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Abstract

Motivated by precision counting of BPS black holes, we analyze six-derivative couplings
in the low energy effective action of three-dimensional string vacua with 16 supercharges.
Based on perturbative computations up to two-loop, supersymmetry and duality argu-
ments, we conjecture that the exact coefficient of the V2(V¢)* effective interaction is
given by a genus-two modular integral of a Siegel theta series for the non-perturbative
Narain lattice times a specific meromorphic Siegel modular form. The latter is famil-
iar from the Dijkgraaf-Verlinde-Verlinde (DVV) conjecture on exact degeneracies of 1/4-
BPS dyons. We show that this Ansatz reproduces the known perturbative corrections at
weak heterotic coupling, including tree-level, one- and two-loop corrections, plus non-
perturbative effects of order e~'/%:, We also examine the weak coupling expansions in
type I and type II string duals and find agreement with known perturbative results, as
well as new predictions for higher genus perturbative contributions. In the limit where
a circle in the internal torus decompactifies, our Ansatz predicts the exact V2F* effective
interaction in four-dimensional CHL string vacua, along with infinite series of exponen-
tially suppressed corrections of order e ® from Euclideanized BPS black holes winding
around the circle, and further suppressed corrections of order e ® from Taub-NUT in-
stantons. We show that instanton corrections from 1/4-BPS black holes are precisely
weighted by the BPS index predicted from the DVV formula, including the detailed mod-
uli dependence. We also extract two-instanton corrections from pairs of 1/2-BPS black
holes, demonstrating consistency with supersymmetry and wall-crossing, and estimate
the size of instanton-anti-instanton contributions.
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1 Introduction

Providing a statistical origin of the thermodynamic entropy of black holes is a key goal for
any theory of quantum gravity. More than two decades ago, Strominger and Vafa demon-
strated that D-branes of type II string theories provide the correct number of micro-states for
supersymmetric black holes in the large charge limit [1]. Since then, much work has gone
into performing precise counting of black hole micro-states and comparing with macroscopic
supergravity predictions. In vacua with extended supersymmetry, it was found that exact
degeneracies of five-dimensional BPS black holes (counted with signs) are given by Fourier
coefficients of weak Jacobi forms, giving access to their large charge asymptotics [2-4]. With
hindsight, the modular invariance of the partition function of BPS black holes follows from the
existence of an AdS; factor in the near-horizon geometry of these extremal black holes.

In a prescient work [5], Dijkgraaf, Verlinde and Verlinde (DVV) conjectured that four-
dimensional BPS black holes in type II string theory compactified on K3 x T2 (or equivalently,
heterotic string on T®) are in fact Fourier coefficients of a meromorphic Siegel modular form,
invariant under a larger Sp(4,7Z) symmetry. This conjecture was subsequently extended to
other four-dimensional vacua with 16 supercharges [6], proven using D-brane techniques [7,
8], and refined to properly incorporate the dependence on the moduli at infinity [9], but the
origin of the Sp(4,7) symmetry had remained obscure. In [10-12], it was noted that a class
of 1/4-BPS dyons arises from string networks which lift to M5-branes wrapped on K3 times a
genus-two curve, but this observation did not yet lead to a transparent derivation of the DVV
formula.

In [13], implementing a strategy advocated earlier in [ 14], we revisited this problem by an-
alyzing certain protected couplings in the low energy effective action of the four-dimensional
string theory compactified on a circle of radius R down to three space-time dimensions. In
three-dimensional string vacua with 16 or more supercharges, the massless degrees of freedom
are described by a non-linear sigma model on a symmetric manifold G;/K3, which contains
the four-dimensional moduli space M, = G,/K,, the holonomies a} of the four-dimensional
gauge fields, the NUT potential 1) dual to the Kaluza—Klein vector and the circle radius R. Since
stationary solutions with finite energy in dimension 4 yield finite action solutions in dimension
3, it is expected that black holes of mass M and charge T/ = (Q', P') in 4 dimensions which
break 2r supercharges induce instantonic corrections of order e 2 RM+2ma L 4 effective cou-
plings with 2r fermions (or r derivatives) in dimension 3 (see e.g. [15]); and moreover that
these corrections are weighted by the helicity supertrace

0,(1) = - Trg [(-1) (207, (1.1)
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where F is the fermionic parity and h is the helicity in D = 4. In addition, there are corrections
of order e~2™R’IMi+2miM: ¥ £rom Euclidean Taub-NUT instantons which asymptote to R3 x St
where the circle is fibered with charge M; over the two-sphere at spatial infinity. While the
two-derivative effective action is uncorrected and invariant under the full continuous group
G5, higher-derivative couplings need only be invariant under an arithmetic subgroup G3(Z)
known as the U-duality group. For string vacua with 32 supercharges, the R*, V#R* and VoR*
effective interactions are expected to receive instanton corrections from 1/2-BPS, 1/4-BPS and
1/8-BPS black holes, respectively. In [16], two of the present authors demonstrated that the
exact R* V#R* couplings, given by Eisenstein series for the U-duality group G5(Z) = Eg(Z)
[17-20], indeed reproduce the respective helicity supertraces Q4 and Q¢ for 1/2-BPS and 1/4-
BPS black holes in dimension 4. At the time of writing, a similar check for the V®R* coupling
conjectured in [21] still remains to be performed.

For three-dimensional string vacua with 16 supercharges, the scalar fields span a symmetric
space of the form
G3/K3 = 0(2k,8)/[0(2k) x O(8)], (1.2)

for a model-dependent integer k, which extends the moduli space
G4/K, = SL(2)/S0(2) x 0(2k —2,6)/[0(2k —2) x 0(6)] (1.3)

in D = 4. The four-derivative scalar couplings of the form F(¢)(V¢)* are expected to receive
instanton corrections from 1/2-BPS black holes, along with Taub-NUT instantons, while six-
derivative scalar couplings of the form G(¢)V?(V ¢)* receive instanton corrections both from
four-dimensional 1/2-BPS and 1/4-BPS black holes, along with Taub-NUT instantons. In [13],
we restricted for simplicity to the maximal rank case (k = 12) arising in heterotic string com-
pactified on T (or equivalently type II string theory compactified on K3 x T3). Using low
order perturbative computations, supersymmetric Ward identities and invariance under the
U-duality group G3(Z) C 0(24,8,7.), we determined the tensorial coefficients F;.4(¢) and
Gap,ca(¢@) of the above couplings exactly, for all values of the string coupling. In either case,
the non-perturbative coupling is given by a U-duality invariant generalization of the genus-one
and genus-two contribution, respectively:

dp dp 1—‘A [Pabcd]
(24,8) _ 1 2 24,8
Fabcd = RN. f 2 A 5 (1.4)
SL(2,Z\H, P2
(2
G®® — RN f d*0,d%Q, FA24,8[Pab,cd] ws)
e spa N, 12 @

where H,, is the Siegel upper half-plane of degree h, Fg: ) [P]is a genus-h Siegel-Narain theta
P>q

series for a lattice of signature (p, q) with a polynomial insertion (see (B.4) and (2.32) for the
genus-one and two cases), A and &, are the modular discriminants in genus-one and two,
and R.N. denotes a specific regularization prescription (see §B.1.3 and §B.2.4 for details). We
demonstrated that the Ansétze (1.4) and (1.5) satisfy the relevant supersymmetric Ward iden-
tities, and that their asymptotic expansion at weak heterotic string coupling g3 — 0 reproduces
the known perturbative contributions, up to one-loop and two-loop, respectively, plus an infi-
nite series of O(e‘l/ 5 ) corrections ascribed to NS5-instantons, Kaluza—Klein (6,1)-branes and
H-monopole instantons. We went on to analyze the limit R — 00 and demonstrated that the
O(e™®) corrections to F+* and to fo;i’d were proportional to the known helicity supertraces
of 1/2- and 1/4-BPS four-dimensional black holes, respectively. In particular, the DVV for-
mula for the index of 1/4-BPS states [5], with the correct contour prescription [9], emerges in
a transparent fashion after unfolding the integral over the fundamental domain Sp(4, Z)\H,
onto the full Siegel upper-half plane H,.
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In [22], we extended the study of the 1/2-BPS saturated coupling Ff;’c% to the case of
CHL heterotic orbifolds of prime order N = 2,3,5,7. All these models have 16 supercharges,
and their moduli space in D = 3 or 4 is of the form (1.2), (1.3) with k = 24/(N + 1) [25].
After conjecturing the precise form of the U-duality group G3(Z) ¢ O(2k,8,7) in D = 3, we

proposed an exact formula for F,;.4 analogous to (1.4),

f dpldpz FAZk)B[pabcd]
LOO\H, P2 Ak

(2k,8) __
FO% =RN.

> (1.6)

where [(N) c SL(2,7Z) is the Hecke congruence subgroup of level N, A; is the unique
cusp form of weight k under I;(N) and Ay g is the ‘non-perturbative Narain lattice’ of sig-
nature (2k, 8). We studied the weak coupling and large radius limits of the Ansatz (1.6), and
found that it reproduces correctly the known tree-level and one-loop contributions in the limit
g3 — 0, powerlike corrections in the limit R — 00, as well as infinite series of instanton cor-
rections consistent with the known helicity supertrace of 1/2-BPS states in D = 4, for all orbits
of the U-duality group G4(Z).

The goal of the present work is to provide strong evidence that the tensorial coefficient
Ggp,cq Of the 1/4-BPS saturated coupling V*(V¢)* in the same class of CHL orbifolds is given
by the natural extension of (1.5), namely

(2)
G® — RN J dgﬂldgﬂz 1ﬂ/\Zk’S[Pab,cd] a7
ab,cd o (N )\ Ha |93 ®_ >

where T o(N) is a congruence subgroup of level N inside Sp(4,Z), ®;_, is a specific mero-
morphic Siegel modular form of weight k —2 and F,&Z)k S[Pa b.cd] is a suitable genus-two Siegel-

Narain theta series for the same non-perturbative Narain lattice Ay g asin (1.6). Using similar
techniques as in [22], we find that

e the Ansatz (1.7) satisfies the relevant supersymmetric Ward identities and produces the
correct tree-level, one-loop and two-loop terms in the weak heterotic coupling limit;

e in the decompactification limit, the Ansatz predicts the exact V2F# and F2R? couplings
in 4 dimensions, extending known perturbative and non-perturbative results in type I
and type II string vacua with reduced rank;

o the effective coupling provides a duality-invariant generating function for the indices (or
helicity supertraces) counting 1/4-BPS black hole micro-states in 4 dimensions, which
arise as coefficients of exponentially suppressed contributions in the large radius limit;

e in particular, we verify the standard formula for the index of 1/4-BPS black holes with
“simple” primitive charges and obtain a prediction for all possible charge orbits.

From a more technical point of view, a significant feature and complication of (1.5),(1.7)
compared to the 1/2-BPS coupling (1.4), (1.6) is that the integrand 1/®;_, has a double pole
on the diagonal locus Q;, = 0 and its images under I, ((N) (corresponding to the separating
degeneration of the genus-two Riemann surface with period matrix Q). In the context of the
DVV formula, these poles are well-known to be responsible for the moduli dependence of the
helicity supertrace €. In the context of the BPS coupling (1.7), these poles are responsible for
the fact that the weak coupling and large radius expansions receive infinite series of instan-
ton anti-instanton contributions, as required by the quadratic source term in the differential

equation (2.26) for the coefficient fol’;’i)d. A similar phenomenon has encountered in the case

of the VOR* couplings in maximal supersymmetric string vacua [23].
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Organization

This work is organized as follows. In §2 we recall relevant facts about the moduli space, du-
ality group and BPS spectrum of heterotic CHL models in D = 4 and D = 3, record the known
perturbative contributions to the V2F# and V?(V¢)* couplings in heterotic perturbation the-
ory, and summarize our main results. The remainder of the text provides extensive details
on the derivation of these results, the hurried reader may skip §3 and proceed to the discus-
sions in §4.3, §5.3 and §6 of the consequences of our Ansatz for the exact V2F# and V2(V¢)*
couplings.

In §3, we derive the differential constraints imposed by supersymmetry on these couplings,
and show that they are obeyed by the Ansatz (1.7). In 84, we study the expansion of (1.7) at
weak heterotic coupling, and show that it correctly reproduces the known pertubative contri-
butions, along with an infinite series of NS5-brane, Kaluza—Klein (6,1)-branes and H-monopole
instanton corrections. In §5, we move to the central topic of this work and study the large ra-
dius limit of the Ansatz (1.7). We obtain the exact V2F* and R?F? couplings in D = 4 plus
infinite series of O(e®) and (’)(e‘RZ) corrections. We extract from the former the helicity su-
pertrace of 1/4-BPS black holes with arbitrary charge, and recover the DVV formula and its
generalizations. We further analyze two-instanton contributions from pairs of 1/2-BPS black
holes and show their consistency with wall-crossing. In §6 we study the weak coupling limit
of the V2(V¢)* couplings in CHL orbifolds of type II string on K3 x T2 and type I string on
T7, and of the related V2#H* couplings in type IIB compactified on K3 down to six dimensions.

A number of more technical developments are relegated to appendices. In Appendix A we
collect relevant facts about genus-two Siegel modular forms, and the structure of their Fourier
and Fourier-Jacobi expansions. In §B we compute the one-loop and two-loop contributions to
the V2F* and V2(V¢)* couplings in CHL models, spell out the regularization of the corre-
sponding modular integrals, compute the anomalous terms in the differential constraints due
to boundary contributions, and discuss their behavior near points of enhanced gauge symme-
try. In §C, we verify that the polar contributions to the Fourier coefficients of 1/®;_, are in
one-to-one correspondence with the possible splittings I' = I'; + I, of a 1/4-BPS charge I into
a pair of 1/2-BPS charges I'},T;,. In §D, we use this information to compute the singular con-
tributions to Abelian Fourier coefficients with generic 1/4-BPS charge, and in §E demonstrate
that the structure of these coefficients and of the constant terms is consistent with the differen-
tial constraint. In §F, we also estimate the corrections to the saddle point value of the Abelian
Fourier coefficients, due to the non-constancy of the Fourier coefficients of 1/®;_, and show
that they are of the size expected for two-instanton effects on the one hand, and Taub-NUT
instanton — anti-instanton on the other hand. In §G, we explain how to infer the non-Abelian
Fourier coefficients with respect to O(p —2,q — 2) from the knowledge of the Abelian coeffi-
cients with respect to O(p — 1,q — 1). Finally, §H collects definitions of various polynomials
which enter in the formulae of §4 and §5.1.

Note: The structure of the body of this paper follows that of our previous work [22] on 1/2-
BPS couplings, so as to facilitate comparison between our treatments of the genus-one and
genus-two modular integrals. The reader is invited to refer to [22] for more details on points
discussed cursorily herein.

2 Background and executive summary

In this section, we recall relevant facts about the moduli space, duality group and BPS spectrum
of heterotic CHL models in D = 4 and D = 3, and summarize the main features of our Ansatz
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for the exact V2(V¢)* and V2F# couplings in these models. Further discussion of the physical
consequences of our Ansatz is deferred to Sections §4.3, §5.3 and §6, after the details of the
derivation of the results previewed in this section have been provided.

2.1 Moduli spaces and dualities

Recall that heterotic CHL models are freely acting orbifolds of the heterotic string compactified
on a torus, preserving 16 supersymmetries [24,25] (see [26] for a review of these construc-
tions). We shall be mostly interested in models with D = 4 non-compact spacetime dimensions,
and the reduction of those models on a circle down to D = 3. Furthermore, for simplicity we
restrict to Zy orbifolds with N € {1,2,3,5,7} prime, in which case the gauge symmetry in
D = 4 is reduced from U(1)?® in the original ‘maximal rank’ model (namely, heterotic string
compactified on T®) to U(1)%*** with k = 24/(N + 1). The lattice of electromagnetic charges
in D = 4 is a direct sum A,,, = A, ® A, where A, is an even, lattice of signature (2k —2,6)
and A, = A} its dual (see Table 1 in [22]). While A,, is not self-dual for N > 1, it is N-
modular in the sense that A} = A,,[1/N][27], in particular we have the chain of inclusions
NA, CNA; CA, CA}.

The moduli space in D = 4 is a quotient
My =Gy(Z)\[SL(2,R)/SO(2) X Gy 2] 2.1)

where SL(2,IR)/SO(2) is parametrized by the heterotic axiodilaton S and the Grassmannian
Gaok—26 is parametrized by the scalars ¢ in the vector multiplets. Here and elsewere, G, ,
will denote the orthogonal Grassmannian O(p,q)/[O(p) x O(q)] of negative g-planes in RP-4.
The U-duality group G4(Z) in D = 4 includes the S-duality group I3(N) acting on the first
factor and the T-duality group O(2k — 2,6, 7Z) acting on the second (where O(2k — 2,6,7Z)
denotes the restricted automorphism group of A,,, acting trivially on the discriminant group
NN, ~ Zﬁ”). As discussed in [22, 27], there are strong indications that BPS observables
are invariant under the larger group I,,(N) x O(2k — 2, 6,7Z.), the automorphism group of A,
along with the Fricke involution acting by S — —1/(NS) on the first factor, accompanied by a
suitable action ¢ — ¢- ¢ of ¢ € 0(2k—2,6,R) on the second factor, such that A¥ =¢-A,,/ VN.

After compactification on a circle of radius R down to D = 3, the moduli space spanned by
the scalars ¢ = (R, S, ¢, a't, 1)) described in the introduction becomes a quotient

Mg = G3(Z)\Gag (2.2)

of the orthogonal Grassmannian G,y g by the U-duality group in D = 3. In [22], generalizing
[28] we provided evidence that the U-duality group includes the restricted automorphism
group O(2k, 8,7) of the ‘non-perturbative Narain lattice’ !

Aog=NAp,®IH ;00 41[N], (2.3)

which is also N-modular. It also includes the U-duality group G,4(Z) as well as the restricted
automorphism group O(2k — 1,7, Z) of the perturbative Narain lattice A,,, ® I ;. The exact
four and six-derivative couplings of interest in this paper will turn out to be invariant under

! Note that the non-perturbative Narain lattice’ determines the U-duality group, but it does not define a lattice of
non-perturbative charges that would complete the perturbative charge lattice. In three dimensions, the analogue
of particle charges are elements of the U-duality group G;(Z) measuring the monodromy of scalar fields around
the point particle. Similarly the modular integrals (1.4) and (1.5) should not be interpreted as some putative
‘non-perturbative string amplitude’, but rather as mathematical functions that turn out to have all the required
properties to represent the exact non-perturbative couplings. In particular, the supersymmetry Ward identities
satisfied by these threshold functions are essential in ensuring equality with these special automorphic functions.
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the full automorphism group O(2k,8,7) D G3(Z.), however, this group is not expected to be
a symmetry of the full spectrum. In particular, the automorphism group of the perturbative
lattice O(2k — 1, 7,7.) does not preserve the orbifold projection, and does not act consistently
on states that are not invariant under the Zy action on the circle. Nevertheless, we expect the
U-duality group to be larger than O(2k, 8, Z) and to include in particular Fricke duality.

An important consequence of the enhancement of T-duality group O(2k — 1,7,7) to the
U-duality group O(2k,8,7) is that singularities in the low energy effective action occur on
codimension-8 loci in the full moduli space Mj, partially resolving the singularities which
occur at each order in the perturbative expansion on codimension-7 loci where the gauge
symmetry is enhanced.

2.2 BPSdyonsinD =4

We now review relevant facts about helicity supertraces of 1/2-BPS and 1/4-BPS states in het-
erotic CHL orbifolds. As mentioned above, the lattice of electromagnetic charges I' = (Q, P)
decomposes into A,,, = A} ® A,,, where on the heterotic side the first factor corresponds
to electric charges Q carried by fundamental heterotic strings, while the second factor corre-
sponds to magnetic charges P carried by heterotic five-brane, Kaluza-Klein (6,1)-brane and
H-monopoles. The lattices A, = A7 and A, carry quadratic forms such that

2
QZENZ, P>e€27Z, P-Q€Z, (2.4)
while A,,, carries the symplectic Dirac pairing (I',T') = Q- P’ —Q’ - P € Z. A generic BPS state

with charge I' € A,,, such that Q AP # 0 (i.e. when Q and P are not collinear) preserves 1/4
of the 16 supercharges, and has mass

Qf  Qr-Pr

QR . PR PR2 > (2'5)

M(T;6) = \J 2Rt SEE 4 4

where t = (S, ¢) denote the set of all coordinates on (2.1), and Qg, Py are the projections of the
charges Q, P on the negative 6-plane parametrized by ¢ € Gy;_5 6. When Q AP = 0, the state
preserves half of the 16 supercharges, and the mass formula (2.5) reduces to
M(T)? =2|Qg + SP|%/S,.

In order to describe the helicity traces carried by these states, it is useful to distinguish
‘untwisted’ 1/2-BPS states, characterized by the fact that their charge vector (Q,P) lies in
the sublattice A,, ® NA, C A, ® A,,, from ‘twisted’ 1/2-BPS states where (Q, P) lies in the
complement of this sublattice inside A,,,. One can show that twisted 1/2-BPS states lie in
two different orbits of the S-duality group I,(N): they are either dual to a purely electric
state of charge (Q,0) with Q € A, \ A, or to a purely magnetic state of charge (0, P) with
P € A,, \NA,. Similarly, untwisted 1/2-BPS states are either dual to a purely electric state of
charge (Q,0) with Q € A,,, or to a purely magnetic state of charge (0,P) with P € NA,. The
fourth helicity supertrace is sensitive to 1/2-BPS states only, and is given by

2 p2 .
() = ¢, (_w) (2.6)
for twisted electromagnetic charge I' € (A, ® A,,) \ (A, ® NA,), and by

d(NQ2,P%,Q-P d(NQ2,P2,Q-P
2,(T) = ¢ (~EINGLAP) () (_sdNG PP ) 2.7)

for untwisted charge ' € A, ® NA,. Here, the ¢;’s are the Fourier coefficient of
1/A, = Zle c(m)q™ = % +k+..., where A, = n*(t)n*(N7) is the unique cusp form
of weight k under I;;(N). In the maximal rank case N = 1, we write c(m) = c¢;5(m) for brevity.

8
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In contrast, the helicity supertrace Qg is sensitive to 1/2-BPS and 1/4-BPS states. For 1/4-
BPS charge Q A P # 0, it is given by a Fourier coefficient of a meromorphic Siegel modular
form [5, 6,8]. In the simplest instance corresponding to dyons with ‘generic twisted’ charge
I'=(Q,P)in (A, N\ A,) ®(A,, ~ NA,) and unit ‘torsion’ (gcd(Q A P) = 1), 2

Qe(T5t) =

_1)QP+1 in[ p Q*+0 P2+2vQ-P]
LJ 30, 2.8)
¢

N <'I~>k—2 (P, o, V)
where the contour C in the Siegel upper half plane H, parametrized by @ = (¥ ) is given
by0 < p; <N, 0<o0; <1 0<v <1 with a fixed value Q, of (p,,0,,v,) (see
below). The overall sign (—1)2P*! ensures that contributions from single-centered black holes
are positive [31,32]. Here, ®,_,(p,0,v) is a Siegel modular form of weight k — 2 under a
congruence subgroup lN“Z,O(N ) € Sp(4,Z)) which is conjugate to the standard Hecke congruence
subgroup
A B

L o(N) = {(C D) cSp(4,7),C =OmodN} (2.9)
by the transformation S, defined in (A.10). &,_,(p,0,v) is the image of a Siegel modular
form &,_,(p, o, v) of weight k — 2 under I}, ,(N) under the same transformation,

2

$ia(p, 0, v) = (VN (—ip) D gy, (—1, o-=, 1) : (2.10)

P P’ p
Ignoring the choice of contour C, (2.8) is formally invariant under the U-duality group
[H(N) x O(2k — 2,6,7), the first factor acting as the block diagonal subgroup (A.14) of the
congruence subgroup fz,O(N ). Invariance under Fricke S-duality follows from the invariance
of <f>k_2 under the genus-two Fricke involution (A.39). Note that the sign (—1)@P*1 also is

invariant under I,(N) x O(2k — 2,6, Z.) and Fricke S-duality.

Importantly, both ®,_,(p,o,v) and $;,_,(p, o, v) have a double zero on the diagonal divi-
sor D given by all images of the locus v = 0 under I, o(N). Hence, the right-hand side of (2.8)
jumps whenever the contour C crosses D. As explained in [9, 33], if one chooses the constant

part of Q, along the contour C in terms of the moduli ¢t and charge T via

R >
% _ 11 S 1 p —Qg-P
= M(Q,P) [5(51 IS|12)+'QRAPR‘(—Q: o Q R)] ’ (2.11)

where R is a large positive number (identified in our set-up as the radius of the circle), then
C crosses D precisely when the moduli allow for the marginal decay of the 1/4-BPS state of
charge I' =T’ +T, into a pair of 1/2-BPS states with charges I'; and I;;. The corresponding jump
in Q4(Q, P; t) can then be shown to agree [34-36] with the primitive wall-crossing formula
[37]

AQ(D) = —(—1)BRTL 0, (1) Q4(1) (2.12)

where A is the index in the chamber where the bound state exists, minus the index in the
chamber where it does not.

The formula (2.8) only applies to dyons whose charge is primitive with unit torsion and
that is generic, in the sense that it belongs to the highest stratum in the following graph of

2 Using (A.39), one may rewrite (2.8) in the other common form (see e.g. [29, (5.1.10)]

—1)QP+! in[NpQ?+0 P2 /N+2vQ-P]
y(r; 1) = & Bt
(e q’k—Z(O_: P:V)

Note that our &,_, differs from the one in [29] by an exchange of p and o, but agrees with ®,.(p,0,v)in [30].
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3

inclusions

NA,®NA, ¢ c An®A,
A, ®NA,

Ae® Ay, . (2.13)
S A,®NA, C T

Ap®NA, ©
When (Q, P) is primitive and belongs to one of the sublattices above, it may split into pairs of
1/2-BPS charges that are not necessarily ‘twisted’ nor primitive. As explained in [13], the study
of 1/4-BPS couplings in D = 3 provides a microscopic motivation for the contour prescription
(2.11), and gives access to the helicity supertrace for arbitrary charges in (2.13) beyond the
special case of the highest stratum for which (2.8) is valid.
Indeed, it will follow from the analysis in the present work that for any primitive charge
(Q, P), the helicity supertrace is given by

~ N2 _
(—1)Q‘P+106(Q,P2 t)= Z A Crs [A—l (—QQ.p SPZP)A 1T. 1 AQ AT]
AEM, o(N)/(ZyXTo(N))
AN DeroA,
+ > G, [A_l (_ ‘Q?ZP 7 )A—lT ;AQ;AT]
AEM,(Z)/GL(2,Z) (2.14)
A (e,

—1(—-NQ? —Q P\ 4—171. T
+ >, IAICk_Z[A ( o )A AQA]
AEM,(Z)/GL(2,7)

AT P?N YEA,®A,

where C;_, and C,_, are the Fourier coefficients of 1/®;_, and 1/®,_, evaluated with the
same contour prescription as above, and 2} is conjugated by the matrix A. This formula is
manifestly invariant under the U-duality group G4(7Z), including Fricke duality that exchanges
the last two lines. For primitive ‘twisted charges’ of gcd(Q A P) = 1, only the first line is non-
zero and the only allowed matrix A is the identity such that one recovers (2.8). This is also the
dominant term in the limit where the charges Q, P are scaled to infinity, since terms with A # 1
in the sum grow exponentially as e™IQ'PI/Idet4l 5t 3 much slower rate that the leading term with
A=1[2,8]. It would be interesting to check that the logarithmic corrections to the black hole
entropy are consistent with the R? coupling in the low energy effective action, generalizing the
analysis of [6,38] to general charges, and to identify the near horizon geometries responsible
for the exponentially suppressed contributions, along the lines of [39,40].

After splitting C,_, and C,_, into their finite and polar parts, and representing the latter as
a Poincaré sum, we shall show that the unfolded sum over matrices A accounts for all possible
splittings of a charge (Q,P) = (Qq,P;) + (Q4, P,;) into two 1/2-BPS constituents, labeled by
A~ (7 ]) e My(Z) [34],

P _
QP = (p,r)sQ P Q)= (q,s) iy 2.15)
—qr —qr

Generalizing the analysis in [41], we shall show that the discontinuity of Q¢(T, t) for an arbi-
trary primitive (but possibly torsionful) charge I is given by a variant of (2.12) where Q,4(T’)
on the right-hand side is replaced by

QM= > 9ur/d), (2.16)

d>1
T/deA®A,

in agreement with the macroscopic analysis in [36].

3The graph is drawn such that Fricke duality acts by reflection with respect to the horizontal axis.
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2.3 BPS couplingsin D =4 and D =3

In supersymmetric string vacua with 16 supercharges, the low-energy effective action at two-
derivative order is exact at tree level, being completely determined by supersymmetry. In
contrast, four-derivative and six-derivative couplings may receive quantum corrections from
1/2-BPS and 1/4-BPS states or instantons, respectively. At four-derivative order, the coeffi-
cients of the R?+F* and F* couplings in D = 4, which we denote by f and F®>%, are known

abed
exactly, and depend only on the first and second factor in the moduli space (2.1), respectively:

3
f(s) = —wlog(s;‘mk(snz) , (2.17)

FO20  _— RN dp,dp, FAzk—z,é[Pade]
abcd - : 2 N >
L(N\H, P2 kP

where I, 26 [Pabca] denotes the Siegel-Narain theta series (B.4) for the lattice A, = Agy_o 6,
with an insertion of the symmetric polynomial

(2.18)

Ppcd(Q) = QpqQrpQL QL d — —p5(abQL Qra)y+ ———=90wb0ca) > (2.19)

16n2p3
and A is the same cusp form whose Fourier coefficients enter in the helicity supertrace
(2.6),(2.7). Here and elsewhere, we suppress the dependence of I“Ap’q[Pa bed ), and therefore of
the left-hand side of (2.18), on the moduli ¢ € G, ;. The regularization prescription used in
defining (2.18) is detailed in §B.1.3. As explained in [22], both couplings arise as polynomial
terms in the large radius limit of the exact (V¢)* coupling in D = 3. The latter is uniquely
determined by supersymmetry Ward identities, invariance under U-duality and the tree-level
and one-loop corrections in heterotic perturbation string theory to be given by the genus-one
modular integral (1.4). In the weak heterotic coupling limit g; — 0, (1.4) has an asymptotic
expansion

_ 2nv2 IQRI

= S T D a@e B R, @
ZTEg3 Q€A—1,7

reproducing the known tree-level and one-loop corrections, along with an infinite series of

(’)(e‘l/ &3 ) corrections ascribable to NS5-brane, Kaluza—Klein (6,1)-brane and H-monopole in-

stantons. Here, Pc(;z)c 4 1s a schematic notation for the tensor appearing in front of the exponen-

tial, including an infinite series of subleading terms which resum into a Bessel function. In the

large radius limit R — oo, the asymptotic expansion of (1.4) instead gives, schematically,

Fc(lzbkci;((p) =R’ (f (S)a(abacd) + F((lzbk;;ﬁ)(@))
/

+ Z Ek (Q: P) P((;Z)Cd e_anM(Q,P)-FZTEi(al-Q+a2.p)
(Q,P)EAOAY (22 1)

QAP=0
(TN)  ,—27R?|M;|+27iM
+ Z Fabcd M1 ! '
M1#0,My€Z

PeA
where we used the same schematic notation P(S}?c 4 for the tensor appearing in front of the ex-
ponential including subleading terms. The first line in (2.21) reproduces the four-dimensional
couplings (2.18), while the second line corresponds to O(e R) corrections from four-dimensional
1/2-BPS states whose wordline winds around the circle. These contributions are weighted by

the BPS index ¢, (Q,P) = 54(Q,P) given in (2.16),

ACRIEIEDWIEES ) D M L B e 2

d=1 d=1
(Q.P)/d €A @A, (Q.P)/d €A, ®NA,
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The last line in (2.21) corresponds to O(e‘RZ) corrections from Taub-NUT instantons.

Our interest in this work is on the six-derivative coupling V2(V¢)?* in the low energy ef-
fective action in D = 3 (see (3.6) for the precise tensorial structure). The coefficient G(Zg i’d(qb)
multiplying this coupling is valued in a vector bundle over the Grassmannian Gy g associated
to the representation [ of O(2k). As announced in [13], and proven in §3, supersymmetric

Ward identities require that G(Zk 9 (@) satisfies the following differential constraints

Dio'Goriplae = O (2.23)

Do, 1o, G g = 0, (2.24)

Dia, Do, ® Do, IGET = 0, (2.25)
D" D1aGapeq = —30ef Gapon — (BexaGiyrea + BexcGayan)

+3605, G0, — SEFEY SFED (2.26)

Here, for two symmetric tensors A,;, B.4, we denote the projection of their product on the
representation ([ by

1
Aap,Bea) = g(AabBcd +AcaBap — 2A10Bays)) - (2.27)

The inhomogeneous term in the last equation (2.26), proportional to the square of the (V¢)*
coupling, originates from higher-derivative corrections to the supersymmetry variations. * It
follows from (3.16)—(3.20) that in heterotic perturbation string theory, G(Zg S)d can only re-
ceive tree-level, one-loop and two-loop corrections, plus non-perturbative corrections of order
e 1/%. We calculate the one-loop and two-loop contributions in Appendix B using earlier re-
sults in the literature [42-47]. After rescaling to Einstein frame, we find that the perturbative
corrections take the form °

3 1 2
6 ~(2k8) __ ( ) 2 A ( ) -1
g5 GoY =— pe 8ab,Bed) = 78(ab, G O+ 8365 W+ Ole /83, (2.28)

3

where fo,;q) denotes the genus-one modular integral

do-d Ez I, [P b]
G;PBQ) —R.N. J P1 2p2 pa= 4 5 (229)
LO\H, P2 A

with Py, =Qp ,Qrp— 47[ p and £, = E, — % is the almost holomorphic Eisenstein series of

weight 2, while G;qu,)c 4 the genus-two modular integral (of which (1.7) is a special case),

@
a30.d3q. I, [Pap,cdl
b _ 14780 Ay
Geo = R_N.J TN : (2.30)
Lo (NO\H, 2 k=2

Here P, .4 is the quartic polynomial

_ r s t u 3 r s 3

Pab,cd - grtSSHQL(aQLb)QL(cQLd)_47T|Q |6(ab,QLC(QZ)rsQLd) + 167T2|92|5(ab’5Cd>
= (54, 500Q..Q Q" —6 Q 1 5 2.31
- 5( (rs, tu)QLa LbQLc |Q | (ab, QLc( Z)rsQ 87’[2|Q | (ab, cd) »( )

“Note that the properly normalized coupling in the Lagrangian is in fact G(ZH) 5(¢), which accounts for the
factor of 7t on the r.h.s. of (2.26).

5The tree-level term comes from the double-trace contribution in [48]. The relative coefficients of the three
contributions are determined by the differential equation required by the supersymmetry Ward identity, which also
ensures that there are no contributions at higher loop order.
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and for any polynomial P in Q] , and integer lattice A, ; of signature (p,q), we denote

@ — q/2 ImQY , Qs @ —imQl, 2,5 Q31 )
D IPI=1207? D P(Qua)el™ e U T T (2.32)
QEAMG;AM

where r,s = 1,2 label the choice of A-cycle on the genus-two Riemann surface. The regu-
larization prescription used in defining (2.29) and (2.30) is detailed in §B.1.3 and §B.2.4,
respectively.

Since the modular integral (2.30) itself satisfies the differential constraints (2.23)—(2.26),
as shown in §3.3, it is consistent with supersymmetry to propose that the exact coefficient of
the V2(V¢)* coupling be given by (1.7). In §§4 below, we shall demonstrate that the weak
coupling expansion of the Ansatz (1.7) indeed reproduces the perturbative corrections (2.28),
up to O(e™V/ & ) corrections. Unlike the (V¢ )* couplings (2.20) however, the latter also affect
the constant term in the Fourier expansion with respect to the axions a’, as required by the
quadratic source term in the differential equation (3.20). Such corrections can be ascribed to
(NS5, KK, H-monopoles) instanton anti-instanton of vanishing total charge.

In the large radius limit, the V2(V¢)* coupling must reduce to the exact R?*F2 and V2F*
couplings in D = 4. Consistently with this expectation, we shall find that the asymptotic
expansion of (1.7) in the limit R — oo takes the form

(2k,8) 4 (D:4) 5(3) 6
Gab cd =R Gab,cd (k_ 12)R 6(0‘/5 5}’5)

+ Z (ab, G(2k 1, 7)(Q, P t) e—ZnRM(Q P)+2mi(a;-Q+ay-P)

(Q,P)EA®A,
QAP=0

+ Z Ck Z(Q P t) P(*) e_anM(Q,P)-FZTEi(al~Q+a2,p)

@ Z)igz/\m (2.33)
/ /
+ Z Z Ek(Ql,Pl)ak(QZ,Pz)PC(I?Cd(QLPl;szpz;t)
(erpl)EAe®Am (stPZ)eAe ®Am
Q.AP;=0 Q,AP,=0
x e—ZﬂR[M(Ql,P1)+M(Q2,P2)]+2ni(a1-(Q1+Q2)+a2-(P1+P2))
(TN) o2 R2|M; |+-2miM (n
+ Z Gab chl " ! MY +Gab cd *
M;#0

In the first line, G(D 4) predicts the exact R2F2 and V2F* couplings in D = 4, which are
exhibited in (5.67), (5 70) below, and involve explicit modular functions of the axio-dilaton S,
as well as genus-two and genus-one modular integrals for the lattice A,,. These couplings are
by construction invariant under the S-duality group I;;(N) and under Fricke duality.

The second line in (2.33) are the 1/2-BPS Fourier coefficients, weighted by a genus-one
modular integral G,;(Q,P;t) for the lattice orthogonal to Q, P given in (5.18), (5.46). This
weighting is similar to that of 1/2-BPS contributions to the V#R* coupling in maximal su-
persymmetric vacua [16], and is typical of Fourier coefficients of automorphic representations
that do not belong to the maximal orbit in the wavefront set.

The third line corresponds to contributions from 1/4-BPS dyons, weighted by the moduli-
dependent helicity supertrace, up to overall sign,

ék_z(Q,P; t) = (_1)Q.P+1 Q6(Q)P; t) ) (2.34)

whereas the fourth line corresponds to contributions from two-particle states consisting of two
1/2-BPS dyons that are discussed in detail in Appendices C and D. While the two contributions
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on the third and fourth line are separately discontinuous as a function of the moduli ¢, their
sum is continuous across walls of marginal stability. In Appendix C we show the non-trivial
fact, especially for CHL orbifolds, that for fixed total charge I', the sum involves all possible
splittings I'; +T5,, weighted by the respective helicity supertraces (2.22). This complements and
extends the consistency checks on the helicity supertrace formulae [30] to arbitrary charges.
Moreover, we show in Appendix E that these contributions are consistent with the differential
constraint (2.26). The 1/4-BPS Abelian Fourier coefficients of the non-perturbative coupling
are the main focus of this paper, and the results are discussed in detail in section 5.3.

The first term Gi?c?i u, O the last line corresponds to non-Abelian Fourier coefficients of

order e 2, ascribable to Taub-NUT instantons of charge M;. We compute them in Appendix
8G by dualizing the Fourier coefficients in the small coupling limit g; — 0 computed in §4,
rather than by evaluating them directly from the unfolding method.

Finally GUD contains contributions associated to instanton anti-instantons configurations,
which are not captured by the unfolding method but are required by the quadratic source term
in the differential equation (2.26). This includes O(e™®) and O(e‘RZ) contributions to the con-
stant term, which are independent of the axions a;, a,, vy, and contributions of order (’)(e_Rz)
to the Abelian Fourier coefficients, which depend on the axions a;, a, as e2™(@1°Q*+a2P) byt are
independent of ). The latter can be ascribed to Taub-NUT instanton-anti-instantons, and are
necessary in order to resolve the ambiguity of the sum over 1/4-BPS instantons [49], which
is divergent due to the exponential growth of the measure C,_»(Q, P;Q5) ~ (—1)QPH+1emQAPI

—R

6

We do not fully evaluate GUD in this paper, but we identify the origin of the O(e‘RZ) correc-
tions as coming from poles of 1/®,_, which lie ‘deep’ in the Siegel upper-half plane #, and do
not intersect the fundamental domain, becoming relevant only after unfolding. While the pre-
cise contributions can in principle be determined by solving the differential equation (2.26),
it would be interesting to obtain them via a rigorous version of the unfolding method which
applies to meromorphic Siegel modular forms.

