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Abstract

We discuss anomalous dimensions of top-partner candidates in theories of Partial Com-
positeness. First, we revisit, confirm and extend the computation by DeGrand and Shamir
of anomalous dimensions of fermionic trilinears. We present general results applicable
to all matter representations and to composite operators of any allowed spin. We then
ask the question of whether it is reasonable to expect some models to have composite
operators of sufficiently large anomalous dimension to serve as top-partners. While this
question can be answered conclusively only by lattice gauge theory, within perturbation
theory we find that such values could well occur for some specific models. In the Ap-
pendix we collect a number of practical group theory results for fourth-order invariants
of general interest in gauge theories with many irreducible representations of fermions.
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1 Introduction

All models of physics beyond the standard model attempting to explain the origin of the
electro-weak (EW) scale face a fundamental tension. On the one hand, they need to have
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additional particles or phenomena near that scale, while, on the other, they must preserve
the stringent constraints from flavor-changing, CP-violating processes etc. In the context of
strongly-coupled solutions, this generically requires a decoupling of the EW scale from the
“flavor” scale ΛF where these new effects come into play. In order not to throw the baby out
with the bathwater, the baby being the top quark mass, some operators must acquire a large
anomalous dimension to survive the long journey from the flavor scale to the EW scale. This
fact is common in all attempts, such as walking technicolor, conformal technicolor, holography
and partial compositeness.

Here we consider the particular case of partial compositeness [1] (see [2, 3] for reviews)
realized via a four-dimensional gauge theory with fermionic matter in the spirit of [4, 5].
In [6, 7] the set of potential models was narrowed down from the full list in [5] to a list
of twelve most promising one (containing the original [4]). There is also the attempt to use a
QCD-like theory for these purposes [8].

Although the model must obviously be confining in the IR, it may start inside the confor-
mal window and rely on some relevant deformation (like a fermion mass) to leave the fixed
point at parametrically low scales, triggering confinement [9], (see also [8] and [6]). What
is important is that, after this happens, there are enough light fermions left to guarantee a
sensible phenomenology. The interest is thus to look at confining models adjacent to confor-
mal models with large anomalous dimensions. The actual number of dynamical fermions, and
thus whether the model is in the conformal window or not, depends on the relation between
the masses and the energy scale.

Without reviewing the construction, which is discussed in detail in the above papers, suf-
fices to say that each of these models consist of a unitary or symplectic gauge group (hyper-
color) with fermions (hyper-quarks) in the fundamental F and antisymmetric A2 irreducible
representation (irrep) or of an orthogonal hyper-color group with hyper-quarks in the fun-
damental F and spinorial Spin irrep. These models have the advantage of being amenable
to lattice studies and, indeed, work has been done in the unitary and symplectic case by the
groups [10–14] and [15,16] respectively.

In particular, one of the models in the list [6, 7], based on the gauge group SU(4) and
spelled out in more details in [17], has been put under intense scrutiny, albeit with a smaller
number of hyper-quarks than those required for applications to EW breaking (4 v.s. 5 Majorana
hyper-quarks in the A2 and 2 v.s. 3 Dirac hyper-quarks in the (F,F)).

The first important lattice result [11] concerning the SU(4)model, was to show that in the
chiral limit (massless hyper-quarks) the mass of the potential top-partners (“chimera baryons”
in their language) is not the smallest among the non-pseudo-Nambu–Goldstone states, but is
in fact slightly higher than that of the vector resonances, with a mass of roughly MT ≈ 8.5 f ,
where, in the notation of [17], v = f sin(〈h〉/ f ) = 246 GeV 1. EW precision tests require the
fine-tuning parameter v2/ f 2 < 0.1 and this puts the top-partners in this model out of reach of
the LHC, (MT > 6.8 TeV) if one assumes that the result can be extrapolated to a more realistic
number of fermions.

The second, more recent, result [12] concerns the mass of the top quark or, equivalently,
its Yukawa coupling yt . Assume that the theory enters a conformal regime between the “fla-
vor” scale ΛF ¦ 104 TeV and the hyper-color confinement scale ΛHC ® 10 TeV where the
fermionic trilinear composite operator O, representing the top-partner, has scaling dimension
∆= 9/2+γ∗. Under some specific assumptions, [12] shows that at the scale ΛHC the Yukawa

1 [11] finds MT ≈ 6.0F6, having defined F6 =
p

2 f .
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coupling turns out to be 2

yt ≈ 0.06

�

g2
F

Λ2
F

�

ΛHC

ΛF

�γ∗
�2

f 4. (1)

The small coefficient in front of (1) is problematic, since we need yt ≈ 1. To overcome this
problem requires −3< γ∗ < −2, the lower bound being required by unitarity. Notice however
that even a larger value for the coefficient would require similarly strong renormalization
effects, γ∗ ≈ −2.

To assess the viability of models of this type it is thus necessary to understand where the
edge of the conformal window for such theories lie and what the anomalous dimensions of the
fermionic operators at the edge might be. Both of these issues can only be truly answered by
strong coupling techniques, such as lattice gauge theory. In this paper we content ourselves
with performing various perturbative computations.

We start by revisiting the results of [18] and extending them to all other relevant cases by
using the convenient Weyl formalism, used in [19] for baryons in QCD. As for the search of
a fixed point, we are forced to be more qualitative, but we use the state of the art four-loop
β-function for generic gauge theories with multiple fermionic irreps of Zoller [20].

