possible realisations if we cross the real axis. We obtain suitable counting
polynomials for the even and odd sums as integration kernel from the logarithmic derivative
of the P±e/o(Φ) as

K±e (Φ) =
∂

∂Φ
lnP±e (Φ) = +

1
2

�

cot
Φ

2
± i
�

, (4.24a)

K±o (Φ) =
∂

∂Φ
lnP±o (Φ) = −

1
2

�

tan
Φ

2
∓ i
�

, (4.24b)
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Figure 5: Complex structure of the integrand of (4.27). The two contours C+ in
the upper and C− in the lower half-plane are connected by non-contributing paths
at ℜ{ω} → ±∞ to form the closed contour C. The complex phase is colour coded
from −π to π, while the lines of constant absolute value c are shown as black dotted
(c < 1), dashed (c = 1) or solid (c > 1) lines ranging from 2−3 to 2+3. The zeros at
ω = ±iπ/2 are marked as green dots, while the poles on the lines with ℑ{ω} = nπ,
n ∈ Z, are marked as red dots. Additionally, the phase jump due to the different
choices for the counting polynomial for the upper and lower half-plane are marked
as red lines. Note that due to the transformation into the hyperbolic ω-plane the
structure is 2π-periodic along the imaginary axis. The contributions along the paths
C+ and C− are equal, as the phase in the upper half-period is reversed with respect
to the lower half-period.

and consequently for the alternating sum

δK(Φ) = ∂

∂Φ
ln

P±e (Φ)
P±o (Φ)

= cscΦ, (4.24c)

without any distinction for the upper and lower half-plane, as the divergences cancel each
other.

Looking closely at (4.19) we see that we can parametrise this hyperbolic equation by

Φ= |x | sinhω, (4.25a)

Γ = |x | coshω, (4.25b)

solving the equation for arbitraryω ∈ C. Note that this is the critical limiting case of the elliptic
parametrisation of (4.2), which is used off criticality for finite systems with more complex BCs,
e. g., for the open rectangle [9].

Combining (4.21), (4.24b) and (4.25) we now have the tools to calculate the scaling func-
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Figure 6: Complex structure of the alternating sum over the Γm in the hyperbolic
ω-plane (integrand of (4.31a)), together with the contour C = C+ + C−. Here no
phase jump is present and the 2π-periodicity along the imaginary axis is continuous,
but nevertheless the upper and lower contour are equal due to the reversed phase in
the upper and lower half-period.

tion of the residual bulk free energy

F (p)res,b(M) = F (p)b (M)−M fb =
M
4π

2π
∫

0

dϕγ(ϕ)−
1
2

∑

0≤m<2M
m odd

γm. (4.26)

By rewriting the sum as contour integral over Γ with the counting polynomial K±o and substi-
tuting the hyperbolic parametrisation we get

Θ
(p)
b (x ) = −

1
4iπ

∮

C

dω x2 cosh2ωK±o (|x | sinhω) . (4.27)

Note that the additional term ±i in K±o can be interpreted as the integral in (4.26) for the bulk
free energy, as

lim
Φ→±i∞

tan
Φ

2
= ±i , (4.28)

and thus a shift of the integration path along the imaginary axis can be interpreted as smooth
interpolation between the sum on the real axis and the integral at infinity, which is mapped
onto the lines at ±iπ/2 within the hyperbolic parametrisation. The integrand is shown in
Fig. 5 together with an appropriately chosen contour. For |Φ| → ∞ the integrand vanishes,
thus making the integral over the paths ℑ{ω} = ±π/2 the only relevant parts of the contour,
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which are equal as they only differ by a phase of π. This leaves us with

Θ
(p)
b (x ) =

1
2iπ

∞
∫

−∞

dω x2 sinh2ω
i
2

�

tanh
� |x |

2
coshω

�

− 1
�

(4.29a)

=
1

4π

∞
∫

−∞

dΦ
Φ2

Γ

�

tanh
Γ

2
− 1

�

(4.29b)

= −
1

2π

∞
∫

−∞

dΦ ln
�

1+ e−Γ
�

, (4.29c)

where we first resubstituted to the Φ-plane and then integrated by parts, reproducing the result
from [73] calculated for the isotropic case.

A similar procedure will be our way to go in every upcoming calculation, that is, use
the associated counting polynomial as integral kernel in the contour integral representation
of the sum, transform it into the hyperbolic parametrisation, shift the integration path to
ℑ{ω} = ±π/2, and perform the integration. Applying this scheme to the alternating sum
in the exponent of (4.13),

L
2

2M−1
∑

m=0

(−1)mγm ' ρδΘb(x ), (4.30)

then gives us

δΘb(x ) =
1

4iπ

∫

C

dω x2 cosh2ωδK (|x | sinhω) (4.31a)

=
1

2π

∞
∫

−∞

dΦ
Φ2

Γ
csch Γ (4.31b)

= −
1

2π

∞
∫

−∞

dΦ ln
1− e−Γ

1+ e−Γ
, (4.31c)

again reproducing the result of [73]. Note that the alternating sum regularises itself and thus
there is only the well known kernel for alternating sums present, which is shown in Fig. 6 in
the same manner as Fig. 5.