In §6, we discuss other pertubative expansions of the exact result (1.7), in the dual type
I and type II pictures. In either case, the perturbative limit is dual to a large volume limit on
the heterotic side, where either the full 7-torus (in the type I case) of a 4-torus (in the type II
case) decompactifies. We find that the corresponding weak coupling expansion is consistent
with known perturbative contributions, with non-perturbative effects associated to D-branes,
NS5-branes and KK-monopoles wrapped on supersymmetric cycles of the internal space, T in
the type I case, or K3 x T2 on the type II case.

3 Supersymmetric Ward identities

In this section, we first establish the supersymmetric Ward identities (3.16)—(3.20) for the
V2(V¢)?* couplings in D = 3, from linearized superspace considerations. We then discuss the
analogue six-derivative couplings in D = 4, of the form V2F* and R?F?, and establish the
corresponding Ward identities. Finally, we show that the genus-two modular integral (2.30)
obeys these identities.

3.1 V?%(V¢)* type invariants in three dimensions

This analysis is a direct generalization of the one provided in [22, §3]. We shall define the
linearised superfield W;, of half-maximal supergravity in three dimensions that satisfies to the

6 It is worth noting that despite the fact that instanton anti-instanton configurations break all supersymmetries,
they can still contribute to protected couplings, since their fermionic collective coordinates are only approximate
zero-modes, lifted by interactions [50], see [51] for a cogent discussion of the instanton gas approximation.
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constraints [52-54]

DéW&a = (Fd)ij)(a]"a s D;Xﬂja = _i(o'u)a[}(ra)jiauwda > (3.1

with @ = 1 to 8 for the vector of O(8), i = 1 to 8 for the positive chirality Weyl spinor of Spin(8)
and 1 = 1 to 8 for the negative chirality Weyl spinor. The 1/4-BPS linearised invariants are
defined using harmonics of SO(8)/(U(2) x SO(4)) parametrizing a Spin(8) group element
u"y, u™";,u,. ; in the Weyl spinor representation of positive chirality [55],

r Tyl SoSq  __ ij ST _ S ij _
2url(iu lj)+8 8r353u 2 3l~u 2 3j = 0ij » 5 ]urliu 1]' = 5& 5 5 ]urliuslj =0 N (32)

252

5l]ur1iur2r3j =0 , 51Jur2r3iu5253j = gl252¢7383 ) 5Uur1iurzrsj =0 s 5Uur1iu51j =0 s

where the r, indices for A = 1,2,3 are associated to the three SU(2) subgroups of
SU(2); xSpin(4) =SU(2); xSU(2), x SU(2)3. The harmonic variables parametrize similarly
a Spin(8) group element u"“, u"1"%,u,.* in the vector representation and a group element
u'?;, u™"y,u,; in the Weyl spinor representation of opposite chirality. They satisfy the same
relations as (3.2) upon permutation of the three SU(2),.
The superfield W,? = u™%W,,, then satisfies the G-analyticity condition

urliD;ursﬁWda = D;l W;3 =0. (3.3)
One can obtain a linearised invariant from the action of the twelve derivatives D,, = urll-D(i
and D;2" = u""3; D!, on any homogeneous function of the W,*’s. The integral vanishes unless

the integrand includes at least the factor W[fl sz] W[lcwdz] such that the non-trivial integrands

are defined as the homogeneous polynomials of degree 4+2n+m in W,° in the representation
of SU(2) isospin m/2 and in the SL(p,R) D SO(p) representation of Young tableau [n+ 2, m]
(n + 2 rows of two lines and m of one line) that branches under SO(p) with respect to all pos-
sible traces. After integration, the resulting expression is in the same representation of SO(p)
and in the irreducible representation of highest weight mA; + nA, of SO(8), i.e. the trace-
less component associated to the Young tableau [n, m], with A;, A, denoting two fundamental
weights.

It follows that the non-linear invariant only depends on the scalar fields through the tensor
function Fy;, .¢ and its covariant derivatives D"F,;, .4 and covariant densities L, »,] in the
corresponding irreducible representation of highest weight mA; + nA, of SO(8) that only
depend on the scalar fields through the covariant fields

1 o
Puai) = au¢upuaf) > Xalas Dulaia = vu%aia+au¢u(wuab)(aia+Zwu&i)(rab)i"}(aja) , (3.4)

and the dreibeins and the gravitini fields, and where

Py =dppy' b’ s @ap =—dprnupry’ . @y =dpra nipgy’ s (3.5)

are defined from the Maurer—Cartan form of SO(p,8)/(SO(p) x SO(8)). Using the known
structure of the tgtrV FVFFtrFF invariant in ten dimensions [48],” one computes that the
first covariant density L, g7 bosonic component is

81

cebed = YB(aple g p Mipule, gopridlb i ople v, pubbl; pricyop dib (3.6)

& b & b1b
—P L4,V PHIPp (¢, goprldlb _gp Lty pElbpule goprid 4 ).

’with tgF* = F, ,F"F,,F°P* —1/4(F,,F*").

15


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

The factor of 7 is introduced by convenience for the definition (2.30) to hold. Investigating
the possible tensors one can write in this mass dimension, one concludes that the tensor den-
sities Ly, ;) are only non-zero for 0 < n < 2 and 0 < m < 4 and the density L[5 4 ~ 1
with open SO(p) indices in the symmetrization HHH . The invariant admits therefore the
decomposition

L = abcdﬁab cd+D a " Cdﬁadee-l-D( (an) )Fabc Eabde ef D [an] g b Eaz ,cdef

b a,05,d304,d5dg,d7dg,bq,by,bg,b
oo+ Dy, B Dy ) PID, B D, BF R (3.7)

56,9798 4, 4,834, b1, by, b3, by

a;as,..., a a .1y, b . . . . . . v v
where the £ ' 277 23 AZ"*g P2"™ are in the irreducible representation of highest weight ma; +nd,
a1 dy,...,850—1 820,015, b

of SO(8) and admit the symmetry of the Young tableau [n + 2, m] with respect to the permu-
tation of the SO(p) indices. In particular, F,;, 4 transforms according to (], realized by first
symmetrizing along the columns and then antisymmetrizing along the rows [ab],[cd].

Checking the supersymmetry invariance (modulo a total derivative) of £ in this basis, one
finds that there is no term to cancel the supersymmetry variation

5Fab,cd = (Ei(rf )inje)DefFab,cd (3.8)

of the tensor F;, .4 and of its derivative when three open SO(p) indices are antisymmetrized,
hence the tensor F,;, .4 must satisfy the constraints

D[alaFa2a3],bc =0, D[al[alpazaZ]Fag]b,cd =0, D[a1[alpazazpag]ag]ch,ef =0. (3.9)

Similarly, because the L[, ., are traceless in the SO(8) indices, the SO(8) singlet component
of 6(DF)L;( 1] can only be cancelled by terms coming from F6 L[ 3, i.e.

1__ . o
Fab,cd Sﬁab’Cd + gDeanéFab,cd(e che)ﬁgb’Cd’f ~0 (3.10)

modulo terms arising from the supercovariantization, so that the covariant components must
satisfy

b . o
§Labed 4 (eFC DL 4 2 (Ery Lt + @iy, ) = v,() . 3D

Therefore, the tensor Fyj;, .4 must obey an equation of the form

DDt sFapea = bl(_5efFab,cd + 6efaFpifca T 5e[ch]f,ab)
—3by(8 (o Fplecd + O fcFatean) — 4b28ciaFoieyra » (3:12)

for some numerical constants by, b, which are fixed by consistency. In particular the integra-
bility condition on the component antisymmetric in e and f implies b; =4 —3b,.

Before determining the constants b;, it is convenient to generalize F,j, .4 to a tensor F;"bqi d
on a general Grassmanian G, ,, which would arise by considering a superfield in D = 10 —q
dimensions with 4 < q < 6, with harmonics parametrizing SO(q)/(U(2)xS0(qg—4)) [56]. The
same argument leads again to the conclusion that F (p o od satisfies to (3.12) with b; = 5 —3b2.
Equivalently, these constraints follow from the general Ansatz preserving the symmetry H of
the indices ab, cd and the two first equations in (3.9). An additional integrability condition
comes from the equation

. 1 .
b (.0 (.2) b1
D[al‘ID D|az|bFaI;§|1b cd [D [a; ’D ]Dlazlbpaﬁb cd+§DeB[D[a1a’Daz ]Fapilb cd

= D, (256,10, FP%) g+ 226010, FOL 4235

elay as]b, cd asle,cd

+by5

.9 P
C]|02Fa3]b,e[d C]|02Fa3][d,be)

F(p .4) )

cllay as]b,e[d

— 3—g ®.0) )
- D[al ( 5e|a2Fa3]b cd + Z5b|a2Fa3]e cd + 55

+1p, Y(Bbfa, FL2 g +6

4 alaa

e, F azas] b[d) (3.13)
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which is indeed consistent, if and only if by = % and so b; = % so that (3.12) reduces to

a ®a _ 34 (X q—6 ®.0) (».0) X))
D" DpyaFayiea = 7 0 Fapea + 5 (8Pt ca + SoeFai(f.an) ~ 20ehaFyiie pypq - (3:14)
Alternatively, one can represent a tensor with the symmetry [ with two pairs of indices
that are manifestly symmetric, i.e. Ggpcq = Gpaed = Gabdc = Ged,ap Such that Gegp g = 0,
such that
4
Faped = Gella,b]id » Gab,ed = —3F0) )b - (3.15)

The tensor G}, .4 satisfies the constraints

d A (00) _ 4 i) o) [4 3 4] 00
,D[GlaGapz(llbl,ag]c =0, D[al alDazaz Gal;?lb,cd =0, D[al a1'Da2‘12'Da3]03 Gclzi?ef =0, (3.16)

and

D" DGl g = 5528 GER g + 55 (BeyaGity ca + BexcGonr ap) + 38(an, Gty - (3:17)
The discussion so far only applies to a supersymmetry invariant modulo the classical equa-
tions of motion, whereas one must take into account the first correction in (V¢ )*. The direct
computation of this correction via supersymmetry invariance at the next order is extremely dif-
ficult, however, one can determine its form from general arguments. The modification of the
supersymmetry Ward identities implies that the corrections to the differential equations must
be an additional source term quadratic in the completely symmetric tensor Fflpl;‘? ; defining the
(V$)* coupling. This correction should preserve the wave-front set associated to the original
homogeneous solution, so it is expected that (3.16) is not modified, while the second order
equation (3.17) admits a source term quadratic in Fflpl;‘? p and consistent with (3.16). Inspection
of the various possible tensor structures shows that there is indeed no possible correction to
(3.16), because Fflpl;‘? ; satisfies itself

A peD lapy blpeo _
DlFe, =0,  DRlDyFLY =0, (3.18)
Equation (3.17) admits the symmetry associated to the Young tableaux HH- and ﬁﬂj, however
it is easy to check that the latter is trivially satisfied

1 a (.0 _ 9 ®.2) q ®.2)
ED[a1| DbéFlgzqas],cd - _Z6b[alFaI;a3],cd - Z5C][¢11Fap2a3],b[d > (3‘19)

and therefore cannot be corrected by a source term. The only source term quadratic in Fc(l"l;qc) p

with the symmetry structure HH- that also satisfies to the constraint (3.16) is F l(:j‘?ab’g FC(Z‘;E flg" It
is indeed straighforward to check that the corresponding combination sourcing (3.17), namely
Fc(f]’f[)ag F I()p]‘;)g[ 4 satisfies (3.9) using (3.18), whereas any other combination with the symmetry
structure FH- involving the Kronecker symbol would not.

We conclude that the correct supersymmetry constraint for G%% . reads
ab,cd

a ) _ 3—q (».9) 6—q (».9) .9 3 ®.9)
D" Dp1aGyprg = 320 Gpng + 73 (850Gt ca T 8e)cCiir.an) T 20(ab,Gges

3o P9 g
5 Foyay, Feaysig > (320
where @ is an undetermined numerical coefficient at this stage. In §3.3 we shall show that
the genus-two modular integral (2.30) satisfies this equation with @ = 7.
Let us note that this discussion only applies to the Wilsonian effective action. As we shall
see in section B.2.4, the differential Ward identity satisfied by the renormalized coupling G, bed
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appearing in the 1PI effective action is expected to be corrected in four dimensions (q¢ = 6) by
constant terms and by terms linear in F ;4.

Because of the quadratic source term in (3.20), the tensor G,}, .4 does not belong strickly
speaking to an automorphic representation of SO(p,q). One can nonetheless define a gener-
alization of the notion of automorphic representation attached to this tensor. The linearised
analysis exhibits that the homogeneous differential equation is attached to the SO(p, q) rep-
resentation associated to the nilpotent orbit of partition [32,1P797°] such that the nilpotent
elements Z ; € so(p +q)(C) © (so(p)(C) & so(q)(C)) satisfy the constraint (cf. (3.9), (3.12))

292,291 =0, 2,20 =0. (3.21)

For a representative of the nilpotent orbit in the unipotent associated to the maximal parabolic
k(k=1)

GL(k) x SO(p — k,q — k) x R¥PT42K)+72— this gives the constraints
Qi"Q;" QM =0, Q"Q;"Ki =0, (3.22)

which admits a subspace of solutions of dimension 2(p + ¢ — k — 2) for
Q;™ € SL(k)xSO(p—k,q—k)/(SO(2) x SL(k—2)x R2*~2) x SO(p—k—2,q—k)) € R2(PFa-2k)
and a subspace of dimension 2k — 3 for K;; € ]R@, and therefore a Kostant-Kirillov dimen-
sion 2(p+q—4)+1 that is exactly saturated by the Fourier coefficients in the maximal parabolic
decomposition with k = 2.

The tensor F,;.4 is instead in an automorphic representation associated to the nilpotent
orbit of partition [3,177973] such that the nilpotent elements Z . €50(p+q)(C)e(so(p)(C)o®
50(q)(C)) satisfy the constraint

Z[a[aZb]B] =0 5 Za@Zbé =0. (323)

For a representative of the nilpotent orbit in the unipotent associated to the maximal parabolic
k(k=1)

GL(k) x SO(p — k,q — k) x R¥P+a=2K)+75— this gives the constraints
Qi'"Q;"=0,  Q"Kjy=0, KyKy1=0, (3.24)

which admits a subspace of solutions of dimension p + q — k — 1 for
Q;™ € SL(k)xSO(p—k,q—k)/(SL(k—1)x R*"1 x SO(p—k—1,q—k)) € R*P*+972K) and a sub-
space of dimension k—1 for K;; € R@, and therefore a Kostant-Kirillov dimension p +q—2
that is exactly saturated by the Fourier coefficients in the maximal parabolic decomposition
with k = 1. One easily checks that the sum of two generic elements (Q[", K;;) solving (3.24)
always solve (3.22), so that the quadratic source in F,;.4 sources the Fourier coefficients of
the tensor G,, .q consistently with the automorphic representation associated to the nilpotent
orbit of partition [32,1P797°].

It is important to note that the 1/4-BPS black hole solutions (single-centered and multi-
centered) are solutions of the Euclidean three-dimensional non-linear sigma model over
0(2k, 8) /(0O(2k) x O(8)) which are themselves associated to a real nilpotent orbit of O(2k, 8)
of partition [32,1272k] [57,58]. This is consistent with the property that the Fourier coef-
ficients in the maximal parabolic decomposition GL(2) x O(2k — 2,6) x R2*+2+1 satyrate
the Kostant—Kirillov dimension and are proportional to the helicity supertrace associated with
these black holes.

8The unipotent being non-Abelian for k > 2, one cannot generally define the Fourier coefficients for Q7. Ky,
but one must consider separately the Abelian Fourier coefficient with K;; = 0, from the non-Abelian Fourier coef-
ficients with K;; and a subset of the charges Q" defining a polarization.
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3.2 R?F? type invariants in four dimensions

In four dimensions, there are two distinct classes of six-derivative supersymmetric invari-
ants. In the linearised approximation, they are defined as harmonic superspace integrals of
G-analytic integrands annihilated by a quarter of the fermionic derivatives, and can be pro-
moted to non-linear harmonic superspace integrals [59]. The first class of invariants is the
one defined in the preceding section for ¢ = 6. It includes a Gf{)‘f(’f)V(F aFbY(FCFY) coupling
with a tensor Gfl’:cz(’f) satisfying to (3.16) and (3.20). The second class of invariants is defined
as a chiral harmonic superspace integral at the linearised level, as we now explain.

In four dimensional supergravity with half-maximal supersymmetry, the linearised Maxwell
superfield W, ~ W;;, satisfies the constraints

ja
_ . . ‘
DakWija = €ijkihgq > DiWija =28[Aajla»  DaiXpy = 6{Fapa » (3.25)
whereas the chiral scalar superfield satisfies
DaiS = Xai > D;S =0 5 Dai%ﬂi = Faﬁij 5 (326)

with i = 1 to 4 of SU(4) and a, a the SL(2,C) indices. The chiral 1/4-BPS linearised in-
variants are defined using harmonics of SU(4)/S(U(2) x U(2)) parametrizing a SU(4) group
element u,.', u;" with r and 7 the indices of the two respective SU(2) subgroups. The superfield
Wiy = us'ug/ Wi, = %Hsu#ug) W;jq then satisfies the G-analyticity constraints

U Dyi(Us'ty' Wijo) = Doy Wagq =0, ;" Dl (us'ty! Wijo) = DiWag, = 0. (3.27)

One can obtain a linearised invariant from the action of the eight derivatives D,; and the four
derivatives Dg = uirD:i on any homogeneous function of the G-analytic superfields W54, and
S. Using for short ug‘" = (F&)Uui3uj4 and the projection (4; ...d,) on the traceless symmetric
component, one gets

34 34811 A4 1 a Qi @2+
Jdu”al RS [D°I[D™ ) itz ayiCan s Wag - - Wag 28T
(0)ab

1
= _Cal.,.anabvval(a1 Wazdz .. Wa”dn)/Sm,C+2

n!m!

—1 (0)a,ab
(i Dt C-anad W 2@ W g - W, 57 Lg
1

+mca1...anab
1 a

+(Tl _ 6)'(m _ 2)' Cal...anabvv 7(?17

+ ! c W,

(n—2)!(m—6)! aj...apab (a5

we (CA11VVaZ&2 e Wa"an)/sm—lﬁggzab 4
(0)a1...a6ab
al...d6)/+6

Wa6é6...Wa"énSm_2£ +...

— 0 b
W, . W, S™ 65213;;1)?;‘;4 +9(...), (3.28)

where the E%Z;ﬂ are symmetric tensors that only depend on the scalar fields through their

derivative. One works out in particular that [,Eroz)ab includes a term of type R?F? as
LEF ~ PP Cp s CPTO 4 (3.29)

with C,p, 5 the complex Weyl curvature tensor (which we denote schematically by R), whereas
the highest monomials only depend on the fermion fields as

(0)a;...agab 3444 4 (0)a;...asab 34435 (0)a;...azab 3442 6
LU TN, LR A, L ~ Ay S

a166+6 ds+8 1d4+10
(0)ayazazab 349 .7 (0ayazab 34 8
’Célézd3+12 ~ AAxT, Ea1a2+14 ~ATK (3.30)
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Note that Lsf)z)ab is of U(1) weight —2, so one can anticipate that it must be multiplied by
a modular form of weight 2 at the non-linear level. At the non-linear level, derivatives of
the scalar fields only appear through the pull-back of the right-invariant form P_; over the
Grassmanian and the covariant derivative (S—S5)™* d,S of the upper complex half plan field S.
One defines in the same way the covariant derivative D ; on the Grassmanian and the Kéhler

derivative D = (S—S§ )aa_s + % on a weight w form. According to the linearised analysis, the
supersymmetry invariant is associated to a tensor G, (¢, S), holomorphic in S and function of
the Grassmanian coordinates ¢.

Due to the superconformal symmetry PSU(2,2|4) of the linearised theory in four dimen-
sions, the non-linear invariants are in bijective correspondance with the linearised invari-
ants, themselves determined by harmonic superspace integrals. However, the linearised in-
variants that combine to define a general class of non-linear invariants are not necessarily
defined from the same harmonic superspace. The general V2F* type invariants defined in
the preceding section are determined by vector-like harmonic superspace integrals of SU(4)/
S(U(1) x U(2) x U(1)). In contrast the R?F? type invariants described in this section involve
both structures, such that the defining function G,,(¢,S) is of weight zero, and the terms in
the Lagrangian that do not involve its Kéhler derivative D are defined at the linearised level
from SU(4)/S(U(1) x U(2) x U(1)) harmonic superspace integral of a restricted type. These
invariants are constructed explicitly in [59] for a SO(p) invariant function on the Grassman-
nian. One finds that G,; (¢, S) must be holomorphic in S, as the linearised analysis suggested.
It defines a Lagrange density £ that decomposes naturally as

L= Qabﬁab + D(a&gbc)ﬁabca + D(a(apbi))gcd)ﬁadeaB +...
b i i
+ Z)gabﬁiz +ot+ 77D(611a1 Tt Da6a6ga7a8)£a1 asﬁl...c”16+2
+ ngabﬁiz +--+ DzD(al AR Dasas ga607)£a1...a7d1m&5+4

+ DGy L2, + DD Gy L% 4114 + DD Dy G0y L% 43 10, (3.3D)
where the E[”+2][n]+m are SL(2) x O(2k—2, 6) invariant polynomial functions of the covariant
fields and their derivatives and the vierbeins and the gravitini fields. Because non-linear in-
variants induce linear invariants by truncation to lowest order in the fields (3.4), the covariant
densities £[”+2][n]+m reduce at lowest order to homogeneous polynomials of degree n+2 in the
covariant fields (3.4) that coincide with the linearised polynomials L2l .. for m > 2.
For m = 0, the linearised invariants ,C(O)[”+2][n] are the real analytic superspace integrals de-
scribed in the preceding section [n + 2,m] for n = 0, and where indices are contracted with
59 to reduce the representation from the Young Tableau [2,m] to [0,m + 1]. The analysis
of the invariant defined as a non-linear harmonic superspace integral indeed shows that the
component £ is of the type

£ = /=g tg(2V(FUFY)V(F.F) + V(F.FOV(FYF) +...), (3.32)

with tgF* = FaﬁF“ﬁFdﬂFdﬁ, and
L3 = V/=gF FPPCopp5CHP10 + ... (3.33)
The complete invariant is the real part of this complex invariant. So the four-photon MHV am-

plitude gives a contribution to the Wilsonian effective action in G,;,(¢,S)+G,,(¢,S), whereas
the amplitude with two gravitons of positive helicity and two photons of negative helicity
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gives a contribution in DG,,(¢,S). Because DG ;(¢,S) = 0, we will usually refer to a single
function G%)(¢,5,5) = Gap(¢,S) + Gup (9, S).

Slrmlarly to [22], one can show that supersymmetry at the linearised level implies tensorial
differential equations of the form

a 3(2—
Dy Dea G = 256G +3 5y G

S0 D'Gy.=0, (3.34)
with g = 6, where the coefficients of the two terms on the right-hand side have been fixed by
requiring that these constraints are integrable.

As in the preceding section, this linearized analysis does not take into account the lower
order corrections in the effective action and the local terms coming from the explicit decom-
position of the effective action into local and non-local components. The coefficient F,p.4(¢)
of the F* coupling and the real coefficient £(S) of the R? coupling give rise to source terms in
these differential equations, such that we get eventually

Di"DesGap(S,9) = —364(Gap)(S,9) + 3 8(apGoya(S, )+ 6E(S)Fapeal() ,
- 3
DDGab(S: 90) = 4_7_L_Fabcc((p) . (335)

Finally, let us note that the same class of harmonic superspace integrals (3.28) produces
higher derivative invariants by integrating instead

34 34,34 34 81r n4 1 a 2+ +1
fduual ...uanui)l ...HBZP[D ][D ]mcalmanwgi W S m(Faﬁg F )p
(3.36)

This gives rise to chiral 1/4-BPS-protected invariants of the same class, including couplings of
the form
G (S, ) C2VASV2S(FaF%), (Flw1Fiw) (3.37)

apdy.. az

Here C is the Weyl tensor and G*(S, ) is a rank 2p SO(6) symmetric traceless tensor, which is
a weight 2p +4 weakly holomorphic modular form in S. It satisfies to a hierarchy of differential
equations on the Grassmannian [60]

D dyp (A2p+4n) (2p+4) — (A2p+4A) =0
a gal...azp a algaz]a3 Gopi1 dy...4g) ?
¢ (2p+4)  _ (2p+4) (2p+2)
D" DyeGy) g, = —2(P +2)8av%;, 5, * Pata, Pivia, %%, . a,,) - (3.38)

On the type II side these couplings can be computed in topological string theory [61].

3.3 The modular integral satisfies the Ward identities

In this subsection, we shall prove that the modular integral (2.30), which we copy for conve-
nience,
@
G —RN J d3Q1d3Q2 1—‘Ap)q [Pab,cd]
b d . .
e Lo, 122l P ()

satisfies the differential equations (3.16) and (3.20), with a specific value of the coefficient
@ in the quadratic source term. Here, ®;_,(2) is the meromorphic Siegel modular form
defined in (A.33), and 1“(2) [Pab «d] is the genus-two partition function (2.32) for a level N

even lattice of signature (p q), with an insertion of the quartic polynomial P,;, .4 defined in
(2.31). Since ®;_, and T, Ap q[Pab,Cd] are modular forms of weight k —2 and &2 +2 =k —2
under T, o(N), the integrand is well defined on the quotient I, (N)\H,. The symbol R.N.

(3.39)
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refers to a regularization procedure which is necessary to make sense of the integral when
g = 5, as discussed in Appendix B.2.4.

In order to derive these results, we shall first establish differential equations for the general
class of genus-two Siegel theta series 1“(2) [P], where the polynomial P(Q) is obtained by acting

on a homogeneous polynomial of b1degree (m,n) in (¢,,Q} Q3 , &sQzQR)° respectively, with the

_A2 . . . . .
operator |2,|"e” 3= , where ¢,, is the rank-two antisymmetric tensor with £,, = 1 and A, is the
second order differential operator

— rs — rs a
Az_ZaQr (2" aQsa+ZaQr ;1) e (3.40)

Under this condition, one can show using Poisson resummation that 1“/{2) [P] satisfies
P, q

e i i
A

(2)
g T Gl (3.41)

pal P4

which implies that F/{i) . [P] transforms as a modular form of weight p%Z +m—nunder I; ,(N).
For our purposes, it will be sufficient to focus on polynomials of the form, using (Q, £Qp) =

rNs
ErSQa

aq...am,by...bp,q.60,d - dy

Ay (3.42)
=esn I:((QL(a1|8QL|b1|)---(QLIam)EQme))((QR(61|EQR|&l|)---(QRI@H)EQR(}H)):I:

where (b; ... b,,) denotes all symmetric permutations of by, ..., b,,, and similarly for hatted
indices. The quadratic polynomial P = P,, .4 arises in the case (m,n) = (2,0) with no con-
traction among the left-moving indices, as written explicitely in the first line of (2.31).

As in [22, section 3], one can obtain the differential equations satisfied by (3.39) by acting
with the covariant derivatives D,; defined by

1
D = E(anari, +Qp 1) (3.43)
where 3% = aQr and 8‘1 = aQr Recalling that p; , I'and Prb J are the left and right orthog-

onal projectors on the Grassmaniann Gpq = 0(p,q)/[O(p) x O(q)], one can use the effective
derivation rules

1 1
Dai;pL,cI = §5achj;I 5 Dai;pR,él = E‘SﬁapL,aI . (3.44)
Acting with D,; on (2.32) we get
Deg T} [P1=T72 [(Deg —27(Que0Qi))P ) (3.45)

where (Q Qg ) = (22),5Q], aQSizg is a short notation that will be used in the following.
It will prove useful to compute the commutation relations

[Ag, D] =2(3,9,"3,), [A,,Q7,1=2(3,9;")", (3.46)
[82,Q7, Q] =2Q1,(Q579,)° + 2Q;§(n‘1a ), (3.47)
[Az,QzerLf] 20,¢(82;, yrs +4Q (Q 1Cf)f))s) (3.48)

22


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

with the Baker-Campbell—Hausdorff formula

1

A A
et e 5 = O+ [A2,0]+ e )Z[Az, [Ay, O] +.. (3.49)
one obtains
Dyl [P1=—27T{ [e 7 ((Que2Qrg) — oy (22578, ) P ]. (3.50)

Note that the derivation rules ensure that the constraints (3.16) are automatically satisfied at
the level of the integrand, from the structure of (3.42) with n = 0. Antisymmetrizing (3.50)
with n = 0, one obtains

D T [Payl.caplbn]be ) =T [e 5 5 (G2 1ag)68“ Pay)...aplb,]..b ] (3.51)

A
which vanishes identically since es—ﬁpal...am,bl...bm does not depend on Qi. The same argu-
ey flp@ ey fp glp®
ment goes for D[e[efo]FAp’q[Pal],__am’blu_bm] and D[e[efoDg]g]FAp,q[Pa
conclude that for m = 2, the modular integral (3.39) satisfies

1...am,b1...bm ]J and we

D|:eéGa|b,|c],d =0, D foG b,ed — =0, D|:e[é/fo,Dg]g]Gab,cd =0, (3.52)

which thus establishes (3.16). Note that these properties are independent of the details of the
function 1/®;_,(£2).

Now, the main equation (3.20) arises by applying the quadratic operator D2 o = =D* Df)g
on the lattice partition function with polynomial insertion, and commuting with the summation
measure e " IMRRCR of the partition function

4D% 1 [P1=12 [ (472, —87(Qu(2Qr4)Ds); — 295,
+ 167> tr[25(QreQry — 2£051)0,(Q2 - La;")])P].

Using the commutation relations (3.46), one can re-express it to make modular invariance
explicit

(3.53)

4D% T [P1=T [ sn(16n2(QLeQZQRg)(QRgQZQLf) 8er (8 +(Qrg2%))
) , (3.54)
—q(QL(eaf)) 2(Qu Qg (940 1af)+ —(8.9512,0%0537))e ¥ ],

and notice that all the terms in (3.54) except the first and last one will become linear tensorial
combinations of the original partition function 1"(2) [P] The first term on the r.h.s of (3.54)

can be rewritten as the action of the lowering operator for Siegel modular forms,
0

Drs = _in(Q2(Q28Q)T)rs = _iﬂ:(QZ)rt(QZ)suH 5 (355)
tu

which take a weight w representation sym! modular form to a weight w — 2 representation
sym? ® sym! modular form [62]. Indeed,

DrsFA(iq[e_ﬁ_ﬁQE Lfe nP]
A A
= —TEZF/ii),q[tr[Qz(Qi - f—nﬂgl)ﬂze_s_’z‘(QLeQLf )e#]P]

1
+ =12 [(3an+8]a)e 7Qp,Q) e P (3.56)

16
=12 [ (50,10 Q},Q — 72(QueQrg Qe Q1)
Ap.q 16 “rh% “Le™Lf Le®42<Rg R 202X Lf

- g((QL(eQZQRg)(agQLf)) — n(QLengLf))e%P] ,

23


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

and the r.h.s. of (3.54) can thus be written as

4fo F/i)’q [P] = Ff{?,q [e_g_ﬁ ((6 —2q— QRg3§)5ef + (6 —q)(Qr %))
+Qr1eQsrf (37)™ — 2(Qu(eQ02Qre (34051 3f)
—87((QL22Qr:)(3%QLs)) —n(QL20QL ) +

- A A
~16D,.I}” [e75 Q},Q; 5 P].

1 —14 4801 22
@(QEQZ 8g3g§22 3f))€8“P]

(3.57)

The third line contains contributions from partition functions with more or fewer momentum
insertions, respectively, and the fourth line is to be computed explicitly. We now specialize to
the case of interest and obtain

= _22 A
Ay FA(qu [Popea] = —4Dr5rA(2q [¢757Q],Q} ;™ Papeal, (3.58)

where the operator A, is defined as

2Aef Gab,cd EZ’D?f Gab,cd + (q - 3)5ef Gab,cd + (q - 6) [6|e)(aGb)(f|,cd + 5|e)(ch)(f|,ab:|

(3.59)
- 36((1b,ch),ef .

Let us now return to the modular integral (3.39). In order to regularize the infrared di-
vergences which arise when g > 5 (discussed in more detail in Appendix B.2.4), it is useful to
first fold the integration domain I’ o(N )\, onto the fundamental domain F, = Sp(4, Z)\H,,
and restrict the latter to truncated fundamental domain

fz,A,nZ}_zﬂ{Pzﬁaz—sz/PzSA}0{|V|>TI} (3.60)

excising both the non-separating degeneration at {2, = ico and the separating degeneration
at v = 0. We thus define

(2)
dSQ]_dSQz FAp’q[Pab,Cd]

Gapra(Am) = f
ab.cd Fonn |Qz|3 P _2(02)

The renormalized integral (3.39) is defined as the limit of (3.61) as A — 0o,  — 0, possibly
after subtracting divergent terms. Acting with the operator A, and using (3.58) one obtains

(3.61)

YEL o(N)\Sp(4,Z) ;

d30,d3q, 1 - A Y
Aef G;Pl;q’)cd(A: ’)’)) =—4 j]: |92|3 Z [‘I’k—z Drsl—‘/&),q[e 8 QEerLfe 8m Pab,cd]] . (3.62)
2,Am

To compute the boundary term, we use Stokes’ theorem in the form

5071s 3 3

f o () ) = 2 f TN (4, 75+ fDg),  (3.63)
a]:é\,/\,n 2 T ]:é\,/\,n |Qz|

where f™ and g are modular form of I} o(N) respectively of weight w and representation

sym?, and weight w’ = 2 —w and trivial representation. The differential operator J; com-

mutes with factors of £, because of the natural connection D,. Then, since D,;1/®;_, = 0 by

holomorphicity, we obtain that the r.h.s. of (3.62) reads

d>Q’* 1

B R R
t ‘ ‘
3]-—2’/\’7’ |QZ|3 : . " (I)k—Z(Q) Ap.q Le<Lf ab,c .
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The contributions from the A-dependent boundary of F; » , lead to powerlike terms in A,
which cancel in the renormalized integral, except for ¢ = 5 or ¢ = 6 where these divergent
terms become logarithmic and are responsible for an anomalous term in the differential equa-
tion. These anomalous terms are computed in §B.2.5 and will be displayed in the final result
below. Here we focus on the contribution from the boundary at |v| = 1 due to the pole of
the integrand at v = 0, which is cut-off independent for any q and can be computed using
Cauchy’s theorem.

To compute the residue at v = 0, recall that the function 1/®,_, has a second order pole at
v =0 (cf. (A.44)) and behaves as ®;_, ~ (27iv)?Ai(p) x Ax(o) +O(v*) . The only cosets y
preserving the pole at v = 0 are those in y € (To(N)\SL(2,Z)), x (To(N)\SL(2,Z)),. Adding
up these contributions, we find that the residue of the integrand at v =0 is

1 i Az Ay
r® [e5Ql,Q*Ql Q2 e P ]‘ (2=( 9)).
2 .2 Ap, Lk €L Le*Lf ab,cd 0 o
X(To(NN\SL(2,2))s
(3.65)
Near the boundary at [v| = mn, the fundamental domain F,,, reduces to

Fi(p) x Fi(o) x {|v| > n}/Z, x Z, where the first Z, exchanges p and o while the sec-
ond sends v — —v. Thus, the sum in (3.65) factorizes into two genus-one integrands, leading
to

Aef Go d(A7 n) - H(F(p’q) (A)F(p,q) k(A) — e (A)F(p,q) k(A)) + ...

ab,c abk(e f)ed aklc)(e £)d|b (3.66)
37 o) pak 3
== 7F|:)?<(ab,(A) Fcl()i()l (f|(A) T

where the dots denote contributions from the A-dependent boundary, discussed in detail in
Appendix B.2.4, while F‘;"l;qc) 4(A) is the genus-one regularized modular integral

dp,dp 1
Fg(lpl;qc)d(A) = J 3 _2 Z I:A_ Ap)q[Pabcd]:| . (3.67)
Fin P2 yennnsiez) Tk Y

This establishes (3.20) with @ = m. We show in Appendix B.2.5 that the divergent terms
from the A-dependent boundary of F; , ,, combine consistently such that the renormalised
coupling satisfies the same differential equation (3.20), but for ¢ = 5 or ¢ = 6, for which
one gets additional linear source terms. For the perturbative string amplitude, v = N, the
additional source term vanishes for ¢ = 5, and for ¢ = 6 it can be ascribed to the mixing
between the analytic and the non-analytic parts of the amplitude. In this case one obtains
(B.96)
37

3
(rq) __ (p,9) .0k (r.9) k
Aer Goppeq = 5 Fyeian,Fed) (F1— 5q,6_16ﬂ(5ef5(ab, +28,((a0n) 5 )F gy > (3.68)

where A, ¢ was defined in (3.59).

4 Weak coupling expansion of exact V2(V¢)* couplings

In this section, we study the asymptotic expansion of the proposal (1.5) in the limit where the
heterotic string coupling g5 goes to zero, and show that it reproduces the known tree-level
and one-loop amplitudes, along with an infinite series of NS5-brane, Kaluza—Klein monopole
and H-monopole instanton corrections. For the sake of generality, we analyze the family of
modular integrals (2.30), which we copy again for convenience,

@
G" —RN f dgﬂldgﬂz l—‘Ap,q [pab,cd]
et o\, (22 ()

4.1)
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for a level N even lattice A, ; of arbitrary signature (p,q), in the limit near the cusp where
O(p,q) is broken to O(1,1) x O(p — 1,q — 1), so that the moduli space decomposes into

Gpg >R X G,y g xRPFI2, (4.2)

For simplicity, we first discuss the maximal rank case N = 1, p —q = 16, where the integrand
is invariant under the full Siegel modular group Sp(4,7Z), before dealing with the case of N
prime, where the integrand is invariant under the congruence subgroup I, o(N).

The reader uninterested by the details of the derivation may skip ahead to §4.3, where
we specialize to the values (p,q) = (2k, 8) relevant for the V2(V¢)* couplings in D = 3 and
interpret the various contributions as perturbative and non-perturbative effects in heterotic
string theory compactified on T”. In §6.4 we apply the computation in this section to the case
(p,q) = (21,5) relevant for V2>H* couplings in type IIB string theory compactified on K3.

4.1 0O(p,q) — O(p—1,q—1) for even self-dual lattices

In this subsection we assume that the lattice Apg is even self-dual and factorizes in the limit
(4.2) as

Apq = Np-1q-

191, . (4.3)
We shall denote by R the coordinate on R*, ¢ the coordinates on Gp—14-1 and by
a', I = 1...p+ q— 2 the coordinates on RP™42, The variable R > 0 parametrizes a one-
parameter subgroup e in O(p, q), such that the action of the non-compact Cartan generator

H, on the Lie algebra so, , decomposes into
50,0~ (P+q—2)" @ (gh ®s0, 14 1)@ (P+q—2), (4.4)

while the coordinates a’ parametrize the unipotent subgroup obtained by exponentiating the
grade 2 component in this decomposition.

The lattice vectors are now labelled according to the choice of A-cycle on the genus-two Rie-
mann surface. They thus take value take value in double copy of the original lattice A, ;& A, .
Thus, the generic charge vector (Q;7,Qa7) €A, & A, ~2 @ (20 (p+q—2)” €277
decomposes into

(Q%, Q%) =(n',n%,Q},Q%, m',m?), (4.5)
where (n!,n?, m!',m?) e I; ® II;; and (Q%,Q%) € Ap_14-1 ® Ap_q14-1, such that
Q" -Q = —2m'n" +Q'Q" (with no summation on r). The orthogonal projectors defined

by Q] = piQ} and Q} = psQ} decompose according to

1 ~ 1 R
T r r r r r
Q z—(m +a-Q +—-a-an )——n ,
Y 2 V2

7 r ~J AT r
P Q7 =D (Q; +n"q;),
La~<T L, I I (4.6)

1 ~. 1 R
T Ar r r r r
Q z—(m +a-Q +—-a-an )+—n )
PRI TRz 2 vz

p}%’aQrI =ﬁ{z’&(a; + nral) >
where 1~)£ a’IN’{z g (@=2...q+16, @ =2...q) are orthogonal projectors in G,_; ,_; satisfying
Q" Q@ =Q} - Q, —Q4Q5, In the following, we shall denote |Q;| = /5% . 53%QIQ.
To study the behavior of (4.1) in the limit R > 1, it is useful to perform a Poisson resumma-
tion on the momenta (m,, m,). For a lattice partition function FI{Z) . with or without insertion,
P,

We use 7 to label indices from 1 to p + g in this paragraph to differentiate them from the indices on the
sublattice.
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we must distinguish whether the indices lie along the direction 1 or along the directions a.
The result can be obtain by applying the corresponding derivative polynomial with respect to
(¥r.1> Yr.e) to the following partition function

1—./&2) [CZHiya-Q“+%ya-Q;1-y”] —
P,q

R2 Z e—ﬂRz(nm)(sf)'951'[(nm)(%)]Te%yl'QEI'[(nm)(?)]T
(n,m)ez*
[ [ezmmT.(a@Jr%ala, n) ezmya-éf‘+§ya-ﬂgl-y“] 4.7)

Ap-14-1

where we denote the winding and momenta doublets n = (n;,n,), m = (m;, m,), and we use
Einstein summation convention for indices I = 1,...,p+q—2 and a = 2,...,p. In this rep-
resentation, modular invariance is manifest, since a transformation £ — (AQ +B)(CQ + D)™}

(A.2) can be compensated by a linear transformation (n,m) — (n,m) _DCTT _DB’TT),

¥1 — ¥1 - (CQ+ D), under which the third line of (4.7) transforms as a weight 1% modu-
lar form.