Having stated up-front that a perturbative analysis will never be able to quantitatively
answer the question of phenomenological interest, what is the use of doing it? In our opinion,
the main reason is to guide us towards the most promising models, and to qualitatively assess
the likelihood that such large anomalous dimensions might be realized. As an extreme case,
imagine comparing two theories, one that has a positive one-loop γ-function and one that
has a negative one. Clearly, given the need to have γ∗ < −2 at the fixed point, the second
one will make a more promising candidate for a non perturbative analysis. Similar heuristic
considerations can be made about the existence of fixed points and their relative strength.
Given the amount of effort required to perform a lattice calculation, such small hints can be
valuable.

The paper is organized as follows: In Section 2 we present the computation of the one-
loop γ-function in full generality using the Weyl spinor formalism. This generalizes the results
of [18] to all possible models.

In Section 3 we try to estimate the edge of the conformal window. We use various heuristic
arguments such as stability considerations and the proposed criteria of [21–23]. We apply the
results to the models of phenomenological interest denoted M1...M12 in [7]. We compare the
γ-functions of the various operators in the models and estimate the numerical values of the
anomalous dimensions of those corresponding to potential top-partners.

Section 4 contains our conclusions where we try to present a balanced view of the situation
regarding these issues.

The Appendix contains the group theory results that are needed for the numerical evalua-
tion of the four-loop β-function [20]. At fourth order one needs to consider the fourth order
Casimir operators and also the mixed product of the fourth-order invariant tensors between
different irreps. We tabulate these values for the smallest irreps of each Lie algebra. These re-
sults can be useful for other applications as well and the Appendix can be read quite separately
from the rest of the paper.

2From [12], this number comes about as ((0.3)2/6)× 4, where 0.3 and 6 are the overlap functions Z and the
top-partner’s mass in units of F6 and the factor 4 is the rescaling F4

6 = 4 f 4. We also point out that formulas of this
type are sensitive to the details of the UV mechanisms generating the couplings.
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2 The one-loop γ-function

Our first goal is to compute the one-loop γ(g) function for the trilinear operators of interest.
We use dimensional regularization and work in the Feynman gauge. In asymptotically free
theories, this function is sometimes referred to as the “anomalous dimension” of the operator,
although in a CFT the true anomalous dimension is the value γ∗ that the function assumes at
the fixed point g∗.

The operators of interest are objects of the type 〈XαYβ Zγ〉 and 〈XαY †
β̇

Z†
γ̇〉, where X , Y, Z

are three generic Weyl fermions of the hyper-color gauge group GHC and 〈. . . 〉 denotes a GHC
invariant combination. Dotted and undotted indices denote right- and left-handed spinors
respectively. Operators with an odd number of dotted indices can be obtained by parity conju-
gation and have the same anomalous dimension since they can be combined into a composite
Dirac spinor.

The operator 〈XαYβ Zγ〉 can be further decomposed into a (sL , sR) = (3/2,0) Lorentz irrep,
by fully symmetrizing the Weyl indices, and two irreps (1/2,0) and (1/2, 0)′, possibly mix-
ing with each-other, while the operator 〈XαY †

β̇
Z†
γ̇〉 decomposes into a (1/2, 1) and a (1/2,0)′′

Lorentz irrep. Operators carrying different spin or different unbroken flavor symmetries do
not mix with each-other. For this last reason, the (1/2, 0)′′ irrep does not mix with the two
previous ones.

We need to address a couple of issues about operator mixing that are not relevant for
applications to partial compositeness. The first issue arises whenever there is more than one
GHC singlet in the decomposition of RX ⊗RY ⊗RZ , where RX denotes the GHC irrep under which
Xα transforms and so on. Operators of such kind would mix, but luckily they never occur in
models of partial compositeness, as can be easily checked.

Another issue arises when one of the three fermions transforms in the adjoint of GHC, say
RX = Ad, and the remaining two combine into a singlet of the flavor symmetry. This kind of op-
erator can mix with a different one, schematically denoted by 〈DFX 〉, where F is the GHC field
strength and D is the covariant derivative needed to have classical dimension 9/2. However,
after decomposing this operator into irreps of the Lorentz group, one can show that the part
of the operator that mixes can be removed by field re-definition using the equations of motion
(as explained for QCD in e.g. [24]). Recall that F can be split into self-dual and anti-self-dual
components fαβ and f̄α̇β̇ in Weyl notation. When acting on e.g. fαβ by a covariant derivative
Dγα̇ = σ

µ
γα̇Dµ we obtain a tensor with three undotted and one dotted index. The irreducible

component (the one that cannot be re-written by using the equation of motion) is obtained by
fully symmetrizing in the undotted indices and can be denoted by D fαβγα̇ ∈ (3/2,1/2) (equiv-
alently D f̄αα̇β̇γ̇ ∈ (1/2, 3/2)). Combining with X †

δ̇
to have an even number of dotted indices

yields 〈D fαβγα̇X †
δ̇
〉 ∈ (3/2, 0)⊕ (3/2, 1) and 〈D f̄αα̇β̇γ̇X

†
δ̇
〉 ∈ (1/2, 1)⊕ (1/2,2), none of which

can interfere with the renormalization of the putative top-partner.
Thus, we bypass both these unnecessary complications by considering operators made out

of three distinct fermions for which there is a unique GHC invariant. Some of the fermions may
well transform under the same irrep of GHC but the uniqueness is guaranteed by picking a
different flavor index.