Lastly we have to calculate the scaling limit of the p±e/o(L, M), which is really straight
forward, as we only have to expand the product symmetrically to infinity and replace Lγ by
its scaling form. Thus we get

p±e/o(L, M)' P±e/o(x ,ρ), (4.32)

with

P±e/o(x ,ρ) =
∞
∏

m=−∞
m even/odd

�

1± e−ρ Γm
�

, (4.33)

where we have used the discrete form of Γ ,

Γm =
Ç

x2 +Φ2
m, (4.34)
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Figure 7: Scaling function Θ(p,p)
δ
(xδ,ρ) for different values for the aspect ratio ρ.

Due to the periodic BCs the system has the symmetry Θ(p,p)
‖ (x‖,ρ) = Θ

(p,p)
⊥ (x⊥, 1/ρ).

The limit (4.39) for xδ → −∞ due to the degeneracy is shown for corresponding
values of ρ as dotted lines.

with Φm = mπ, and used the symmetries of γm with respect to m = 0 and m = M to expand
the product symmetric around zero. Now we combine them into an even and an odd scaling
function

Ψ(p,p)
e (x ,ρ) = − ln

P+e (x ,ρ)− sgn(x )P−e (x ,ρ)

2
, (4.35a)

Ψ(p,p)
o (x ,ρ) = − ln

P+o (x ,ρ) + P−o (x ,ρ)

2
, (4.35b)

and calculate the analogue of an alternating strip contribution

δΨ(p,p)(x ,ρ) = Ψ(p,p)
e (x ,ρ)−Ψ(p,p)

o (x ,ρ). (4.36)

Finally we find the scaling function for the torus to be

Θ
(p,p)(x ,ρ) = Θ(p)b (x ) +ρ

−1Ψ(p,p)
o (x ,ρ)−ρ−1 ln

�

1+ e−ρδΘb(x )−δΨ(p,p)(x ,ρ)
�

, (4.37)

see Fig. 7, which has some remarkable properties. First and foremost this form shows the sym-
metry Θ(p,p)(x ,ρ) = Θ(p,p)

⊥ (x⊥, 1/ρ), as Θ(p)b and Ψ(p,p)
o as well as δΘb and δΨ(p,p) exchange

their roles under this transformations, which may be seen best in the two limiting cases

Θ
(p,p)(x ,ρ→∞) = Θ(p)b (x ), (4.38a)

Θ
(p,p)
⊥ (x⊥,ρ→ 0) = Θ(p)b (x⊥), (4.38b)

where for the latter one P+o becomes dominant near x⊥ = 0 and equal to P−o for |x⊥| � 1, thus

Ψ
(p,p)
o can be written as integral in terms of the Euler-Maclaurin formula. Additionally the last

term of (4.37) is only important for finite ρ and even dominant in the vicinity of ρ = 1 with

lim
x →−∞

ln
�

1+ e−ρδΘb(x )−δΨ(p,p)(x ,ρ)
�

= ln2, (4.39)
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Figure 8: Scaling function Θ
(a,a)
δ
(xδ,ρ) for different values for the as-

pect ratio ρ. Due to the antiperiodic BCs the system has the symmetry
Θ
(a,a)
‖ (x‖,ρ) = Θ

(a,a)
⊥ (x⊥, 1/ρ). For negative values of xδ the scaling function di-

verges linearly, marked as red (dark) dashed line. The scaling function converges
very fast to its limiting form at ρ =∞, while its biggest contribution is at ρ = 1 as
there the domain wall lies diagonal in the system and is thus longest compared to
the two length scales L and M .

which stems from the different order of the limits in the scaling regime and the thermodynamic
limit. While in an infinitely large system as supposed by the latter one, the system is frozen in
either of the two possible magnetised states because a transition would require infinitely much
energy, the finiteness of the system in the scaling limit allows such a transition, resulting in a
factor 2 in the partition function and thus this topological contribution in the scaling function.
However, whenever this symmetry is broken, e. g., by a surface field, this contribution is not
present and the scaling functions decay to zero for |xδ| → ∞. Indeed our results for the
torus coincide with the results by Ferdinand & Fisher [74], as well as with the more recent
results in [68,73], although we did not assume isotropy. Thus we showed explicitly for finite-
size scaling functions of the Ising model that a coupling anisotropy can be absorbed into a
generalised aspect ratio ρ as proposed, e. g., in [81], and that therefore the universal finite-
size scaling functions are independent of the coupling anisotropy.