We can therefore compute the integral using the orbit method [63-67], namely decom-
pose the sum over (n, m) into various orbits under Sp(4,Z), and for each orbit O, retain the
contribution of a particular element ¢ € O at the expense of extending the integration domain
Fy =Sp(4,Z)\ Hy to T\ H,, where T, is the stabilizer of ¢ in Sp(4, Z). The integration domain
is unfolded according to the formula

v Fa=T\H,, (4.8)
YET\Sp(4,Z)

where one must take into account that —1 € Sp(4,7Z.) acts trivially on H,. The coset repre-
sentative ¢ € O, albeit arbitrary, is usually chosen so as to make the unfolded domain I'\'H,
as simple as possible. In the present case, there are two types of orbits:

The trivial orbit (n,m) = (0,0,0,0) produces, up to a factor of R?, the integrals (4.1) for

the lattice A,_; 4, provided none of the indices ab, cd lie along the direction 1,

GO0 _ p2 e-1e-D

af,yd af,yd (49)

while it vanishes otherwise.

The rank-one orbits correspond to terms with (n, m) # (0, 0, 0, 0). Setting (ny,ny, m;, my) =
k(cs,c4,ds,dy4), with ged(cs, ¢4,d3,d4) = 1 and k # 0, the quadruplet (c3, ¢4, ds, d,) can always
be rotated by an element of Sp(4,7Z) into (0,0,0,1), whose stabilizer inside Sp(4,7Z) is FIJ
(4.10)

/

a 0 b u
Al K b b

Fi] = c 0 Z _A./ J(A’M):(A/Ju/)(g d): (Cl d)ESL(Z’Z);(K:)Luu')EZ:3 >
0 0 0 1

(4.10)
which is a central extension of the Jacobi group SL(2,Z)x Z? in which the triple (x, A, u) € Z>
parametrizes the Heisenberg group H, ;(Z)."°

10They satisfy the group multiplication law (A, u,x) - (A, u/, k)= (A + A, u+ ',k + &'+ Ay’ — A ).
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Thus, quadruplets (c3, ¢4, d3,d4) with ged(cs, c4,d3,ds) = 1 are in one-to-one correspon-
dence with elements of Flj \Sp(4, 7). For each k € Z, one can therefore unfold the integration
domain Sp(4, Z)\H, to

, (4.11)

uq,Uz,01

I)\Hy =R} x (SL(2, Z)\H1), x (R/Z)*/Z,)

provided one keeps only the term (c3, ¢4,d3,d4) = (0,0,0, 1) in the sum, and where Z, comes
from the element —1 € SL(2,7Z) leaving p invariant but acting as (u;,us) — (—uy,—usy).

In practice, we integrate u,, u, over R/Z and multiply the integral by a factor 1/2. We

parametrize the domain I'Y \H, by t = |p2|, p,and (uy,uy,01) = (vi —vop1/P2,Vo/P2,01)-
The resulting contribution can be expressed in terms of the y variables (4.7). Changing

Yrq Variables as (y11, Y51, Y145 ¥94) = (Y11, Y1142 = Y21, Y1as Y1al2 — Y2a)> We obtain

a

dt dp-dp- Pabea(z57) R2K2 .

t(lpbq)cé —f f dulduzdcﬁf p12p2 ey Z:e_R_tkl"fl1 71[e2’“k“1Q21
(R/Z)? 5P ®0 iR pha

. 1
X EXP(2“( T y21 +1y1(Q" + Q") — 15, Q" + 20,11 4tyzayz NI
(4.12)
where 9 1 & 2 o8 @
P, — ) =¢,.€ . 4.13
oned(Gy ) = Ereen i 5y, G By 3y, By, *13)
The integral over F1J \H, can be computed by inserting the Fourier—Jacobi expansion
5= 2 Ynlp.V)q" (4.14)
10 meZ
m=>—1
The integral over o, picks up the Jacobi form v ,,(p,v) with m = _%(222

For 62 = 0, one has from (A.54), 1y = c(0)P/A where here P denotes the (rescaled)
Weierstrass function (A.55) and c¢(0) = 24 is the zero-th Fourier coefficient in 1/A =
Zmz—l c(m)q™. The integral over o is trivial while the integral over u,, u, is computed using
(A.72),

0)E.
f d“lf duy o(p,ur + pup) = A% (4.15)
—1/2 ~1/2 12A
where E,(p) = E,(p) — = is the non-holomorphic completion of the weight 2 Eisenstein

series. The contr1but10ns W1th Qz = 0 therefore lead to the integral (after exchanging the
order of sum and integral)

oo
».9),1 2C(0) dt o5 %2 d 2mi i% lity’ay/a
Gapea =R 2 D TrTe 73ab,cd(a—y,) (s traneiions?)
k010 i (4.16)
X J\ Mil—‘/\ I:ezni(y{aQLa-}_Mpzylayl )] 5
5 Py Ap) e
leading to the constant terms in the Fourier expansion of G;"lf)c d
Gg/;)yléo — _RI™ 5€( _6)6(0) ,G)(/pg)lq 1),
¢(0) 4.17)
0
Gapnr =R E(q—=6)(7—q)Z—Gg™ ™,
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G(P,q),l,o
af,yl
Here foif) is the genus-one modular integral defined in (2.29) with N = 1 and &(s) =

n/2T(s/2)¢(s) = E(1 —s) is the completed Riemann zeta function.

and = 0. Note that they are the only components by symmetry of the indices ab, cd.

The missing constant term: It is clear from the differential equation (3.20) that (4.17) does
not give all the power-like terms: indeed, the coupling F*»? appearing on the r.h.s. of (3.20)
behaves schematically in the same limit as [22, (4.37)]

Fo9 ~ RFOMD 4+ E(q—6)RIC+0O(e ™) . (4.18)

The power-like terms (4.17) can be checked to satisfy the differential constraint with the
source term RI°F®14) appearing in the square of F®?, but the accompanying source term
&(q — 6)?R?17'2 requires that G((l",;q,)c ; should also include a term proportional to R*17'2. We
shall now argue that these terms originate from the intersection of the separating and non-
separating degenerations described by the figure-eight supergravity diagram depicted in Figure
lii). In the region |2, > 1, the fundamental domain asymptotes to the domain
P,/GL(2,7) x [0,1]%, where Q, parametrizes the first factor. In the case where all exter-
nal indices are along the subgrassmaniann, the dominant contributions in this limit have
Q, = Q, = 0 and vanishing winding number (n;,n,) along the circle. The sum over dual

momenta (m;, m,) running in the two loops leads to

—TERzmr[le 1" my

3 43030 Dim,ez2 €
)RZJ 1= 2 oy &2 (4.19)

——0(45.0

2 (aﬁs Yo g1
l6m i x[0,1]3 |,]|4 2 @19
Using (A.90), the integral over ; leads to a delta function supported at v, = 0 and its images
under the action of GL(2,7Z) (modulo the center). After unfolding, the remaining integral
then factorizes into two integrals over p, and o,. Assuming that this contribution is accurately
computed by this integral by extending the integration domain of p, and o, to R*, one obtains

the correct power-like term

/ 3 _
Caiys =Rt 6@ =)0 E(ap 85
(B0 L0 i , (4.20)
Gupat :_angR [E(@—6)c(0)]°(7—q)64p >

where the second line — the other non-vanishing polarization — can be deduced in a similar
fashion. While the power-like terms (4.20) are not captured by the unfolding trick in the de-
generation (p,q) — (p—1,q—1), we shall be able to recover them below from the degeneration
(p,q) = (p—2,9—2), see (5.26).

The fact that the unfolding method does not give the full result is seemingly due to the
non-absolute convergence of the integral near the separating locus. In principle, the missing
contributions can be determined by checking the differential equation (3.20). In Appendix E.4
we derive the contributions (4.20) rigorously in this fashion. The same analysis also implies
that there exists additional exponentially suppressed corrections to the constant term due to
instanton—anti-instanton contributions. For what concerns non-trivial Fourier coefficients, we
shall argue in §5.1 (and specifically in Appendix E.1) that the unfolding method is in fact
reliable.

Exponentially suppressed corrections: Contributions from non-zero vectors Q, lead to ex-
ponentially suppressed contributions, which depend on the axions through a phase factor

e2mka' Q1 Each Jacobi form Y, (p,v) in (4.14) can be decomposed as the sum of a finite
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and polar contributions, ,,, = @\f; + ﬂ)\fn (see §A.5), where fb\fn is an almost holomorphic Ja-

cobi form, and 1//)\’) is proportional to a completed non-holomorphic Appell-Lerch sum. For
m = —1, the finite part vanishes and the polar part requires special treatment. In either case,
the integral over o, enforces Q2 =—-2m.

We first treat the finite contributions @(p, v) with m > 0 according to whether 622 =0
or (322 # 0, and then consider the polar contributions:

1. In the case 622 =0, since Jg = C(lg)fz and does not depend on v, the integral over u; re-

ceives only contributions from vectors Q; such that Q;-Q, = 0. To express the remaining
sum, we choose a second null vector Q’2 such that (QZ,Q’Z) = my, where m,, which we

also denote by ged(Q,), is the largest integer such that m%éz € Ap_14—1- The vectors Q,
orthogonal to Q, are then of the form Q, = Qf + %Qz where Qf is orthogonal to both Q,

and 6/2 We denote the resulting lattice by A,_, ,_,. This parametrization is not unique,
but the result of the integral will be independent of the choice of (3’2, in other words it
is a function of the Levi subgroup of the stabilizer of Q2 inside O(p —1,q—1). The sum
over Q; therefore becomes a sum over Q1 €Ay 9qoandm; = mzs +1,SE€EL, T €L,
The sum over s can be used to unfold the integral over u; € [— 2, 2] to the full R ax1s,
as one can see from (4.12), while the dependence on r can be absorbed by a translation
in u, and therefore leads to an overall factor m,. The integral thus becomes, for a given
null vector Q,,

g2 M2 S o27ikQzra! J dt o5 =2 el J dPl‘iPz p;%l c(0)E,
2 & 5 5 P2 124

y f duy, S qiG@HdRg i@ty 4.21)
R

5L
Qy€Ap—24-2

21'51( %

3 B Ky + +u + ap
XPab,cd(a_y/)e Wz Y21 yla(Ql ZQZ)L yzaQZL 4lp2y1ay1 41[y2a-y )

y'=0

The Gaussian integral over u, removes the dependence on the unipotent part of the stabi-

lizer of Q = sz, leaving a modular integral of a genus-one partition function G /315’ bl
for the lattice A,_,,_» depending only on the sub-Grassmaniann G, 54 5 C G,_1 41
parametrizing the Levi component of this stabilizer, given by
~ O - 2
Gl () = ged(@Q) [ dpidpy Ey % S q%aﬁq%aiezﬂpz@’z—(ﬁ”
Fap.0 12 |, p? AP
1 QeAy 242
P24 (4.22)
~ QR Qg ~ QR-QR 1 QraQrp
X[ {Qra— =5 Qra J\QLp — Qrp ) — Sap — ,
(@ Fgeun)@un Tt (- )

where we write Q, as Q for simplicity. Note that the integrand only depends on Q through

6 — QQ“&#, and so is invariant under @ - (~2 + €Q for any € € R such that the sum is
R

defined on the quotient lattice A,_; ,_;mod =753

gcd(Q)
not depend on the specific choice of A,_5 ;.

We find that the Fourier coefficient with charge Q € A,,_; ;1 \ {0} for Q? =0, is given

by
50
Pg(Q) Kos_ (2nR,/2|Q 2)
3R'T GY M0, )E - : - (4.23)

NoToER: i

with the constraint Q-Q = 0, and does

30


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

when all the indices are chosen along the sub-Grassmaniann, where PY(? are defined in
(H.1), and where we defined

GrlavtQ )= Y. dT(0)GY NS (4.24)
d>1
Q/deA, 14

The full expression for all polarizations will be given together with the polar contribu-
tions in (4.44).

Let us point out that Gl(falﬁq O“L(Q, @) = gcGI(Q)G(" 217 (¢,,) for the function defined in

(2.29) for the lattice A,_, ;_, orthogonal to Q, where (¢ parametrizes the Levi subgroup
O(p —2,q — 2) of the stabilizer of Q in O(p —1,q — 1).

2. In the case 622 < 0, the finite part of the Fourier-Jacobi coefficient has the following
expansion in theta series

-0 2 a1, 425

YL (p,v)
where 6,, , and ﬂm’[ are vector-valued modular forms of weight 1/2 and 3/2, respectively
defined in (A.62) and (A.67). The integral over o, enforces (~222 = —2m, while the
integral over u; enforces Q; - Q, = —E The summation over s € Z in (A.62) can be
used to unfold the 1ntegra1 overu, € [— 2, 2] to the full real axis, after shifting each term
in the lattice sum as Q; — Q; + sQ,, since Ql,Qz € Ay_14-1- One thus obtain Fourier
coefficients similar to previous case, using Q, — Q/k,

1 pO (Q) Kos_ (2nR,/2|QR|2)

3R> G(" e Z ro) (4.26)

B.—% 3,
’ \/2|Q‘R|2 2

when all the indices are chosen along the sub-Grassmanian, where P}EQ(Q) are defined
in (H.1), and where we defined, for Q® # 0

G LaD Q) = 476 G L 1)J- (Q) (4.27)
F’aﬂ’_% dZ_]. ( 2d2) Eap,— 2d2
Q/deAp—l,q—l
dp,d 1
GrltQ) = f v ‘. (4.28)
= s .
Fa/5 m A P% A(p) [; m, aﬂ

Here 1“;;’( (Q) is the lattice partition function (with Q= (31 — %Q)

Q=py > @P6E(/20,0.Q), (4.29)
QEAp—l,q—l—ﬁQ
Q-Q=0
with kernel
7P, Rz (QRQ};)
B (V2930 Q) = & )
~ Qr - Qr Qr - Qr 1 Qra-Qup
x(pZ(QLa_QLa |QR|2 )(QLﬂ QL[J’ IQ |2 ) 4_7'5( aﬁ_—|QR|2 )) .

(4.30)
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The latter satisfies Vignéras’ equation

((8x,8 ) —27xd )qS ﬁ(x Q)=2n(q— 4)¢)5ﬁ(x Q), (4.31)
where (-, -) is the inverse of the integer norm on the lattice A,_; ,_;, which ensures [68]
that (4.29) is a vector-valued modular form of weight 2= q+5 = %, consistently with

the weight of 3/2 of hm,[ (p) (note that the condition Q - Q = 0 in the sum of (4.29)
implies that the lattice over which Q is summed is of dimension p +q—3). The analogue

expression for other polarizations will be given along with the polar contributions in
(4.44).

3. Let us now consider the contributions arising from the polar part {07;1 of the Fourier-
Jacobi coefficient ¢, with m > 0. According to (A.69), the latter can be written as an
indefinite theta series

YL (p,v) =

C(m) ms2+sl ., 2ms+{ T,
q y b(s,¢,m, p,), )
Alp) S’ZZG:Z 2 (4.32)

where form>1,

b(s,0,m, py) = 16 [sgn(s +u2)+erf(€,/ an)] Y meal?/m L o5(s+uy),
2 m 21./Po 4mp,
(4.33)

whereas

~ 1 1
b(s,£,0, = o . (434

( p2) =3 500005 (4.34)
As in the previous case, one can shift the charges to 61 — Q,+sQ, sinceQy, Q, € Ap_1g-15
and then use the sum over s to unfold the u, € [— 2, 2] to R. Then, integrating over
u; € [—%, %] imposes Q; - Q, = —{. One then carries out the change of variable u,

= —%__ One obtains the Fourier coefficients, using Q, — Q/k,

\/2102|QR|2
i) ﬁ?(ams (2nRV2IQ:P)
3R’z Go (Q)Z = , (4.35)

V2QRE 2

when all indices are chosen along the sub-Grassmanian, and where we define for Q% < 0

2 — —
Gra@Qe) = D, dT(—) G (S, (4.36)
d>1
Q/deA, 144
q-5
dp,d P 2 152 ~
GU Q) = J PiZPz Aoy 2 9 0np(V20Q), “437)
]:1 p2 p QGAP 1,9-1
with the kernel
—QZ a(x-Q)?
Ppap(x,Q) = — f du (x - Q)[Sgn(u)+erf —/ =X Q ol T

—ﬂ:|xR|2—ﬂTu2—2nuxR‘QR ( QL[J’ 1 )
xe IQrl X7, +tUu x ——6
(xta |QR|)( wp |QR|) 2n %P

V2 2 1
——lQRl €_n|XR|2 (xLaxLﬁ o z_aaﬁ) .

Py (4.38)
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Using integration by part over u one computes that ¢p,g(x,Q) satisfies the Vignéras
equation

((8y, 8y) —2mx8,) Ppap(x,Q) = 27(q — 5)Ppap(x, Q) , (4.39)

therefore the lattice sum in (4.37) is a modular form of we1ght P24 4 4, and the integral
is well defined. For Q2 = 0, one has instead

q—5

dp;dp Py 152 ~
G(p 1,4-1) — 1 2 M2 ( 3Q . ) ’

QEAp 1,41

_1 ~
+p2 2 Z qu ¢P(X[5( V 2PZQ>Q)) s (4'40)
(~2€Ap—2,q—2
with

RQR

1 —TT|X, —71'11 —. Tfu
¢P, af (X: Q) = _m J]R du ((x . Q)Sgn(u) — |X . Q|) IxzI? 2 ‘QR|

Q 1
((’““‘*”m s +uig) =37 5ﬁ)

J2
_ V20l (xLaxL[j _ _5aﬁ)

81

(4.41)

_n(XZ (XRQR))

= i (e )= )~ (o= %)

The integrand in (4.40) must be modular by construction, but its modularity does not
follow directly from Vignéras theorem. In this case ¢p,5(x,Q) satisfies Vignéras equa-
tion (4.39), but it is a distribution and its second derivative is not square integrable.
The function qb;,}a 5 (x,Q) satisfies Vignéras equation (4.31), but this is not the correct
eigenvalue to give the correct modular weight. As the failure of ¢p 45(x, Q) to define a
modular form comes from its singularity at (Q - x) = 0, it is somehow natural that its
modular anomaly can be compensated by a partition function on the lattice orthogonal

to Q.

4. Finally, the case m = —1 requires special treatment. The finite part of ¢)_; automatically
vanishes, but the polar part is proportional to a modified Appell-Lerch sum, as explained
in Appendix A.5,

¢paﬂ(x)Q)

sign(f — 2s) + sign(uy + ) 1
2 415

Y, =—— [ 6 (uy +s)] - +€5 , (4.42)

SZGZ

which differs from the naive Appell-Lerch sum (which diverges when the index is nega-
tive) by a replacement sign{ — sign(£ — 2s). In this case we still get (4.40) with

\/_ du(x-Q) [sgn(u) mgn(j%z +2L\/#Q}%J)]
xe—n|XR|2—7Tu2—2nux|}g§f ((xLa U |Q l)(XLﬁ + uQL/i ) 1 50[/5)
R

Qx| 27
/2 2
_ﬁe—ﬂxﬂz (xLaxLﬂ _ _5a/5)

¢Raﬂ(x3 Q) =

. (4.43)

-Q 2
_TE(X}%_(XRQ%R) )

¢Paﬂ (x,Q) = eT ((xLa - %Qm)(xm - xggRQLﬂ) - %(5(1/5 - %)) .
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Although the modularity of (4.43) no longer follows from Vignéras’ theorem, it must
hold by construction.

Combining the finite and polar contributions, we finally obtain the full expressions for the
exponentially suppressed corrections,

p(” (Q) Kas_ (2nR/2Q2)
1=0 Rl (ZQ}%)q = ,
3

K —7 | 2T R4/ 2
Gg[g?)yllQ — qu G(P 1q— 1)(Q ) % ( T — QR)
2 % ()%

Koo (2Ry/2Q2)

Ggﬂq)lllQ R -5 G(p 1g— 1)(Q ) 2

G((fﬁq) 16Q 3R G(p 1,9— D(Q, )

(4.44)

2Q2)F

where the polynomials ﬁy(? (Q) are given in (H.1), and the coefficient G%Lq*l) is defined by

— (1 A _ 2 _
GrQ)= . df 66(_2%)@;:0; @ +6r T 9), (4.45)
d>1 e d
Q/de/\p—l,q—l

where G " and GY " are defined in (4.24), (4.28),(4.36) for Q* < 0, in (4.40) for
Q? =0 and in (4.43) for Q% > 0.

4.2 Extension to Z, CHL orbifolds

The degeneration limit (4.2) of the modular integral (2.30) for Zy CHL models with
N =2,3,5,7 can be treated similarly by adapting the orbit method to the case where the inte-
grand is invariant under the congruence subgroup I; ,(N) = {(é g) € Sp(4,7), C =0mod N}.
In (2.30), ®;_, is the meromorphic Siegel modular form of T, ((N) of weight k — 2 defined in
8A.4, and F,{?q is the genus-two partition function for a lattice

Apg=~Np14-1@I11[N], (4.46)

where A,_;, 1 is a level N even lattice of signature (p —1,q — 1). The lattice I ;[N] is
obtained from the usual unimodular lattice I, ; by restricting the winding and momentum
to (ny,ny,my,my) € NZ®NZ & Z & Z. After Poisson resummation on my,m,, Eq. (4.7)
continues to hold, except for the fact that n;, n, are restricted to run over NZ. The sum over
(ny,ny,my, my) can then be decomposed into orbits of T, o(N):

Trivial orbit The term (n;, ny, my, m,) = (0,0,0,0) produces the same modular integral, up
to a factor of R?,

(p,9),0 2 A(p-14-1)
Gaprs =R Gogis™ (4.47)
where G((fﬁlng”, is the integral (2.30) for the lattice Ap_1g41 defined by (4.46).

Rank-one orbits Terms with (ny,n,y, m;, my) = k(cs, ¢4, ds, ds) with k # 0 and
ged(cs, ¢4, d3,dy) = 1 fall into two different classes of orbits under I, o(N):
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1. Quadruplets k(cs, c4,ds3, d4) such that (c3,c4) = (0,0) mod N and k € Z can be rotated by
an element of I, o(N) into (0, 0,0, 1), whose stabilizer in T, o(N) is To(N) X Hy 1 (Z) C FlJ .
For these elements, one can unfold the integration domain T, (N )\H, into the domain

(To(N) X Hy 1 (Z)\Hy =R} x (TH(N)\H1), X ((]R/Z)g/zz)ubuz’al , (4.48)

where the Z, comes from —1 € [(N) leaving p invariant but acting as (u;, uy) —
(—uy, uy) on the other moduli.

2. Doublets k(cs,c4,d3,d,) such that (c3,c4) # (0,0)modN have k = OmodN since
(ny,n3) = 0modN. They can be rotated by an element of T, ,(N) into (0, 1,0, 0), whose
stabilizer in T, o(N) is S, S, (TO°(N) x H(z) N(Z)) (SPSU)_I, where

;2)1N(Z) ={(x,A,u) € Hy1(Z), x = p=0mod N}, (4.49)

and the inversion on o is S, : (p,0,v) = (p —v?/0,—1/0,—v/o). One can unfold the
integration domain I, o(N)\#; into S, S, (r°(v) KH(ZZ,)LN(Z)) (SpSs )"'\H,, and change
variable
Q—(S,S,)- Q=—a", (4.50)
50 as to reach (TO(N) x Hy,  (Z)\Hy = 3R x (TO(N)\Hy)p x (R/Z)y, x (R/NZ) ..
Under this change of variable, the level-N weight-(k—2) Siegel modular form transforms
as
o (—) = (VN2 2, o (Q/N), (4.51)

while the genus-two partition function for the sublattice A

p—1,g—1 transforms as

TP [Pyp,s)(— ) = 02N 2(—)P Q) zr(” LPap 351 (4.52)
,Q*

Ap-1,g-1

-1 .
p—1,q—1| the volume factor from Poisson

28 for ¢ < 8 in the cases of interest).

2n—k—2 __ *
where we denoted v2N = |Ap_1’q_1//\

ressummation (Note that v2=N2"20

For the function G((f; ‘21 , changing y variables as before (y1;,Y51, Y10 Yoq) =
(11, Y11U2 — Y21, Y1as Y1als — Yoo ), the sum of the two classes of orbits then reads

a
R? [ dt dp,dp, Pabca(zy7)

fobq)c; J _BJ dludedO‘lf P12p2 oy
re U Jwyzy noov Py Bk2(®)

T[]

—1,q-1
IZ0 p—1.q

dt dp,dp, Pabed(3)
f J duldalf f P1 ZPZ ,cd\ gy’
R* (R/NZ)? R/Z ON\H, P2 @ (Q2/N)

xS e [erily),

(4.53)

N# k#0 p=Lq-1
k=0mod N
where
V') = ezm(%%yg 71 QL +uaQE) =y} Q3+ g V1 Y1 O 4Hy£ay§°‘) (4.54)
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As before, we substitute 1/®,_, by its Fourier-Jacobi expansion 1/®;_, = >, .~ ;¥ k_z’meZﬂ:imo"
so that the integral over o; enforces 622 = —2m. For 622 = 0 case, the integral over u;,u, in
the first line follows from (A.73),

(4.55)

: : 0) NZ2E,(Np)—E
f dulf duy Yr_s0(p, w1 +Puz)=128<\§_)1) Z(Af()p) z(P)’

1 1
2 2

where N2E,(Np)—E,(p) is a level-N weight 2 holomorphic modular form. The contribution
from the second line in (4.53) is calculated using the transformation properties of the genus-
one cusp form and partition function'!. The transformation p — —1/p changes the integration
domain from I'°(N)\'H; to To(N)\#;, and one thus obtains, denoting Q; = kQ,;

oo
Grol@=0 _po | dt o8 STy =22 omeqz it __k(0)
abcd t 24(N—1)
0 Q2€A 141 k#0

N2 —,
Q3=0

dp1dpa (N2—uNI9)E,(Np)+(vNI—1)E ial 3
y J 002 (o NCOROON DRI, e, (23],
LOW\H, P2

(4.56)

The zero mode contribution, Q = 0, may be expressed in terms of the genus-one modular
integrals

do,do, Ea Ty, [Pap]
G;pl;q) — R'N'J p12p2 P 4 5 (457)
L\, P2 Ak
dp,dp, NE,(N
noove, Pz Aklp) T

When A, ; is N-modular, such that A;’q = g-Ap,q/«/Nfor ¢€0(p,q,R), then gGé"l’f) = Gg’l’)q)(g-(p).
The zero mode Q = 0 thus leads to power-like terms

—6 __ _ q—7
®.9,1,0 _ _ pg—5 _ Ck(o) uN1 1 (p—19-1) N —vN ¢ (p—1g-1)
G0 = —RI°E(q—6) 16“[ T O4ap Gy B ap, G, |
—6 _ _ q—7
®.9,1,0 _ _ pg—5 _ _ Ck(o) UN‘ 1 (p—14-1) N—vuN ¢ (p—1g-1)
G’ =R Eq=6)7—a)p [~y G G .
(4.59)

As in the maximal rank case (4.20), the unfolding trick fails to capture another powerlike
term proportional to R?4~'2 which is required by the non-homogeneous differential equation
(3.20). This term can be seen to arise in the maximal non-separating degeneration, and can
be computed as in (4.19), leading to

/ 3 _ . 9
GO = - 2 R 2 [, (0)(1 + vNTIEG~ O 14 510y
(p,9),1,0’ 1 2q—12 q—7 2 (4.60)
Ga/B,ll = _327T3R I:Ck(o)(l +uN )5(q—6)] (7—Q)5a/5 .

These results can also be obtained by taking the limit S, — ©o from the result (5.60) obtained
in the degeneration limit (p,q) = (p — 2,9 —2).

Mie A(-1/Np) = N*(=ip)*Ay(p), and T,

N -1/2
Ap—l,q—l / A |

[PuI(=1/p) = vINEH(=i)p* 2T, [P, 1(p) where

Lq p—1,q—1

k
v =N§+1

p—1,q-1
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The contributions from vectors Q # 0 lead to exponentially suppressed contributions of
the same form as the Fourier modes of null vectors (4.23), non-null vectors (4.26), and the
polar contribution (4.36) respectively, with different coefficients:

1. For null Fourier vectors Q? = 0, the moduli-dependent coefficient coming from the finite
part of 1/®;_,(Q) reads

N SGU 1 1)J-(Q) Gl 1)J-(Q)

(p—1.4-1) _ -6 Fa/30 F,af3,0
GridQe)= Y, d . (0) "
d>0
Q/deAp—l,q—l

NGrapo (7)) = Giaplo” ()

N-1

u

+v > (Nd)T%(0)

d>0
Q/deNA*

, (4.61)

p—1,g—1
where G% q)b o(¢) is defined as in (4.22) with E,/A replaced by E, /A, and gG(qu ole)
is deﬁned as in (4.22) with E,/A replaced by NE,(Np)/Ar(p).

2. For non-null Fourier vectors, Q2 # 0, the moduli-dependent coefficient coming from the
finite part of 1/®;_,(2) is given by

G- 1)Q2(Q ¢) = Z d9- 6ck( 2dz)G(p L 1)J_ (51_2)

F ap, d>0 Fap,— 2d2
Q/deApfl,qfl (4 62)
T Nd)Y6c,(— (p—1g- 1)L ’
>, WO o= gim) 6 (),
d>0 2Nd2
Q/deNAp 1g-1
where we defined, similarly to gG;f’ lﬁq 5@,
d?p Nhy (NP)
G Sal,ﬁ,;)(Q)—f > m( ) Tap @ (4.63)
LIN\H, P2 17,

with r;’;;l(Q) defined in (4.29).

3. For all non-zero vectors Q # 0, the moduli-dependent coefficient coming from the polar
part of 1/®;_,(£2) is given by

OB WSS walc)

d>0
Q/deApfl,qfl (4 64)
fuo D (N e~ 55 ) G G,
d>0
Q/deNA*

p—1g-1

where Gg’ }5" Y is defined as in the previous subsection, upon replacing A(p) by Ax(p).

Note that the polar part and the finite part of the function G(p/gl’qfl)(Q, ) combine for

all Q into the same divisor sum of the function fo/;l’q*”(Q) G;’akq Q) + Gg’;}j’qfl)(Q) and

gGé“’fgl’q_l)(Q) Gg’a}jq Q)+ gGg’;}j"’_”(Q) as in the maximal rank case (4.45). The only ap-
parent difference is for the finite part of the function (4.61), because we defined the func-

tion (4.61) Gl(f alﬁqOI)L 2) and gGl(‘fjotlb,qol)l(Q) such that they can be identified to the function

ng(Q) G("ﬂzq () and ng(Q) GG("ﬁz" ?(¢q) on the quotient of the sublattice of A, 1, ; or-
thogonal to Q by the shlft in Q.
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4.3 Perturbative limit of exact heterotic V?(V¢)* couplings in D = 3

According to our Ansatz (1.7), the exact V?(V ¢ )* coupling in three-dimensional CHL orbifolds
is given by a special case of the family of genus-two modular integrals (4.1) for the ‘non-
perturbative Narain lattice’ (2.3) of signature (p,q) = (2k,8) = (2k,8). The degeneration
(4.2) studied in this section corresponds to the limit of weak heterotic coupling g3 — 0. In
this limit, the lattice Ay, g decomposes into Ayy_; 7 @ II; 1[N ], where the ‘radius’ of the second
factor is related to the heterotic string coupling by g5 = 1/+/R, and the U-duality group is
broken to O(2k— 1,7, Z) c O(2k, 8,7), with O(2k —1, 7, Z) the restricted automorphic group
of Agj_17 = Ay ® I 1[N]. In order to interpret the various power-like terms in the large
radius expansion as perturbative contributions to the V2(V¢)* coupling, it is convenient to
multiply the coupling by a factor of g?f’, which arises due to the Weyl rescaling vy = 7,/ gg
from the Einstein frame to the string frame [22, Sec 4.3]. The weak coupling expansion can
be extracted from section 4.2 upon setting ¢ = 8 and v = 1, and reads

3 1
6 (2k8) _ (2k 1,7) (2k—1,7)
g3 af,ys _4ng25<a/5’57’5>_25<0‘/3 G ((p)+g3 Ga/i Yo ((‘0)
3
/ 3 —z—;‘ 2Q2+2miQ-a
e & 2 2
+ 2 2Q2 G, (@ ), Qua (VERE+ 52) - §6,9))
QEAY 17 R
L g
+ >0 e 8V Gup5(82,Q1.Qn)- (4.65)
QA% 17

The three first terms in (4.65) originate (in reverse order) from the trivial orbit (4.47), the
rank one orbit (4.59), and the splitting degeneration contribution (4.60). By construction,
the trivial orbit reproduces the two-loop contribution computed in (B.57). More remarkably,
the rank one orbit matches the one-loop contribution (B.14), while the splitting degeneration
contribution reproduces the tree-level V2(V¢)*, obtained by dimensional reduction of the
V2F* coupling in 10 dimensions.!?

The exponentially suppressed terms in the second line of (4.65) can be interpreted as
instantons from Euclidean NS five-branes wrapped respectively on any possible T® inside T,
KK (6,1)-branes wrapped with any S' Taub-NUT fiber in T”, and H-monopoles wrapped on
T7. One has similarly for the other components (4.44)

goamote - 2TV gean(g, g)q,,
3 Tapyl 4iv/2Q2 k>
1 35202 .
8),1, 2 -1,
PGon = BV G Q. ), (4.66)
R
where G*7, = G*7 4+ G*7 , and takes the form
aﬂ,—T F,af3,— P,aﬁ,—%
Gk 17)2 Q, )= Z dzck( Zdz)G(zk 1,7) (%)
af,— d>0 af, = 2d2
Q/d€M17
(4.67)
DL Wdra(—52p) 6", ().
>0 b=wa
Q/deNAZk 17

12As already noted in [13], there also exists a tree-level single trace V2F# interaction in ten dimensions, with
coefficient proportional to {(3) [48], but the latter vanishes when all gauge bosons belong to an Abelian subalgebra
and therefore does not contribute to the V2(V¢)* interaction in three dimensions. Note that the single trace
interaction is not protected and receives corrections to all orders in heterotic perturbation theory [69].
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For the null charges Q? = 0, we write instead the finite contribution as

k _
Gl =r— > @NGE() -6 (3]
Q/dgigk—lj

k
N1 2 (Nd)z[ Grop's (74)— gG?Zg%L(,?d)]. (4.68)
Q/de%\l>/9

2k—1,7
In the maximal rank case N = 1, upon setting G(P o G(" ) and replacing c,(m) — c(m),
k — 12 = ¢(0)/2, Egs. (4.67) and (4.68) simplify to

G(23,7) , — d 2 G(zs ,7) Q
aﬂ,—%(Q ?) ;0 o~ 3ke) ap,~ Zdz(d) (4.69)

Q/d€My3 7

It is important to note that the orbit method misses exponentially suppressed terms which
do not depend on the axions a in the last line of (4.65). The existence of these terms is clear
from the differential constraint (3.20), since the (V¢)* coupling F,;.; appearing on the right-
hand side contains both instanton and anti-instanton contributions. Unfortunately, our current
tools do not allow us to extract these contributions from the unfolding method at present. One
could obtain them by solving the differential equation (E.51) for Q = 0.

Finally, it is worth stressing that while the perturbative contributions and G((IZI'; o

have singularities in codimension 7 inside M4 at points of enhanced gauge symmetry, the full
instanton-corrected coupling (1.7) has only singularities in codimension 8. In Appendix B.3,
we analyze the structure of the singularities for a general genus-two modular integral of the
form (2.30) and find the expected one-loop and two-loop contributions with nearly massless
gauge bosons running in the loops.

(2k—1,7)
Gab

5 Large radius expansion of exact V*(V¢)* couplings

We now study the asymptotic expansion of the modular integral (1.7) in the limit where the
radius R of one circle in the internal space goes to infinity. We show that it reproduces the
known V2F* and R2F? couplings in D = 4, along with an infinite series of O(e™®) corrections
from 1/2-BPS and 1/4-BPS dyons whose wordline winds around the circle, up to an infinite
series of O(e_Rz) corrections with non-zero NUT charge, corresponding to Taub-NUT instan-
tons. We start by analyzing the expansion of genus-two modular integral (2.30) for arbitrary
values of (p, q), in the limit near the cusp where O(p, q) is broken to SL(2,R)xO(p—2,q—2),
so that the moduli space decomposes into

SL(2,R) “ G

Gpq— R* x [ 502) .

_z,q_z] x R2PH—4 x R . (5.1)
As in the previous section, we first discuss the maximal rank case N = 1, p—q = 16, where the
integrand is invariant under the full modular group, before dealing with the case of N prime.
The reader uninterested by the details of the derivation may skip to §5.3, where we specialize
to the values (p,q) = (2k, 8) relevant for the V2(V¢)* couplings in D = 3, and interpret the
various contributions arising in the decompactification limit to D = 4. In §6 we generalize the
results herein to degenerations of the form O(p,q) — SL(n) x O(p —n,q—n), and apply these
results to study weak coupling limits in type II and type I string vacua.
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5.1 O(p,q) — O(p —2,q—2) for even self-dual lattices

In this subsection we assume that the lattice A, 4 is even self-dual and factorizes in the limit
(5.1) as

Ap,q i Ap_z’q_z D Hz’z . (5.2)
We denote by R,t,a'’,y the coordinates for each factors in (5.1) (here i = 1,2 and
I=3,...,p+q—2). The coordinate R (not to be confused with the one used in §4) parametrizes
a one-parameter subgroup 1 in O(p, q), such that the action of the non-compact Cartan gen-
erator H; on the Lie algebra so,, ;, decomposes into

50,02 ... 0 (g ®@sl, @50, 5, )P @20(P+q—4)Pe1?, (5.3)

while (a¥!, 1)) parametrize the unipotent subgroup obtained by exponentiating the grade 1 and
2 components in this decomposition. We parametrize the SO(2)\SL(2,R) coset representative
v,' and the symmetric SL(2,R) element M = vTv by the complex upper half-plane coordinate
S =8, +1iS,, such that

i__ - 1 ij — ghvy, iy, J — 1
Vu 75 (0 82) , MY=6""y,lv, ; (51 |S|2) . (5.4)

The remaining coordinates in G,_, 4, will be denoted by ¢. As in the weak coupling expan-
sion, lattice vector are labelled according to the choice of A-cycle on the genus-two Riemann
surface. A generic charge vector (Q7,Q%) €A, , @A, , ~(2® 2 Ve2e0(p+q—4)?e
2@ 2)(1) decomposes into

(QL,Q%) = (n},n?,Q},Q%, mY,m¥), (5.5)

where (n.1 n2 mY m?) e I,, ® I,, and ((Nz},éz) € Apogo ® A, 2q _o such that
Q" -Q° = —m"'n{ —m"n} + Q" - Q°. The orthogonal projectors defined by Q] = pfQ’ and
Qg = p}%QI decompose according to

—1

R«/_

pL,aQrI :pL,a(QI + nira}) >
1

Vi 1 R .
7 ip
PR,MQrI (m” +a Q" + (el + 2a ~al)n” ) + Evulnir ,

RV2
PE4Qy =Bk (@) + ),

pLMQI (m”+a Q" +(1ps”+;a aJ)n)

i1
v

(5.6)

where f)i,a, 131[1,& (a = 3...p, @ = 3...q) are orthogonal projectors in G,_,,_, satisfying
Q'Q'=Q;-Q; —Qr-Q.