We are now ready to perform the computation. First of all, the wave-function renormaliza-

tion for each Fermi field reads Xbare = Z1/2
X X , with ZX = 1+ g2

16π2
1
εaX , ε= 4−d and aX ≡ −2CX ,

CX being the (eigenvalue of the) quadratic Casimir of RX and similarly for Y and Z3.
We further need the composite operator renormalization which we write as

〈X Y Z〉Ifinite = Z I J 〈X Y Z〉J where I and J run over the Lorentz irreps discussed above, including

3Recall that we work in the Feynman gauge ξ= 1. In general aX ≡ −2CXξ.
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Figure 1: Diagrams giving the divergent part of the “P × I” vertex in the fully chiral
(no dotted indices) case.

the ones with daggered fermions. In general Z I J is a matrix, but, as we saw, at most a 2× 2

block needs to be diagonalized. We write it as Z I J = δI J + g2

16π2
1
εaI J . The one-loop γ-function

is then given, in this notation, by

γI J (g) =
g2

16π2

�

aI J −
1
2
δI J (aX + aY + aZ)

�

. (2)

Thus all that remains is to compute the divergent part of 〈X Y Z〉I in renormalized perturbation
theory.

For this last step we need to be more specific and write the projection operators in spin
space explicitly. We set

〈Xα′Yβ ′Zγ′〉(sL ,sR) = P(sL , sR)
αβγ

α′β ′γ′
Ix yzX x

αY y
β

Zz
γ ,

〈Xα′Y
†
β̇ ′

Z†
γ̇′
〉(sL ,sR) = P(sL , sR)

αβ̇γ̇

α′β̇ ′γ̇′
Ix ȳz̄X x

αY † ȳ
β̇

Z†z̄
γ̇ , (3)

where Ix yz and Ix ȳz̄ are the (unique) invariant tensors in the product of the respective irreps,
(x = 1 . . . dim(RX ) and so on), and

P(3/2, 0)αβγ
α′β ′γ′

=
1
6

�

δ
αβγ

α′β ′γ′
+δγαβ

α′β ′γ′
+δβγα

α′β ′γ′
+δβαγ

α′β ′γ′
+δγβα

α′β ′γ′
+δαγβ

α′β ′γ′

�

,

P(1/2,0)αβγ
α′β ′γ′

=
1
4

�

δ
αβγ

α′β ′γ′
−δγβα

α′β ′γ′
+δβαγ

α′β ′γ′
−δβγα

α′β ′γ′

�

,

P ′(1/2,0)αβγ
α′β ′γ′

=
1
4

�

δ
αβγ

α′β ′γ′
−δβαγ

α′β ′γ′
+δγβα

α′β ′γ′
−δγαβ

α′β ′γ′

�

, (4)

P(1/2,1)αβ̇γ̇
α′β̇ ′γ̇′

=
1
2

�

δ
αβ̇γ̇

α′β̇ ′γ̇′
+δαγ̇β̇

α′β̇ ′γ̇′

�

,

P ′′(1/2, 0)αβ̇γ̇
α′β̇ ′γ̇′

=
1
2

�

δ
αβ̇γ̇

α′β̇ ′γ̇′
−δαγ̇β̇

α′β̇ ′γ̇′

�

.

The computation of the divergent part in Fig. 1 can thus be regarded as the renormalization
of the vertex “P × I” and can be subdivided into a spin part, a gauge part and a simple loop-
integral common to all diagrams, since the divergent part does not depend on the incoming
momenta:

∫

dd k
(2π)d

(pi − k)µ(p j + k)ν

k2(pi − k)2(p j + k)2
= −

i
32π2

1
ε
ηµν + finite. (5)

For illustration purposes, we show the expression of the first diagram for the fully chiral
(no daggered fermions) vertex displayed in Fig. 2 using the notation of [25]

Diagram=− i g2 (σµσ̄ν)
α
δ

�

σµσ̄ρ
� β

λ
δγηP(sL , sR)

α′β ′γ′

αβγ
×

�

Ix yz T a(RX )
x
x ′T

a(RY )
y
y ′δ

z
z′

�

×
∫

dd k
(2π)d

(p1 − k)ν(p2 + k)ρ

k2(p1 − k)2(p2 + k)2
, (6)
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Figure 2: Example of loop diagram giving rise to eq. (6).

with T a(R) denoting the generators of GHC in the irrep R.
The spin algebra is a bit tedious but straightforward. Since we have gone to the trouble of

performing the decomposition, it is now very convenient to simply pick one component in the
spin multiplet by choosing some specific values for α′β ′γ′.

The gauge factor can be computed once and for all by the following observation. The
invariant tensor Ix yz can also be seen as the projector RX ⊗ RY → R̄Z . Hence

(T a(RX )⊗ 1+ 1⊗ T a(RY ))
2 ≡ CX ⊗ 1+ 2T a(RX )⊗ T a(RY ) + 1⊗ CY → CZ , (7)

yielding, just like with the usual trick for adding angular momenta in quantum mechanics,

Ix yz T a(RX )
x
x ′T

a(RY )
y
y ′δ

z
z′ =

1
2
(CZ − CX − CY ) Ix ′ y ′z′ . (8)

Putting it all together, after some algebra we obtain the following general expressions for
the aI J coefficients, valid under the two very mild restrictions mentioned at the beginning of
this section.

a(1/2,0) =





−6CX − 2CY + 2CZ −4CX + 4CY 0
4CY − 4CZ 2CX − 2CY − 6CZ 0

0 0 2CX − 4CY − 4CZ





a(3/2,0) = 0 (9)

a(1/2,1) = −2CX .