5 Antiperiodicity and surface tension

Let us now turn back to the finite systems solution using the dimer approach and consider
antiperiodic boundary conditions in the parallel direction, i. e, σ`,m ≡ −σ`,m+M . They can
be implemented as one line of anti-ferromagnetic parallel couplings, which corresponds to a
change in the orientation of the oriented lattice concerning this particular line within the dimer
representation. Here we need to emphasise that the oriented graph from the dimer mapping
is absolutely independent of the choice of sign of any coupling. Nevertheless, changing the
sign of all couplings in one row (or column) can be interpreted as reversing the direction
of all corresponding edges and leaving the couplings unchanged. We now may choose the
line, which imposes these BCs to be the line concerning the handling of the transition circles
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Figure 9: Scaling functions Θ(p,a)
‖ (x‖,ρ) and due to the symmetry Θ(a,p)

⊥ (x⊥, 1/ρ)
for different values for the aspect ratio ρ. Here the domain wall forms along the
short direction of the system and thus the limiting case is Θ(p)b (xδ).

in the Pfaffian. Since we already need all four combinations of orientations, this procedure
thus only exchanges the role of Z+e/o and Z−e/o. Consequently, if we impose antiperiodic BCs
σ`,m ≡ −σ`+L,m in the perpendicular direction, the roles of Z±e and Z±o are exchanged. Tab. 1
shows which of the Z±e/o contributes with a minus sign depending on the BCs.

Of course this directly transfers to the scaling functions, which are shown in Figs. 8, 9, and
10. Just like the case of periodic BCs in both directions, antiperiodic BCs (denoted (a,a) in
the superscript) in both directions impose a symmetry according to

Θ
(a,a)(x ,ρ) = Θ(a,a)

⊥ (x⊥, 1/ρ), (5.1)

see Fig. 8, where the two combinations of periodic and anti-periodic BCs (denoted (p,a) and
(a,p)) are connected via

Θ
(a,p)(x ,ρ) = Θ(p,a)

⊥ (x⊥, 1/ρ), (5.2a)

Θ
(p,a)(x ,ρ) = Θ(a,p)

⊥ (x⊥, 1/ρ), (5.2b)

see Figs. 9 and 10. At criticality, i. e., for xδ = 0, all four scaling functions coincide with the
results of Izmailian [60].

An important consequence of an antiperiodic boundary is the formation of a domain wall
and thus a surface tension contribution σ to the free energy. This contribution can be calcu-
lated as difference between the free energy of the system with antiperiodic and the one of the

Table 1: Sign of the contributions Z±e/o according to the combination of periodic (p)
and antiperiodic (a) boundary conditions in parallel and perpendicular directions.

BCs Z+o Z−o Z+e Z−e
(p,p) + + + −
(p,a) + + − +
(a,p) + − + +
(a,a) − + + +
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Figure 10: Scaling functions Θ(a,p)
‖ (x‖,ρ) and due to the symmetry Θ(p,a)

⊥ (x⊥, 1/ρ)
for different values for the aspect ratio ρ. Here the domain wall forms along the long
direction of the system and thus the limiting case is Σ(a)b (xδ) with a linear divergence
for xδ→−∞, see (5.6).

system with periodic boundaries in the same direction [82],

σ(a,p)(L, M) = F (a,p)(L, M)− F (p,p)(L, M), (5.3)

or alternatively as quotient of the corresponding partition functions. Thus any bulk or surface
contribution cancels out and what is left is the free energy of the domain wall composed of the
differences of the associated residual finite-size parts, which consequently fulfils the scaling
ansatz

σ(a,p)(L, M)' ρΣ(a,p)(x ,ρ), (5.4)

with the scaling function

Σ
(a,p)(x ,ρ) = Θ(a,p)(x ,ρ)−Θ(p,p)(x ,ρ). (5.5)

Likewise, the surface tension and its scaling function are obtained for periodic/antiperiodic
and antiperiodic/antiperiodic BCs. For all three cases the scaling functions diverge linearly in
the corresponding scaling variable xδ, where δ might either be the parallel or the perpendic-
ular direction, in the ordered phase for a growing length of the domain wall, as depicted in
Figs. 8, 9, and 10. The limiting case for a dominating domain wall, i. e., antiperiodic bound-
aries in the long direction, reads

Σ
(a)
b (xδ) = δΘb(xδ)− xδH(−xδ), (5.6)

where Σ(a)b (xδ) is the bulk contribution to the surface tension, cf. [28], and H(x) is the Heav-
iside step function with H(x)≡ d

dx max{0, x}.

6 Conclusion

We presented a systematic calculation of the universal free energy finite-size scaling functions
for anisotropic Ising systems with translationally invariant boundary conditions. Therefore
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we started with the commonly known dimer representation of the two-dimensional square
lattice Ising model, which we recapitulated in some detail to show the connection between
the Pfaffian representation and the boundary conditions of the underlying system. Using the
coupling constant z and its dual counterpart t turned out to be beneficial for the calculation, as
it compresses the formulas to a clearly arranged form. The calculation of the necessary Pfaffi-
ans of the original 4LM ×4LM matrices was condensed down to a straightforward formalism
for periodic and antiperiodic boundaries assuming translational invariance in one direction.
Within this approach we implemented an anisotropic scaling theory and showed analytically
that a coupling anisotropy can be absorbed into a generalised aspect ratio ρ. For the transi-
tion from the finite system to the scaling form we introduced the hyperbolic parametrisation
of the scaling form of the Onsager dispersion relation, which is the scaling limit of the elliptic
parametrisation of finite systems. The results are in perfect agreement with former calcula-
tions, but the method is far more general and we will use it to apply boundary fields to the
open cylinder in a subsequent paper [28].
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