In order to study the region R > 1 it is useful to perform a Poisson resummation on the
momenta m'' along I,, @ I, ,. Note that this analysis is in principle valid for a region con-
taining R > +/2. Insertion of momenta polynomials along the torus or the sublattice can be
again obtained using an insertion of a auxiliary variables (y,,, ¥ 4)

1—‘/{2) I:eZﬂiya~§“+%ya ;1 y“]
p.q

=R* > mm)(F) oy w0 [mymp(P)] 28yt [mma ()]

(m;,n;)eZ8

N! i Ij i NoLlm:d Qrlydd
Xl—}i)fzq,z[ 2nim;-(a!Q'+3ala ;) o271y Q* + 5 Yar QY ], (5.7)
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where the sum over indices r = 1, 2 is implicit, we used Einstein summation convention for in-
dicesr =1,2,u=1,2,i,j=1,2and a =3,...,p, and where M is defined in (5.4). In this rep-

resentation, modular invariance is manifest since a transformation Q — (AQ+B)(CQ+D) ™! can
be compensated by a linear transformation (“l 2;) — (g; 2;) e ), yu— yu-(CQ+D),

under which the third line of (5.7) transforms as a weight l% modular form. We can therefore
decompose charges (n;, m;) into various orbits under Sp(4,Z) and apply the unfolding trick
to each orbit:

The trivial orbit (m;,m;) = (0,0) produces the integral (4.1) for the lattice
A;‘fzz g2 = Np2g2®N, 545, uUptoa factor R*, and vanishes if one of the indices ab, cd
lies along 1,2

GO = R GU ) (5.8)
Rank-one orbit This orbit consists of matrices (n;, m;) # (0, 0) where (n;, m;) and (ny, m,)
are collinear and not simultaneously vanishing. Such matrices can be decomposed as
(n;, m;) = (é)(C?,, C4,ds3,dy4), (j,p) # (0,0) and ged(cs, ¢4, ds, ds) = 1. Quadruplets (cs, ¢4, ds, dy)
with ged(cs, ¢4,d3,d4) =1 can all be rotated to (0,0,0,+1) by a Sp(4,Z) element, whose sta-
bilizer is the central extension of the Jacobi group F{ (4.10), and are in one-to-one correspon-
dence with elements of FlJ \Sp(4, 7). Thus for each doublet (j, p) # (0,0), one can unfold the
integration domain Sp(4, Z)\'H, to F{\”Hz =R, x (SL(2, Z)\H1), % (TB‘/ZZ)M1 w0, (for fur-

ther details, see below (4.11)). We parametrize I‘i' \H, by t = l 2| , o and

(u1:u2)o-1) = (V] - uzPl,Vz/Pz, Ul): and Change the Y variables (J’{W}’éwyla,yz(x) =
(V1 Y1ul1 — Yous Yia» Y1ala — Y2q) stabilizing Py 4

/

Pabea(z2)
Gl _ de dp1dp, "abediay 2 |j+pSP
ab cd — J 3 J l l 3 duldU2d01 f 2 (blo Z e SZ

A P2 (j.p)ez?

(5.9)

x T,

27'51(161 +Pa2)Q21 exp 27-51( 1)r2

iy
mo;V
Ap 2, q—Z[ 2

\/_yw(ﬂ
~ ~ ~ 1
1 2 2
QT Q) =5 O+ Yt t;vZayz ]
where m,;vi# = =3 ((1) g;)(i)), and Pab’cd(%) is derivative polynomial of order four defined in
(4.13), and where the Fourier-Jacobi expansion of 1/®;, is given eq.(4.14).

The integral over o picks up the Jacobi ¢ ,,(p,v) of index m = —%622 Contributions from
Q, = 0 pick up the contribution c¢(0)E,/(12A) (4.15), and lead to power-like terms'>

G(Pq)lo —R9- 46(0)5 (8—q 5)5 G(p—2q 2)

af,yé 6)
1,0 g (60) 8 (510
.0, —4 —q G-1a-D)
GUh? = R 48—71[75 ,—2D,, ] (52 1,5)GY "
where £*(s, S) is the completed weight 0 non-holomorphic Eisenstein series
—s —
£(s,8) = —77: r(s) Z m E(25)E(s,S), (5.11)

(m,n)ez?

13Note that (5.10) has a pole at ¢ = 6 and q = 8, of which the first is substracted by the regularization prescription
discussed in §B.2.4, and the second cancels against the pole from the trivial orbit contribution (5.8).
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with £(2s) the reduced zeta function £(2s) = n°T'(s){(2s) and D,,, is the traceless differential

operator on S; éz(’g‘) acting on S and defined in terms of raising and lowering operators of weight

w as

1 |
DHV:_EO-;VDW_EO-,UVDW’ (512)

with o* = %(03 +i0,) and o; the Pauli matrices.

Non-zero vectors Q, lead to exponentially suppressed contributions, in a similar fashion as
what described for the O(p,q) — O(p 1,q—1) limit, section 4.1. They depend on the axions
through a phase factor e2mim;Qua” 1y order to evaluate them, we insert the Fourier-Jacobi
expansion (A.54) and decompose each 1,,(p, v) into its finite and polar parts. In either case,
the integral over o; imposes (5% = —2m. As in the previous section, we consider first the con-
tributions of the finite part w,bfn(p, v), for null and non-null vectors, and then the contributions
of the polar part zpﬁl(p, v)

1. In the case Q% = 0, one can make the same decomposition as in section 4.1, using the
constraint Q; - Q, = 0 from ﬂ)\g (p). The integral then reads, for a given null vector Q,
=
and ms, = ()

4 ! ~ ) R
5 Z e2mimas Qe ged(Q,) dt o2 2 |j+psP—2rmelQul J dp1czlpz c(0)E,
(.p)ez? R+ 5 P; 124
a1 o Gt
R ’Q%GAP*3:Q*3

ZM(M;’W(Q 2 mag vy QL Q)5 Q3 V1o i VaaYs )

>

y'=0
(5.13)

where gcd(Qz) comes from unfolding the u,-integral that uses the component of Q,
along QZ, and where Q1 e Ap —3g—3suchthat A, 5, 3= {Q1 EA,_ zq o, Q1 Qz =0}/

Grassmaniann G,_, ,_, parametrizing a space orthogonal to Q,, labelled ng/’;_”l (Qy, ¥),
that we define as

el _8dQ [ dpidpy E, o2 132 12 2npa g
GFa/jo Q)= 12 - P% Ak(P)pz ) Z q2%gze R
QEA, 343
~ Qr*Qr ~ Qr - Qg 1 QraQup
Oup————) | »
x[(QLa @ R Q) (Qup — @ R R Qup) - 4@2( @~ )

(5.14)

where A, = A in the case at hand. After defining I; = (Q,P) = m,;Q,, with support
on 1/2-BPS states, and covariantizing the expression with the torus vielbein, we find
that the Fourier coefficient with support I; € A®2 2,2 {0}, with T;T; = 0, and mass

M(T) = 1/ 2M;;T} - T, is given by, when Q2=T;- I;=0

B2 can P(” 1.5) Ky z(zﬂRM(F))
3R2 Gyl O(T,ap)z S (5.15)
M(F)
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where the polynomial P® in (4.23) is defined in appendix H.2, and

1 X q—8 1
Gy an 5)(1",<p)=c(0)[\/—5_|]’+p’s|] Z A8 Gy 2,0),  (5.16)
2 d>1
Q/den, 54

and where we defined Q and the unique coprimes (j/, p’) such that T' = (Q, P) = (j’, p")Q.
The full expression for all polarizations will be given together with the polar contribu-
tions in (5.22).

2. In the case 622 # 0, we replace 17’\51 by its theta decomposition (4.25). The integral over
o, matches az —2m, while the integral over u; imposes the constraint 61 Qy=—L.
The variable s € Z in (A.62) can be used to unfold the 1ntegral over U € [— 2, 2] to R,
after shifting each term in the lattice sum as Q; — Q; + sQ,, since Q1,Q, € Apogo-

One thus obtain a Fourier coefficient similar to previous case, using I; = my,Q, = (Q, P),

0
2 P! (r $) Kas_, (2nRM(I))
3R 2 :(“‘”gcd(”)( , ) E — , (5.17)
(o~ M)z

where we denoted, by extension, the function

q—8

Gl(:iz’qu)gcd(l"i'l“j) (T,p)= (Mlif‘i . Fj)T
> (Xﬁ T T2

d? o ooged(l-T)y o : (5.18)
X Z (—) 2 C(_#)G@ 24 z)gé(ri‘rj)(g,@)’

& tedd-T) Faf,——3
r/ders?,
where we introduced the automorphic tensor G(" 24 Z)gLCM r)(Q, ¢) in (4.28) and the

242
monomials 77(1)(1“ S) in (H.2). Notice that the function G¥ 22+ ged(Ty- F)( , ) only de-

Faf,—

2d2

pends on the direction of T' = (j/, p)Q in Ap_5 42, and on the norm gcd(l“i-I'j)/d2 =Q?/d>.

The full expression for all polarizations will be given together with the polar contribu-
tions in (5.22).

3. For the polar contributions, we use the representation

cm I
PP (p,v) = (m) > gty (s, 0,m, ). (5.19)
A(p)s,ZGZ

One can then shift the charges to Q; — Q; +sQ, since Q;, Q, € Ap_o 49, and then use
the sum over s to unfold the u, € [—%, %] to R. Then, integrating over up € [—%, %]
imposes Q; - Q; = —(. One obtains the Fourier coefficients, using I; = m,;Q, = (Q, P),

0
v PLA () Kos_, (2 RM(T))
3R¥ng;’q-,”(r ®) E Yé) s

(5.20)

=4, ’
M) 2~
where
Gy = [l s Y (- L)arsara ). san
P 5 B YT P, R : :
ap NE i 2d>2 ap
Q/de/\g’zzq )
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Here (j/,p’) are coprimes such that ' = (j/,p’)Q, and where we used the automor-
phic tensor Gg’g}b(é, ) defined in (4.37). Note that the expression above is identical
to (5.18), but expressed in a different manner to include the case where the norm of T'
vanishes.

Combining all contributions, the sum of the finite and polar contributions to the rank
one Fourier mode are given for all polarizations by

O (1Y Koo , (2t RM(T
G(Pq)ll" qT (p Zq 2)(1—- )Zpyﬁ (F) q6 l( TRM(T))

ap,rd =5 ,
M(F)
K¢s 2T RM(T
gLt §R# G2, ) Ty Kat (2TRM(T)) .
a a > ; — s .
Byuw T 9 (ap, ¥ /3 =g
M(T) 2
GOLl . T2 (P 242) s K# (2T RM(T))
Ga/j uv =—R 2 G (F )FR&MFR v ﬂ ,
M(T) 2

where G("‘Z’q‘z’(r ©)=G"¥ Zﬁ" 2 it r)(r ¢)+G§;’;{;‘2’(r, ©), Tov = V' Tiyis Tap = V' Trais
Faf,

and we recall T; = (Q, P).

Rank two Abelian orbits These orbits consist of matrices (E; g;) where (n;, m;) and (n,, m,)
are not collinear (in particular, non-zero) but have Vanishing symplectic product
n; -m, —m; -n, = 0. Such matrices can be decomposed as (g ) = ( ( , Where
(G,p) € My(Z)\{0}, and (4 B) € I} 0 \Sp(4,7Z), with I}, oo = GL(2,7) X Z3 the residual
symmetry at the cusp 2, — oo, embedded in Sp(4,7Z) as

Do ={(§ ,20), v €GL2, 2} x {(5 ), M € My(Z), M = MT}. (5.23)

Doublets (C, D) can be rotated to (0, 1) by an element of Sp(4, Z), and are in one-to-one corre-
spondence with elements I, ., \Sp(4, Z). The fundamental domain can thus be unfolded from
Sp(4, Z)\Hy toT5 oo \Hy = (GL(2, Z)\Py)q, x(R/Z)3 . where P, is the set of positive-definite
matrices. Finally, one can restrict the matrices A = (j, p) € My(Z) to A € M,(Z)/GL(2,7), in
order to unfold GL(2,Z)\P, to Ps.

The resulting contribution can be expressed in terms of the auxiliary variables (y;;, ¥;.4)
(5.7), and we obtain

3 _
GPD:28b _ 5p4 d a0, |Q2|
ab,cd - 1£2,]3 11
Py 1772 —2:3 P ®10
- j R __1,.(1 S ~ =
y Z eanr QQQT Z eZTtlaIAijQJI—ﬂ:TI‘[EﬂzlAT(Sl |S‘12)A+ZQZQR'Q;E:| (524)
QeA®? AEM,(Z)/GL(2,Z)

P—2,9—2

21i L Qfl rsAT‘ Tili+ A ra+l' Qfl sy, a
Xpab,cd(aa_y)e ﬂ:l(lﬁyru( 2 ) iV yraQL 41yra( 2 ) Ys )’

where the factor two comes from the non-trivial center of order 2 of GL(2,Z) acting on
H,. For sufficiently large |Qz| the integral over Q; € [0,1]3 selects the Fourier coefficient
C(m,n,L; ) of 1/®,4, with Q2 = —2m, Q, = —2n, Q; - Q, = —L. As discussed in §A.6, the
Fourier coefficient can be decomposed into a finite contribution C*(n,m, L), independent of
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Q,, and an infinite series of terms associated to the polar part,

i@l 5)(&)
C(m,n,L;Q,) = f d3QI
c 19

=Cf(Q3,Q3,Q:-Qy)

5( tr ((1(/)2 1(/)2)YTQZY))
4

— 2 _ 2
+ Z C(_(SQl 2QQ2) )C(_(PQZ ZrQl) )I:_
y€GL(2,Z)/Dih,

+ (SQl—QQz)'Z(PQz—rQl)(Sign((sQl —qQ,) - (pQ, — rQl)) — sign( tr((lc/)z 1(/)2)YTQ2Y)))] >
(5.25)

where y = (Y ) and Dihy = ((5 %),(9 3)) is the dihedral group of order 8, which stabilizes

(up to sign) the matrix (1(/’2 1/2), or equivalently the locus v, = 0. As explained in Appendix

A.6, this formula holds only when |2,| > 1/4, such that the contour C = [0, 1]3 + iQ, avoids
the poles of 1/®,, for generic values of 2,. Inserting (5.25) in (5.24), we find the following
contributions,

1. The contributions from (51, 62) = (0, 0) produces power-like terms in R?, from the delta
function contribution in (5.25), even though C¥(0,0,0) =0,

(p.a),2Ab0 _ _p2 123C(0) *8=q <\2
Coprs R 5 € (7. 5) 8(ap, 815)

(p,),2Ab0 _ _ 12 12C(0) 8—q —q
Gt = R ' (55L,8)] 53160 — 2D [€7 (551 8) p.

_153¢(0)? s 8 _
Gﬁpv‘ngbo —R%712 6413 [82_‘15(;“/,_21)(“%]5 (STq’S)[STqapa) po)]g (qu,S).
(5.26)

Here, the non-holomorphic Eisenstein series £*(s,S) and traceless differential operator
D,,, are defined in (5.11) and (5.12). It is worth noting that in the limit S, — oo, the

q—6
constant term proportional to £(q—6) S, _2" in the Eisenstein series £* ( > 1S) reproduces
the missing constant term in (4.20). Thus while this term is missed by the unfolding
procedure in the degeneration (p,q) — (p — 1,q — 1), it is correctly captured by the

unfolding procedure in the degeneration (p,q) — (p — 2,9 —2).

uv

2. Contributions of non-zero vectors (Ql,Qz) e Ap 242

contributions. For the finite term CF(Q?, ,Ql Q) in (5.25), and for the simplest
tensorial representation, the unfolded integral leads to

lead to exponentially suppressed

- i j 2 5~
6R85(uv,5p0') Z |A|262ma IAijQi CF(Q%:Q%:QI QZ)(A) ’ B9 (Z),

- 2|Q1rA Q2|
(Q1.Q)en?,

AEM,(Z)/GL(2,Z)

(5.27)
where )
_2R"r1 5 QlR Q1R Qar
=75 0s, ish)AlG s, A 28
|Q A P|? = det (Q b P2 P) and Bg(Z) is the matrix-variate Bessel function [70], defined
by
~ —s/2 dQ _
) =3(i7) f e T, (5.29)
732 |QZ|2 s
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Note that 55(2 ) depends on Z only through its trace and determinant. In the limit
R — o0, or large |Z| = |UV|, the integral over €, is dominated by a saddle point where
Q;VQ; = U; using the identity Tr(UV)U —UVU = |U||V| V1 valid for 2 x 2 matrices,

this is given by
U++/uv|v!
Q)= UV . (5.30)

V e (UV) +24/[0V]

Q? Quir- Qo : :
)A V= 2( B %M &, ), given by (5.24), we obtain

R 1S P2 —Qz-P

— (L 1 1 R R_ IR
QZ o M(I‘)A (1/5(51 |S|2) + |QrAPR] (—QR - Pp ng ))A’ (.31)
where M(T) is the mass (2.5) of a 1/4-BPS state with charge ' = (Q, P) = (Q1,Q,)AT,

and |Qg A Pg| = \/szz (Qr - Pr)*.

For the contributions on the last line of (5.25), the integral over 2, no longer eval-
uates to a matrix-variate Bessel integral, since these contributions depend on 2,, be-
ing discontinuous across the walls where tr((f}z 1(/)2)YTS22)/) changes sign. However,
as long as (5.31) does not sit on the walls, the integral over 2, is still dominated by
the same saddle point, with a prefactor obtained by replacing C¥(Q2,Q2%,Q; - Q,) by
C(Q%,Q%,Q,-Qy; ;). In appendix F, we estimate the error made by neglecting the vari-
ation of C(Q?,Q2,Q; - Q,;,) at finite distance away from the saddle point, and find
that they are of the order expected for multi-instanton corrections. For the remainder of
this section, we ignore these corrections, and perform the above replacement in (5.27).

i = Ra1(1
For the matrices U = §-A (S ISP

In order to write the result for more general polarizations, it will be useful to introduce

3
§§(2V(Z) = 5'uv J d Qz e_ﬁtr(Q;lZ+Q2) b)

AP gl (5.32)
218y (Z)= 1 dgﬂz (9—1) e—mr(nglzmz)
Pl = 3pz7e | gl ’

1

suchthat5WB(°) ' (Z2)=B,(Z) and |Z|zB(1) (2)= L 25 Vizl T2 s+1(z)]

Changing variable ( ) = (91) we therefore obtain the Fourier expansion with respect

to (a;,a,), with support on T' = (Q, P) € A®2

p—2,q—2°
2 2
2 POy BUISLE (S 5%, %]
5 - 2 \§; |S| Qr- P, P,
Gl(lpﬁq;(sZAbl" ~ 2RILG(Q, P )Z aliy ,}i r Pq ’
12Qr
2
L plUie oy B[ ( %20)]
b 5 Ui VY Sl |S| QR PR
G;(apﬂqy)azA I RI— 16(Q,P; " )Z pﬁ}: — ’
1=0 12Qg

R 2R? 51 Q:  Qr-Pr
G(pQ) 2Ab1"N2Rq 1C(Q P or ) <P”’ BqT[ (Sl N (QR'RPR PI% ):I

pe 4 |2QR/\PR|# ’
(5.33)
where the measure factor is given by, for I' = (Q, P)
~ CO0F) = ~7 a1 -
C@P)= > lArTc[a(¥, $NATATA]. (5.34)
AEM,(Z)/GL(2,7)
A 1FeA§22 2
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3. Contributions from the Dirac delta function and sign function in the first line of (5.25)
also produce exponentially suppressed contributions to the same Fourier coefficient.
These contributions are localized on the walls t1r((1‘/)2 12)yTQ,y) associated to the split-
tings (Q, P) = (Qq, P;)+(Q,, P5). For the Dirac delta function terms the integral separates
into the product of two Bessel functions, with arguments given by the masses M(Q,, P;)
and M(Q,, P,) of the 1/2-BPS components, as shown in Appendix D. In Appendix C, we
show that he summation measure for these contributions also factorizes into the two
respective measures for 1/2-BPS instantons appearing in the genus-one integral (1.4),
(1.6). The contributions from the sign functions are estimated in Appendix F.

Rank two non-abelian orbits These orbits consist of matrices (g; 2;) where (n;, m;) and
(ny, m,) have non vanishing symplectic product M; = n; - my, —m; - n, # 0 (in particular,
they are non collinear). Unlike all other orbits considered previously, the contribution of such
matrices depend on the scalar 1) corresponding to the top grade component in the decomposi-
tion (5.3) via a factor e2™1% and therefore contribute to the non-Abelian Fourier coefficient.
While the classification of the orbits of such matrices under Sp(4, Z) is rather complicated, we
show in Appendix G that these contributions can be deduced by a simple change of variables
from the already known Fourier coefficients in the degeneration (p,q) = (p —1,q—1).

5.2 Extension to Z, CHL orbifolds

The degeneration limit (5.1) of the modular integral (2.30) for Z, CHL models with
N =2,3,5,7 can be treated similarly by adapting the orbit method to the case where the inte-
grand is invariant under the congruence subgroup I, ,(N) = {(é g) € Sp(4,7), C =0mod N}.

In (1.7), ®4_, is the cusp form of I, o(N) of weight k = 1\%1 defined in (A.33), and F/i)q [Pabcal

is the genus-two partition function with insertion of P, .4 for a lattice

Apq=Np2q 2001 ®I[N], (5.35)

P>q

where A,_, ,_, is a lattice of level N with signature (p —2,q —2). The lattice I, ; ® I[ ;[N ] is
obtained from the usual unimodular lattice II, 5 by restricting the windings and momenta to

2 2 . o
E; z;) = (2; Z; m; mg) c ((NZZ)2 %z), hence breaking the automorphism group 0(2, 2, Z)
to o7 X[Ty(N) xT,(N)], exactly as in [22]. After Poisson resummation on m;, m,, Eq. (4.7)
continues to hold, except for the fact that n, are restricted to run over (N Z)?. The sum over

A= (ﬁ; z;) can then be decomposed into orbits of T, 5(N):

Trivial orbit The term (“1 ml) = (8 8) produces the same modular integral, up to a factor

4 n; my
of R™,
.0,0 _ p4 ~0p—24-2)
GID0 = RGO, (5.36)
where Géf,;l’ng” is the integral (4.1) for the lattice A,_,, , defined by (5.35).

Rank-one orbits Matrices A of rank one fall into two different classes of orbits under I, o(N).
Let us first consider the case where (n,,m,) # (0,0) and denote (n,, m,) = p(n’z,m’z) with
p = ged(ny, my):

1. Matrices with n’2 = 0modN, as they are required to be rank one, can be decomposed as
np my) (0 0 O jyfA B
(nz mz) o (O 0 0 p)(C D)’ (5.37)
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with (j,p) € Z2 ~ {(0,0)}, p # 0, and (4 B) € (Ty(N) x Hy1(Z)\Tyo(N), with
Zy x To(N)X Hy1(N) C I"i' . For this class of orbits, one can thus unfold directly the do-
main Ty o(N)\H, into (T[o(N) X Hy 1 (Z))\Hy = R x (To(N)\H;),, X (R/2)*/Z,)
(for further details, see (4.48));

ui,Up,01

2. Matrices with n, 7 0mod N can be decomposed as
n m) (0 j O OyA B
(n2 mz) o (O p O 0)(C D) ’ (5.38)

with (j,p) € Z & NZ ~ {(0,0)}, p # 0, since n, = OmodN, and where (4 2) €

SpSo(TO(N) x H(ZZ’)LN(Z))(SPSU)_l\FZ’O(N), recalling the definition

Hy y(Z) ={(x, A, 1) € Hy \(Z), x = 4= O0mod N}, (5.39)

and where S, denotes the inversion over o. One can then unfold the fundamental
domain T 5(N)\H, into S,S, (F°(N) x H(zz,)l’N(Z)) (SpS5) "\ H,, and change variable
Q—(S,5,)- Q= —Q! as in the weak coupling case (4.53) to recover the integration
domain (T°(N) x Héz,)l’N(Z))\Hz =R; x (FO(N)\Hl)p x(R/Z),, x (IR/NZ)I%DGI. Under
this change of variable, the level-N weight-(k — 2) cusp form transforms as in (4.51),
while the partition function for the sublattice A,_, ,_, transforms as

Lo ol Papys D = NI PEHIITRY P s, (5.40)

Ap—2,q—

ke -1 _
where we denoted v2N K2 = \Az—z, 2 /Ap_z,q_2| (Note that v2 = N272%s for g < 8
in the cases of interest).

The remaining contributions A with (n,, m;) = (0,0) can be split in the two classes of
orbits above. Given (n;,m;) = j(n},m}), where j = ged(n;,m;) and j € Z, terms with
n] = 0modN correspond to cases (j,p) = (j,0) in the first class above, while terms with

n} #0modN correspond to (j,p) = (j,0) in the second class above.
For the function Gé"l’z)c’;, changing the y variables as before ( y{u, yéw Vi Yoy) =
(V1 Y1ul1 — Y2us Y1a Y1alla — Y24), the sum of the two classes of orbits then reads (similarly

to (4.53))

3
de dp,dpy Pabed(zy7)
el _ pa 1402 y
Gapbq,cd =R J t—SJ duldu2d0'1 J Pl s (Q)
R+ (R/Z)? LIN\H, P2 k=2

/

_mR i a2
« Z o Spe litPSI re

IieZniQZI(ja{+paé)y(y/)i|

P—2,9—2
(j.p)ez?
3
dt dp,dp, Pabcd(z57)
+R4f _SJ duldO'lf duzf p12p2 ab,c Yy
r+ U Jw/NZ) R/Z o, Py ®k2(Q/N)
2 ’ 2
v _IR% i hS |2 Oa(ial I
a2, e Jemimlyen),
(j.p)eZ?
p=0mod N
(5.41)
where
mivi /W , o u , N , o , Va
y(y/)_ezm(% ey} QL “F1Qar ¥ Qor “+ s Y Y1+ B V5oV ) (5.42)
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with mivL = %( j +PpS1,pS5). The contributions with 6% = 0, after integration over uq,u,
2

(4.55), can be brought back to regular integral over I;;(N)\?#; by changing variable p — —1/p.

Similarly to (4.56), the transformation property of the genus-one partition function and the
level-N cusp form allows to obtain'*

oo
e D M
0 QZEApfquZ
f

Q=0
2 |j+pSP? dp1dpy N2E,(Np)—Ey(p)
e Szt 5
LIN\H, P2 Ay (5.43)

/

(j.p)ez?

+ uN Z,: e—%flﬁpslzj dp;dp, Ez(p)—EZ(Np)}
2
(.p)eZ? L(N\H, P2 Ar(p)
p=0mod N

0 -1 I F]
% 82711Q21(Ja1+pa2)FAp—l,q—l [Pab,cd(a_y)y(}’/)] )
The zero mode contribution, Q, = 0, lead to power-like terms

G(p 0,1,0 — RI4 Ck(o) [

(p—2q 2)
ap.y5 167N —1) Gy & (55, 8) - N7 (554, NS))

— 6ap, G (NE (5L, ) —uN T £ (5L NS))

_ (0) -
G(pq)lo RI—4 Ck Q5
o 487(N — 1)[ ]

x [6U2 (e (5L, 5) — N T £ (5L NS))

cG(P 2N EX ( 1.8)— uN'T & ( NS))]
(5.44)

where we use the genus-one modular integral Gflpl’)‘”(go) (B.11), with integrand invariant under
the Hecke congruence subgroup I,(V), as well as gG(P 9 (4.57) (Note that the cases of interest
satisfy gG‘(lzgfz,s)(so) — (2k 26)(Lp) gG(zk 44)(@) — (2k 44)(('0))

The terms with non Zero Vectors Q lead to exponent1ally suppressed contributions of the
same form as the Fourier modes of null vectors (5.15), non-null vectors (5.17), and the polar
contribution (5.20) respectively, with the following changes:

1. In the case of the finite part of 1/®;(Q), for null Fourier vectors Q% = 0, the CHL equiv-

(p—2,q4-2) -
alent of GF af.0 is

0) rlj’+p’'Slqa-s
GU22(T §) = c(
Faﬁo( t ) 12(N—1)[ \/S_Z ]

X [( Z d18— Z vNd?1™ S)Gg;ﬁq S)L(Q,CP)

d>1 d>1 (5.45)
r/deAP g2 F/dEApflq*Ze)NAp*Z,q*Z
(0% w3 v
d>1 d>1
T/deA) ,  s®NA , r/deA‘szq L

where we defined the coprimes (j’, p’) such that T’ = (j/, p)I".

“Recall that Ac(~1/Np) = N2 (=ip)Ax(p), Ty, , [Py )(=1/p) = v INT (=)0 2T, |, |, [Py)(p)
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2. For non-null Fourier vectors, Q? # 0, the finite part of 1/®;_,(Q) contains two terms

. -8
G(P ZQgZCL(F F)(F; (p) — (Mljl—vl . Fj) 2

afy,—

2d2

ged(T;-T;) d2 qT (p—2, z)J_ Q
(2 (- () T o R )

d>1 RSV (5.46)
F/deAP 20-2
ged(T;T;) Nd? o (p—2,9-2)L Q
+ Z Uck(_ N )(gcd(T‘i'Fj)) gG;ﬂ " ity (@ ) |
d>1 ’ 2
I/deN; _,, ,®NA:, e
with
d&*p Nh, (Np)

G T ) :f P, (5.47)

af,m (Nd V)V pz Ak(p) Nd

and F(:nb’l(Q) the vector-valued partition function defined in (4.29).

Rank two abelian orbits Matrices (“1 21) = (2“ nz mu) with vanishing symplectic
ny 2 21 22 21 22

product n; - my, —m; - n, = 0 but (n;, m;) # (0,0) and (n;, m,;) and (n,, m,) not aligned, fall

into four different classes of orbits. Consider k; = gcd(n;, m;) and k, = gcd(n,, m,), the four

classes depend on whether n; /k; and n,/k, are congruent to 0 mod N or not.

1. Whenn, /k; and n,/k, = 0 mod N, one can rotate the element as (ﬁ; E;) = (8 E;)(’é ),

with (p1,p2) € My(Z) \ {0} and ( ) € I o\ o(N) (A, C are not independent and
the fourth winding entry, say n,,, vanishes because of the symplectic contraint). The
representative is stabilized by T, o = GL(2,7Z) x T3, and one can restrict the sum over
matrices A = (j, p) € M,(Z) to A € My(Z)/GL(2,7) and unfold the fundamental domain
from Ty o(N)\H; to Ty oo \Hy = (P2)g, X (]R\Z)31, with (Q,P) €A, ® A,,,.

2. The two cases n;/k; # OmodN but n,/k, = 0 modN, and n;/k; = OmodN but
n,/k, # 0 mod N, should be considered together. Respectively, the charges can be ro-
tatedas(I11 ml) ]588;( 5),0<j <k,pezZ~{0}, and( ) 0Tk 9 B,

0p 00
0 < j < Nk, p € NZ \ {0}, by construction of the lattice (5.35). (é g) e
Sprz(lo)o NS 1\Fz o(N)and (4 B)e SUF;LO S5\ o(N) respectively, with
Tyoon ={(6 ¥),M=(" 1), (q,5) € Z°}, (5.48)
2 .
I =10 MM =(1 3).(qrs) ez,

and one can then unfold I, ,(N)\H; to S, Fz(lgo N pl\”Hz, SUF2(20)O N S_'\H,, and change
variable p —» —1/p, 0 — —1/0, respectlvely ‘After exchangmg p and o in the second
case!®, the two cases can be assembled together to form the two orbits of the decompo-
sition of

Myo(N)={(? %) € My(Z),r =0modN}, (5.49)

over
(Zyx Ty(N) ={(® 1) € GL(2,Z),r =0modN}. (5.50)

> This transformation belongs to T o(N)
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Explicitely,

My o(N)/(Zy x To(N)) = {(§ }),0<j <k,peZ~{0}}

. 5.51
u{(} §),0<j<Nk,peNZ~{0}}. (551

One thus obtains a single sum over matrices A € My o(N)/(Zy x Iy(N)), with a fun-
damental domain unfolded to F(l) N\Hz = (Py)q, x (R\Z)? x (R\NZ),,, with

01,V
(Q,P) € A}, ® A,,. Under this change of variable, the level-N we1ght-(k —2) cusp form
transforms as

®)_5(S, 0 ) = (iVN) *p" 28, _,(Q), (5.52)

such that it satifies the splitting degeneration limit (A.44), while the genus-two partition
function for the sublattice transforms as

T oo lPabed)(Sp 0 Q) = v(VN)*2p 2T [Papeal(),  (5.53)

pP—2,q—2 P—2,9—2

where v = NK/2+1|p*
of interest).

242 / Ap_zyq_zl_l/ 2 (reducing to v = N'7%s5 for g < 8 in the cases

3. Whenn; /k;,ny/k, # 0 mod N, one can rotate the element as (® n. 2;) = (}J,l1 ifz 294 5,
with (pl p2) S Mz’oo(N) N {O},

My 00(N)={(2 9) € My(Z),r =s =0mod N} (5.54)
by construction of the lattice (5.35), and ‘é g) S SPSUF(g) N(S Sp)” 1\I‘2 o(IN), with
IS N ={(5 %) recL@m}x{(} M).M=( 1).(¢.rs) e NZ?}.  (5.55)

One can then unfold I, ,(N)\H, t0 S, S5 F(B) N(S Sp)” \'H,, and change variable Q, —

—Q, ! to recover F(g) N\’Hz = (GL(2, Z)\PZ)Q x (IR\NZ)3 Finally, one can restrict
the sum over matrlces ‘Ae My 0o(N),p=0 modN toA€e M2’00(N)/GL(2, 7)), in order to
unfold GL(2, Z)\P, to P,, with (Q,P) € A} @ NA” .

(p.9),2Ab

After unfolding and changing variables, the result for the simplest component Gaﬁ -

reads

/

3 R:__, (1 S
GPo 25Ab = 2R4J 1 f d’ Ql Z e_nTlr[S_ZQZIAT(S1 |s|12)A:|
ap,y P, |Q2| (R/Z)3 ‘:I)k Z(Q) e

M,(Z)/GL(2,Z)

ZHiGiIAijajl P

€ aﬁ,yS]

x @ [

Ap—2,q—2
Lont f 30, f 30, & w Z/: e—ftTr[};—jﬂglAT(sll |:Z|12)A:|
(

P, 199 ) r/zyx(r/nz) Bka(Q)N

My o(N)/(ZyxTH(N))

2mial’A;;Q)!

x T@ e iQp o <]
Ay _pq—2®Np-2,9—2 af.rd
/

3 3 2 R: __ 1 s
+2R* J o J ROl 2. s, ]
Py |QZ|3 (R/NZ)3 q’k—Z(Q/N) N4 Ac

My 00(N)/GL(2,Z)

idlA..Qi1
x 1—;@) [eZTtla A;;Q
p—2,9—2

Paﬁ,yﬁ] 5
(5.56)
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where v2 =N k+2|A;_2, q_z\Ap—Z,q—Zl_l (which reduces to v? = N%72%s for q < 8 in the cases
of interest).

Integrating over €, selects the Fourier coefficient Cy_»(m,n,[;£5) of 1 /<I>k 2, and the
Fourier coefficient Cy_,(m,n,1;,) of 1/®,_,, with Q2 =—2m, Qy = —2n, Q; -Q, = —L.
The first one is invariant under GL(2,7) C I; o, defined in (5.23), and its Fourier coefﬁcients
can be written after separating the finite contribution C, independent of ©,, from the polar
ones

17"-'(Q1 Qz)(v a) 1)
f[o e a0 - o () Ci5(Q1,Q3,Q1-Q2)

o( tr((1(;2 léZ)YTﬁzY))
4

_ 2 _ 2
+ Z Ck(_(sQl ZQQz) )Ck(_(PQz 2”Q1) )[ _

y€GL(2,Z)/Dih,

+ (SQ1—QQ2)'2(sz—rQ1)(Sign((sQl _ qu) . (PQZ — rQl)) — sign( tr((l(/)z léZ)YTQZY)))] >
(5.57)

where y = (p q) and the finite contributions CF 2(QZ,QZ,Ql Q) are also invariant under
(%) -y (%;) The contributions of 1/&;_, can be written similarly as

. Q
1 elﬂ(Ql,Qz)(€ 2; Q;)

—J dQ, -
N Jionx[oar2 P 2(82)

+ Z Ck(_N(3Q1;IQ2)2 )er(— (PQz—ZrQl)Z)I: _
reLLN)/Z,
+ U991 (500 ((sQ, —qQ2) - (pQa — Q1)) —sign(tr (1%, Y2)r™2u1)) ],
(5.58)

= 6]15_2(Q2) QZ) Q] : QZ)

5Ctr (% %)
4mn

where Z; X I5(N), the symmetry at the cusp, is equivalent to GL(2,Z) N M, o(N), and the
stabilizer of (1(/)2 1(/)2) inside it is reduced to {(§ 9),(¢' °).(; %)}, leading the sum over
Io(N)/Zs.

1. The contributions from (Q;,Q,) = (O, O) come in two classes the ones associated to
the zero mode C _,(0,0,0) = 48N 5(0,0,0) = NZ 7 (see (A.49) and (A.50))
that were absent for N =1, and the ones comlng from the delta function contribution
in (5.57) and (5.58). The zero mode contribution is proportional to

/ /

[E86% 5 o ag fotons
P A

192,72
My (Z)/GL(2,Z) Myp(N)/(ZiyXxTo(N)) Ma00(N)/GL(2,Z)

/ / /
e ONC (D YR YRR W T
My(Z)/GL(2,Z)) Myo(N)/(ZoXxTo(N)) My 00(N)/GL(2,Z)
RAHE(7 — )8 (6= q)(N —v(1+ NTO) + v°NT7) (5-59)

where the integral is a matrix-variate Gamma integral [70] and the sums reduce to zeta
functions using explicit representatives as (5.51).'°

16Alternatively, the integral can be reduced to a beta integral over r € [0, 1] using the substitution v = ,/por.

52


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

With the same computation as in the preceding section, one obtains

3¢, (0)? ~ - -
R e OB Y L B W N B R

af,yd 6473
18R2q 10 (N —v)(1—vN97)
+———&(7—q)E(6—q) NZ 1 O(ap,Oy5)
(.0, 2Ab _ 52— 12Ck(0) 8—q
Gappo = R 5— B (£°(55L,9) +uN"T (5L, NS))

x[526,, = 2D, ] ('35, 8) +uN 7T £ (52, N$)) 5,

6(7 q)qu 10 (N —v)(1—vN97)

E(7—a)E(6—9) NZ 1 5apbpo
0 2AD 53¢ (0) _
Gl(”’)p%yAb__RZq 12%[87‘15( ZD(W](S( S)+UN 5( NS))
x [ 5396 ) = 2Dy (€7 (352, 8) + N T €(552,NS))
9(6—q)(7 —q)R*~10 N —v)(1—vN®7
P Gl ) 5(7—q)£(6—q)( e 550
(5.60)

Recall that ¢, (0) = m = k isthe zero mode of 1/A; = > ¢;(m)q™, and that 8 (ap,0y5) =
§(5 apOy5—Oq(y05)p)- As in the maximal rank case (5.26), the leading constant term in

£ (558,8) ~ E(q—6)S,7 +EB—q)S, (5.61)

reproduces the missing constant term in (4.60).

2. Contributions of non-zero vectors (Q1,Q,) € A;‘ffzy -2 lead to the exponentially sup-
pressed contributions written in (5.33). The measure of each Fourier mode will fall in
three category, depending on the support of (Q,P) . The simplest one is for the most
generic vector Q€ A’ , P € A,, —where we denote X € A the strict inclusion of the vector
X in A, meaning that X € A, X ¢ A[N] - for which only the first orbit in (5.51) of the
second term in (5.24) contributes

v AT (el o)A AT, 5A], (5.62)

w5 5
A‘l(%)eA;‘n@Am

where the N factor comes from the width of the integration domain (R/NZ).

For less generic vectors QEA} , PENA] , one must add to (5.62) the second orbit of
(5.51), allowing to rewrite the two as a sum over My o(N)/(Zy x I5(N)) defined in
(5.51), as well as the contribution from the last term of (5.24). We obtain

v Z |A|q_75k—z[A_1(:(|2Q.|; __?;;ﬁz])A_T;ATQ;A]
AEM,5(N)/[Z,xTo(N)]
A1 (Qenr OA,
(F)er 2 (5.63)
02 > NTHARTG (AT (N e AT ATz,

AEM,(N)/GL(2,Z)

A” (P/N)EA OA}

where in the second line, N factors come from the width of the integration domain
(R/NZ)3, as well as the argument of 1/®,_,(N), and the magnetic vector is rescaled
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P — P/N, allowing us to use M,(N)/GL(2,7Z) instead of M, ,o(N)/GL(2,Z) (5.54) for
simplicity.

Finally, for vectors Q € A,,,, P € A,,, one must add to (5.62) the contribution from the
first term of (5.24). One thus obtain the full measure as

Cr2(Q RO = Z ATy [A_l (__(le.I; __%ﬁz))A_T;ATQEA]
AEM,(Z,)/GL(2,7)
A‘l(g)eAm@Am
+v Z A7 C_y [A_l (_—IQQI; __(|21§|§)A_T§ATQ;A]
AEM3,0(N)/[Z;XTo(N)] (5.64)
A—l(g)eA;eAm
+v2 > NTEARTG (AT (U e AT ATz .