The block diagonal 3×3 matrix a(1/2,0), with components aI J
(1/2,0) (I , J = 1,2, 3), indicates

the mixing between the operators with P(1/2,0), P ′(1/2, 0), with the last entry representing
P ′′(1/2,0). The remaining coefficients are single numbers and we do not show any index.

Eq. (9) combined with (2) yields the final expression for the γ-functions, in the same

6
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notation as (9):

γ(1/2,0)(g) =
g2

16π2





−5CX − CY + 3CZ −4CX + 4CY 0
4CY − 4CZ 3CX − CY − 5CZ 0

0 0 3CX − 3CY − 3CZ





γ(3/2,0)(g) =
g2

16π2
(CX + CY + CZ) (10)

γ(1/2,1)(g) =
g2

16π2
(−CX + CY + CZ) .

As expected, we see that the lastP ′′(1/2, 0) component does not mix with the other two. In this
general case, the diagonalization of γ(1/2,0)(g) yields a non-linear expression in the Casimirs
due to the square-root of the discriminant of the characteristic polynomial
∆ = 16(C2

X + C2
Y + C2

Z − CX CY − CX CZ − CY CZ). However, in all cases of interest, at least
two of the three Casimirs are the same and this makes the discriminant into a perfect square,
restoring linearity.

Before going forward, we better check that we reproduce the well known anomalous di-
mensions for baryon operators in QCD. Taking GHC = SU(3) and CX = CY = CZ = CF = 4/3

we obtain γ(1/2,0)(g) =
4
3(−3) g2

16π2 1, γ(3/2,0)(g) =
4
3(+3) g2

16π2 and γ(1/2,1)(g) =
4
3(+1) g2

16π2 , in
agreement with the computation of [19,26]. (For these operators results are also available for
two-loops [27,28] and three-loops4 [32].)

A more stringent check is to reproduce the results of [18], which are directly relevant for
partial compositeness. They have computed the γ-functions for the (1/2,0) operators in a
SU(4) gauge theory with two fields in the fundamental and one in the anti-symmetric and for
a SO(2n) theory with one fundamental and two spinor irreps. These numbers also match, as
it is shown in the next section, by comparing [18] with Table 2.

More specifically, the numbers for SO(2n)match up to an overall factor of 4 but this is not
an inconsistency and it is simply due to a different normalization of the generators. The same
normalization affects the β-function and cancels out in the physical (scheme-independent)
value of γ∗.

3 Applications to Partial Compositeness

We are now in the position of applying the results of the previous section to models that are
of interest to partial compositeness. The candidate models of Partial Compositeness we are
interested in are summarized in Table 1. They were selected [6,7] from a much longer list [5]
as the most promising ones after imposing a certain amount of criteria that we shall not review
here.

By choosing X , Y, Z to be eitherψ or χ or, for complex irreps, their charge conjugates, one
can obtain the expressions for the respective γ-functions to one-loop. In Table 2 we present
the full list of coefficients A for the twelve models in Table 1, with the understanding that5

γ(g) =
g2

16π2
A. (11)

4 See [29] and [30] for a clarification about the sign convention and a factor of 2 discrepancy in the overall
normalization, also relevant for [31].

5Although this is unlikely to have caused any trouble, we feel compelled to mention that the preliminary results
presented by one of us (GF) at a few recent seminars used a different sign convention and incorrectly stated some
of the results for the (3/2, 0) case.
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Table 1: The gauge and matter content of the models of interest for Partial Compos-
iteness. The seemingly haphazard ordering is due to the fact that they were labeled
following the cosets they give rise to (not shown here). Spin denotes the spinorial
representation of SO(N), A2 and F denote the two-index anti-symmetric and funda-
mental representations. The “baryon” type denotes schematically where the singlet
is to be found (including also the possibility of using the charge conjugates). Note
that, because of εabcde, the last model admits baryons of both types.

Name Gauge group ψ χ Baryon type

M1 SO(7) 5× F 6× Spin ψχχ

M2 SO(9) 5× F 6× Spin ψχχ

M3 SO(7) 5× Spin 6× F ψψχ

M4 SO(9) 5× Spin 6× F ψψχ

M5 Sp(4) 5×A2 6× F ψχχ

M6 SU(4) 5×A2 3× (F,F) ψχχ

M7 SO(10) 5× F 3× (Spin,Spin) ψχχ

M8 Sp(4) 4× F 6×A2 ψψχ

M9 SO(11) 4× Spin 6× F ψψχ

M10 SO(10) 4× (Spin,Spin) 6× F ψψχ

M11 SU(4) 4× (F,F) 6×A2 ψψχ

M12 SU(5) 4× (F,F) 3× (A2,A2) ψψχ, ψχχ

Note that these models are not expected to be in the conformal window, but the logic
is that they could be brought into it e.g. by the addition of extra matter that decouples at
the ΛHC scale, thus fulfilling the expectations discussed in the introduction. However, the
one-loop γ-function does not depend on the number of fermions in a given irrep so the γ-
function we compute will be the same as that of the corresponding conformal theory. It is on
these conformal models that we need to focus first, searching for those giving rise to the most
negative anomalous dimensions. As a second step, one should check that it is possible to reach
a confining phase, by giving mass to some of the fermions, while still maintaining enough light
fermions for a phenomenologically acceptable pattern of symmetry breaking.

There is a potential confusion in the number of entries of Table 2, e.g. (10) gives only one
result for the (1/2, 1) operator while Table 2 has two values. This is so because there are two
inequivalent ways of assigning X , Y, Z to the actual fermionic content of the theory. Denoting
byψ and χ the fermions of a specific model,ψαψ

†
(α̇χ

†
β̇)

and χαψ
†
(α̇ψ

†
β̇)

renormalize differently.

Moreover, not all (1/2, 0) represent potential top-partners. Depending on the assignment
of SM charges to the hyper-quarks, some of them may give rise to the wrong irrep for the
bound state, e.g. a 6 of color SU(3). We do not repeat the details of the assignment of SM
charges to the hyper-quarks for these models, that can be found in [7]. An example of a fully
worked out list of bound states and their quantum numbers can be found in [4] for M8 and
[6] for M6. Similar considerations for each model lead to Table 2.

The next step is to estimate the position of the fixed point for theories neighboring M1...M12
and to evaluate the γ-function at the critical value of the coupling to obtain the anomalous
dimensions. As stressed in the Introduction, this is impossible to do rigorously within pertur-
bation theory. To begin with, the β-function beyond two-loop is scheme dependent and so is
the value of the coupling at the fixed-point. Since both the β and γ-functions are computed
in the MS scheme, we obviously restrict ourselves to that. The existence of the fixed-point is

8
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Table 2: Coefficient A of the γ-function according to eq. (11)

potential top-partners (1/2,0) other (1/2,0) (1/2,1) (3/2,0) ψ
(∼)
ψ χ

(∼)
χ

M1 -27/8, - 9/2 -39/8 9/8, 3/2 33/8 -9 -63/8
M2 -11/2, -6 -15/2 5/2, 2 13/2 -12 -27/2
M3 -39/8, -9/2, -27/8 9/8, 3/2 33/8 -63/8 -9
M4 -11/2, -6, -15/2 5/2, 2 13/2 -27/2 -12
M5 -3/2, -6 -15/2 1/2, 2 9/2 -12 -15/2
M6 -15/4, -15/2 -35/4 5/4, 5/2 25/4 -15 -45/4
M7 -45/8, -27/4 -81/8 27/8, 9/4 63/8 -27/2 -135/8
M8 -15/2, -6, -3/2 1/2, 2 9/2 -15/2 -12
M9 -45/8, -15/2 -105/8 35/8, 5/2 75/8 -165/8 -15
M10 -45/8, -27/4, -81/8 27/8, 9/4 63/8 -135/8 -27/2
M11 -35/4, -15/2, -15/4 5/4, 5/2 25/4 -45/4 -15
M12 -66/5, -54/5, -18/5 6/5, 18/5 42/5 -72/5 -108/5

-24/5, -36/5 -72/5 24/5 12/5 48/5 -108/5 -72/5

however a universal property, albeit not accessible from perturbation theory unless one goes
to the case of parametrically small coupling as in [33].

One could try to look at QCD, (defined here as a SU(3) gauge theory with N f massless
Dirac fermions6) for guidance, but even in this much studied case the situation is still unclear.
Hoping not to misrepresent or neglect too many of the lattice results, reviewed in [34, 35],
it seems that the conformal window should start from N f somewhere in the range 8-12 with
N f = 8 likely to be outside [36, 37] (thus chirally broken and confining). While [38–43]
find N f = 12 conformal, [44, 45] find results compatible with the chirally broken phase. The
intermediate situation N f = 10 (lattice computations are more easily performed with even
numbers of flavors) is even more unclear [46–49].

Of course, science should not be done by consensus but by actual computations and exper-
iments, so hopefully these disagreements will be resolved by the lattice community. However,
given the limitedness of the scope of this discussion and the impossibility for us to make an
educated judgment on the controversial lattice results, let us consider the majority opinion on
these matters and assume that N f = 8 is confining and N f = 12 conformal. One can then ask
the naive question of what are the perturbative predictions at various loop orders. Amusingly,
it is the two-loop β-function whose predictions agree best with the above assumption as can be
seen in Table 3. The three and four-loop results seem to overestimate the size of the conformal
window, finding zeros for N f = 7 and 8 respectively, while adding the five-loop result changes
the picture completely putting N f = 12 outside the conformal window.

We see that for high values of N f (near the perturbative edge of the conformal window at
N f = 16.5) the solution is small and stable, as expected. For smaller values of N f however, it
is not clear at what loop order the improvement stops and the very different behavior of the
five-loop solution weakens the results of [31], (obtained before the five-loop result [50] was
published), where the good agreement between the three and four-loop result was used to
argue about the validity of the perturbation theory even for N f ≈ 8.

Given how uncertain the situation is in the QCD case, we have little hope to make more
quantitatively sound statements in our case. We will assume the following heuristic criteria

6When discussing QCD it is customary to count the number of Dirac fermions Nf and we abide by this conven-
tion. In the rest of the paper however, we always count Weyl spinors, so for instance in Figs. 3 and 4 NF denotes
the number of Weyl spinors in the fundamental irrep. Thus, if comparing, keep in mind that NF = 2Nf .
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Table 3: Values of the critical coupling α∗ obeying β(α∗) = 0 in the scheme of [50]
for different loop order L and number of Dirac flavors N f in the SU(3) hyper-color
theory. The / denotes the absence of a solution.