AM,(Z)]GL(2,Z)
A (P(/QN)EA;@A;

Finally, there are also contributions from rank two non-abelian orbits where the two rows
(n;,m;) and (n,, m,) have non vanishing symplectic product n; - m, —m; - n, # 0, but as
mentioned in the previous subsection, it is more convenient to obtain them from the Fourier
coefficients in the degeneration (p,q) — (p —1,q — 1), as explained in Appendix G.

5.3 Large radius limit and BPS dyon counting

We now apply the results in §5.1 and 5.2 for (p,q) = (2k,8) and A,_, ., = Ay, to discuss the
limit of the exact V2(V¢)* couplings in three-dimensional CHL orbifolds, in the limit where
one circle inside T” (orthogonal to the circle involved in the orbifold action) decompactifies.
We regularize the coupling coefficient by analytic coninuation of g = 8 + 2¢, and we substract
the pole at ¢ = 0. We find that the conjectured exact V2(V¢)* coupling (1.7) has the large
radius expansion

s _ 0 €y 2) (TN)
Gaﬁﬁ = Gaﬂ’yé + Gaﬂ’ﬁ + Gaﬁﬁ + Gaﬂ’w (5.65)
corresponding to the constant term, 1/2-BPS and 1/4-BPS Abelian Fourier modes and finally,
the non-Abelian Fourier modes with non-zero Taub-NUT charge discussed in Appendix G.

5.3.1 Effective action in D =4

The constant term in (5.65) takes the form

Gggﬁ =R* Gg;f;g + %(k —12)R%G 45,5 ,5) + O 2™R). (5.66)
The first term originates from orbits of rank 0 (5.36), rank-1 (5.44) and Abelian rank-2 (5.60),
and combines all terms proportional to R* that survive in the decompactification limit. The
second term comes from (5.60), and can be ascribed to the 2-loop sunset diagram shown in
Figure 1 c), with Kaluza—Klein states running in the loops. Its coefficient vanishes in the maxi-
mal rank case. The exponentially suppressed contributions of order e ® and e & are missed by
the unfolding procedure, but they must be present because of the differential equation (2.26).
We shall return to them in the next subsection.

If our Ansatz (1.7) for the exact V2(V¢)* couplings in D = 3 is correct, the term pro-

portional to R* in (5.66) must reproduce the exact V2F# couplings in four dimensions, up to
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logarithmic corrections in R due to the mixing between local and non-local couplings in D = 4.
For the maximal rank case, we find

Gl (S, ) = Ggf;j;s(go)—— (apBy6) (51(5)+— 1ogR) 5<a,5 (51(5)+ logR)G(246)(<p)
(5.67)
where we used the definition (5.11)
E(2s—1) _,_ —ons
E(S)——E (5,8)=8; + —==S5, " +0(e™*™2), (5.68)
’ &(2s) E(2s) 2

and the regularized value at s = 1,

A7 )2s-D) 1
=——1og(S,2|A(S)]), (5.69)

51(5)2512111 55(5)—m an

where A, = e2=¢' 1) s the Glaisher-Kinkelin constant.

Recalling that S, =1/ gﬁ, we see that the first term in (5.67) indeed reproduces the two-
loop contribution to the V2F# coupling in D = 4, while the two other terms reproduce the
tree-level and one-loop contributions to the same coupling, along with non-perturbative NS5-
brane corrections of order e 2752, Because there is no holomorphic modular form of weight
zero for SL(2,7.), supersymmetry Ward identities and U-duality determine uniquely this non-
perturbative coupling from its perturbative expansion.

For the CHL orbifolds with N = 2,3, 5,7, we find instead

E(NS)+E (S)+ logR
(D=4) _ 1 1
Gaprs(S:9) = Gop 25 )_ “/55Y5>( N+1 ) .70
1 NE(NS)—&,(S) | 6 S (2k-2,6)
- - —logR |G\~
4N+ 1) “"ﬁ’(( T

NE(S)—&,(NS) 6

+( 1 N—11 +—logR )gG(Zkzé)(ﬂp)))

which is manifestly invariant under the Fricke duality S — —1/(NS), ¢ — ¢ ¢ [27]. In the
weak coupling limit S, — +00, this again reproduces the tree-level, one-loop and two-loop
contributions to the V2F# coupling in D = 4 (discarding the log terms)

1
_5( G(Zk 26)(¢)Sz+0(6 27‘[52)

G a(S.9) = G”““(so)—— (ap.575)82° — 5

af,yé af,yé
This agreement is of course guaranteed by the similar agreement in D = 3 discussed in §4.3.
Since there are no cuspidal forms of weight zero for I;(N), (5.70) is in fact the unique non-
perturbative completion of the perturbative coupling consistant with supersymmetry Ward
identities and U-duality, including Fricke duality.”
Other tensorial components G,g ,, correspond instead to R2F? couplings in D = 4, which
we refrain from discussing in detail.

7The square of % is determined by supersymmetry. The combination
—gl(N:]):lgl(s)(@ffg’z’ﬁ)(cp) + g@fg’z"’)(w)) = —gl(NS);Sl(S)FS’;YZG)Y(w) is determined with a fixed coefficient

by the source term in the differential equation enforced by supersymmetry whereas the coefficient of

%(ij{;‘m(w) — <@§,§‘2’6) (¢)) is determined by matching the perturbative expansion.
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5.3.2 Contributions from 1/4-BPS instantons

Exponentially suppressed corrections arise from the rank one orbits (5.22), the Abelian rank
two orbits (5.33), and the non-Abelian rank two (G.9). In this section, we focus on the contri-
butions from the the Abelian rank two orbits, which provide the Abelian Fourier coefficients for
generic 1/4-BPS charges.'® These Fourier coefficients can be interpreted as non-perturbative
corrections associated to space-time instantons corresponding to 1/4-BPS black holes wrap-
ping the Euclidean time circle.
Decomposing
Gonea = 2, Gapes €720, (5.7D)
TeA: ®A,,
QAP#0

with T' = (Q, P), using (5.24) and the change of variable Q, — ATQ,A, one obtains

R (18 Q2 QwPp
_ —nTr| == Q +20,( <R
Gyyoy = 2R* f &0 C_o(Q P3 ) Papca(Qu P e s b ooy 5]
P
(5.72)
with 12
Pab,cd (QL:PL: Qz) = (Pab,cd(aa—y) eﬂfﬁRyi“(le)ifVTjH+271’i_yiaFLia_%yia(ﬂgl)ijyja) . (5.73)

The summation measure C(Q, P,2,) depends both on the charge I' = (Q,P) and on Q, € P,
and is given for the maximal rank model by (cf. (5.34))

- _ —_N2 0. —

C@P;2)= > lAc[a((R, &H)ATATRA], (5.74)
AEM,(Z)/GL(2,Z)
A71F€A22’6®A22’6

where Ay, ¢ = A, is the magnetic lattice of the full rank model, and C [(2{” ZZn); Qz] are the
Fourier coefficients of 1/®;, defined in (5.25). For CHL models with N = 2,3, 5, 7, it is instead
given by (cf. (5.64))

Ga@QPi) = > AG[A((E, 2N)ATAT.M]
AeMy(Z)/GL(2,Z)
A‘l(g)eAmeaAm
+ Z |A|Ek—2|:A_1(__QQ.2p _?};ZP)A‘T;ATﬂzA]
AEM, ((N)/[ZyxT(N)]
At (g)e/\j‘n A,
D MAG[AT (G RATATAl L (5.75)

AeM,(Z)/GL(2,Z)
Al ( P?N)e/\;e/\’;n

where Ck_z[(zlm 2ln); 92] and 6k_2|:(zlm 2ln)3 Qz] denote the Fourier coefficients of 1/®;_,(2)
and 1/5,(_2(9) given in (5.57), (5.58).

As emphasized earlier, 1/®;_,(Q2) and 1/®;_,(2) are meromorphic functions with poles,
so that their Fourier coefficients are piecewise constant functions of €2,, with discontinuities as
well as delta-function singularities at the boundary between distinct chambers (moreover, they

18The dimension of the set of generic 1/4-BPS charges, plus one for the Taub-NUT charge, is equal to the Kostant—
Kirillov dimension of the automorphic representation attached to G, .4, see the end of section 3.1.
When af3y§ lie along the O(2k — 2, 6) directions, Pup.y5(Qy, Py, ) reduces to the polynomial in (2.31).
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are strictly speaking well-defined only for |Q,] > %, since the contour C = [0, 1]% generically
crosses the poles for lower values of |[£2,]). Due to this non-trivial £2,-dependence, one cannot
compute the integral (5.72) analytically, but one may analyze its asymptotic expansion at large
radius.

For generic moduli S and ¢, the integral is dominated by a saddle point at 2, = Q7 (5.31),
in the neighborhood of which the Fourier coefficients of 1/®;_,(2) and 1/®;_,(Q2) are con-
stant. One can compute the leading contribution in the saddle point approximation by in-
tegrating (5.72) with C;_5(Q, P; ;) ~ Cx_2(Q, P;Q3) kept constant in the integrand. Using
(5.33) and the identities [13, (20)]
nKy(2nM(2))  mM(Z)K (2 M(2))

det(Z)1/4 2det (Z)3/2 ’
nKo(2nM(2))
det(Z2)V/4 °

where M(Z) = \/2vdetZ + tr(Z) (such that M(2R?*v( Q‘:?;R &R )vT) = RM(T)), the resulting
1/4-BPS Abelian Fourier coefficients in this approximation can be expressed in terms of the
standard modified Bessel functions,

§3/2(Z) =
(5.76)

§1/2(Z) =

@n 9 555 o
Gaﬁ,yﬁ ~ ER Ck—Z(Q)P, Qz)

y (2_75 Qr(aQrp,PrLyPrs)
RZ  |QrAPgl?
15 FL)/KFLE)A 0

RM(T)
4R2|2Qg A Pg|

[KO(ZnRM(F)) + Kl(anM(F))]

+ [ZMKO(ZRM(Z)) + M(Z)Kl(ZTfM(Z))]

ZZZRZV( Q%ER ngfR )VT
1
+————05,5.0.,5Ko(2TRM(T ),
G Slan S Ko(2iRM) |
(5.77)

where I, * = J%(Q 1y +S1P1y,SoPp, ). This leading contribution can be ascribed to instantons

of charge T associated to 1/4-BPS black holes (including bound states of two 1/2-BPS black
holes) wrapping the Euclidean time circle. It is indeed exponentially suppressed in e 2" RM(T)
for M(T) (2.5) the BPS mass of a black hole of charge T', and it is weighted by the mea-
sure factor @k_z(Q,P;QE). For a primitive charge T, i.e. such that there is no d # 1 with
d're A} ® A, the only matrix A contributing to the measure is A= 1 and one can interpret
the measure factor (up to an overall sign) as the helicity supertrace counting string theory
states of charge I', as advocated in the introduction (2.14),

Cr2(Q,P;25) = (—1)¥P1Q4(Q, B S, ) . (5.78)

The value of 2, at the saddle point (5.31) reproduces the contour prescription of [9,33] when
both electric and magnetic charges are separately primitive in A} and A,, and dlQAP e
A} AN A, for d = 1 only. More generally, the contour prescription depends on the set of
matrices A dividing (Q, P) in the electromagnetic lattice. For example in the maximal rank
case, all primitive charges (Q, P) are in the U-duality orbit of a charge of the form [71]

Q=e;+qey, P=pe,, QAP =pe ANey, (5.79)

with e; and e, primitive in Ay, 6. The integer p is sometimes known as the ‘torsion’. In that
case (5.74) simplifies to

CQ.P;) =Y d c[( &, %), (0], (5.80)
d>1
dlp
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in agreement with the prescription in [41,72], with additional fineprint on the contour of inte-
gration. If we consider the same charge configuration (5.79) in CHL orbifolds for e; primitive
in A7 and not in A,,, e, primitive in A, and not in NA} , and with p not divisible by N, such
that it corresponds to a twisted state, only the second line in (5.75) contributes and the result
reduces similarly to

Ce2(Q,P;93) = > d Cra[ (2, Z14), (3 D (2 9] (5.81)
d>1
dlp

in agreement with [6] for p = 1. For general primitive charges such that Q can be in A,,, and
P in NA7 , all three terms contribute to the helicity supertrace, and the result is manifestly
invariant under U-duality including Fricke duality.

5.3.3 Contributions from pairs of 1/2-BPS instantons

Let us now discuss corrections to the saddle point approximation to (5.72). In Appendix F
we estimate the contributions to Gézﬁ”ry)é due to the deviation of C;_,(Q, P,Q,) from its saddle
point value C;_»(Q, B, Q). In the range?’ |Q,| > %, the deviation is due to the poles occuring
when n,0, —m!p, + jv, = 0 with 4n;m! + j2 = 0, resulting in the discontinuities and delta-
function singularities of C;_,(Q,P,Q}) and Ek_z(Q,P,QZ) on P shown in (5.25), (5.57) and
(5.58). In Appendix E1, we show that these contributions are exponentially suppressed in
e~ 2RMI+M(2)) | and can therefore be ascribed to two-instanton effects associated to two
unbounded 1/2-BPS states of charges I'; and I,.

For fixed total charge I', we expect contributions from all pairs of 1/2-BPS states with
charges I'} and T, such that I' =T} +T,. We show in Appendix C that a general such splitting
is parametrized by a non-degenerate matrix B = ([r’ ‘51) € M,(Z), such that

8- —mma(3). (3)-(E - (}). o

where ©; = ((1) 8) and 7, = (8 (1)) All splittings of a given charge I" are in one-to-one corre-
spondence with the matrices B € M,(Z)/Stab(r;) such that Br;B~'T' € Ay @ A, with

./
My(Z)/Stab(r;) = { - ((1) i,) y €GL(2,2)/Dihy, 0<j <k, (j,k)=1}. (5.83)

In the following it prove convenient to use an equivalent unimodular representative

. 1 0 1 L
— =y k’
B B(o |B|_1) v (0 1)’ (5.84)
in SL(2,Q)/Stab(r;, Q), where Stab(7;, Q) is the stabilizer of the doublet 7t; in SL(2, Q).

We show in Appendix C that the summation measure (5.74) on the domain |Q2,| > % (taking
into account the discontinuities displayed in (5.25)) reads (focusing on the maximal rank case

201n the range |Q,| < %, there are additional contributions from ‘deep poles’ of the form (F10) with n, # 0 which
must be avoided in order to define the Fourier coefficient C(Q, P,Q,). In Appendix (E2), we show that irrespective
of the detailed prescription for avoiding these poles, the contribution from the region |Q,| < ﬁ is exponentially

2
—21R?|2n, |

suppressed in e , and can be ascribed to pairs of Taub-NUT instanton anti-instantons of charge %n,.
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for simplicity)
C@P;) = >, lACT AT, %NAT] (5.85)
AEM,(Z)/GL(2,7)
ATITeA oA,
I 5([BT2,811) | (T,I) . AT oA
+Z C(Fl)c(l“z)(— 2712 +< ! 2>(s1gn((F1,Fz))—51gn([BTQZB]12))),
TieA, A, 4m 2

QiAP;=0,T;+,=T

with B € SL(2,Q)/Stab(r;, Q) determined such that I; = Bm;B7'T" and where [BTﬂzé]ij
denotes the entrises ij of the matrix.
To interpret the second line, recall that the central charge Z = %(QR + SPg) for an
2

arbitrary 1/4-BPS state decomposes into orthogonal components Z = Z, + Z_ with

_ 1 | Qr i _ ) P2Qr—(Qgr - Pr)Pr }
e = \/S_z[(l’S) ( Py )i IQR/\PRI( S 1) (QﬁpR—(QR'PR)QR ) ’ (>.86)

The BPS mass is M(Q,P) = |Z,|. It is convenient to write Z,; = (2; +i25)3M(Q, P) with z;
and g, vectors of SO(6) satisfying

Qrt+SiPr - SaPr SoPr QrtSiPg

2 2 29
VS, VS, VS, VS,

The matrix Q7 at the saddle point determines precisely this decomposition through

Z1 _ 1 SZ 0 1 « QR
(zz)_ @(—sl 1)R92(PR). (5.88)

A generic two-center 1/4-BPS solution with total charge (Q, P) is written in terms of the har-
monic functions 2!

(H,,ICI)Z(QI,P{)+(QIZ,PZI) I (52 —51)(2;5‘)’ (5.89)

x—xi|  x—xy] PREUs 0 1 )\ag

zP+zl=1, z =2M(Q,P), =0. (5.87)

and is regular away from the points x; and x, provided the distance |x; — x| satisfies

(T,T) _52P1R+ ‘Q1R+81P1R:_|QR/\PR|
R

—_— =2 Z
|x1 — X5 Y

which requires that [ETQEB]H and (T3, T,) have opposite sign. Returning to (5.85), we see
that when the bound state is allowed, the pair of 1/2-BPS charges contribute to the Fourier
coefficient at leading order with measure factor ¢(I;)c(Iy)|(Ty, Iy)|.

In contrast, when [ETQEB’]R and (I, T,) have the same sign, the bound state is not allowed
and the last term in (5.85) vanishes at the saddle point 2, = Q; in (5.31). This term still
contributes to the integral (5.72), but is exponentially suppressed. At large R, the integral is
now dominated by the boundary of the chamber where the sign of [BTQ,B1;, flips, as shown in

Appendix E1. On this locus, the argument of the exponential Tr[ };—jﬁgl (Sll éiz) + 292( QQI;ZJ Q;‘ER)]
RFR YR

[BTQ5B]1;,, (5.90)

in (5.72) decomposes into two pieces associated to I, T5,

R® .. . Al R* ., R .
[ T(sll|§|12)B:|11 +20,([B 1FR]1)2+—[BT(Slléfz)B]zz'i'ZPz([B l?*. (59D
0253 P25z

21Supersymmetry implies that Q;; and P;; are linear combinations of Q; and Py, but this is automatically the
case for 1/2-BPS charges such that Q; A P, = 0.
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The integral is then exponentially suppressed by e 2" RM(I+M(D2) - The same holds for the
contribution of the Dirac delta function which is computed explicitly in Appendix D.

We conclude that (5.72) receives contributions of each possible splitting ' = T} + I,
weighted by the product of the 1/2-BPS measures ¢(I})¢(I3;) and further exponentially sup-
pressed by e 2 RMTN+M(I2)) | 1t js important to distinguish these two-instanton contributions
from one-instanton contributions due to bound states of 1/2-BPS states. Due to the triangular
inequality M(T}) + M(T,) = M(T), these contributions are subdominant compared to the
one-instanton contributions (5.77) away from the walls of marginal stability. On the wall, the
two contributions become comparable and the complete Fourier coefficient is continuous.

This discussion generalizes with some efforts to CHL. models with N prime. In Appendix C
we show that the measure function for |Q,| > }T decomposes as

Ca@Pi) = > AICE (A%, o)A
AEM,(Z)/GL(2,Z)
aY(Yen,on,
+ > Lﬂéﬁd[A*%gfl AT (5.92)
A€M, 4(N)/[ZoxTH(N)]
A—l(g)eA;eAm
D L U 0 il
AEM,(Z)/GL(2,Z)

A ( P?N)e/\;; N

o S([BT,B11,)  (M,L), . A s
> e~ 2 2 sign((n, 1)) —sign([870,81,2)) ).
- 4 2
LEN: @A,
Qi/\Pl-=O,1"1+1"2=1"

with B € SL(2,Q)/Stab(r;, Q) such that T; = Bm;,B7IT. In this case one must distinguish the
charges T} and T, that are twisted or untwisted to reproduce the exact measure (2.22). In
Appendix C we analyze all the possible splittings depending on the orbit — electric or magnetic
— of the charges I and T, under T,(N). The sign (—1)¢? = (-1l for all splittings, which
ensures that the contribution of the sign function in (5.92) to the helicity supertrace Q4(Q, P, t)
satisfies to the wall-crossing formula (2.12) with the correct sign.

It is interesting to understand this property from the differential equation imposed by su-
persymmetry Ward identities (2.26). We show explicitly in Appendix E.3 that the component of
the differential equation with all indices along the decompactified torus is satisfied. In general,
one finds that the leading contribution to the Fourier coefficient (5.72) with constant measure
Cr—o(Q,P;Q,) ~ Cr_,(Q, P; Q) as in (5.77), solves the homogeneous equation (3.17). The
contributions due to the discontinuities of the summation measure C;_,(Q, P;,) give a par-
ticular inhomogeneous solution sourced by the quadratic term in F,;.4. For a given 1/4-BPS
charge T, the Fourier coefficients of F;.4 contribute a source term proportional to ¢ (T3 )¢ (Ty)
for all possible splittings I' = I'; + I, which matches the structure of the measure measure in
(5.92). In this way, the differential equation constrains the measure function to be consistent
with wall crossing, such that the discontinuities must correspond to the sum over all possible
splittings weighted by the 1/2-BPS measures of the constituent charges as exhibited in (5.92).

The explicit check of the differential equation in Appendix E.3 demonstrates that the un-
folding procedure reproduces the correct Abelian Fourier coefficients, at least up to terms that
are exponentially suppressed in e~2™®*  This is an important consistency check because the
same unfolding procedure fails to reproduce the non-perturbative contributions to the con-
stant terms associated to instanton anti-instantons, which are also required to be present in
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order for the differential equation to hold . These effects are also necessary in order to re-
solve the ambiguity of the sum over 1/4-BPS instantons [49], which is divergent due to the
exponential growth of the measure C_,(Q, P; Q2}) ~ (—1)@F 1™ Pl [2 8],

6 Weak coupling expansion in dual string vacua

In section §4.3, we analyzed the weak coupling expansion of the exact V2(V¢)* in D = 3,
in the limit where the heterotic string coupling is small. However, the CHL vacua of interest
in this paper also admit dual descriptions in terms of freely acting orbifolds of type II string
theory compactified on K3 x T3 [73,74], or of type I strings on T’ [75,76]. In this section, we
discuss the weak coupling expansion of these exact results on the type II and type I sides. We
also include a brief discussion of the V2#* couplings in type IIB string theory compactified on
K3, whose exact form, as conjectured in [47], involves the same type of genus-two modular
integral, albeit with a lattice of signature (21, 5).

6.1 Weak coupling limit in CHL orbifolds of type II strings on K3 x T3

On the type II side, string vacua with 16 supercharges can be obtained by orbifolding the
type II string on K3 x T2 by a symplectic automorphism of K3 combined with a translation on
T3 [73,74]. In order to keep manifest the four-dimensional origin of these models, we shall
assume that the translation acts only on a T2 inside T2. In the weak coupling limit g5 — 0
(where g is the string coupling in type IIA compactified on K 3), the ‘non-perturbative Narain
lattice’ (2.3) decomposes into [77],

Agrg = Nok—44® [111,1 ® 111,1[N]] & [111,1 ® 1[1,1[N]] , (6.1)

where the first summand is the sublattice of the homology lattice Ayg4 = Heyen(K3) which
is invariant under the symplectic automorphism, the second is the lattice of windings and
momenta along T2, and the third is the lattice of windings and momenta along S; together
with the non-perturbative direction. The last two summands can be combined into a lattice
Ay 4 = I 5 ® I, ,[N] which can be thought as the lattice of windings and momenta along a
fiducial torus T#. Assuming for simplicity that flat metric on the torus T? is diagonal and the
Kalb-Ramond two-form vanishes, the radii of the four circles in this fiducial T*# are related to
the three radii Rs, Rg, R, of the physical T> by

R¢ R; Rs R5R6R7) 6.2)

(rl,rz,rg,r4)=( ) b >
8ol geln golnr g()@f’l

In the limit gg — O, the four radii r; scale to infinity at the same rate, so the automorphism
group O(Ay 4) is broken to a congruence subgroup of SL(4,7), which is identified with the
T-duality group O(Aj 3) along the three-torus. In order to make T-duality invariance manifest,
it is useful to define the type II string coupling in three-dimensions g; = gmlﬁi /V5 where £
is the type II string length and V3 = RsR¢R-.

The analysis in §4.1 and §5.1 — and our previous analysis of the one-loop integral in [22]
is readily generalized to the case where n radii of a lattice I,,_,.,,_, & I, .[N ] become large,
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leading in the maximal rank case N =1 to

3c(0) . o=° g—n—6
(X)) _ (p—n,g—n) n+6 —q
Fipls = VaFrs ™+ o v ) Z (nmiU;m') = 8,56,y + ... ,(6.3)
mieZn
.0 — y2glonem C(O) = n+6—q g-n—6 (p—nq—n)
Gifhs = ViG55 e Z (em'Uym!) "+ 810, G5}
miezn
(0) :
C n—6
— v =) Z (emiU;m) =" | 61p 6y +--ns (6.8
miezn

or in the case of N # 1,

/
(€ (p—ng—n) Ck(o) % n+6—q . . g—n—6
Fapro =VnFaprs "+ Jomz Vn" T2 )(apbys)| D, (xmiU;mi)

+NTL Y

mieZn

(X)) 2 ~(p-ng-n) _ Ck(o) +_6 n+6—q
Ga/i 6 V Gaﬂ Y6 327’[(N _ 1) n F( 2 )6(aﬁ
/
r i et i =16 A (p—ng—n)
x[(v 2, miuym) - sm) )G
mt,..m" ez mieZn
mv L m"eNZ"
/ /
. g—n—6 .
i j _nr—1 irr. . s (P—ng—n)
+(N Z (rm'U;;m!) 2 N Z (mm'U;; )] GY5> (6.5)
miezZn ml mtTreznT

yeuey

mtH  mteNZ"

—12
n (n 3 (1)2

25673 "
/ /
. ._q—n—>6
x[ Z (7Im’Ul-jmJ)qT +Nr_12 (mm'U; m’) ] 0 (ap,0vs)
miezZn ml,..m" ez
mtH  m"eNZ"
2g—10
18V, " n+5—q n+4—q
(N2 1)n3/zr( 2 W(T5)0(ap, Or5)

/ / /

x(N >o— N 4 N2 )det(nATUA)q§5+...,

A S
My o(Z)/GL(2,Z) Mpo[N"1/(ZyXTo(N))  My200[N"1/GL(2,Z)

where the dots denote exponentially suppressed terms and U;; is the metric on the n-torus,
normalized to have unit determinant.?? Here M, »5(Z) is the set of rank two n by 2 matrices
over the integers, M), , o[ N"] the subset for which the first column last r entries vanish mod
N, and M,, 5 oo[N"] the subset for which the two columns last r entries vanish mod N.

The sums over m! € Z"\{0} can be expressed in terms of the vector Eisenstein series for
the congruence subgroup of SL(n,Z) for which the lower left r x (n — r) entries vanish mod
N in the fundamental matrix representation, which we denote by SL,[N"],

/
ety = —F(s) > (emiuym) (6.6)

ml’m’mn—r+1€Zn r
mtT,...m"eNZ"

2
In the case of a square torus of volume V, =r,...r,, U; =r26;/V,".

62


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

The sums over A can be expressed in terms of rank two tensor Eisenstein series for the same
congruence subgroup SL,[N"]

/
En(U) = mIT(EIG—3) Y, det(rATUA)™,
MH,Z(Z?/EGL(Z,Z)
/

eIy = mIEre-1) Y, det(nATUA),

Ae
M, 20[N"1/(ZyxTo(N))
/

* 1 .
sASZLO[oN Jv) = rar(s)r(s— ) Z det (TATUA)™ . 6.7)
Ac
My200[N"]/GL(2,Z)
Note that for N =1, £ */“EL (U) is the standard Langlands Eisenstein series satisfying the func-

tional relation S(n DA, ()= ::L (u™).

For (n,r) = (1 0) and (n,r) = (2,1), (6.3) and (6.5) reduce to the results in §4 and
5 of [22] and the present paper, respectively. The case relevant in the present context is
(n,r) = (4,2). Setting (p,q,n) = (2k,8,4), V4 = Vz/(ggﬂg) = 1/g and multiplying by a
suitable power of g7 for translating to the string frame, we find that the perturbative terms in
the (V¢)* and V2(V¢)* couplings in the maximal rank case are given by

1 9 «SL
(24.8) __ (20,4)
85 Fogs = g/zFa/Sy6+_g (U)o(apbys) t---
3

(248) 1 o9 3 xsL 20,4 27g§2 *SL 2 8
g3 Gaﬁ ve gézGa/&’,yﬁ_%gAl 4(U)5(a/5,G;5})_ 3 [gAl (U 6(ap,by5) + - -
Similarly, for N > 1 we get
gRFES. = giénggy‘g‘uﬁ[ W) +NETINW) 64815+ - ,(6.9)
g3 Gg;gay)é _ 822 Gs/kj—;g) ﬁ[ 25*5L4[N ](U) g*SL4(U)i| ’G;2§;4’4)
_275(1:\))1];] ] GG R Ol R
=g O e )
—% [s,fL‘*(U) +N5;fL4[N2](U)]2 8 1ap.5ys) o - (6.10)

In either case, the rank O, rank-1 and rank-2 orbits are now interpreted on the type II side as
tree-level, one-loop and two-loop contributions, with an additional one-loop contribution in
the rank-2 orbit for N > 1. The tree-level contributions are consistent with the observation
in [78] that the tree-level F* coupling of four twisted gauge bosons is governed by a genus-
one modular integral, and the analogous statement in [79] that the tree-level V2F* coupling
of four twisted gauge bosons is governed by a genus-two modular integral. For N = 1, the
one-loop contributions are proportional to the vector Eisenstein series of SL(4,7Z), or equiva-
lently the spinor Eisenstein series under the T-duality group O(3, 3) of the torus T3, while the
two-loop contribution is proportional to the square of the same. For N > 1 they are similar
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generalizations of Eisenstein series of SL,[N?], and there is an additional contribution at 1-
loop in rank two Eisenstein series of SL,[N2], that are linear combinations of vector Eisenstein
series of the group O(3, 3) of automorphisms of I, , & I ;[N].%*

It would be interesting to confirm these predictions by independent one-loop and two-loop
computations in type II string theory. Finally, the exponentially suppressed terms in (6.8) can
be ascribed to D-brane, NS5-branes and KK (6,1)-brane instantons as explained in more detail
in [78].

6.2 Weak coupling limit in type II string theory compactified on K3 x T2

Let us now consider the expansion of the exact V2F* and R?F? terms in D = 4 obtained in
(5.70) at weak coupling on the type II side. Recall that the heterotic axiodilaton S corresponds
respectively to the 2-torus Kahler modulus T, in type IIA, and the 2-torus complex structure
modulus Uy in type IIB, while the type II axiodilaton S, = Sy corresponds to the Kéhler mod-
ulus T of the 2-torus on the heterotic side, i.e.

S=TA=UB, T=SA=SB, U=UA=TB. (6.11)

In order to expand at small type II string coupling, i.e. at large T,, we decompose the lattice
Agk_z6 into Agy_4 4 ® II, ; ® II; 1[N ] as in section 5.2.
For simplicity we shall use the type IIB moduli in this section, and we won’t write explicitly

the label B. So S is now the type IIB axiodilaton with S, = #. For simplicity we shall only

consider the perturbative terms for the Maxwell fields in the RRSsector, corresponding to indices
a,f3,... along the sublattice Ay;_4 4. Using the results of [22], the perturbative part of the
exact F* coupling is given by

R R R R 12
Focae LF‘Z"*“’4)+16 5 (El(NT)+51(T)+51(NU)+51(U)+FIOggS)
afys 1l gsz apysi " o “(afZys) N=+1
_ 3
= SoF g 5"(60) = o= 8(apBy5)108(S, T, Uy AT AU, (6.12)

where the first term matches the tree-level coupling computed in [78], while the second term
is related by supersymmetry to the R? coupling computed in [80,81].

The exact V2F* coupling is obtained from (5.70) after dropping the logarithmic terms in
R,

él(NU)+€1(U))z

6.13
N+1 ( )

~ -~ 3
(2k—2,6) _ (2k—2,6)
Gab,cd NP(U’ ('0) - Gab,cd ((‘0) - 4_71:5(017,5“1)(
Nél (NU) B él(U) S (2k—2,6) Né’l(U) - él (N U) gé(zk—z,e)

1
_Za(ab,( N2—-1 ch) (p)+ N2—-1 cd) ((P)) ’

where U parametrizes SL(2)/SO(2) and ¢ the Grassmannian on Ay, ¢. The power-behaved

term of @;2;‘;2(’16) (¢) in this limit is given in equations (5.36), (4.59) and (5.60) forg =6, v =N,

R=,/5,= gl, and ¢ = t the K3 moduli of the Grassmanian G, _, ,. After expanding around

*3The condition that SL(4, Z) preserves the lattice I,, ® I ;[N], so Qg4 = O[N], implies that the matrices are
eitheroftype(‘ e ) mod N oroftype(:

: ) mod N, but the condition that the it preserves the dual lattice, i.e.
Q;; € Z for ij # 12 with NQ,, € Z forbids the second.

0
0
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q = 6 + 2¢ and subtracting polar terms,?* we find

él(NT)+él(T)+Elogg 2
~(2k—2,6) S (2k—4,4) T s
Gaﬁ Yo ((‘0) _Gaﬂ ré (t) - 5(aﬁ 5Y5)( N+1 )
NEINT)=E,(T) | 6 NE(T)-€ (NT) 6
_ 1 5 : N—-1 : +x T log gs a(zk—4,4)(t) + : N—].1 loggs gG(zk 44)([‘_’))
4g2 (ap, N+1 16) N+1 2 .
(6.14)

To compute the power-like term of @((12;_2’6)(@) one proceeds as in [22], and finds after expand-
ing around q = 6 + 2¢ and subtracting polar terms

2k 2,6 2k—4,4 2N
GE2(p) ~ (( (0 + = 8ap(E(T) — &N T)))
12 1 A A
+—N+1—Znéaﬂ(?log(gs)+€1(T)+51(NT))- (6.15)

The function g@m’z’@(cp) is obtained by acting with the involution ¢ on the K3 moduli t and
on the Kahler moduli T by Fricke duality T — —+=, so that

G (p) ~ —(GG(Z" () + —5aﬁ(51(NT) £(1)))

12 X )
e 55 logle) +E (N +ENT)) . (6,16

Collecting all terms, we obtain the complete perturbative V2F# coupling in D = 4,

(2k=2,6) _ (2k—4,4)
Giain = 3054 ©
1 NEINT)-E(T)+NEWNU)-E(U) 6 _
- +—1lo G(Zk (¢
4N +1)g2 P (( N—1 - logg 8)Gun (1)

(Ngl(T) 51(NT)‘EJ\1751(U) £1(NU) _lggs)gG(Zk 49(¢)

>(é‘l(T)—él(NT))(c‘fl(U)—&(NU)))
-1

—2N&.5

—4—n5<aﬁ,5y5>( N1 (6.17)

The terms involving log g, originate as usual from the mixing between the local and non-local
terms in the effective action [82]. The result (6.17) is manifestly invariant under the exchange
of U and T, hence identical in type [TA and type IIB. It is also invariant under the combined
Fricke duality T — — NT, U— NU, t — ¢t [27], which is built in our conjecture for the
non-perturbative amplitude. In the maximal rank case, (6.17) must be replaced by 2°

Géfé?an—g—Ggfg“;gtr)+ 6<aﬁ(log(sz(T)ﬁ)+log(U2|n(U)|4) 2log g, )GUn(t)
S
27

—4?5<a/55y5>(10g(T2|n(T)|4)+10g(Uz|n(U)I4)—210ggs) . (6.18)

**Note that the lattice is fixed to Ay 56, and the expansion in g = 6 + 2¢ only applies to the numerical value of
the various exponents, just like if one introduced a regularizing factor of |2,|¢ in the genus 2 integral.

Note that G% is finite for the maximal rank case, whereas @fg""‘” requires in general a regularization due to
the 1-loop supergravity divergence in six dimensions.
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It would be interesting to check these predictions by explicit perturbative computations in type
IT string theory. Noting that

EINT)+E(T)
N+1 o

1 A 1
i log(Tr AT,  &(T)=—-—log(T,}2A(T)]), (6.19)
T 41

the 2-loop contribution on the last line of (6.17) takes the suggestive form
_3 2
~ Gy 0tap. 075 (108(Sy T Uy |AK(TAWIP)” (6.20)

The (log g;)? term is consistent with the 2-loop logarithmic divergence of the four-photon
amplitude [83] (recall that the log g, can be traced back to the logarithm of the Mandelstam
variables in the full amplitude, and therefore to the logarithm supergravity divergences [22,
82]). The term linear in log g, in (6.20), corresponding to the tgF* form factor divergence,
can be rewritten as

3k 1 o o 1
- loggs5<a,5,(?g2(G;Zg)“"“(t) + gG%‘)“"”(t)) — 5@@ 1og(T2’<U2’<|Ak(T)Ak(U)|2))
S

an

— 3 1 (2k—4,4)7 k krrk 2

= —4—nloggs 6(aﬁ’(g_SZFY5)n (t)—6y5) an)? log(T, U, [Ar(T)A(U)] ))

_ 3 S(2k—2,6)

= —4—nloggs é(aﬁ:Fyﬁ)c m (6.21)
where one uses integration by part on the definition of F®>9 with _#%ﬁ

%(EZ(T) + NE,(N7))/Ar(p), and 5(ab5cd)5Cd = 23—k5ab. Ignoring these logarithmic contri-
butions, the two-loop coupling (6.20) does not depend on the K3 moduli, as required by su-
persymmetry, and might be computable in topological string theory.

The amplitudes with two photons in the Ramond sector and two gravitons can be obtained
in the same way. It is non vanishing only when the two photons have the same polarization
and the two gravitons have the opposite polarization. In type IIB, the complex amplitude is
obtained through the Kihler derivative of the same function (6.17) with respect to U, e.g. in
the maximal rank case

9 A 1 .
Regn =g ap EaU)(log(Taln(TI) +1og(Usln(UI) — 2log 8, ) + 7 E2(U) G0,
N

(6.22)
or with respect to T in type ITIA. The log g, term can be interpreted as the divergence of the
form factor of the operator RF}% (where Fg are the graviphoton field strengths) belonging to
the R2-type supersymmetric invariant.

6.3 Type I string theory

The heterotic string with gauge group Spin(16)/Z, is dual to the type I superstring [84]. In
ten dimensions, the duality inverts the string coupling e? — ¢~ and identifies the Einstein
frame metrics. After compactifying on a torus T9, the effective string coupling g, in 10 —q
dimensions and volume V in string units are given by

g5 = e1-8)9 y2 , V= ei?®y , (6.23)

where V is the volume of the torus T9 measured in ten-dimensional Planck units. It follows
that the heterotic/type I duality identifies

_14.4 _14.9 _9g _4
g =g ry ey =gy (6.24)

N N
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where the unprimed variables refer to the heterotic string while the primed variables refer to
the type I string, the unit volume metric U;; being the same on both sides. In particular, the
weak coupling regime g/ — 0 on the type I side corresponds to strong coupling on the heterotic
side when D = 10 —q > 6, or to weak coupling when D < 6. In either case, the volume V
in heterotic string units scales to infinity. Furthermore, in dimension D > 4 the coefficients of
the F* and V2F* couplings are purely perturbative on the heterotic side, so their type I dual
expansion is obtained by taking the large volume limit. We shall now show that the resulting
weak coupling expansion on the type I side has only powers of the form g 2h+b=2 " compatible
with type I genus expansion where b is the number of boundaries or crosscaps. For simplicity
we focus on the maximal rank model and consider only gauge bosons with indices along the
D¢ lattice, but these considerations easily extend to type I models with reduced rank [75,76]
and to gauge bosons with indices along the torus.