N f
7 8 9 10 11 12 13 14 15 16

L = 2 / / 5.24 2.21 1.23 0.754 0.468 0.278 0.143 0.0416
L = 3 2.46 1.46 1.03 0.764 0.579 0.435 0.317 0.215 0.123 0.0397
L = 4 / 1.55 1.07 0.815 0.626 0.470 0.337 0.224 0.126 0.0398
L = 5 / / / / / / 0.406 0.233 0.127 0.0398

for the existence of a fixed point in our models, namely i) that the fixed point exists at all loop
expansions available and ii) that the value of the anomalous dimension does not exceed the
unitarity bound γ∗ ≥ −3 for these operators. (9/2−3= 3/2, 9/2 being the classical dimension
of the operators and 3/2 the unitarity bound.)

For these models we observe a similar trend as for QCD, namely that the three and four-loop
β-functions give rise to a larger conformal region, thus the above conditions are dominated
by the two-loop results. Clearly, inserting the higher-loop values for g∗ into the one-loop
expression (11) is not a consistent approximation, however we prefer to present the results
this way other than just giving the critical value of g∗ since the anomalous dimension has a
more physical interpretation and is less scheme dependent.

In Figures 3,4 we show the models of Table 2 and the neighboring models obtained by
increasing the amount of matter. Each model is represented by a circle. The models with
matter content as in Table 1 are always located at the lowest left corner and the numbers on
the axis denote the number of Weyl spinors. If there is no solution for the conditions i) or ii)
above, the model is regarded to be confining and is represented by a yellowish circle. If both
conditions are obeyed, the theory is considered to be conformal and we present the largest
and lowest value for γ∗ obtained replacing the solution to β(g∗) = 0 at 2,3,4 loop into (11)
where A is chosen from Table 2 to be the largest one in absolute value among those of potential
top-partners.

The red dashed curve indicates the “conformal house” [21] prescription
11l2(Ad)− 4(Nψl2(ψ) + Nχ l2(χ))< 0.

One can then ask the question of how the anomalous dimensions of the QCD-like model
behave under similar assumptions. Here we have the luxury of having the expression of γ up
to three loops and thus we can perform a more refined analysis by inserting the zero of the
L + 1 loop β-function into the L loop γ. Two operators, related to the proton, are considered
in the literature, with γ-functions denoted by γ+ and γ−. Their values coincide at one-loop.
We find the values for L = 1,2, 3 displayed in Table 4 and 5 . The values of the last line of
these tables agrees with [31] after multiplying by the factor of 2 dicussed in footnote 4.

The largest (negative) values for the anomalous dimensions are always arising by using
the zeros of the two-loop β-function, but we argued that this may not be a drawback near the
non-perturbative edge of the conformal window.

4 Conclusions

In this work we discussed various issues of relevance to gauge theories of Partial Composite-
ness. First, we revisited and extended the computation of [18] of the anomalous dimension
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Figure 3: Models M1 to M6 and their neighbours with NX representing the number of
Weyl fermions in the X representation. Yellow circles represent potentially confining
models whereas blue circles represent models likely to be in the conformal window,
with the estimated maximal and minimal value of γ∗ displayed. Our heuristic argu-
ments for this classification are described in the text. The red dashed curve indicates
the “conformal house” [21] prescription.

of generic fermionic trilinears. We showed that all operators of higher spin acquire a positive
anomalous dimension (A> 0 in Table 2) and thus decouple from the theory even more than
they would already do classically. On the other hand, the potential partners all have a negative
anomalous dimension and from the very rough estimate of the location of the fixed point it
does not seem unlikely that there be cases where γ∗ ≈ −2.

The location of the most promising theories can be read off from Fig. 3 and 4 as the lo-
cations of the “darkest” points, where the range of possible γ∗ values, with our heuristics,
stretches past −2. As long as the confining theory is above or to the right of one of the models
of Table 1 it is possible to leave the conformal region by giving mass to some fermions but
retaining enough light ones to yield an acceptable phenomenology.

The following observations however, mitigate the above results. First of all, in full gener-
ality, one of the two fermionic bilinears always have a one-loop anomalous dimension which
is larger (in absolute value) than that of all the fermionic trilinears. (This was observed in the
QCD context in [31].) This is a potential problem for these models unless the expressions for
the higher-loop γ-functions cross at some point (as they actually do perturbatively in QCD).
The reason is that we need γ∗ ≈ −2 (even assuming a better overlap coefficient than that of
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Figure 4: Models M7 to M12 and their neighbours with NX representing the num-
ber of Weyl fermions in the X representation. Yellow circles represent potentially
confining models whereas blue circles represent models likely to be in the conformal
window, with the estimated maximal and minimal value of γ∗ displayed. Our heuris-
tic arguments for this classification are described in the text. The red dashed curve
indicates the “conformal house” [21] prescription.

M6 [12]) in order for the corresponding fermionic operator O to become a viable top-partner7

but if the bilinears acquire a similar anomalous dimension they would approach the free field
limit (3-2=1) where the bootstrap argument of [51] shows that fine-tuning is reintroduced.

Ironically, the most studied models M6 and M8 and the QCD-like one are among those for
which we do not find γ∗ ® −2 solutions.

A second curious fact is that, among the spin 1/2 composite operators, it is often those
that do not qualify as top-partners (typically QCD sextets) that acquire the largest anomalous
dimension (cfr A in Table 2 in the first two columns). There is nothing directly wrong with
this fact, but it shows that in some models the top-partners do not stand out as those with the
leading anomalous dimensions among all the spin 1/2 operators.

A two-loop computation of the anomalous dimensions for these objects would be interest-
ing, if only to see if the above trends continue. It is reasonable to expect, comparing with the
QCD results [28] [32], that the two-loop γ-function for the top-partners has the same sign as
the one-loop one, helping making the partners anomalous dimensions more negative for the
same value of the critical coupling.

As hopefully we made clear in the main text, while the computation of the γ-function

7We need 9/2−2= 5/2, so that the linear coupling Ot in the Lagrangian becomes marginal, i.e. of dimension
4.
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Table 4: Anomalous dimension γ∗+ for the QCD-like model at L loops obtained in-
serting the L + 1 loop critical coupling α∗.

N f
9 10 11 12 13 14 15 16

L = 1 -1.67 -0.703 -0.393 -0.240 -0.149 -0.0885 0.0455 -0.0132
L = 2 -0.385 -0.277 -0.204 -0.150 -0.107 -0.0715 -0.0404 -0.0128
L = 3 -0.0150 -0.108 -0.128 -0.119 -0.0969 -0.0688 -0.0400 -0.0128

Table 5: Anomalous dimension γ∗− for the QCD-like model at L loops obtained in-
serting the L + 1 loop critical coupling α∗.

N f
9 10 11 12 13 14 15 16

L = 1 -1.67 -0.703 -0.393 -0.240 -0.149 -0.0885 0.0455 -0.0132
L = 2 -0.474 -0.326 -0.233 -0.166 -0.116 -0.0753 -0.0416 -0.0129
L = 3 -0.110 -0.163 -0.160 -0.138 -0.106 -0.0730 -0.0413 -0.0129

stands on firm footing, the estimate of the anomalous dimension γ∗ involves a fair amount of
assumptions and speculations. We see no harm in doing this as long as we only use them as
a guidance. However, by themselves, these perturbative computations cannot be taken as a
proof (or a disproof) of any statement about the validity of these models.

A last subject discussed in this paper, confined to the Appendix but of broader interest
than just to Partial Compositeness, is the computation of the group theory factors that enter in
the expression of the four-loop β-function in multi-fermions theories [20]. Here we present
practical formulas and numerical results, a few of them new to our knowledge, to facilitate
working with fourth-order Casimir operators, their corresponding invariant tensors and the
products of such tensors between different irreps.
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A Useful tables of fourth-order invariants

In this appendix we collect a few results on fourth order indices for simple Lie algebras that
are useful for higher loop computations, independently on the applications to partial compos-
iteness.

For any simple Lie algebra 8 L it is always possible, convenient and sufficiently general to
chose the generators T a in an arbitrary irrep R to be orthogonal and uniformly normalized, that
is: tr(T aT b) = l2(R)δab. l2(R) is known as the quadratic index of the irrep R. Choosing the

8We use the “physicist” convention and denote L by the corresponding group G = SU(n), SO(n) . . . .
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normalization of one (typically the fundamental F) irrep fixes all the normalizations. Physicists
usually assume l2(F) = 1/2, while mathematicians prefer l2(F) = 1. In the appendix we choose
l2(F) = 1 commenting, where necessary, on how to revert to l2(F) = 1/2 to comply with the
QFT literature. Having chosen the invariant tensor δab allows us not to distinguish between
raised and lowered adjoint indices.

We can also define the quadratic Casimir operator as C2(R)1 = δabT aT b, which is pro-
portional to the identity for any irrep. Taking the trace implies the consistency condition
C2(R)dim(R) = l2(R)dim(G). Since the condition is valid for R = F as well,
l2(R) = C2(R)dim(R)/(C2(F)dim(F)). The quadratic index and Casimir are thus simply re-
lated to each other.

One can define higher invariants in a similar way. The cubic index (known in physics
as the anomaly coefficient) is defined by 1

2 tr(T aT bT c + T aT c T b) = l3(R)δabc , with δabc a
manifestly fully symmetric and traceless tensor that is non-zero only for SU(n≥ 3). Now one
usually sets l3(F) = 1 to define the overall normalization of δabc and uses it to define the cubic
Casimir C3(R)1 = δabc T aT bT c for any irrep. Once again the consistency condition implies,
with our normalization, l3(R) = C3(R)dim(R)/(C3(F)dim(F)) when these quantities are non-
zero. Note that, even after choosing l3(F) = 1, the tensor δabc is still implicitly dependent on
how we normalized the generators by choosing l2(F), and a similar argument applies to higher
tensors.

The values of the quadratic and cubic indices or Casimirs are well known in the literature,
e.g. [52–54] and will not be reviewed here.

To construct the quartic (and higher) invariant we need to take care of an additional sub-
tlety, since the fully symmetric tensor

dabcd(R) =
1
6

tr(T aT bT c T d+T aT d T bT c+T aT c T d T b+T aT c T bT d+T aT d T c T b+T aT bT d T c)
(12)

is not irreducible anymore and so it is not the same, up to a proportionality constant, for every
irrep. This can be easily fixed, for all algebras other than SO(8), by constructing the traceless
component

l4(R)δ
abcd = dabcd(R)−κ(R)

�

δabδcd +δacδbd +δadδbc
�

, (13)

where

κ(R) =
l2(R)2 dim(G)/dim(R)− l2(R)l2(Ad)/6

dim(G) + 2
(14)

and δabcd is defined up to a proportionality constant that can be fixed by taking l4(F) = 1 just as
in the previous case. Moreover, setting C4(R)1 = δabcd T aT bT c T d yields
l4(R) = C4(R)dim(R)/(C4(F)dim(F)).