Using (6.3) and similar computations using the same method, we find that for D > 4, the
F* effective interaction at weak type I coupling g, — 0 is given by

1
/3 /

282 1 _ |4 (16,0) 3 9 9 ; 3
& " Fapys = 7 Fagys T 5 gsvs25(a/55)’5)+ g2V (emiUymI) 2645,
gs miezn

LW QpQQ5 3V 5wpQQs 3V, Eapd
ZZ 2mea(a/3Y5_ G 4 g/2 (ap ys))
QeDys meZa m'U;;m/ 2n2 % (miU;;mi)2 - 8n* °° (miU;m/)3

1

QZ

+..., (6.25)

where the dots stand for non-perturbative corrections associated to D1 branes wrapping two-
cycles inside T9. The first term is the expected disk amplitude of 4 open string gauge bosons
in type I, while the remaining terms of order gs , gs , 8. 2 are contributions from open Riemann
surfaces y = 0,—1,—2 [85] (recall that y = 2 —2h — b for a Riemann surface with h handles
and b boundaries). Similarly, the V2F# coupling reads

/
. _ 1 (16,0) Vs (16,0) 3 V2 -3 (16,0
gs8 anﬁ,yE -2 Ga[j,y5 4 5(aﬁ,GY5) 27 gs - q Z (Tcm Ullm]) 5 Gyﬁ)
gs mleZq
3 2 ,3..5_6 1r6 ,5 ,9_6 . N v
+4_7r( s. V + g’ V,2 e _W[;g; v/ Z (nm'U;;m’) 3:| )5(a/5,5y5)
S mieZ4
Ve 5 VETE12Q,Qs — 2 3y/1is
s meQa( Q5 &Y Q,Qs5)—0y5) &~ 3V, yﬁ))
(@ . ‘ . .
d<bi, miU;;mJ 472 (miU;; ml)2 8n4 (miU;;mi)3
Q*=2
meZI~{0}

v/ g vy
+3 Z GLO(Q) Z 22 (Q, Q) — 25 r—

QeD meza (TfmlU m)?2  2m Y‘S)(nml
16

Njw
E=N[e)}

30 4 2] 1
S | R dm > ppaa pagenesand i
Pa

Q2,3
QleDzlﬁeDlé A€M, ,(Z)/GL(2,Z)
Q<2

+..., (6.26)

where the dots stand for non-perturbative corrections associated to D1 branes wrapping two-
cycles inside T9. In the last term, the integral of the constant part C¥(Q) of the Fourier coeffi-
cient of 1/®;, produces a matrix-variate Gamma function and contributes to order g/, gs’z, gs’?’.
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The jumps in C(Q, gls,Qz) dues to poles at large |€2,| give terms of order gs’f for{ =0,1,2,3,4,
which are sourced by the square of the ‘Wilson lines corrections’ in (6.25) in the differential
equation (2.26). The jumps due to deep poles where |Q,| < % lead to further corrections of

/ . . . .
order 27/ s, which can be ascribed to D1-anti-D1 instantons.

The first term ﬁ GSB’O; 5 in (6.26) is however apparently inconsistent with type I perturba-

tion theory, since the four-photon amplitude only involves open string vertex operators which
cannot couple at genus zero. Fortunately, we can show that this term vanishes for the heterotic
Spin(16)/7Z, string. Indeed, using the same integration by parts argument as in section 3.3
(the boundaries at the cusp do not contribute at ¢ = 0) one finds

(16,0) (160 € _ (160) ;(160)  _
20G 0%+ 6(ap Ggy S = mFC SOFSY =0, (6.27)
which vanishes because [22, (5.42)]
(60) _
Faﬁ}fﬁ = 167'[5(1[3},5 N (628)

where 8,4,5 is equal to one if all for indices are equal and zero otherwise. It follows that

3. 430, I
G(lﬁ’o) _ R.N.J d Qld Qz FD16[P(X[3:Y5] —0 , (6.29)
s

Y6
oy p(4,Z)\H, |Qz|3 <I>10

so (6.26) is indeed consistent with type I perturbation theory. In particular, the genus-two
double trace V2(TrF?)? coupling computed in [44] for the ten-dimensional Spin(16)/Z, het-
erotic string vanishes. It is worth stressing that the same genus-two coupling in the Eg x Eg
string does not vanish. 2°

Let us now discuss the form of the non-perturbative corrections in some more details. For
any D > 3, the contributions of the non-Abelian rank-2 orbit are non-perturbative on the type
I side, with an action given for vanishing gauge charge by

/2
q

\% — g
SDl = Zﬂﬁ %Uik UlelJNkl + ZTEiBijNU B (633)
gS S

1 /
where g/V/? = e?" is the ten-dimensional type I string coupling. This can be ascribed to
Euclidean D1 branes wrapping T? with charge NV € Z A Z1. For D = 4, the NS5-brane

instantons on the heterotic side translate into D5-brane instantons on the type I side, with

1
/

. v/2 . . o . Lo
action Sy = ~~. For D = 3, the non-perturbative heterotic contributions with vanishing NUT
charge translate into type I D5-brane instantons with wrapping number N; and gauge charge

Q € D¢, with action

v/3
Re[Sps] = 2m——/(U~1)(N; + a;- Q(Nj + ;- Q) , (6.34)
IAVAS
8V
26For the Eg x Eg heterotic string, we have instead
206050, 4 5,5 GIS0< = ppecGonposo _ O4T (4P, Pl +4P], P2 — 7P . %)) (6.30)
apys (@b, Ty6)e (ap, " y8).el 3 {ap, " v8) (ap,” v8) {ap, " v8)’ 2 :

with

(16,0) __ 1 1 2 2 _ pl 2
Fopy =81 (PP sy + Pl Pl — PlpP%s) (6.31)

apys (ap” yd) (ap” yo) a
and P;ﬁ the two projectors to the eight-dimensional subspaces. One computes that Gf;g’(;” =0, such that
B0, %0, Toer, [Papys] 167
(160) __ 1 2 ~Eg®Eg o4 1 1 2 2 __9pl 2
G _J N 5 = o (4Pl Ploy + 4P} Pl = TP Ply) - (6.32)
Sp(4,Z)\H2 2 10

This reproduces the relative coefficient in [86, (7.4)].
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Finally, non-perturbative heterotic instantons with non-vanishing NUT charge translate into
type I Taub-NUT instantons, with action

/7
Refry]) = 2 Uy K+ g0V (U + gV FUIR) (639

with _
Ni :Ni+ai‘Q+(%ai'aj+Bij)kJ . (636)

Thus, all non-perturbative effects on the heterotic side map to expected instanton effects in

type L.

6.4 Exact V>H* couplings in type IIB on K3

uvp !
type IIB string theory compactified on K3. In [47,78], it was conjectured that the exact 7—[4
coupling is given by a genus-one modular integral of the form (1.4) for the non-perturbative
Narain lattice Ay 5 of signature (p,q) = (21,5). This was later generalized to the case of
the V2H* couplings, which were conjectured to be given exactly by a genus-two modular
integral of the form (1.5) for the same lattice [47]. These conjectures follow from our exact
non-perturbative results for the maximal rank model?’ in D = 3 by decompactification. Here,
we briefly discuss the weak coupling expansion of these results on the type IIB side, using the
results of section 4.1.

At weak coupling, the even self-dual lattice Ay, 5 decomposes into Ay 4 ® II; 1, where the
‘radius’ associated to the second factor is related to the type IIB string coupling by g, = 1/R.
The low energy action in the string frame was recalled in [22, 4.40], after changing the metric
for y = g,yr and renormalising the Ramond-Ramond field as H* = g,H?. The coefficient of
the V2H* coupling in this frame is then given by G( ¥ _ without any further power of g;. The

ap,y.5’
results of section 4.1 then provide its weak coupling expansion,

Finally, let us briefly discuss the couplings of four self-dual three-form field strengths ¢

1 1 3g?
(@15) _ _~ 04 _ (20,4) s
Gaﬁ,}fﬁ - g52 Ga[},y5 45(0‘/5 Gy5) 4 5(‘1/5:5Y5>
’ 2—“\/@) 2
3 p2miQa 5(204) Ko gsz R 8s 27
+— G , — —0,5K1(571/2Q2
gs ; (Q (P)(QL)/QLE \/@ 47T Y5) 1(g52 QR))
QEA; 5
_An /2Q2
+ Z e &V R.p.5(8,Q1,Qr)- (6.37)
QeN?

21,5

The first term proportional to G(ZO 4 5 is recognized as a tree-level contribution in type IIB on K3
[79]. The second and third terrns correspond to one-loop and two-loop corrections, and to our
knowledge have not been computed independently yet. The second line of (6.37) corresponds
to exponentially suppressed terms that originate from D3, D1, D(-1) branes wrapped on K3
[78], or, formally, to Fourier coefficients of the coupling coefficient. The function Gs;j’s) is the
sum of a finite and a polar contribution and reads

- 2
G2 p @)= D, dral—)60" o (3, (6.38)
> 2 d>0 > 2d2
Q/d€Ay 5

2’Note that CHL models in D = 3 all decompactify to the same model in D = 6, whose rank is fixed by the
constraints of anomaly cancellation.
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where Gg;;"” = Gl(foo:‘[; + ng‘g as described in §4. The last line corresponds to instanton anti-

instanton corrections that are missed by the unfolding method, and which could be computed
by solving (E.51) for Q = 0.
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A Compendium on Siegel modular forms

A.1 Action on H,

The Siegel’s upper half plane #, is the space of complex symmetric matrices
v

Q=(p 2) such that [Qy>0, p,>0, 0y>0, (A1)

where ©; and Q, denote the real and imaginary parts of €2, similarly for p,v, o, and |Q,] is
the determinant of Q,. An element y € Sp(4,7Z.),

_[A B ¢ [ 0 14
Y_(C D)’ Yey =¢, 8—(_12 O)’ (A.2)
with
ATC—CTA=0, B'TD—-DTB =0, ATD—-C'B=1,, (A.3)
acts on H, via
Q- Q=(AQ+B)(CQ+D) . (A.4)

A standard fundamental domain for the action of Sp(4, Z) on H, is the domain F, defined by
the conditions [87]

1 1
—§<p1,01,v1<§, 0<2vy<py<0,, [CQ+D|=1 (A.5)

for all y € Sp(4, Z) (the latter condition needs only to be checked for a finite number of y’s).
The period matrix of a genus-two curve ¥ takes values in #H,\S, where S is the union of
the quadratic divisors

D(my,j,n;Q)=m?—mlp +nj0+ny(po—v3)+jv=0, (A.6)

parametrized by five integers M = (m*, m?2, j,n;,n,). M transform as a vector under Sp(4) ~
0(3,2) such that the signature (2,3) quadratic form

A(M) = j2 + 4(m'n; + m?n,) (A7)

and the parity of j stay invariant. Under a combined action of y on Q and M, the divisor
D(M; 2) = 0 stays invariant,

D(M; Q) =[det(CQ+D)] ' D(M, Q). (A.8)
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%

ii) iii)

Figure 1: Degenerations of a genus-two Riemann surface corresponding to the
boundary strata of the fundamental domain F,. The white node in i) corresponds to
a torus while the black dots in ii), iii) corresponds to a sphere. The ‘figure-eight’ and
‘sunset’ diagrams in supergravity are obtained by replacing the black dots in ii) and
iii) with supergravity 4-point and 3-point interactions, and attaching four external
gauge bosons to the edges.

The divisor S is the locus where the curve X degenerates into the connected sum of two genus-
one curves. Its intersection with the fundamental domain 7, is simply the divisor v = 0.

On the other hand, the boundary of the domain F, consists of three strata, i) oy — +00
where ¥ degenerates into a one-loop graph, ii) p,,0, — 400 at the same rate where &
degenerates into a figure-eight graph, and iii) vy, p5, 0, — +00 at the same rate where %
degenerates into a sunset diagram (see Figure 1). In order to discuss these limits, it will be
useful to introduce the alternative parametrizations for Q,,

P2 P2u2 1 (|t]? -1y
Q= =— A9
2 (pzl[z t+ pzll%) V"L'z (_Tl 1 ( )
such that the limits i) and iii) correspond to t — +00 and V — 0, respectively.

We now give the explicit action of some relevant subgroups of Sp(4,Z.):

1. SL(2), (leaving t = 0, —v§/p2 invariant)

a 0 b O
a b 0100 , ap+b v cv?
= ,V,O- == 5 ,O-_ )
(C d)p c 0d O (e ) (cp +d cp+d cp+d (A.10)
0 0 01
(m',m?,j,ny,ny) = (dm' +cm?, bm' + am?, j,an; — bny,dn, —cn;) .

We denote by S, the generator ((1) _01) .
Ie)

2. SL(2), (leaving t’ = p, —v2/0, invariant):

cv? v ac+b
co+d’ co+d’ co+d )’ (A.11)

1
0=
0

0 0
0 b | . ,_
1 0 . (P,V,O') _(p_
0 d
=( 2

(m',m?,j,ny,ny) = (am' + bny,am?® — bny, j,dn; —cm?,cm* +dny) .

We denote by S, the generator ((1) _01) .
g
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3. Heisp (leaving 2, invariant):

1 0 0 u
T A1 p oK
ATl 0 0 1 -2
0 0 01 (A12)
(p,v,0) =(p,u+Ap +v,0+K+2Av+Au+1%p),
(m',m?) = (m" + jA + (uny — Any)A + kny, m® — u(j — Any + uny) —xny) ,
(j,m,np) = (j —2Ang + 2uny, ny,ny)
4. Heis, (leaving Q, invariant):
1 A k u
- |01 u O
Duwr=| 00 1 o (A.13)
00 — 1

5. GL(2,7Z)s (leaving V = 1/4/|Q,| invariant):

a —-b 0 O
(a b): —c d 00
¢ dJg 0 0 d ¢
0 O b a

(p,v,0) = (azp —2abv + b%0,—acp + (ad + bc)v—bd o,c? p —2cd v + d? O') ,

(m',m?) =(—c*ny —cdj+d*m',m?) ,
(j,ny,np) = (j+2bcj—2bd m* + 2acny,a®ny +abj—b*m',n,),
(A.14)
at+b at+b
ad—bc=1), 7T~
cTt+d ( ) cT+d
Defining Q, = (L1 L+2 Lz Lsz Ls)’ the permutations of the L,’s correspond to the following
elements of GL(2,Z):

01 1 1 1 0

6. 73 (leaving Q, invariant):

T

(ad—bc=-1). (A.15)

1 0 ry 1o

01 rp r
r1Ta,r3 0 0 12 03 (p,v, U)/ =(p+r,v+r,o+ r3) 5
0

0 0 1 (A.17)
(m',m?) = (m1 +ngrg, m* —nyre — jry + mlry —nirg + n2r1r3) ,

(j, ny, nz)/ = (] + 2n2r2, n, — nzrl,nz) .

7. Opesot
0100
1000
hy o= v,0) =(o,v,p),
b0 00 0 1 (p ) =(o,v,p) (A18)
0010

(mI’ mzzj: np, nZ)/ = (nlx_mzz _j’ mlz_n2) .
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A.2 Siegel modular forms and congruence subgroups

For any y € Sp(4, R) and integer w, we define the Petersson slash operator
(@l,,7)(Q) =[det(CQ+ D)™ &((AQ+B)(CQ+D)™?) . (A.19)

A Siegel modular form (Q) = ®(p, 0, v) of weight w under a subgroup I' C Sp(4, Z) satisfies
®|,y = ® for any y € I'. We shall be mostly interested in modular forms with respect to the
congruence subgroups of Sp(4,7) (A.2), denoting its elements by (4 2

¢ b))
1. T o(N), restricting to elements with C = Omod N

2. T y(N) =S, T, ,(N)- S;l, its conjugate w.r.t. S, (A.10);

3. IA“Z’O(N) =S5 T o(N)- S;l, conjugate of I o(N) w.r.t. S, (A.11);

4. T, 1(N) C T o(N), restricting to elements with A=D = 1modN;;

5. T,(N) C I, ;(N), restricting to elements with B = 0modN;;

6. T, (N) the subgroup fixing the vector (0,0,0, ) modulo N;

7. Lyge (N) =T, (N)NT,o(N).

The indices of these subgroups inside Sp(4,7Z) are summarized below:

1 1
[sp(4,Z)/m()| = Nloﬂ(l_?)(l_?)’
1 1
‘Sp(4,Z)/1"2’O(N) = N311;V[(1+I—))(1+?),
[spea, 2| = NT(1-)(1--2),
bIN p P
sp 20 ) = [ (1+2)(1+ ) [10-5).
pIN P P oy P
[sp@a, 2/ 0| = NTT(--), (4.20)
pIN p

where p, p’ run over primes. Indeed the corresponding quotients can be understood as

ma/mm)| = N =(z/Nz),,

B0, /)| = NPT T(1=2) =[R/ren| 50/ 80 0]y 1
pIN p b [cldl]

[Fae /D0, )| = P T(1-55) =[n@rm)|
pIN p b
pI¥

o)L, )] = C2[](1- ) =|se@zymch). (a21)
pl%

where the subscript indicates the embedding SL(2,7Z) C Sp(4, Z) of the coset representatives.
Of special interest is the Hecke congruence subgroup I, o(N) and its conjugates f‘z,O(N ),
f‘z’O(N ). The cosets of Sp(4,Z)/T;((N) are in one-to-one correspondence with cosets of
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GSpn(4,7)/Sp(4,7), where GSpy(4,7.) is the group of symplectic similitudes such that
yey! = Ne. For N prime, the (N + 1)(N2+ 1) = 1+ N + N2 + N2 cosets can be chosen as
(see e.g. [88, p.6])

N 1 a N 1 a c
N N —a 1 b 1 ¢
L N Lol N | @22
1 1 N N

with a,b,c =0...N —1. For ®(p, 0,v) a Siegel modular form of weight w for the full Siegel
modular group Sp(4,7Z), the sum of the action of these elements on ® produces again a Siegel
modular form for the full Siegel modular group Sp(4,7Z), which is the image of ® under the
N-th Hecke operator Hy,

+a
Hy®(p,0,v) =#(Np,No,NV) +N ™" " c1>(p—,Na,v)
amod N N
. 2
+N7 DT o(Np, TRy _ap) 4N DT (B, oth viey
a,bmod N a,b,c mod N

(A.23)

The first term in this sum, ®(Np,No,Nv), is then a Siegel modular form for I, j(N). The
‘Fricke involution’

0 0 0 %ﬁ 0 0 _JLN 0
0 0 —— o0 0 0 0o —+ —w -1
VN = VN | = —
eoel,| o T =l o o . @ | =INIelTe (-(ve)™) (a24)
VN 0 0 0 0 VN 0 o0

takes a Siegel modular form & of weight w under I}, ;,(N) into another one. Similarly,

0 1/VN
VN

o o0

o o0 ~

0 o vn|=%/N,Np,v) (A.25)
0

1/YN 0

5n—>5|w

0
0
0
takes a Siegel modular form & of weight w under fz,O(N ) into another one.

A.3 Genus two theta series

The genus-two even theta series are defined as

a4

by
: 4 a\t [ P1t 2 ) a a\t| ‘1t 2
in (p1+7,p2+7) Q a, +2n1(p1+7,p2+7) b,
P2ty G2t

(A.26)

[ pel@0= > e

P1,P2€Z

with a;,b; € Z. It is an even or odd function of { = ({;,{,)" depending on the parity of
a;b; +a,by. When it is even, the value at ¢ = 0 is the Thetanullwert denoted by 9[ Ziiz ().
The value of a;,b; modulo two defines a spin structure labelled by the column vector
k = (ay,ay, by, by)', whose parity is that of a;b; + ayb,. Under translations of the charac-
teristics by even integers,

@[ @1+2a),a,+2a; o b +a,b’) a@[ a1,a
g g £y = et go 15 i, D). .27

Under Sp(4, Z) transformations,

B[R], 8) = e(k, v) [det (CQ + D)]V292[x]1(2,0) , (A.28)
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with @ = (A +B)(CQ+D) L, ¢ =(CQ+D)¢,

~ D —C 1.. CDt
K= (—B A )K + Edlag (ABt) mod 2 (A.29)

and e(x, y) is an 8-th root of unity. In particular,

0(2)[(1;1:?)2 ](p—}—l,O',v) =e—i7na1(a1+2)ﬁ(2)[ a,a, ](p,O',V);

a;+bi+1,b,y
958 Yo, 0 +1v) =e T ul D me | 1p,0,v),
Pl o=, S oo,
vl b 1(p,0+p—2v,v—p) =92 bbb e, o,v),
0932 1(=1/p,0 —v*/p,v/p) =v/=ip e Tt 92 "% J(p, 0, v),
9OL 502 (p —v2/p,~1/0,v/0) =V/—io e b2 92 22 J(p o v).
In the separating degeneration limit,
ﬁ(z)[gigz] v=0 {ﬁv[ Z;%(lf})ﬁ[ii ](10,) [giég] f [ﬁ] ’ (A.31)
2m VL1 (p)ﬁ[l] (o) [blbz] = [11]
where 1?[ g] is the genus-one theta series,
"7[2] — Z TP+ 5)P ) +imb(p+5) (A.32)

DEZ

and 1‘/‘[ i ]/(p) =2mn3, Vy039, =2n°.

A.4 Meromorphic Siegel modular forms from Borcherds products

In the context of heterotic CHL orbifolds, two meromorphic Siegel modular forms &;_, and
&,_, of weight k — 2 under I, o(N) and fz,O(N ), respectively play an essential réle. They are
given by infinite products [89] [90, 3.16,3.17] [29, C.18,C.19]%®

N—1 N—1 _ 2mirs (0,5) 1y 2
(I)k 2()0 o V) _ eZT:i(p+cr+v) l_[ l_[ (1 _62nir/N eZni(k’o+lp+jv))ZS=0 e N ij0d2(4ke )
—_ 5 > -

r=0 k' (,jeZ
k’,0>0,
j<O0 for k’'=(=0

B

(A.33)

N-1 N—1 —2mist () 1y 2
Ci)k z(p o,v)= eZni(a+]le+v) l_[ l_[ (1 _eZHi(k’p+€0+jv))Zs:0 e N coqa (4K 0=)7) (A.34)
_ 5 3 . .
"REZ 4 0 jeZ
K’ ,0>0,
j<0 for kK'=(=0

Here, cl()r’s)(n) with b € Z/(27) are Fourier coefficients of a family of index 1 weak Jacobi
forms

FOma) = D) cfiaglén =) eoms?) (435)

. Z
]EZ,HEN

28Note that ®, ,(p,o,v) and &,_,(p,o,v) are denoted by &(p, o, v) and &(o, p,v) in [29], while ®(p,o,v)
coincides with &, ,(p, o, v) in [30].
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obtained as a twining/twisted elliptic genus of the Zj, orbifold of K3. In particular, for
N=1,2,3,57and 1<s<N—1,

2 2 _
0,0) _ 0,5) _ 2(Ey(7)—NE,(N71)
F( )= N¢O,1 5 F( s) — N(N+1)¢01+ (§V+1)(Nil) ¢’ 2,1 >
(A.36)
2 2By (2R )NE,(7)
POl = — =g — X P IRy 1

N(N +1)

, 2
where ¢ = 421-:2’3’4 (%) , P01 = 1'3‘%(*@2)/176 are the standard generators of the ring
of weak Jacobi forms, and s/r = sk where kr = 1modN. It is also useful to consider the

discrete Fourier transform of the coefficients cl()r’s)(n) with respect to s,

N-—-1

6l()r,s)(n) — Z e—ZHBs’/NCér,s/)(n) . (A.37)

s’=0
Using the property 6§r’5)(n) = 61(.5’r)(n), one can rewrite &;_, as [30, 5.10]

N—1 _omisk’ .((s)

/
27i(o+§ +v) l_[ (1 _eZTEi(k’p+€U+jv))zs o€ moa2 (4K €=7%)

kK'€Z/NL,ji€Z
k' ,£>0,j<0 for k'=(=0

&)k—Z(pa g, V) =€

(A.38)

From this relation, it is manifest that tfk_z is invariant under the Fricke involution [89, §C],

0 VN 0 0
= = = 1/YN 0 0 0
q’k—Z(P,O', V) = q>k—2(N0:p/N) V) = (I)k—Zl /0 0 0 l/m 5 (A39)
0 0 N 0
and therefore, so is ®;_,,
0 0 0 1/VN
_ 0 0 -1/VN 0
Bo(Q) = (NIQD F o o1/ N =0l o % TN 0 . (a4
VN 0 0 0

It is worth recalling that the infinite products (A.33) and (A.34) arise as theta liftings of F (r’s),
namely

l 2 _l
R.N.f duy D, qrigHRe?m e p() ) = —210g]2 ¢ @y 5(p,0,v)P,
F1

my,n1,j€%
mo€Z/N,ngENZ+r

1p2 1, —2) &
RN. J S I e I L P R%
F

my,mg,ng,j€Z
ny EZ+%

(A41)

where hg’s), b € Z./(27Z) is the vector valued modular form arising in the theta series decom-
position

FUS)(7,2) = h{™(0) 05(27,22) + A () 0,(27,22),  h{P = > c(an)e?mine
1, b2
HENZ—4

(A.42)
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and pg, p; are projections of the vector M = (my,n;, j, m?,n?) such that

1 2
|m2—m1p +n,0 4+ ny(po —v?) -+-jv|2 s E(p% —pﬁ) =m!ln; + m?n, + JZ .
(A.43)

From the infinite product representation, one can easily read off the location of the zeros
and poles which intersect the cusp ©, = ico. Such zeros (respectively, poles) arise from
the existence of positive (respectively, negative) coefficients ¢>*)(m) with m < 0, known as
polar coefficients. For N = 1,2,3,5, 7, the only positive polar term is 650’0)(—1) = 2, which
implies that ®;_, and ®;_, have a double zero on the diagonal locus v = 0, where they behave
according to 2°

1
2 __
Pr= 310,

& o(p,0,v) ~—4mv? Ar(p) A(0),

. ) o (A.44)
Pr2(p,0,v) ~—4n" v Ar(p/N) Ag(0)

where Ar(p) = n*(p)n*(Np). It can be shown that all zeros of ®,_, and &,_, occur only
on the divisor v = 0 and its images under the congruence subgroups I, (N ) and fz’O(N ),
respectively. For N = 1,2, 3, égo’o)(—l) is the only polar term, so ®;_, and &,_, are actually
holomorphic Siegel modular forms, corresponding to the Igusa cusp form &, for N =1, or
the cusp forms &g of level 2 and &, of level 3 constructed in [91,92]. In particular, ®,, is
proportional to the product of the square of the ten even Thetanullwerte,

@10 =272 (0930055 ]9 ]9[0T o[ 67 1o %o Jo@ (3 10 [ so Jo[ 531911 ])°
(A.45)
while & is proportional to the product of the square of 6 among the ten even Thetanullwerte,

@6 =272 (0[5 ]9 5 J0 50 95192 55 192 [11])"- (A.46)

For N =5 and N = 7, there are additional polar coefficients but they are all negative, implying
that ®,_, and ,_, have poles,

EEERNC ) PIER SR CX:) PR SRR X P SN e DS S
N=5:¢ (_g)_cl (—g)—cl (_g)—cl (—g)——2

o A 3 @A) 3 B 3Ny a42) 3Ny _ a5,3) 3Ny _ a(6,6) 3 _
N=7:¢ (—;)—c1 (—;)—c1 (—;))—C1 (;))—Cl (;))—Cl (;)——1 .

(A.47)

Note however that the Siegel modular forms relevant for our problem are the inverse of ®,_,
and &,_,, which have a double pole on the diagonal locus v = 0 for all N.

From the infinite product representation one can also read-off the behavior of 1/®;_, and
1/®,_, in the maximal non-separating degeneration Q, — 0o, obtained by setting

2Note that these two equations are consistent with (2.10) since A, is invariant under the Fricke involution, i.e.
A(=1/p) = (iVN)* p* A (p/N)
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e?™MP = q,q3, 2™ = g,qs3,e>™ = g3, and Taylor expanding near q; — 0:
1 1
— = + 22 —+ 242 +3 > L
@10 919293 7 4:4; o4 ke q]qk

+ 0+482ql +4 Z

iz U itk qu

1 1 .
it e T

+0(q;) , (A.48)

Pr—2 019293 55 99; G s 19k
2
48N di 4;
+ Z 4 > +0(qy), (A.49)
2 __ .
N2—-1 N+ 1 ql it ohi 1k
1 1 24 1 48
- = v N TNaie oI (A.50)
) q;" 92494 ds

where the dot denotes terms involving positive powers of g;. Since Sp(4, Z) and its congruence
subgroup I, 4(N) contains GL(2, 7)., the expansion of 1/®,5 and 1/®;_, for N = 2,3,5,7 are
manifestly invariant under permutations of q;,q5,qs. In contrast, the expansion of 1/&;_, is
only invariant under permutations of g; and gs.

A.5 Fourier-Jacobi coefficients and meromorphic Jacobi forms

Given a meromorphic Siegel modular form 1/®(p, o, v) of weight —w, the Fourier expansion
with respect to o
1/2(p,0,v)= >, Pulp,v)e? ™™ (A51)
m>—00
gives rise to an infinite series of meromorphic Jacobi forms ,,(p,v) of fixed weight w and
increasing index m. If ® is modular under the full Siegel modular group, then m € Z and v,
is a Jacobi form for the full Jacobi group SL(2,7) x Z2, i.e. it satisfies

‘abm(P,V+7Lp+‘u) = —27‘Eim(12p+27w)¢ (p,V) (ASZ)
ap +b %
w’“(cg+d’cp+d) = (ep+d)" e (o) (A.53)

for all integers a, b,c,d, A, u such that ad — bc = 1. If & is modular under a congruence
subgroup I' C Sp(4,Z), then

1. forT' =T, ((N), then m € Z and v, is a Jacobi form for the Jacobi group IH(N) x 72,
i.e. it satisfies (A.52),(A.53) for all integers a, b,c,d, A, u such that ad — bc = 1 and
¢ =0modN

2. ForT = f‘Z’O(N), then 1), is a Jacobi form for TO(N) x Z2, i.e. it satisfies (A.52),(A.53)
for all integers a, b, c,d, A, u such that ad —bc =1 and b = 0modN;

3. ForT' = lA"Z’O(N), then m € Z/N and v,, is a Jacobi form for [[,(N) x (NZ x Z.) satisfies
(A.52),(A.53) for all integers a, b,c,d, A, u such that ad —bc = 1, ¢ = OmodN and
A =0modN (examples of Jacobi forms of index n/N with these periodicity properties
are given by ¢ (N p,v) where ¢(p,v) is an ordinary Jacobi form of index n under the
full Jacobi group).
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In particular, the Fourier-Jacobi expansion of the inverse of the Igusa cusp form is given
by [93, (5.16)],

P 9¢c2),1 + 3]54‘1’32,1
—+
A 4p_21 A

1 1 1
e + 24 +0(¢?), A.54
where
¢0,1 1

P =126, = Gy

[—83 log#(p,v) + 2mid, log nz] (A.55)

is (up to a factor (2mi)?) the Weierstrass function, a weak Jacobi form of weight 2 and index
0.

In the case of CHL orbifolds with N = 2,3,5,7, it will be useful to introduce Cf)k_z, the
image of ®;_, under an inversion S,

$p_5(Q) = (VN o™y _,(S, 0Q) = &;_,(Q)] (A.56)

peo
where we chose the normalization such that &,_, ~ —472v2A,(p)A(c/N) near the divisor
v = 0. The Fourier-Jacobi expansion of ®;_, and &,_, is given by

1 n%p)
Py Ar(p)Pi(p,v)

a;'+Yo+0(q,), (A.57)

6
N 7
1 n"(Np) SN 44y + O(gUNY (A.58)

bio AP)NP W)

where 4, (p,v) = ZHGZ(—l)” q%(”_%)zy”_% (note that it differs from 1?[ } ](p, v) by a factor of
i) and

" _kP(p,v) k  N?E;(Np)—N Ey(p)
7 Alp) T 12(N-1) Ar(p) ’ (A.59)
lﬁo =k77(NP,V) n k Ey(p) —NEy(Np)
Ar(p) 12(N—1) Ar(p)

Now, unlike holomorphic or weak Jacobi forms, a meromorphic Jacobi form ,,,(p,v) of
index m > 0 and weight w in general do not have a theta series decomposition, unless it
happens to be holomorphic in the variable v. Instead, it was shown in [93,94] that it can be
decomposed into the sum of a polar part and a finite part,

Yulp,v) =9F (o, ) +9F (p,v), (A.60)

where the finite part v is holomorphic in z and has a theta series decomposition,

c.(m)
bnpn)= 205 20 hne(P)na(p.0), (A61)
kP £ mod 2m
where ,
ﬁm,e(P, V)= Zq(l-i—st) /4m yﬁ+2ms ’ (A.62)
sEZ

are the standard theta series transforming in the Weil representation of dimension 2m while
the polar part is a linear combination of Appell-Lerch sums which match the poles of Y,,(p, v)
in the v variable. Since Appell-Lerch sums transform inhomogeneously under modular trans-
formations, so does the finite part xpfn, which implies that h,, , transform as a vector-valued
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mock modular form of weight % — k. In the case at hand, it follows from (A.44) that Y ,,(p, v)
has a double pole at v = 0mod Z + pZ with coefficient proportional to ¢, (m)/Ax(p), where
c(m) are the Fourier coefficients of 1/A; (o), so

)= c(m)

1/)51()0:" - A (P;V)’ (A63)

A(p)™ "

where A,,(p,v) is the standard Appell-Lerch sum [93]

ms2+s 2ms+1

q
An(pv)=> - : (A.64)
& (- qy)2

The latter satisfies the elliptic property (A.52) but not the modular property (A.53). However,
it admits a non-holomorphic completion term

"ﬁme(P) 2
A (p,v)=m E e —— E [A| erfc(2|)»|,/ﬂ:mp2)q_m}L Tme(p,Vv), (A.65)
" { mod 2m 21 VP2 AEZ-J—%

such that A, = A, + A7 transforms like a Jacobi form of weight 2 and index m, although it
is no longer holomorphic in the p and v variables. Consequently, both

2 o) and G =9f — T a0y (aee)

P Y =
wm(p,V)—wm A( )7 m m m A( ) m

transform like Jacobi forms of weight 2 — k and index m, although neither is holomorphic in
the p and v variables. Moreover, {,l)\fn(p, v) has a theta series decomposition similar to (A.61)
with coefficients

-~ ﬁmf(p) 2
hpo(P)=hy(p)—m | ——— — E |Alerfe(2)A|/Tmp, ) g™ |, (A.67)
™ ™ 27'5\/m_p2 AEZ+ A ( 2)
2m

transforming as a vector-valued modular form of weight % — k. By Taylor expanding the de-
nominator, we can rewrite (A.64) as an indefinite theta series of signature (1, 1),

An(p,v) = Z ¢ [sign(s +uy) +signf] g™ S y2mstt (A.68)
s leZ
Similarly, its modular completion can be written as an indefinite theta series,

1 _ 1 : ‘/ﬁ ﬂ) ms2+0s |, 2ms+{
A (p,v)= 5 Z l |:s1gn(s +uy) + nﬂ‘/r_zF (M - q y , (A.69)

SAEZ

where
F(x) = vrxerf(x) + e (A.70)

is a smooth function which asymptotes to 4/7t|x| at large |x| [95].

For meromorphic Jacobi forms of index m = 0, the decomposition (A.60) still holds, but
the finite part q,bg is now independent of z, while the non-holomorphic completion term of the
Appell-Lerch sum Ay(p, v) reduces to A = 1/(4mp,). The simplest example, relevant for the
present work, is the (rescaled) Weierstrass function (A.55), which decomposes into

Fle, v)_12 Z qsy)2_12 (471';02 Z qsy)z)' (47D
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In particular, it follows from this decomposition and from (A.88) (with L = 0) that the integral
over the elliptic curve v € £ is given by

A

dvdv E
J Plp,v) s f duyduy Pp,uy + puy) = 2, (A.72)
£ [0,1]2

2ip, 12

which is non-holomorphic in p as a consequence of the pole of P(p,v) at v = 0. From this,
it follows in particular that the average values of the zero-th Fourier-Jacobi modes (A.59) of
1/®,_, and 1/$,_, with respect to v are given by

k NZEA'Z(NP)—EAz(P)
du, du = ,
f[o,l]z 1PN -D T ade)
" E,(p)—Eo(N
J du, duy g = — K Ealp) = Bx(Np)
[0,1]x[O,N] 12(N—1) Ay(p)

For negative index m < 0, it turns out that any meromorphic Jacobi form 1 can be ex-

pressed as a linear combination of iterated derivative of a modified Appell-Lerch sum, (here
y= eanz,W — eZmu) [96]

(A.73)

—2Ms Ms(s+1)

w
Fu(z,u;7) = (y/wM > e (A74)
1—qy/w
SEZ
The latter transforms as a Jacobi form of index M = —m in u and has a simple pole at

u—3z € Z + 17, with residue 1/(2xi) at u = z. If S denotes the set of poles of ¢ (z) in a
fundamental domain of C/(Z + tZ), and D, ,, are the Laurent coefficients of 1) at z = u, then
Theorem 1.1 in [96] states that

PE)=—>>" . [0mF (2, 0)],_, (A.75)
== (2711)“ (n —1)!
For the case of interest in this paper, the leading Fourier-Jacobi coefficient ¢_; = m of
1

1/®,, has a double pole at z = 0 with residue 1/A, hence

1 8 s2+s 25 s2+s
Yo = oo B (30 T)lumo = ——Z Y| (A.76)
A 2mi AL (1 q _y)2 1—q'y

Note that this plays the role of 1)” 1> while PF , vanishes. The modified Appell-Lerch sum can
be written as an indefinite theta series,

51 nf + sign(u, +s 1
W, :__ Z [(2 g Zg (uy )_47-[ 5(u2+s)] qsz+lsyl , (A.77)
SZEZ P2

where sign/ is interpreted as —1 for £ = 0. To see that this formula is consistent with the
quasi-periodicity (A.52), note that under (y,s,¢) — (yq,s —1,£ +2), (A.77) becomes

1 Z |:(2 51gn(€ +2) +sign(uy +5) 1

5(112 +S):| q32+f5+1 y[+2 . (A.78)
2 41p,

sEeZ

This differs from (A.77) (up to the automorphy factor qy?) only due to the terms £ = 0 and

¢ = —1, but those two terms leads to a vanishing contribution,
—= Z [(23 — D@Dy 4 o5 g5ty ] =0. (A.79)
SEZ
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Shifting £ to £ — 2s, (A.77) may be written equivalently as

1
Yo =—— [3
A sAEZ

sign({ — 2s) + sign(u, +s) 1
2 4rp

o (uy +s)] q_SZHS ye_25 s (A.80)
2

which resembles the Appell-Lerch sum (A.68) for m = —1, except for the replacement of sign{
by sign(¢ — 2s). Of course, the Appell-Lerch sum .A_; would be divergent, while the modified
Appell-Lerch sum is absolutely convergent. Similarly, for CHL orbifolds, the leading Fourier-
Jacobi coefficient of 1/®,_, is given by the same Eq. (A.80) with A replaced by A,.

A.6 Fourier coefficients and local modular forms

In this section we shall use the decomposition (A.60) to infer the Fourier coefficients of 1/®;_,
and 1/®,_, in the limit Q, — ico. Starting with the maximal rank case, and assuming that
Oy > pg, Vo, We find

e—2ni(np+Lv+m0')

C(n,m,L;Q ):f e —
2 [0,13 ! cI)lO(p,O';V)

e—2ni(np+Lv) (A.81)

=CF(n, m,L)+c(m)f dp;dv; A (p,v),
[

0172 A(p)
where CF(n,m,L) = f[0,1]2 dpy dvi Yf (p,v) e 27 +LY) are the Fourier coefficients of the
finite part of ¢ ,,. To compute the integral in the second line of (A.81), we Fourier expand
1/A(p) = X y>_q c(m)g™ and A,,(p, v) using the representation (A.68), and integrate term
by term with respect to v;, obtaining

1 Z c(m)c(n—Ls + ms?) (L — 2ms) [sign(u, +s) + sign(L — 2ms)] , (A.82)
sAEZ

where we have used £ = L —2ms, M = n —ms? — {s. However, while this naive manipulation
lead to the correct result for generic u,, it turns out to miss a distributional part localized at
u, € 7, originating from the poles of A,,(p,v) at g°e®™” = 1.

To compute this distribution, let us first consider the contribution from the term s = 0 in
the sum (A.64). Upon expanding

y {Zkzl ky*, lyl<1

= - > (A.83)
Zk21kyk, |}’|>1

(1-y)2

. 1 . .
one would be tempted to conclude that the integral fo dv, # vanishes. However, we claim
that instead,

1
y 1
dvi ——— =—-6(v,) . (A.84)
fo TA-y2 T 4
To see this, we first consider first the single pole function %i’%}, with Fourier expansion

1 i '
1y+1_ —Z sign({) + SlgH(Vz)ye ) (A.85)

2y—1 = 2
with the understanding that sign(0) = 0. We claim that this identity is valid at the distribu-
tional level. As a check, using the Euler formula representation for (A.85) and acting with an

anti-holomorphic derivative on each term (recalling that 3‘—,% =nd(v1)8(v,)), we get

18 1y+1 18 1 1 1 .
SR (b e i PSR SCAN (L S S 5(v;—0) = —6 :

(A.86)
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The right-hand side is also what one gets by acting with ¢; = %(avl +1d,,) on each term in the
Fourier series (A.85), noting that sign’(v,) = 28(v,).