The case of SO(8) is special because there exist another quartic invariant symmetric trace-
less tensor eabcd constructed using the anti-symmetric εµ1...µ8 tensor, treating a, b · · ·= 1,2 . . . 28
as multi-indices [µ,ν] = [1, 2], [1, 3] . . . [7, 8], e.g. e1,14,23,28 = ε1,2,3,4,5,6,7,8 = 1. This compo-
nent does not affect the tensor irreps but for the spinor we have, for SO(8) only

−
1
2
δabcd = dabcd(Spin)−

1
12

�

δabδcd +δacδbd +δadδbc
�

+
1
8

eabcd , (15)

in other words, l4(Spin) = −1/2. Note that δabcd eabcd = 0.
The value of l4 can be extracted from the work of [55–57] 9. We present them in Table 6.

Note that the quartic index is zero for SU(2), SU(3) and all exceptional algebras.

9We warn the reader that the literature uses varying notations and conventions. In particular, the indices are
not those originally defined in [58] but are instead related to the “modified” ones in [56]. (To be more precise,
they are proportional to the object D(4)(R).) The Casimir in [56] is denoted by J4(R) and is related to C4(R) by an
overall R independent proportionality constant.
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Table 6: Quartic indices of the commonest irreps. The symbol bxc denotes the floor
of x .

F A2 S2 Ad Spin

SU(n≥ 4) 1 n− 8 n+ 8 2n ×
Sp(2n≥ 4) 1 2n− 8 × 2n+ 8 ×
SO(n≥ 7) 1 × n+ 8 n− 8 −2b(n−9)/2c

Table 7: The numerical values of dabcd(R1)dabcd(R2) for SU(2,3, 4,5, 6) respectively,
with the choice l2(F) = 1. For the “physicist” normalization l2(F) = 1/2 multiply each
value by 1/16.

F A2 S2 Ad

F 5/4, 20/3, 445/16, 0, 20/3, -5/2, 20, 340/3, 885/2, 20, 120, 440,
1972/25, 2135/12 -276/25, 140/3 31276/25, 8680/3 1240, 2940

A2 0, 20/3, 340, 0, 340/3, 300, 0, 120, 640,
30708/25, 8960/3 26292/25, 11200/3 2280, 6720

S2 320, 5780/3, 7380, 320, 2040, 7680,
526708/25, 150080/3 22120, 53760

Ad 320, 2160, 8320,
24400, 60480

Using the above formulas it is straightforward to evaluate the products dabcd(R1)dabcd(R2)
arising in the four-loop β-function [20]. The general expression for δabcdδabcd can be ob-
tained by brute force or by doing some “reverse engineering” on the formulas in [59] for
dabcd(F)dabcd(F) and are given by (recall that we normalize to l2(F) = 1 here)

SU(n) : δabcdδabcd =
(n2 − 1)(n2 − 4)(n2 − 9)

6 (n2 + 1)
, (16)

SO(n) : δabcdδabcd =
n(n− 3)(n2 − 1)(n2 − 4)

48(n2 − n+ 4)
, (17)

Sp(2n) : δabcdδabcd =
n(2n+ 3)(n2 − 1)(4n2 − 1)

12 (2n2 + n+ 2)
. (18)

From these expressions dabcd(R1)dabcd(R2) can be derived as

dabcd(R1)d
abcd(R2) = l4(R1)l4(R2)δ

abcdδabcd + κ(R1)κ(R2)3 dim(G)(dim(G) + 2) (19)

adding a factor 1
64 eabcd eabcd = 315/8 in the SO(8) case R1 = R2 = Spin.

We present some numerical results explicitly in the following “multiplication tables” Ta-
ble 7, Table 8 and Table 9 for the groups SU , Sp and SO respectively. Note that there are
non-zero entries for SU(2) and SU(3) as well, since we are dealing with the reducible tensor.
In some cases there is some redundancy, since e.g. for SU(3) A2 = F.
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Table 8: The numerical values of dabcd(R1)dabcd(R2) for Sp(4, 6,8) respectively, with
the choice l2(F) = 1. For the “physicist” normalization l2(F) = 1/2 multiply each
value by 1/16.

F A2 Ad

F 10, 161/4, 114 5, 56, 306 165, 700, 2130
A2 160, 1064, 4104 240, 1960, 9000
Ad 2880, 13160, 43080

Table 9: The numerical values of dabcd(R1)dabcd(R2) for SO(7,8, 9,10, 11) respec-
tively, with the choice l2(F) = 1. For the “physicist” normalization l2(F) = 1/2 mul-
tiply each value by 1/16.

F S2 Ad Spin

F 161/4, 70, 114, 2961/4, 1330, 2244, 385/4, 210, 420, -49/16, -35/4, -75/2,
705/4, 1045/4 3600, 22165/4 780, 5445/4 -555/8, -935/4

S2 58401/4, 27160, 47454, 11025/4, 5880, 11550, 1071/16, 70, 165/2,
78840, 502645/4 21240, 148005/4 -90, -3575/4

Ad 4865/4, 2520, 4830, 1855/16, 210, 1365/2,
8760, 60885/4 1020, 11385/4

Spin 1001/64, 70, 435/2,
5745/16, 8965/4
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