The double pole distribution (A.83) is obtained by acting with a holomorphic derivative
on (A.85), therefore admits the Fourier expansion

Y 1 9 1y+1 |€] + sign(v,)¢ S
A—y? 27‘618v(2y—1) ZGZZ 5 5(VZ)€€ZZy (A.87)

In particular, integrating over v; we reach (A.84).3°. More generally, the same argument shows
that for any s,

Ty :Z(|€|+€sign(v2+5pz)
-¢y)» & 2

5(v2 +spq )) byl (A.88)

Using this identity, we find that the naive result (A.82) misses an additional term supported
atuy =vy/py € Z,
L _ 2
c(m)c(n—Ls +ms*)6(vy +sp5) . (A.89)

4 sAEZ

However, this still cannot be the full Fourier coefficient C(n, m, L; Q,), since the latter must be
invariant under the action (A.14) of GL(2,7). Instead, both (A.82) and (A.89) are invariant
under the subgroup T'n, which preserves the cusp o, = 0o, where ((1) ;) acts by sending

(n,m,L) — (n—Ls + ms2, mL —2ms). To restore invariance under the full GL(2, Z) group, we
may therefore replace the sum over s € Z by a sum over all y € GL(2,Z)/Di,, obtaining

C(n,m, L;Qy) =CF(n,m, L)

+ Z [c(m)c(n) (%L(sgnL +sgnvy) — 4%5(1/2))] l, +

Y€GL(2,Z)/Dih,
(A.90)

Here, Dih, denotes the dihedral group generated by the matrices (; °) and (¢ §), which
stabilizes the locus v, = 0, and the dots denotes possible additional contributions which are
not visible in the limit |Q2,] — oo. The action of y = (‘r’ ‘51) € GL(2,7) on the quantities
m, n, L, v, appearing in the bracket is given by

A — s’n+q*m—gsL, m— r’n+p*m—prlL, (A.91)
A ps+qr

L —» —2rsn—2pgm+ TL’ (A.92)
Dy tr((l(/)2 Y2)yTQyy) = pgpa+rsoy+ (ps+qr)vy . (A.93)

Using the same reasoning, we find the Fourier coefficients of 1/®;_,, which must be invariant
under GL(2,7),

Cr_o(n,m,L; Q) =Cf_,(n,m,L)

+ Z [ck (m)cy (n)( (51gnL + 51gnv2) - —5(1/2))] ... (A94)

y€GL(2,Z)/Dih, r

301t is worth cautioning the reader that regularizing the double pole by point splitting would instead produce the
same delta distribution with coefficient —1/(27). This however would be inconsistent with modular invariance,
e.g. when computing the average of the Weierstrass function in (A.72).
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For the Fourier coefficients of 1/®;_,, which must be invariant under I;)(N), we find instead

Ek_z(n, m, L; QZ) = E]f_z(na m, L)

1. A 1
+ Z ¢ (Nm) ¢ (1) [—L (signL + sigm?z) - —5(1“/2)]] +.... (A95)
2 4r ¥
YEL(N)/Z;y

It is important to note that the identities (A.90),(A.94),(A.95) are only valid when |Q,] is
large enough such that the integration contour [0, 1]® +iQ, does not cross any pole for generic
values of Q,, and only crosses quadratic divisors (A.6) with n, = 0 on real-codimension one
loci. When |Q,] < 1/ (4n§) with |ny| > 1, the contour crosses the the quadratic divisor (A.6)
for generic values of Q,, and the integral on the first line of (A.81) is no longer well-defined.
We leave it as an interesting open problem to define the Fourier coefficient C(n, m, L; Q) of
1/®4, (or its analogue for 1/®;.,, and 1/®;_,) in the region where |Q,| < 1/4.

B Perturbative contributions to 1/4-BPS couplings

In this section, we compute the one-loop and two-loop contributions to the coefficient of the
V2F# coupling in the low-energy effective action in heterotic CHL orbifolds. In both cases we
start with the maximal rank case, i.e. heterotic string compactified on a torus T¢, and then
turn to the simplest heterotic CHL orbifolds with N = 2, 3,5, 7.

B.1 One-loop V*F* and R*F? couplings
B.1.1 Maximal rank case

In heterotic string compactified on a torus T¢, the one-loop contribution to the coefficient of
the V2F# coupling in the low-energy effective action can be extracted from the four-gauge
boson one-loop amplitude, given up to an overal tensorial factor by [42]

1 dp dp dz;dz;
ASl)acd_ f 2 Jl_[ 2ip, (X12X34) (X13X24) (114)(23)
E4

(2mi)* (B.1)
(Ja(21)Jb(Zz)Jc(23)Jd(24)> ,
where y;; = e8(P%i—2) and g(p,2)=—log|0:(p,2)/n|*+ i—g(lmz)z is the scalar Green function

on the elliptic curve £ with modulus p. The four-point function of the currents evaluates to

(Ja(21)T5(22) Je(25) Ja(20)) =Th, , 1 a[Pabcal — =5 (8abThy, 1q o [Pea] 928 (21 — 2) + 5 perms )

pre)
(8abBeaTay g 4[11028 (21 —2) 928 (25 —24) + 2 perms)
(B.2)

+

1674

where P, and P,; .4 are quadratic and quartic polynomials, respectively, in the projected lattice
vector Q;, = pro Q7 €Iy +16,4 arising from the zero-mode of the currents,

5ab
4mpy

3
Pibed =QraQrpQrcQra — Py —0@pQrcQray +

Pab :QLaQLb -
(B.3)

3
———0(ab0cd) »
167T2p§ (ab%cd)
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and for any polynomial P in Q;, and integer lattice A, ; of signature (p,q), we denote

[P1=p3" D7 P(Quo)ePe—Pal, (B.4)
QEAp,q

Ih

P,q
Upon expanding in powers of a’, the leading term reproduces the one-loop contribution to the
F* coupling,

1)
Fabcd

dp,dp, IA [Pabedl
:R.N.J P1CP2 “hd+16d 7 abe (B.5)
e

3 Alp)

where R.N. denotes the regularization procedure introduced in [97-99], which is needed to

make sense of the divergent integral when d > 6 (we return to this point at the end of this

subsection). Equivalently, (B.5) may be written as [47]

= R.N~J dp1dp, o4 FAd+16,d(y)
F1

(€8]
Fabcd

B.6
3 @ryaydyrayayt Ap) -t OO

where Iy, q( y) is the partition function of the compact bosons deformed by the current y,J¢
integrated along the A-cycle of the elliptic curve,

. 2_=0n2 i)y EY)
L, ) =p D) eMPaTPaEra I (.7)

QA

At next to leading order in @/, the term linear in the Mandelstam variables s, t,u reduces
to

dp,dp, 1 4 dz;dz;
G a = f by f [15 [5G —2)0%5(1 —2) 80 Ty 1y 4 [Peal + Sperms]
7 P3 £ P2

4i=1

(B.8)

since all other terms at this order are total derivatives with respect to z;. The integral over z
can be computed by using the Poincaré series representation of the Green function,

/

gp)== > | P2 pElimptm—z(mp+m)] (B.9)
(mezz TP +nl?
leading to
dzdz 52 =i Z/: L _ T B.10
L 2ip, SC TSI, 2 G wmp v 62t 10

where the sum over (m, n) was regularized a la Kronecker. Up to an overall numerical factor,
we therefore find that the one-loop contribution to the coefficient of V2F# coupling for the
maximal rank model is given by

dp1dps E,
GY» =5 b Glred , G¥»9 =R.N. J L T [P b] . (B.11)
ab,cd (a cd) ab 5 pg A(p) Apgtta

For d = 0, corresponding to either of the Eg x Eg or Spin(32)/Z., heterotic strings in 10
dimensions, one has

Ey ..
Do, [Pab] = Thy, [Pap] = 7o (B2Es = Es) Sap, (B.12)

SO GS)) 4 becomes proportional to the TrF 2TrR? coupling computed from the elliptic genus
,C
[100, C.5], [101], as required by supersymmetry.
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B.1.2 CHL orbifolds

The four-gauge boson amplitude in CHL models with N = 2,3, 5,7 was obtained in [45,46].
It was shown in [22, §A] that the one-loop F* coupling in these models is given by the simple
generalization of (B.5), namely

F(l) F(d+r 12,d) F(pq) —RN. f dpldp2 FAp,q[Pabcd]
abcd abcd ’ abed — 2 A )
LIN\H, P2 k

where Ay = [n(p)n(Np)]¥ arises from the partition function in the twisted sectors. The same
derivation goes through for the V2F* and R2F? couplings and yields

(B.13)

dp,dp, E
2 21 [Pay] (B.14)
Py Ay

o (d+r—12,d) v.a) _
Gabcd 5( bG d) s Gapbq =R.N. f
To(N\H,

B.1.3 Regularization of the genus-one modular integrals

As indicated above, the modular integrals (B.13) and (B.14) are divergent when d > 6 and
d = 4, respectively. We follow the same regularization procedure as in [22,102] and de-
fine them by truncating the integration domain to Fy x = Uyer,n)\si(2,z)Y * F1,,» Where
Fip = {—% < p; < %, lp| > 1,p, < A} is the truncated fundamental domain for SL(2,Z),
and minimally subtracting the divergent terms before taking the limit A — oo. Using the fact
that the constant terms of 1/A and E,/A, are equal to k and k(1 — nipz) — 24, the constant

terms of their Fricke dual are k and k(N — ﬂ%z) and the constant terms of the Fricke dual of

.. .. 98
the partition function include an extra factor of UN 2, we get

dp,dp I\, o [Pabedl 3k(1+UN )/\qT
Pa) _ 1: 1 2 'p.q
Flhea = AlggoU 3 N Ton3 prs 5(ab5cd):|a (B.15)
FNA P2 k T
—6 —6 q—4
dp,dp, E 3k(1+uNZ) AT k(1+uNT)—24 AT
G(Pq)_Ah [J plzpz AZ FA [ b] ( +U2 ) q_6 5ab+ ( +v ) q_4 6ab}’
oL Jm, P2 Bk s 42 4 T
(B.16)

where the terms A2 / % and AT % should be replaced by log A when ¢ = 6 or q = 4,
respectively. Note that the second term in (B.16) cancels in the case of the full rank model
where k = 24. It will be also useful to consider the Fricke dual function to Gépi)") for the
N =2,3,5,7 models, introduced in (4.57) and whose regularization is given by

” 98 -6
GO = lim [ dp1dp; NE;(Np) (p,,]_ LroNT AT
A—0co Fun P% Ak(p) Ap qLltad 4772 q —6 Jab
k(N+UNT)—24A¥5
+ e 74 Oab |- (B.17)

2

B.1.4 Differential identities satisfied by genus-one modular integrals

Like the genus-two modular integral G("q) discussed in §3.3, the genus-one modular integrals
(B.15), (B.16) and (B.17) satisfy d1fferent1a1 identities with constant source terms in g = 6,
q = 4 determined by regularization techniques using the same paramatrization as for section
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B.1.3. The equation for the modular integral Fc(lpl;qc) 4 was calculated in [22, (3.57)], which we
reproduce below:

n 2_
D® DfygFaped = 320ef Fabea + (4= a8 (ej(Frcayis)

15k(1+ 2)
+ 30 Fedyes + W5(ab5cd5ef) 546 -

Here the volume factor v is either equal to N for the perturbative Narain lattice, or to 1 for
the non-perturbative Narain lattice.

The equation satisfied by the genus-one integral Gg’,;q) can be computed using the same
techniques described in [22, §3.2] and reads

: 2-4 4—q 1
D PGy’ = =3 Ber Gaiy’ + 5 Boata Gy + 5 0 G + 6F 50

3((1 + $)k—24) 9(1+ 2k
- s (ef 5ab) 5q,4 + 872 5(ef 5ab) 5q,6 5

(B.18)

where the term proportional to Fé‘}"(’l)b corresponds to the contribution of the non-holomorphic

completion in E,, and the two constant contributions of the second line correspond to the
boundary contribution after integration by part (see [22, (3.54)]). One checks that the diver-
gent contributions cancel each others, so the equation is valid for the renormalized couplings.
For the perturbative lattice with v = N, these linear corrections are associated to the mix-
ing between the analytic and the non-analytic components of the amplitude, and are indeed
proportional to the corresponding 1-loop divergence coefficient in supergravity [83].

The same analysis for QG((IP;) gives

5 2—q 4—q 1
D(egpf)g ng(zpl;q) — 7 5ef gG((lpl;q) + 5 58)(61 gG(p,q) + E 5ab gG(p,q) + 6F(p,q)

b)(f ef efab
3((N +v)k —24) 91+ L)k (B.19)
_ Py 5(ef5ab) 5q,4+ —87'52 5(ef6ab) 6q,6 .

B.2 Two-loop V2F* couplings
B.2.1 Maximal rank case

At two-loop, the scattering amplitude of four gauge bosons in ten-dimensional heterotic string
theory was computed in [43,44]. Upon compactifying on a torus T¢, one obtains

e :J ¢’ d’Q, 1
abed 5 P @

4
x f Vs | 12 Graarsa)®® (issa)®* (rraras)™™ Ualz) J(22) e (23) Ja(z4))

n4 i=1
(B.20)

where ¥ is a genus-two Riemann surface with period matrix , Vs is a specific (1,1) form in
each of the coordinates z; on X [43, (11.32)],

Vs =t A(1,2)A(3,4)—s A(1,4) A(2,3), (B.21)
where A(z,w) = wq(2)wy(w) — w1 (W)w,(2), xij = e%®27%) and G(£, 2) is the scalar Green

function on X. Atleading orderin a’, y; j can be set to one, and similarly to (B.6), the integrated
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current correlator fz J%(2)dz w;z can be expressed as a multiple derivative [47]

%(Err’gss’ + &gy )a4 (2)
(riyay; 8y, ayr ay; "+

(ly=o >

(B.22)
where F&)Hfs d(y) is the partition function of the compact bosons deformed by the currents

4
< f T (2P (22)0 (23)0 () | [z 0 (z)) =
4 i=1

y.J¢ integrated along the r-th A-cycle of %,

]_—'/{i) ] (y) = |Q|g/2 Z eiana Qs QSL a—iTEQ;& Qrs Q;H"'Znina}'r 2 yaQrsy (B.23)
Qe

Evaluating the derivatives explicitly, we obtain the result announced in (2.30) for the two-loop
V2F* coupling in the maximal rank case,

G419 _p N (B.24)

ab,cd

3

@
J 430, 430, g 4416 Pabicd]
5 122P %10

where Py, .4 is the quartic polynomial defined in (2.31). The regularization procedure needed
to make sense of this modular integral when d > 5 will be discussed in §B.2.4.

In the special case (d = 0) of the Eg x Eg heterotic string in 10 dimensions, and for a suitable
choice of indices ab, cd, the partition function Ff{z)sta[Pab;Cd] reduces (up to normalization)

to (Eff))z\lfz where Ef) is the holomorphic Eisenstein series of weight 4, which coincides with
the Siegel theta series for the lattice Eg, and ¥, is a non-holomorphic modular form of weight
(2,0) given by

W, = 3,80, — 1(3,8)*, &=Ilog[I|*'EY], (B.25)

in agreement with [44, (5.7)]. This can be viewed as the genus-two counterpart of the genus-
one formula (B.12). We shall now discuss the extension of (B.24) to CHL orbifolds, starting
with the simplest case N = 2.

B.2.2 Z, orbifold

The simplest CHL model is obtained by orbifolding the Eg x Eg heterotic string on T¢ by an
involution o exchanging the two Eg factors, and translating by half a period along one circle
in T [25]. This model was studied in more detail in [103, 104] and revisited in [22, §A.1].
Some aspects of the genus-two heterotic amplitude in this model were discussed in [11] in the
context of 1/4-BPS dyon counting, which we shall build on.

Following standard rules, the two-loop amplitude is now a sum over all possible twisted or
untwisted periodicity conditions [h;h,] and [ g, g,] along the A and B cycles of the genus-two
curve X, respectively,

1 hyh
A® = = A(Z)[ 2] (B.26)
4 hﬂ;&ﬂ 8182
81,82€{0,1}

The untwisted amplitude .A(z)[ 88 ] coincides with (B.20), restricted on the locus G454 C G44+16.4
which is invariant under the involution o. As in the genus-one case [22, §A.1], it is convenient
to further restrict to the locus Gy 4 C G445 4 Where the lattice factorizes as Ay 16 ¢ = Eg®Eg®I4 4,

and retain from A(Z)[ Zig] the chiral measure for the ten-dimensional string, which we denote
by
o?@)]
[ 00 I:
Zer )= 5.27)
10

88


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

Now, decomposing p{ + p5 = 2X% + P%, pi —p7 = 2A% —P* for p{,p5 € Ag,, a = 1,2, the
genus-two partition function of the lattice Ag .z, appearing in the numerator can be decom-
posed as

2
(2 _ 2 (2)
[er @] = )3 Ok 1217y, W 21, p, (V) - (B.28)
(P1,P2)E(Agg /2Agg)®2
where @;_2;[2]’(7)1’7)2) is the genus-two theta series for Ag [2]:
1 1
@ _ 2mi(AT—5 Py (A =5 P°)
O o121, Py () = D e 2 S (B.29)
(A1,A2)en®?
8
_p @ —o®
For 731 = 7)2 = O, ®E8[2]:(0’0)(Q) = @ES(ZQ)
As for the twisted sectors [Z] = [Zig] #+ [88 ], we use the fact that the Z, orbifold blocks
of d compact scalars on a Riemann surface of genus 2 are given by [105,106]
or5+ 15— d
F2[571(0,2)9¥[6;1(0,0) Z P QT Qs (B.30)
Zy(2)29,(0, 7,4 )? gen,

where Z,(2) is the inverse of the chiral partition of a (uncompactified, untwisted, unprojected)
scalar field on %, and 7y, ¢ is the Prym period, namely the period of the unique even holomor-
phic form on the double cover of 5, a Riemann surface 3 of genus 3. The Prym period Thg 1S
related to the period matrix by the Schottky-Jung relation [106, (1.6)]

) 4 @r s+ QQrs— 2
(ﬂl(o,rh,g)) _(ﬁ (610,05, 1(0’9)) (8.31)

9,(0,7) ) \ 9@[671(0,2)9=[5;1(0,%)

for any choice of distinct i, j € {1,2,3}. Here, Sl.i are the 6 even spin structures 6 such that

o+ %[ Z ] is also en even spin structure; moreover 51._ = 51'+ + %[ Z ] The relation (B.31) ensures
that (B.30) is independent of the choice of i. Since all 15 non-trivial twists are permuted by
Sp(4,7), it will be convenient to focus on the twisted sector [h] = [8(1) ], in which case the

relation (B.31) becomes [106, (6.5)] ¢
2
o) (W[g; ]ﬂ@)[gi])
93(1) 0@ oo 9971/

where T = 7y, .. In particular, under (p,o,v) — (p +1,0,v), the Prym period transforms as
T — 7 + 1, whereas in the non-separating degeneration 0 — ico, T ~ p mod4Z [106, §7.2].

(B.32)

In our case, we need the orbifold blocks of 16 chiral scalars under exchange X; — X, g mod 16-
By decomposing X; into its even and odd components X; =X;, g mod 16, We find that the orbifold
blocks are given by

[92[671(2)92[671()]
Z300;(tpq)8

4
(2)

8 Z O 127,70/ () Oy 1217 (Thg) - (B.33)

Pe(Agg /2Ag,)

As a consistency check on this result (first obtained in [11] from the partition function of the Eg
root lattice on the genus 3 covering surface Y), let us consider the maximal non-separating de-
Li+L, I,
Ly,  Ly+1Ls
Schwinger times along the three edges of the two-loop sunset diagram shown in Figure 1

generation limit: the imaginary part of the period matrix Q, = ( ) parametrizes
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iii). Assuming that the Z, action is inserted along the edge of length L, the Eg ® Eg mo-
menta running in the three edges are (p;,p»), (p1 + q,p2 + q),(q,q). Decomposing as usual
p1+py=2X+P,p; —py = 2A —"P, the classical action is

Li(p? +p3)+ Ly [(p1 + @)* + (p2 + 9)* ] + 2L3q°
=2(L, + L) [(Z+ 1) +(a—-1P) ] +2(Ly + L3)q% + 4Ly (Z+ 3P) - g

Li+L L T+ ip 2
=2(z+1ip q)-( 1L2 2 L2+2L3)'( q2 )+2(L1+L2)(A—§P) ,

(B.34)

in agreement with the maximal non-separating degeneration limit of the second factor in
(B.33), using 1, ~ p.

The contributions of the other degrees of freedom (spacetime bosons and fermions, ghosts)
are unaffected by the orbifolding and, as in the maximal rank, turn the factor 1/ Z&é in (B.33)

into 1/®,,. In the sector [h

g] = [8(1) ], the resulting ratio can be written in three equivalent
ways [11, (4.29-31)],

[0(2)[5+](Q)1<}(2)[5 ](Q)] 17(2)[ ]2,0(2)[ ]17(2)[ ]19(2)[(1)(1)]2 B 1
0:(Thg)%210(Q) AT 0504(7) @60()
R e e r I S
F303(0)010(2) T 030%(7) 6., (Q) ’
_oLgl v Lgy Toe[Se o[ 99] _ 1
- PR o) 90N een()

where ®¢ ; = & is the Siegel modular form (A.46) of weight 6 and level 2, and &¢ ; o< & and
®¢ o are its images under S, and T, - S, respectively (see (B.43) below). Using the identity

Z eg)[z 1P, o)(Q) Opg21,p(7) =

Pe(Agg/2Agy)
039, 0% (2p, 20, W)+ 15‘41?4 2(5,20,v)+ 615‘41?4 <2>(P+1 o,v),
(B.36)
we find that the orbifold block in the sector [h] [01] is given by [11, (4.38)]
0% (2p,20,2v) 6P(L2,20,v) 9(2)('O+1 o,v)
zP[0]=— + + . (B.37)

P60 169 4 169,

In particular, the dependence on the Prym period T has disappeared. The result (B 37) is
invariant under the index 15 subgroup I; . (2) of Sp(4, Z) which preserves the twist [ ] [106,
§6.1]. In fact it can be rewritten as

R DY

YEFZ,E] (2)/F2,0,el (2)

6;52;(2;), 20,2v)
ly 5 (B.38)

60

where T, (2) = T, (2) N T,(2) has index 3 inside T,, (2), and 3 inside I,((2). As a
consistency check in (B.37), in the separating degeneration limit v — 0 (B.37) becomes

Z(z)|:00:|~_4 2.2 E4(20') |:E4(2P) E4(%) + E4(pT+1):|
n[ 9] [n[3]) nlo]e) n[1]we)
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Table 1: List of genus-two orbifold blocks for the Z., CHL model

Ik @[ hihy
[gng :| ZS [8182 :| Y € Sp(47 Z)/FZ,el (2)
0 1 0 0
2 2 2
00 928)(2)0,20,2\/) 9}(38)(213,%,1’) el )(210,(7+1 v) 1 0 0 0
[ 10] o 29% 27% , 0 0 0 1
001 0
T 0 0 0
(2) ) p (2)p+1
[01] 05, 20,5v)  ©(5.9.5) 6 )(%5.5.5) 00 0 -1
00 24q>6,3 28@6, 28%,6 001 o0
01 0 0
0 0 0 —1
(2) p 2)cp (2) p o+l
[10] O (5.20v)  ©0(5.5.3) O (5.5.3) 100 0
00 24<1>&1 28@6,5 28@6 . 01 0 o0
00 1 o0
1 0 0 0
[11] (2)(7’7’5 @(2) P;1’0'+1 v+1) @(2)(2 o— 2V+P V_P) 210 0 -1
00 z8<1>6,5 2%, 24%,13 0 1 1 o0
0 1 0 0
T 0 0 0
1
(9] of)(2p, %t v) 25,415 el gy 01 0 -1
01 273, 253, T 00 1 o0
01 0 o0
0 1 0 -1
(2)ptl (2)p+1 @) ptl o+l
[10] Op, (77:20v)  ©5°(57,5,3) Op (5.5%.3) 1 00 0
10 273, LT 258 5 01 0 o0
001 o0
0 1 0 0
(2) (2) v+1 (2)pt1 +1
[01] Oy (20,3v)  ©(5.5.5) 05 (5.5 0 0 -1 0
10 24<1>6,3 28%10 LT 0o 0 1 1
1 -1 0 0
0 1 -1 -1
(2) +1 (2) +1 1 1 (2) +1 1
[10] o (22 .20,7) () . (5.5, 7) 1 -1 0 0
11 24<1>6,2 2534, 25361 01 0 o0
0 1 0
0 0 -1 -1
(2) p @) p v+1 )p o+l v+l
[10] O, (5.20v)  ©0(5.3.5)  05/(5.5%5.5) 1 -1 0 0
01 24%,1 28@6,10 25851, 01 0 o0
0 0 1 o0
0 1 0 0
[01] 9(2)(29’“1’” 9(2)(“1,(%1’% 9(2) 5.531.50) 1 -1 -1 o
11 29% 4 288 28% 15 o o 1 1
1 -1 0 0
_ 0 1 0 0
[00] 6,(5?(2;0,20,2\/) 9}(3?(2p,’32+“’,v—p) @(2)(29,M,v—p) 1 -1 0 o0
11 o 2%%5 15 + 29%4.12 0 0 1 1
0 0 1 0
T 0 0 0
1 2 1
[11] D5ty e g4 o2, 2 y—p) 11 0 -1
01 253, 25851, 27%4 1, 0 1 1 o0
0 1 0 0
e+l o v 2)p o+l v+l (2) 2 p—2v+o+1 1 11 0
[11] O (37,2) | O (3,557 7) O, (2p,—=%—v—p) -1 0 0 -1
10 28%,6 286 1, 2496 14 0 1 1 o0
0 1 0 0
T 1 1 0
2 1 2 2 2
11 o519 e2(5.9.4%) e, S5 v—p) 11 0 -1
I: 11 ] LT 5% 1 2%%5 15 0 1 1 o0
0 1 0 0
where, for N prime and h # 0mod N we define
07 _ , k+2 k+2 h_  lmale?) 4o k2T Ha
nlg]l=n"P@n W), [ ]=e 200 (=), (B.40)

where k+2=1{, a = gh™!, with h! being the inverse of h in the multiplicative group Z/NZ.
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Using [22, Eq.(A.10)], the term in bracket is indeed recognized as the untwisted unprojected
one-loop partition function

1
Z0[0]= Ej __ B427) E4(3) E(5) ' B.A41)
g Lo n2 n8(T)n8(27)  n8(T)nd(%) ezm/sns(f)nS(TTH)
The remaining blocks can be obtained by modular transformations,
O Eqr & 2 D —C
Zg [6](Q) = Zg[6]1(Q2), 6= B A omod2, (B.42)

where & = (hy,hy, g1,85)". Using the invariance of @g) (p,0o,v) under the full Siegel mod-
ular group, and acting with the 15 elements y of Sp(4,7)/T, ., (2) on (B.38), we obtain the
orbifold blocks shown on Table 1. In this table, ®¢; through &¢,, are images of &4, un-
der y € Sp(4,7Z)/T,,(2). When v lies in SL(2,Z), x SL(2,7Z), — Sp(4,7Z) we denote the
respective SL(2,7Z) generators in subscript:

00 -1 0
_ 01 0 0
@6 1(p,0,v) =p °®o(—1/p,0 —v?*/p,v/p) =‘1>6|( 10 0 o )=q’6|(s,11) ,
00 0 1
10 -1 0
01 0 o0
®62(0,0,v) =%61(p+1,0,v) =¢6|( 1 0 0 o ) = ®|(rs,1)
00 0 1
100 0
_ 6 2 _ 0 0 0 -1 | __
®63(p,0,v)=0"®go(p—Vv/o,—1/o,v/o)=|| o o 1 o |=%slans)
010 0
100 0
01 0 -1
®64(0,0,v) =Pe3(p,0+1,v) = cI’6|( 00 1 0 ) = ®¢l(1,15) 5
010 0 B.43
0 0 -1 0 (B.43)
_ 00 0 -1
@6 5(p,0,v)=0 64’6,1(/0—1’2/0,—1/0,"/0)2‘1’6|( 10 0 o0 ):%'(S,S)’
01 0 o0

1 0
0o -1
0 0 ) = ®g|(rs,s) >
1 0

-1

0 ) = ‘I’6|(S,Ts) 5

0
0

0

0 -1 o0

1 0 -1

o o o |=%6lwsrs>
1 0

®66(0,0,v) =Pes5(p+1,0,v) = &g (

—HOrRrO oo o
o
o

1

0

1

0

0

0

4)6,7()0:0': V) =¢6,5(P:O' + 1,V) = cI)6|( 1
0

O = O R

®65(p,0,v) =Pes(p+1,0+1,v)= ‘1’6|(
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1 1 -1 0
11 0 -1
‘1’6,9(10,0,\/)=¢6,5(P+1:0+1:V+1):‘I’6|( 10 0 o0 )
01 0 0
01 -1 o0
10 0 -1
‘1’6,10(P,0,V)=‘I’6,5(P:U>V+1):‘I’6|( 10 0 0 )’
01 0 0
11 -1 o0
10 0 -1
®611(p,0,v) =<I>6’5(p+1,0,v+1)=<1>6|( 1 0 o o ), (B.44)
01 0 0
01 -1 0
11 0 -1
¢6,12(P:O-»V) :q)6,5(p:0+1yv+1):¢6|( 1 0 0 0 )’
01 0 0
1 00 0
-1 0 0 -1
¢6,13(P;O':V)=<I’6,3(P:O'_2V+P>V_P)=q)6|( 0O 1 1 o0 )’
0 1 0 0
1 00 0
-1 1 0 -1
<I’6,14(10,0",1’)=<I>6,4(P,C7—2V‘i'/0"‘LV—P):‘I’G( 0 1 1 0 )
0 1 0 0
As a consistency check, using the fact that
278201294 (p) 0¥ (o) + O(vY), k<8
e r(p,0,v) ~ 4 7112 l(pzzj( ) (2 ) , (B.45)
’ 270 (p)n*(0) + O(v?) k=9

Where (k, i, j) = (O’ 2’ 2)7 (1’ 4, 2), (2’ 3’ 2)(3’ 21 4)7 (4’ 2, 3), (5’ 4’ 4)) (6, 35 4)3 (7’ 4) 3)’ (83 3, 3) for
k < 8, we see that in the separating degeneration limit v — 0,
P Y) ~ —an2v2z{0[ 1 1(0) 20 12 J(0) + 02, (B.46)

where Zél)[g] are the genus-one orbifold blocks given in [22, Eq.(A.6)]. Note that each of

the numerators appearing in the genus-two orbifold blocks Zéz)[lgfgz

. . . 102
the genus-two theta series for an Euclidean lattice of rank 8 as follows (here q2¢ denotes
eiTEQrQ,—st)

] can be interpreted as

©p,(2p,2v,20) = Z 7T Q|

(Q1,Q0)e
Eg[2]@Eg[2]
0,0 P =2t Y e,
SIS Ae
Eg[2]®Eg[2]*
+1 4 8 8 2 inQ Q,,Q° (B.47)
O (20,v, ) =2 > (-1)%eNC,
(Q1,Q2)e
Eg[2]@Eg[2]*
O (55,50 =2 D (F)HEN,
(QI’QZ)G

Eg[2]"®Eg[2]"
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@Es(p v+1 O') 2—8 Z (_1)2Q1Q2 eiT[QrQrSQS,

2> 2 22
(Q1,Q0)e
Eg[2]"®Eg[2]"

@Es(p v+1 cr+1) 2— Z (_1)(2Q1+Q2).Q2 ei“QrQrst,

(Ql ,Q2)€
Eg[2]"®Eg[2]"

+1 — 24102 in0"Q..0°
O (P35, 55 =20 D, (F)IEren,

(Q1,Q2)e
Eg[2]*®Eg[2]*

O, (250, 131, o) =278 Z (—1)Qi+Q2)* (imQ Q|
(Q1,Q2)e
Eg[2]"®Eg[2]"
—2v+ — Fpyeys s
®E8(2p: V—pP, 2 ZV p) =2 4 Z 5(Q1+Q2)€E8[2] emQ Q,,Q ,
(Q1,Q,)e
Eg[2]"®Eg[2]*
—2v+p+1 - 1Q,-0,)?* inQ"Q,.Q°
O5,20,v—p, 77 =270 D1 Bq apeniz (F1)F @R N,

(Ql ,Q2)€
Eg[2]"®Eg[2]"

(B.48)

Now, as indicated above (B.27), the orbifold blocks Z (2)[h Zz] only include the contribu-
tions from the chiral measure for the ten-dimensional string, and need to be supplemented
with the contribution of the bosonic zero-modes of the d compact bosons,

Zéz,ii[giigli]: |€2,]2/2 Z (—1)7(81Q1+82Q0) (inQ} 2, Q;~ inQRsrs Q| (B.49)

QEAE%+35(hy,hp)6

where 0 is a null element in (214 4)/14 4 which depends on the orbifold action on T4; we shall
henceforth restrict to a half-period shift along the d-th circle, so that § = (0¢;09711). For this
choice, the product of (B.38) and (B.49) can again be written as a sum over images under the
stabilizer of the twist,

¥ [(-1)°%]

A,
zlolzglal= >, e : (B.50)
Y€Dye; (2)/Ta 06, (2) 6,0 ¥
where
Agrgg =Eg[2]® 144, (B.51)

and 6 - Q, equals the winding of the d-th embedding coordinate along the cycle B,. Thus,
the sum over all the sectors listed in (1), in the case of compactification on T4 at this specific
factorization point in the moduli space, can be rewritten as

> olilanlitls Y AIRZnle)

h,.g,€{0,1} YESP(4,2)/Ty,e, (2) !
) _1)6Q _1)5Q —1)9:(Q:+Qy)
) 2 (G179 4 (1)@ 4 (1) @) Py
YESP(4,2)/T,0(2) 6,0 Y
(B.52)

where for the last equality we expressed Zéz)[OO]Z @ [82] as a sum over I, (2)/Ty ., (2),

similarly to (B.38), and rewrote the two sums as a double sum over Sp(4,7)/T,((2) and
I50(2)/Ta 0, (2).
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Including the contribution from the second line in (B.20), and retaining the next-to-leading
term in the low energy expansion, we see that the V2F# coupling on the locus Gaq C Gayga
where the lattice Ag416 4 factorizes is given by

3 3 4
I I I D W BA L) Lo
2 h,,g-€{0,1}

(B.53)
where the bracket [P, .;] denotes an insertion of the quartic polynomial Py, .4 (2.31) in the
sum over the lattice /N\d+8’d and its modular images.

Now, in parallel with the ‘Hecke identity’ (B.41), observe that the untwisted genus-two

chiral partition function satisfies

[eY(Q)]? !
@007 _ - Es _ @r hih
zol=—5—= 2, zlig] (B.54)
10 h,.g,€{0,1}

The validity of this identity can for example be checked for the minimal non-separating de-
generation using (A.31). Using this identity in the sum over all sectors, as in (B.53), we can
rewrite it as a sum over Sp(4,7)/T, z(2), as in the second line of (B.52), to obtain

1 @[ hihy 5@ [ hih
4 Z 25" vgs Vaal grgs J[Pav.eal =
h.,,€{0,1}

Fii) 8 d[%(l +(-1)70) 31+ (—1)7%) Py 0] B

YESP(4,Z)/T0(2) 6,0 ¥

The insertions of %(1 + (—1)5'Qi) can be seen as projectors on the lattice f\d+8’8 to vectors with
even entries along one of the cicle designated by &, such that the resulting sum is recognized

as a genus-two partition function, with insertion of P, .4 only, for the ‘magnetic charge lattice’
introduced in [22, (A,16)],

Agiga=Eg[2]® I 1[2]® T4 41 - (B.56)

At this point, we can readily extend the result away from the factorized locus by allowing
non-trivial Wilson lines in the lattice partition function. As established in (B.55), the partition
function can be written down as a sum over images from under Sp(4, Z)/T 4(2), such that the
integral can be unfolded from a fundamental domain of Sp(4, Z) to a fundamental domain of
I50(2)
@)
c® RN J 430, 430, Dy o[ Pab,eal
bed N. .
o o\, 22l 6

This concludes the computation of the two-loop V2F# coupling in the Z, orbifold.

(B.57)

B.2.3 Z,y orbifold with N =3,5,7

Let us now briefly discuss the genus-two amplitude in heterotic CHL orbifolds with N = 2,3,5,7.
As in [22, §8A.2], we restrict to a locus Ggx—g 4+k—s C G4+16,4 Where the even self-dual lattice

Ag416,4 Of the heterotic string compactified on T4 factorizes as ANk ® 11 @ Tg4p—gdrk—s>

where the Zy action acts by a Zy rotation on the first factor and by a translation by 1/N

period on the second. We denote by A g the Zy-invariant part of Ay g, and let

Adiok-8d = Mg ® 11 ® Mg o dsk—o - (B.58)
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Upon using the Niemeier lattice construction of the Z-symmetric lattice outlined in [22], one
finds that the invariant lattice Ay gy = Di[N]® Dg_4[—1], where the sum is performed with
respect to the diagonal glue code {(0,0),(s,s),(v,v),(c,c)}. For N = 2 using the construction
in the previous subsection, one has instead Ag , = Eg[2].

Now, as in (B.26) the genus-two amplitude decomposes into a sum over all possible twisted

or untwisted periodicity conditions [gigz] along the A and B cycles of the genus-two curve X,

with h,, g, running over Z/(NZ). For N prime, all N* — 1 non-trivial twistings form a single
orbit under Sp(4,7Z), so it suffices to focus on one of them, say ¢ = [8(1)]. The stabilizer of
€ under the action (B.42) is I, (N) (a subgroup of index N 4 —1 inside Sp(4,7)), so the
corresponding orbifold block Z%”

i+ok—8 d[g(l)] must be a Siegel modular form for T, . (N), and
satisfy

/

Z(2) hih _ (@) 00
Z Zd+2k-8,d [ &8 1= Z Z 4 12k-8d (o1 ]‘Y : (B.59)
hr’grEZ/(NZ) YESP(‘LZ)/FZ,el (N)

This orbifold block can in principle be computed using the N-sheeted cover of the genus-two
curve %, which now has genus N + 1. Rather than following this route, we instead postulate
that it is given by the natural generalization of (B.50), namely

r®  erwt]

7@ [00]_ Z Ad +2k—8,d
d+2k—8,dL0o11 — &,
YGFZ,el (N)/FZ,O,el (N) —2

, (B.60)

where T4, (N) =Ty, (N) N T, o(N) has index N + 1 in I, (N) and N?2—1in I, o(N), and
6 - Qo = ny is the winding of the d-th embedding coordinate along the cycle B,, so that

2mi6-Q
) [e N 2] is a modular form of T, 5, (N). As a consistency check, one may verify
Ad+2k—8,d ,0,e1

that (B.60) has the correct behavior

Z(2) 00 2.2 5(1) 0 (1) 0
Zd2+2k—8,d [ 01 ](Q) = —AnVIZ o s [ 0 ](P) Zd+2k—8,d|: 1 ](0) (B.61)

in the separating degeneration limit v — 0, where

. I: 27i5-Q ]
~ e N
() [0]_ Ad+2k-8,d

’ d+2k—8,dL 11 Ak :
Y

zO  [%]= B ai-sa

d+2k—8,dLo AL (B.62)

YESL(2,Z)/To(N)

Similarly as in the N = 2 case, we deduce from (B.59) and (B.60) that the sum over all
non-trivial twisted sectors can be rewritten as a sum over images under I’; o(N),

’ i G
4 d+2k—8,d
Z Zgiok-g,d| g 1= Z Z :
h;,8i€Z/(NZ) TESP(4,Z)/Tye) (N) 7/€EDy o) (N)/ T30, (V) k=2 'Y
2mi6-Qo
r? B
= Z [ Z Ad+2k—8,d[e ] ]
P
YESP(4,2)[Tao(N) b y/ €Dy o(N) /Ty 0, (N) k—2 ALy
(B.63)

Next, we observe that the untwisted genus-two amplitude also satisfies an Hecke identity gen-
eralizing (B.54), namely

) (2)

~ 007 _ Ad +16,d _ Ad+2k—8,d
Zgsoc-sal o] = = Z —

®10 7€SP(4,2))/Ty0(N) Pi—2

(B.64)

Y
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Combining (B.60) and (B.64), and using

SCRRI I N s )
N2\Agyok—g.d Agyor—s,d
YEL o(N)/Ta g, (N) (B.65)
@ 1 2mi6-Qq Zni(Nfl)&Ql 1 2mi5-Qo 2mi(N—1)5-Qo
_F]\d+2k_8,d[ﬁ(1+e ootte 8 )a(l+e v o 4de ® )|,

we find that the sum over all twisted sectors reduce to a sum over images under I, ,(N)

(2)

1 hihy 7 Ad+2k-8,d
]W Z Zl:glgz] - Z s ? (B.66)
h,&i€Z/(NZ) YESP(4,2) /T 0(N) ~ 1
where now the Siegel theta series involves the rescaled lattice
Adgsor—gd = Mgk @I 1 [INJ® Ig 1941k - (B.67)

After including the contribution from the second line in (B.20), retaining the next-to-leading
term in the low energy expansion, and unfolding the integration domain F, against the sum
over images in (B.66), we conclude that the genus-two V2F* coupling is given by

(2)
30, 39, .. . [Papcdl
(2) _ 1 2 d+2k—38,d
Gab,cd - R‘N"f |Q |3 P ) (B.68)
1—'2,0(]\7)\7‘12 2 k=2

as announced in (2.28).

B.2.4 Regularization of the genus-two modular integral

In order to regulate the genus-two modular integral (2.30), it is easiest to fold the integration
domain H, /T, o(N) back to the standard fundamental domain of Sp(4,Z) defined in (A.5),

G(P;Q)

ab,cd

(2)
d3Q,d3Q FA [Pab,cd]
= R.N.J ——i R Bk (B.69)
2

1€2,[3

€L o(N)\Sp(4,) P2 |,

The renormalized modular integral over F, can then be defined following the procedure in
[67,107], i.e. by truncating the fundamental domain to ]-"é\ = F, N {t < A}, where the
coordinate t on H, was defined in (A.9). In order to separate one-loop and primitive two-
loop subdivergences, we then decompose ]-"é\ into three subregions,

FI=Fpn{py <t+uspy <Ay},
Fy =Fin{py <Ay < t+usp,}, (B.70)
Fl=Fyn{A < py < t+udp,),

where A; < A is a fiducial scale. One-loop subdivergences arise from integration over F.,
while primitive divergence arises from integrating over .7-"51 . In extracting the divergences as
A — oo, we can safely ignore terms proportional to powers of A;, since they cancel in the
sum over the three regions [107].

Let us first consider the divergences from region I. In this region, the variable t is bounded
by A while p is restricted to the fundamental domain F; »,. For the first 1 + N cosets of
I, o(N)\Sp(4,7Z) listed in (A.22), the charges (Q;,Q,) whose contributions are not exponen-
tially suppressed as t — oo are those with Q, = 0. For those, the integral over o, projects
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1/®_l, to its zero-mode Y|, in (A.59), while the remaining integral over u;,u, projects
the latter to its average value (A.73), with a factor of 1/2 because of the element of SL(2,7Z)
permuting them. The divergence from these N + 1 cosets is then

A
ko [7de aap f dp1dp, D [NZEZ(Np)—Ez(p)
F1

32r) B (N—1) Ax(p)

1—‘/\p,q [P(ab,]5cd)i|

2
P2 YpESL(2,Z)/Ty(N) Tp

(B.71)

For the remaining N2 + N3 cosets, the representative y includes again the N + 1 T, ele-
ments again, times the N transformations {S,, TS, - .., Tév ~1S,}, which requires a Poisson
resummation over Q, before setting its dual to 0, and the N shifts b in (A.22). The divergence
is then of the same form as above, upon replacing v, by its image under S, N/ 21[)0 (A.59),

k
_1 _x_ . .
pql 2 =UN2 2 from the Poisson resummation and a

multiplicity factor N2 from the transformations listed above:

_ kv (Mde g [ deades [Ez(p)—Ez(Np)
327 t3 'fl (N—1) Ar(p)

and including a volume factor |A; . /A

Yo

(B.72)
For the perturbative V2F# coupling in D = 10 — q dimensions, the volume factor is v = N.
After unfolding the integral to the domain H, /T(N), the two contributions (B.71), (B.72) add
up to

2 1—‘Ap)q[P(ab,:lécd)il
P2y esL(2,z)/rm)

q—6 A A q—6

k AT dp,dp, NE,(Np)+ E 3 AT
e B e v e B -1

T 5 LW\H, P2 kP T 5
(B.73)

where we recognized the coefficient of the divergence as the renormalized one-loop F# cou-
pling by integrating by part, as in [22, §3.2], upon using the identity

( 1 )zﬁNﬁz(Np)Jrﬁ"z(p)
A 12 Adp)

where D, = %(ET - 2%) is the raising operator.

(B.74)

We now turn to the primitive two-loop divergence coming from the integral over fél . In
this region, it is more convenient to use the variables V, 7 defined in (A.9). The variable V
runs from 7,/A to 1/74A;, while the variable T takes values in the standard fundamental
domain F;/Z4 of GL(2,7Z.), truncated at T, < 4/A/A; [107]. The primitive divergence comes
from the region V — 0. For the first coset in (A.22), the contribution of all charge vectors with
Q7 # 0 or Q, # 0 are exponentially suppressed as V — 0. For (Q;,Q5) = (0, 0), the polynomial
Pgpcq in (2.31) reduces to 35<ab’5cd)/(16n2|02|), and the integral over Q; projects 1/®;_, to
its zero-mode C;_5(0,0,0) = ;fivl in (A.49). For the second and third class of cosets in (A.22),
the limit V — 0 requires first performing a Poisson resummation over either Q; or Q,, resulting

1 k koo
. _ —=—2 . . k
in a volume factor of |A;’q /Apql™2 = vN"277, and the integral over 2, projects N2 /®;_,|,

to its zero-mode N/ ZEk_z(O, 0,0) = —41312\’_”12 from (A.50), for each of the N(N + 1) cosets.

Finally, for the fourth class of cosets in (A.22), the limit V — 0 requires performing a Poisson
resummation over both Q; and Q,, resulting in a volume factor of IA; a /Ap’ql_1 = v2NTkA4

and the integral over Q; projects N*=2/®&,_,(Q/N )|, to its zero-mode after having used the
identity (A.40), for each of the N 3 cosets. Adding up all contributions, we find

36an,6 48drydr, [T
LZCCDR.N.J LTZZJ 22V VU [N-(N+ DS+ 5] (B.75)
167 7z, N2=1)T5 )2 /A
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Setting v = N, the term in square bracket cancels, so the coefficient of the two-loop primitive
divergence in fact vanishes.

Finally, it remains to consider a potential divergence from the separating degeneration.
For generic values of p, o in F,, the integral around v = 0 is of the form f dvdi/v?, which
vanishes provided one integrates first over the angular direction in the v-plane. There can
however be a divergence from the region p,,0, — ©0 while v — 0, where the genus-two
curve degenerates into a figure-eight graph. For the first coset in (A.22), the contribution of all
charge vectors with Q; # 0 or Q, # 0 are exponentially suppressed as p,, 05 — 0. As shown
in §A.6, the integral over v; gives rise to a delta-function ¢;(0)?5(v,). To integrate this delta
distribution it is convenient to unfold the integration domain of €2, near the cusp |Q,| — oo,
Py/GL(2,7Z) to P, using the sum over GL(2,7Z)/Dih, in (5.25), and taking into account the
factor of 4 associated to Dih,, the stabilizer of the singular locus v = 0. Equivalently one can
think of the integral over P,/GL(2,7Z), and simply unfold the order four symmetry permuting
045 and p, and changing the sign of v,. At v, = 0, 0, = t and the integration domain is
A £ py <0y < A, which after symmetrization gives the divergent contribution

q

—6
3k dpy do, 35(ab5cd) 3k2 (AT \?
_2567'C3J J ( P202)? 0205 2567'53( ﬂ) 5(ab,5cd) . (B.76)
2

For the other cosets in (A.22), the zeroth Fourier-Jacobi coefficient behaves has N glﬁo(p, V)
leading to Ngck(O)ZS(Vz), and N*24,(p/N,v/N) leading to N¥~2¢;(0)25(vo/N). The first
contribution occurs from the trivial coset only; the second from 2N cosets because of the
symmetry p < o, with an overall volume factor vN _15(_2; and the third from N* cosets corre-
sponding to all shifts (pTﬂ, UTH’, VT“), with an overall volume factor v2N ~*~#. Combining these
terms and using ¢, (0) = k, we find that the divergence from the figure-eight degeneration is

3k2 (N2 4 2Nv +v2) AT )2 3k2(1+ 2)2 AT )2
- 2 5 5(ab,5cd) =- = 56 5(ab,5cd) . (B.77)
25673 N g 25673 ‘IT

2

For g = 6, the divergent term (A? / ?)Z is replaced by (log A)?.

Combining these results, we can now define the renormalized integral (2.30) by subtract-
ing all divergent contributions before taking the limit A — ©o. In the case of the two-loop
V2F* couplings (v = N), we obtain

3 3 T, P
G(p ) lim [ J d Qld QZ Z Ap,q[ ab,cd]
bed — e ——
T Aty 1€221° €l 0 (N)\Sp(4,Z) Pr—(S2)

6.2 572
A2 3k
+( q—6 ) 647‘536(ab’5Cd))] .
2

For g = 6, the O(A%) and O(A?7%) divergences become logarithmic and doubly logarithmic,

(2)

dgﬂ dsﬂ 1—‘A [ ab,cd] 3

Gy = Jim [J —s; — > —2’:1) 20 5 +10g A =8 (ap Fo 0
ot s P e B2 n

3k?
3 5(ab,5cd)] >

(B.79)
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where Fc(lp,;qc) 4 is the regularized integral (B.13).

The renormalization of the couplings F;.4 and G, .4 is in fact consistent with supergravity
computations [83], as we now explain. Recall that the complete string theory amplitude can
be obtained by performing a functional integral over the fields of N' = 4 supergravity with
2k —2 vector multiplets, weighted by the Wilsonian effective action computed in string theory.
This Wilsonian action can be defined by imposing an infrared cutoff A on the moduli space of
complex structures, identified with the ultra-violet cutoff in supergravity. It follows that the
A-dependent couplings

FEEON) = RO+ S logAS(wb)
2

3 k
Géz;; CZdG)(A) — G‘(lzll; Czd6) logA §5< F(zk 2,6)e (1 gA)Z (ab 5cd) (BBO)

define a bare Lagrangian

21
L) =5R- —5abFan + (5 FC 2O (A)tgFUFPFeFY 581
B.81

+5=(5 )6G;2;;36)(A) tgVF*VFPFF? +

such that the UV divergences in the path integral cancel at this order. These divergences cancel
or any functions an satisfying their respective differential constraints. Upon
for any functions Fiy 2 dG(z“"’) t g th pective differential traints. Up

Ff,f ;6) and G(zk 26) to zero in (B.80), one reproduces precisely the counter-terms com-

puted in [83] in four dlmensmns. The variation of £(A) with respect to Fc(zzlfcé  is interpreted in

supergravity as the form factor for the operator tgF* (at zero momentum and properly super-

symmetrized). Similarly, the variation of £L(A) with respect to G(Zk_z(f) is the form factor for the

setting

operator tgV2F*. Because (3.20) does not admit a constant homogeneous solution for q = 6,
there cannot be any genuine 2-loop divergence proportional to &, 6.4y in N = 4 supergrav-
ity. The 2-loop divergence proportional to (log A)? in (B.80) is therefore a consequence of the
1-loop divergence, via the renormalization group equation

d

AR Caped (N = ——5 (ab, Py € () (B.82)

This is consistent with the supergravity ana1y51s in [83, §5.A], where the two-loop divergence
originates entirely from figure-eight supergravity diagrams (shown in Figure 1ii), for which
the subdivergence is proportional to the 1-loop counter-term form factor.

Let us now briefly discuss the regularization of the integral (B.69) in the case where the
lattice Apg is the non-perturbative Narain lattice (2.3). In this case, the volume factor v is
equal to 1. In this case, the cancellation in (B.75) still takes place in the maximal rank case
since the zero-th Fourier coefficient of 1/®,, vanishes from (A.48), but it no longer holds for
CHL models with N = 2,3,5,7. Setting v = 1 in the previous computations, we now get

[f d3Q1d3Q2 F( )q[Pab Cd]
f/\ k—Z(Q)

27  ATO

G(Pq) = 1 +
e N2 (g~ 67

ab,ed T A 00

5(ab,6cd)

3
12| YELy o (N\Sp(4,Z)
9N -—1) AT dridt, 5. 3 AT
- 2 5,36 RN, | ——=r 4 — < “"”6 ,
m2N2 q—>5 (ab,Ycd) s T% 2 21N q -6 ( ))]
(B.83)

where G% ,’3") denotes the regularized integral (B.17). The maximal rank case is obtained by set-

ting N =1, and gG(" D — G(" 9 Of course, the case relevant for the non-perturbative V2(V¢)*
coupling in D = 3 corresponds to ¢ = 8, in which case there are power-like divergences but
no logarithmic divergence.
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B.2.5 Anomalous terms in the differential equation for G,j, .4

In section 3.3 we established that the renormalized integral G("b‘” 4 satisfies the differential

equation (3.20), with a quadratic source term originating from the separating degeneration
locus v = 0. In this section we take into account the boundary of the regularized domain ]-"é\
and show that the equation indeed holds for the renormalized couplings at generic values of q.
For ¢ = 5 with v # N and q = 6 we find additional linear source terms from the non-separating
degeneration. For the perturbative amplitude in four dimensions, g = 6, v = N, these linear
term originate from the mixing between the analytic and the non-analytic components of the
amplitude. Our analysis parallels that of the D®R* couplings in [107, §3.3].

From the t = A boundary of the region ]-'é defined in (B.70), the leading contribution of
the polynomial insertion is given by

3

0,0 = ﬁ (5ef5(ab,Pcd) + 25e(b5|f|b,Pcd))+O(t_1): (B.84)
)=

QZI‘QZS —% g—gp
9 "éy e QLerQLfse ab,cd

so using (A.73), with a factor 1/2 due to the Z, symmetry (u;,uy) — (—u;,—u,) at the cusp,
we find that the right-hand side of (3.62) receives an additional contribution given by

—6 A A
KA f dp.dp, [NZEZ(Np)—EZ(p)

_ > -
64n F P2 1pESL(2,2)/Ty(N) (N—1) Axlp)

—6 A A
kAT o J dpxdpy 5 [Ez(p)—E2(Np)
-7_'

Tr, o [Pab, 1(8cay0cf + 25c|e|5d)f)] ’YP

J
P

Tr, o [Piab, ()0 +25c|e|5d)f)] .

64n v P2y esi2z)mm) (N—1) Ax(p)

(B.85)

where the first and second line results respectively from cosets elements (y,1) and
(v,So) € (SL(2,Z)/T(N)), x (SL(2Z)/To(N)), while other terms in the coset sum are anni-
hilated by integration over o, v; € [—%, %]. The sum (B.85) can be rewritten in terms of the
regularized integral Giflf) as

k(v — l)A >

(X)) (p.9)
64m(N —1) (8er8anGLy) +26 (081 Gy

) d>
k(N - VAT

-_ 7 5 5 gG(pq)+25 5 gG(p’q) ) B‘86
647TN(N—1)( ef “{ab e(a%b,|f| Cd) (B.86)

cd) )
This terms gives a finite correction to the differential equation for g = 6.
The right-hand side of (3.62) also receives contributions from the boundary of region ]—"2”
in (B.70), where the leading contribution of the polynomial insertion is
3

=————— (8¢ 8 (ab,0cd) + 26(aB|f|p,6ca)) + O
Q=Q=0  32m3|Q, |( ef ©{ab,Zcd) e(aSlf1p,8ca)) + O ).
(B.87)

B S-*1
(QZ)rse 8“QL3QLf68“Pab,cd

Its contribution to the right hand side of (3.62) thus reduces to !

q
— 3 ZR.N.f dTl—(ziTzf 2dV — 0 13(|Qz|; 5ef5(ab5cd)+25e(a5|f|b’5cd))
32m Rz, T2 )% oV V3 [Sy] 19, |

2

k 2
X (N2 1[N——(N+1)+ ﬁ]—ﬁkzé(sz)[1+2N + ]%D

(B.88)

3Where one uses 2id3, =2— T ((Qz)r[(Qz)su(Q DX (0,)) = M aav X(V“;) at the boundary V = 2.
2
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In (B.88) we kept the constant term in the Fourier expansions of 1/®;_, and we used
3/0Q~ —iVlea /dV. On the boundary at V = 7, /A, the first term in (B.88) gives

3k(N —v)(1—-5%) dt,dt, s_
-5 N (8,808 ey + 28014851715 cqy ) RN. —1"2°7 (B.89)
8m2(N—1) f 9 {abcd) (a®b,If|Ycd) 712, T% 2

which vanishes in the perturbative case, v = N. The second term in (B.88) integrates to

A976 3k%(805 8 (apSed) + 280(aBp,£|8ca)) 2
B ef 9{ab9cd) e(a®b,|f|Pcd) (1+%) . (B.90)

q—6 12873
The case g = 6 must be computed separately and turns out to give zero. Finally, the quadratic

term in the second line of (3.66) can be written using the regularized genus-one integral F(‘l"l;qc) i
(B.15) as

q—6
37 ) Gk _ 3T e ook 3k(1+F)A T o)
_?Flg)i(ab,(A)Fcii‘)z (f|(A) - _7F|§)3<(ab,Fcii§ U1 167 q—6 5(ab,Fc2§ef (B.91)
2
3k3(1+ )2 (AT
51273 ( 46 ) (8r Bab,Bea) +25e(aB f15cay) -
2
Using the action of the operator (3.59) on the tensor defining the counter-terms of Gg’éq)c i
: —6 . X X
Aor8an Gyl = T3 (8er 61an, Gty + 20O, 171Gy ) + 60 (an, iy (B.92)
: —6 . : .
Doiap Gof) = T (8 Stan, ‘Gl +280((aBb) 1 “Gogy ) + 68 (an Frgp » (B93)
-5
Aefbianbedy = 52(8er8(ab,Bed) +28((aBb),1f18ca)) - (B.94)

one finds that all A dependent terms cancel in the differential equation for the renormalized
coupling, such that for generic g,

-6 q—6
k AT N2 3k3(1+ 2)2 AT (2
(p,q) —1 ~(p.9) (p,9) N
Aef (Gapbq,cd(A)+ 3271 46 5(ab(]1\;_1 GCZ;; + N—Ii, chil(; ) + 25673 ( q—6 ) 5(ab,5cd)
2 2
3k A5 (N —v)(1—3%) dridty s
T ar = O (ab,0ca)R-N. T12T2 Tg q)
4T q—>5 N-1 £z, T3

— _B_NF(p,q) (p.9) k

9 " le)k(ab, cd) (fI - (B.95)

The cases featuring logs must be treated separately. Here we shall only discuss the case of the
perturbative lattice in four dimensions, i.e. v =N and q = 6, which is physically relevant.

Because the first term proportional to g—6 in (B.92) vanishes at ¢ = 6, it does not cancel the
finite contribution from (B.86) and one gets an additional linear source term in the equation.
The computation of the anomalous terms from the counter-term in Gézg_z’ﬁ) + ngg_z’é) involves
the detailed analysis of the integration by part in the boundary between regions ]-"é and .7-"51 .
Since this boundary is artificial, these anomalous terms must cancel other contributions from
(B.85) and (B.88), such that one can assume that GS{;’Z’G) + ngfg’Z’(’) satisfies the naive differ-
ential equation (B.92), ignoring the anomalous source term in (B.18). This prescription is in
fact necessary for the differential equation to be well defined on the renormalized couplings.

In this way we obtain

= 37, = 3 ~ ~
(2k—2,6) __ (2k—2,6) T(2k—2,6) k (2k—2,6)k (2k—2,6)k
Bef Gapea” = 5 Flowfab,Fea) (f|__16n(5€f5<ab,ch)k +25@SnriFegyi ) > (B:96)

where we recall that A, risa shorthand for the operator in (3.59).
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B.3 Loci of enhanced gauge symmetry

Even after regulating infrared divergences occurring at generic points on G, 4, further diver-
gences may occur on loci of enhanced gauge symmetry, where perturbative 1/2-BPS states
become massless. Divergences from region .7-"2[ in (B.70) occur from contributions of lattice
vectors Q, € A such that Q% = 2. For such vectors, the integral over o, € [0, 1] picks up the
polar term in the Fourier-Jacobi expansion (A.57) of 1/®,_,, contributing a term of the form

< g dp-d
f e t3-te2mhe f dp1dps f duy duy o,/12
F P3 [0,1]2

1 1 6 (B97)
X Z Papcd qu%L QQQ%R e_nng%R+2ni(VQlL'QZL_‘_/QIR'QZR) T)—Z
<A Ar(p) 67 (p,v)

Ql D,q

to the modular integral G;"gf)c 4+ The integral over t diverges on the codimension q locus where
|Qor| — 0O, corresponding to 1/2-BPS states with charge £Q, becoming massless. This is a
familiar phenomenon in perturbative heterotic string theory, where such BPS states can be
viewed as W-bosons for a SU(2) gauge symmetry which spontaneously broken away from the
locus where |Qqz| = 0. Near the singular locus, the genus-two integral diverges as a sum of
powers of the mass M = v/2|Qz|, weighted by the genus-one modular integral appearing in
(B.97), which can interpreted as the four-point amplitude with two massless and two massive
gauge bosons. Note that this genus-one integral does not suffer from any divergence from
the lattice vector Q; = Q, since the polynomial P,;, .4 in representation H vanishes when
Q; and Q, are collinear. Of course, similar gauge symmetry enhancements arise from vectors
Qq € Ap 4 With Q% = 2/N, due to the polar term in the Fourier-Jacobi expansion of the images
of 1/®,_, under I, o(N)\Sp(4, Z).

In addition, the modular integral fol;q)c 4 has further singularities from region ]-"él , due

to polar terms of the form ql_qu;qu;NB in the Fourier expansion (A.49) of 1/®,_,, with

N;,N,,N; < 0. The integral over Q; picks up contributions of pairs of vectors (Q1,Q,) €
A, 4 ® A, 4 satisfying the level-matching conditions

Q3 —2N; =Q5—2N, =Q5—2N; =0, (B.98)

where we denote Q3 = Q; + Q,. The remaining integral over (2, is of then the form

6—q Pab,cd e 5

J dL;dL,dL; —27( 14 Q2+ 1,Q%+15Q%,) (B.99)
(LiLy+LyLz+L3Ly) 2

which for ¢ = 6 has a leading singularity in

e tg Qr S Qt u
J dL,dLydLsPyy g o211 Qe+ 12 1205, ) ., T =G he S (B.100)
873Q RQ5rQ5r

This integral is singular on the codimension q locus where Ql.zR =0 for one index i € {1, 2,3},
but the corresponding divergence is covered by region I. Genuine new divergences occur in
codimension 2q where Q7; = Q3; = 0 for two distinct indices, in which case Q3 automat-
ically vanishes. The latter occurs for (N;,N,,N3) = (1,1,1) and corresponds to a SU(3)
gauge symmetry enhancement. Of course, similar divergences arise from pairs of vectors
(Q1,Q,) € A;’ . ® A;';’ q due to the polar terms in the Fourier expansion of the images of 1/®;_,
under I, o(N)\Sp(4, Z). It would be interesting to recover (B.100) from a two-loop computa-
tion in a super-Yang-Mills theory with SU(3) gauge group.
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C Composite 1/4-BPS states, and instanton measure

In this Appendix our main aim is to prove Eqgs (5.85) and (5.92), which play a central role in
our analysis of the decompactification limit in §5. In particular, they ensure the consistency
of the 1/4-BPS Abelian Fourier coefficients of G, .4 with the differential equation (2.26),
(3.20), and the consistency of the helicity supertrace (2.14) with wall-crossing, generalizing
the consistency checks of [30] to arbitrary charges I'. Specifically, we show that the summation
measure ¢(Q, P; Q) for 1/4-BPS Abelian Fourier coefficients of G, .4 decomposes into an £2,-
independent part associated to single-centered 1/4-BPS black holes, and a sum over all possible
splittings of a 1/4-BPS charge vector I' = I} + I}, into 1/2-BPS charges, I; and I, weighted by
the product ¢(T;)c(T5,) of the summation measures for 1/2-BPS black holes.

We start by describing the possible splittings of a 1/4-BPS charge I' = (Q, P) into 1/2-BPS
constituents.  Assuming an Ansatz of the form I, = (p/,r")(sQ — qP + tR) and
I, =(q’,s")(pP — rQ + uR) for rational coefficients and linearly independent charges (Q, B,R),
with R an arbitrary auxiliary charge, it is easy to find that the condition I' = I + I, fixes
t=u=0and p’, r' ¢/, s’ such that

Q—qP P—rQ
3-8, (-0

This splitting is conveniently parametrized by the a non-degenerate matrix B = (1; Z) € M,(7),
such that Q Q Q Q
1) = -1 2) — -1
(5)=8mB7(5). (52)=BmB"(5). (€2)

where m; = ((1) 8) and m, = (8 (1)) To parametrize the possible splittings bijectively one must
factorize out the stabilizer Stab(;) of 7; and 7, in My(Z) up to permutation, i.e.

stab(m) ={(4 2).(28)} - (C.3)

All splittings of a charge T are therefore classified by the set of matrices B € M,(7Z.)/Stab(r;).
Decomposing the matrix B as

/

(lﬁ g)zy(% IJ<) y€GL(2,Z), p'>0 0<j<k,
_ .(1 m)(p’ 0 ) (C.4)
ERARY /N0 ged(ik))

and using Stab(7;) N GL(2,7Z) = Dih, one can always choose y € GL(2,Z)/Dih,.>?> We con-
clude that the possible splittings are in one-to-one correspondence with the elements of

+/

MZ(Z)/Stabm):{y-((l, 1), reGLEZ)/Dih, 0<j <K, (f,k)=1}, C5)

such that the quantization condition Bm;B™'T € A ® A, i = 1,2 on the charges of the two
constituents is obeyed. It suffices to check this condition for i = 1, since the sum of the two is
by assumption in A7 & A,.

%20ne checks indeed that the quotient by Dih, passes to the right of y, by changing the representatives y and
j/ ged(j, k) for (¢ &) € Dih,,.
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C.1 Maximal rank

In the maximal rank case the condition BB T € A, ® Ay, reduces to ap,;CQ € A, with

Q1. P) = (a,0)(dQ=bP—(@P—cQ)),  (Q3,P)=(15(a,c)+(b,d))(@P—cQ). (C.6)

These splittings are all related by GL(2,Z) to a canonical splitting

(g) = ((1))((2 - %P) + ({/)%P, P/K €Ay . (C.7)
Denoting by
ACQPA)=C@PR)— >, WCTA(E, AT e

AEM,(Z)/GL(2,Z.)
ATITEA, 6@ A9 6

the contribution from the poles of 1/®;, on the second line of (5.25) to the measure factor
(5.74) we thus find

- -1 2 —1 2
ACQPR) = D, AT (A (C9
AEM,(Z)/Dih,
ATITEA @Ay 6

X(_5([ATQZA]12) + [A7T], - [A7'T],
4m 2

where we combined the sum over A € M,(Z)/GL(2,7) and the sum over y € GL(2,7)/Dih,
into the sum over Ay € M,(Z)/Dih, that we call A again, Further decomposing the sum over

(sign(A™'T]; - [A"'T],) Sign([ATﬂzA]lz))) ,

A as ,
(1 Lydi Oy _sdp O
a=v(;, ¥)d 4,)=8(0 &) (€10)
with k’|d,, and B = B(é \B(l)*l) parametrizing the splittings, one obtains
- d(Q},P}.Q1°P1) d(Q3,P5.Q2°Py)
AC(Q,P;Q,) = Z Z o — =) Z o — =)
BEMy(Z)/Dihy  d;>1 ! dy>1 2
B! TeA,®A, I1/d1 EAR®AL Iy/dy EA®A,
S([BTQ,B1y,) (I, . e
(2R D) i1, 1) - sgn([B7,8,0) ). (1D

with T; = Bm;B~'T' = Bm;B7'T..

C.2 TI,(N) orbits of splittings

For CHL orbifolds the charge quantization condition Br;B~'T" € A @ A, for the splitting
(C.6) does not reduce to a single condition. They will depend on the charge orbit, as well
as on its twistedness, and only if y € Z, x Tj(N) € GL(2,7), the quantization condition
BmB e Ay ®A,, reduces to apk;,cQ € A}, . Therefore it will be more convenient to decompose
M,(Z)/Stab(;) into orbits of y € T,(N)/Z, acting on the left.>® Therefore we choose to
decompose the splitting matrix as

/

® 9= 3)'(% @ (¢ S)EZZWO(N% p’>0, 0<j<k, (C.12)

%Note that Dih, N Z, X Ty(N) = Z, X Z, and the corresponding quotient Z, X [o(N)/[Z, x Zy] = To(N)/Z,.
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if -85 = (+,0)mod N, and

C D= D05 ¢ Demxnm, p>o, osj<nke @13

otherwise. In the former case the splitting can be rotated under I;;(N) to the canonical splitting
(C.7), such that I is in the I;;(N) orbit of a purely electric charge. In this case we say that I}
is of electric type and we call (C.7) ‘splitting of electric type’. This splitting exists if and only if
P/K € A’ . In contrast, the splitting (C.13) can be rotated under I;)(N) to the canonical form

B)=R-z+(ge (.14

such that T} is in the T(N) orbit of a purely magnetic charge. We then way I} is of mag-
netic type and we call (C.14) a ‘splitting of magnetic type’. This splitting exists if and only if
Q/k’ € A,,. Note that the second charge T, can be either of electric or of magnetic type in both
types of splitting. In fact, we shall see that a splitting of mixed type, such that one charge is of
electric type and the other of magnetic type, can be rotated by a suitable y € I;(N) into either
type of splittings.

We drop the primes on (j’, k) in this discussion to simplify the notation, with the under-
standing that k and j are now relative prime. In the electric type, a splitting matrix with
k =0modN, such that (i)%P is of electric type, can be rotated by a I[;)( V) element to another

splitting of electric type )
1 j j i 1
(o 1)=(k )& o) (€15

with 0 < j < k, jj+ bk = 1. In the case where k # OmodN, such that (i)%P is of magnetic
type, an element of I,(N) rotates it to a splitting of magnetic type

b =05 DG 9 €16

with j = OmodN, j < Nk. This can be understood as follows: in (C.15), the second charge
in the splitting is also electric since k = O0mod N, and thus exchanging (Q;, P;) with (Q,, P,)
preserves the type of the splitting; in (C.16), the second charge is magnetic since k # O0modN,
and thus exchanging the two charges of the splitting sends the splitting of electric type to a
splitting of magnetic type. The same reasoning applies to the splitting of magnetic types: when
j=0modN, such that (IJ‘)%Q is of electric type, one has

(? I;) = (I]( _dj)(i (1)) ) (C.17)
with d #0modN, 0 < j < k, and when j # O0mod N, such that (’J‘)%Q is of magnetic type,
((1) I;) - (_cj l;)(lj (1)) ’ (C.18)

with c =0modN, 0 <j <Nk and jj+ck =—1.
It follows from this discussion that the splittings are in one-to-one correspondence with

the cosets
./

My@)/sad(n) = {r-(5 1), v €TN/Za, 0 <K, (k) =1} (C.19)
/

ofr- ’;) Y €To(N)/Zy, 0 <NK, j#0modN , (j/,k) =1}

-/

= {y-(é 1), ¥ €N/ Zy, 0< ' <K, K #0modN, (,k)=1}

ofy- () 5, renez,, oy <wr, (=1}
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where the splittings of mixed type are included either in the electric type or the magnetic type.
In the following we shall consider both representatives, keeping in mind that we systematically
double-count the splittings of mixed type in this way.

It is worth noting that the sign (—1)™™2) appearing in the wall-crossing formula (2.12)
does not depend on the type of splitting. For an electric-type splitting

() = (Q—4P)-P=Q-Pmod 2. (C.20)

To prove this, note that either P ¢ NA* and %P € A so (%P)2 =0 mod 2, or P € NA* and
%P € A* so (%P) - P =0 mod 2. The same reasoning shows for a magnetic-type splitting

(M,T)=Q-(P—%Q)=Q-Pmod 2. (C.21)
Moreover, under I;(N) the parity of Q - P is preserved:

(aQ+bP)-(cQ+dP)=Q-P+acQ*+2bcQ-P+bdP?>*=Q-P mod 2. (C.22)

C.3 Factorization of the measure factor

We now discuss the factorization of the measure factor associated to the poles of 1/®;_, and
1/®,_, for Q] > }‘ displayed in (5.75). In this subsection we show that whenever a term in
the measure associated to the charge T factorizes, it produces the correct measure factor of
the corresponding 1/2-BPS charges T;.

e For the first term in (5.75), we combine the sum over A € My(Z)/GL(2,7) and the
sum over y € GL(2,7)/Dih, in (5.57) as in (C.9), and use the decomposition (C.10) to get

Z A| (Ck_z [A—l (—_QQ-zp —_QP'ZP )A_T; ATQ, A:I _ le—z [ A1 (__qup _Sp,zp . ])
AEM,(Z)/GL(2,Z)
wi(Benon,

—117 )2 11 32
— Z |A|Ck(—([A Zr]l) )Ck(_([A Zr]z) )

AEM,(Z)/Dih,
ATITEA,,®A,,
S([ATQLA ATT), - [AT'T
(-2 T T ign iy, -t ) - sign(iaT,a0)))
_ ged(Q3,P2,Q:1-P1) gcd(Q3,P2,Q,P,)
- Z Z (- ErE — Z (- ok =)
BEM,(Z)/Dihy d>1 dy>1
B7ITeA, @A, [1/d1 €EA®A, I,/dy EA®AL,
§([BTQ,B1;,) (I1,LTy), . A
X(— 4; 122 4+ ( 12 2>(s1gn((F1,Fz))—s1gn([BTQZB]12))) ) (C.23)

where B determines a splitting I' = I'; +I5,. In this sum, the only non-trivial contributions arise
. . d(NQ?,P2, .
when I is of electric type, such that gcd(Q%, Plz, Q.P;) = w, and because it is elec-
tric in A,,, I} /d; is untwisted. Whereas, when I} /d; is of magnetic type, gcd(Qz,Plz,QlPl) =
ged(N Q%,Plz,QlPl ), and because it is magnetic in A,,, I} can be either twisted or untwisted.
Therefore we get the correct contribution to the measure for 1/2-BPS displayed in (2.22).

e For the third term in the measure (5.75), it is convenient to consider instead
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A= (} 3)A€ My o(N) such that

S (e Al —c [t 2ma])
AEML(Z)/GL(2,Z)
A (P?N)GA:%‘BA;
~ A—ll" 2 A71F 2
= S Al Ny G

A€M 00(N)/Dihy
-1
AlTen’ oA,

X(_5([A1:2;A]12) n [A_ll—'hé[A_lr]z (sign([frll"h . [A—lr]z) _ sign([ATﬂzA]lz))).(C.24)

A matrix A € M3 0o(N) admits either a decomposition with y € T;)(N) such that

/ . i /
i (P JN_. (1 P O
A=y (0 Nk)_y (0 N1)(o Nk)’ (C.25)
and T, =y~ 'T satisfies .
P Q,— P
Y x T T RNTY s
T ENA, , » €A, (C.26)
or a decomposition with y € I;,(N) such that
. 0 k 0 1y/Np' 0
A:Y'(Np’ Nj):Y'(l %)( 0 1) (€27
and N
Q P, —3Q
Ten, L ETenar. (C.28)
k m p/ m

For the splitting matrix of electric type (C.25), the charge I is of electric type with

ng(NQ27P12,Q1 : Pl)
p” ’
with the divisor integer d; = p’; and either the second charge T, is of electric type, with

kN _
m =0 mod N and

N(A'r]))? = (C.29)

ng(NQza PZZ: QZPZ)

A—1 2 _
NQATTL) = =

(C.30)

with the divisor integer d, = gcd(j, Nk), or I is of twisted magnetic type with % #0
mod N and s
ng(NQ JPZJQ2P2)

A—1 2 _
AT = e nONY

(C.31)

with the divisor integer d, = gcd(j, Nk)/N.

For the splitting matrix of magnetic type (C.27) the first charge T is of untwisted magnetic
type with
gcd(NQ3,P?,Q; - Py)

N([AT'T])? = Np? , (C.32)
with the divisor integer d; = p’; and either the second charge T, is of electric type, with
o
gcd(—l\;j,k) =0mod N and
. cd(NQ2%,P2,Q,P
NG,y = S0 P o) (C.33)

ged(Nj, k)2

108


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

with the divisor integer d, = gcd(Nj, k), or I, is of twisted magnetic type with gcd(N—I\}ij,k) #0
mod N and

ng(NQg’ PZZJ QZPZ)

A—1 2 _
AT = Negedovy /Ny

(C.34)

with the divisor integer d, = gcd(Nj, k)/N.
e At last we consider the second term in (5.75), which is a combination . We combine
the sum over A € M, ((Z)/[Zy x To(N)] and the sum over y € I,(N)/Z, in (5.58) to get

> (Gl Swana] - C a7, 50a)
AEM, o(N)/[ZyxTH(N)]
a(Denen,

1112 —1p7.32
+ Z |A|Ck(—N([A 2F]1) )Ck(_([A ZF]Z) ) (C.35)
A€M, o(N)/[ZyxZ,]
ATITent oA,
X(_5([AT92A]12) n [A'T], - [A”
4n 2

L (sign(ta'T), - [A—lrlz)—sign([ATﬂzAth) :

A matrix in A € M, o(N) admits one of the following decompositions with respect to y € I(N):
1.
i J

14\ P 0 Q- _ B

=y.( K r k7 i
A=Y (0 1)(0 k) = p’ €A, i €Ap, (C.36)
ged(NQ,P7,Q,P)
e

= 0 mod N with ([A7!T'],)? =

I, is always of electric type and N([A™'T'];)? =

_k
ged(j,k)

, and T, is either of un-

ged(NQ3,P5,Q5P)
NgedGir - OF of

ged(NQ3,PZ,Q2Ps)
ged(j,k)?

twisted electric type with

magnetic type with m # 0 mod N with ([A7'T'],)? =

— 0 1 p/ 0 Py_iQY % Q)/
A—Y'(N %)(o k) = Ty SNA €A, (C.37)

gcd(NQ2,P2,Q,P;)

Iy is always of untwisted magnetic type and N([A™'T'];)? = N

,and T, is ei-
ged(NQ3,P7,Q,Py)
N ged(j,k)?
ged(NQ3,PZ,Q,P,)
ged(j,k)?

ther of untwisted electric type with m =0 mod N with ([A™T'],)? =

or of magnetic type with m # 0 mod N with ([A7'T],)? =

; J
_ 1Ly 0 p Qy — nePy P, *
A_Y'(O ]\ik)(Nk O) = —p’ me 3 ENA , (C.38)

cd(NQ2,P2,Q,P. ..
g(z—,z“), and T is either
Np”2

ged(NQE,PE,Q1P1)
W or of un-

8cd(NQT.PY Q1 Py)
N(ged(j,Nk)/N)?

I, is always of untwisted electric type and ([A™'T'],)? =
of electric type with #‘S\/k) = 0 mod N with N([A7!T'];)? =
twisted magnetic type with #}kl\/k) # 0 mod N with N([A™1T];)? =
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.
A= QRIRE) = Fpten, Ten.  ©®

cd(NQ2,P2,Q,P L.
%, and T; is either of elec-

Nj . _ gcd(NQ2,P2,Q:P;) .
gcd(]\}l 75 = 0 mod N with N([A r)* = W or of untwisted

gcd(NQ2,P2,Q, P;)
N(gcd(Nj,k)/N)? *

I, is always of magnetic type and ([A7'T'],)% =
tric type with
magnetic type with gcd(N—I\{jk) # 0 mod N with N([A™T];)? =

We conclude that after trading each of the sums over A as sums over splitting matrices B,
the contribution from (5.75) gives a term of the form

(_5([1%%1@]12) L (0D)
2

= (sign((13, 1)) ~sign([B7,811)) ) (R)(F)  (C40)

to the last line in (5.92), where ¢’(T}) is either

cd(NQ?,P%,Q; - P;
cy(L) = Z ck—g( — )), (C.41)

2
di>1 2Ndi

d7 T EN,, ONAY,

when the contribution is only non-vanishing for untwisted charge T}, or

), (C.42)

ged(NQ?,P2,Q; - Py)
cr(l) = Z c(— 12d; —
di>1 i

d'LeAr @A,

for generic contribution such the charge T; is either twisted or untwisted.

It remains to show that the three terms in the measure count all the possible splittings with
the correct multiplicity, so as to reproduce the product of the summation factors of formula
(2.22) for the two charges T;.

C.4 Electric-magnetic type of splittings

We summarize the conditions from the three terms in (5.75) to contribute to a given splitting
in Table 2, where for the second term we distinguish the cases where B™}(Q, P) € Ay @A, or
B™HQ,P) e A, ® A%,

For this purpose we enumerate the possible 1/4-BPS charges I' and the type of 1/2-BPS
charges they can possibly split into, i.e. twisted or untwisted, electric or magnetic. It will be
convenient to introduce some notation for classifying pairs of 1/2-BPS charges: for each type
of splitting we define a 2-component vector which first component accounts for the electric
type charges and the second for the magnetic type charges, with a U for untwisted and a T
for twisted. e.g.

1. (TT,0), (T, T) and (@, TT) stand for electric-twisted electric-twisted, electric-twisted
magnetic-twisted, and magnetic-twisted magnetic-twisted splittings, respectively.

2. (TU,0), (T,U), (U,T) and (@, TU) stand for electric-twisted electric-untwisted, electric-
twisted magnetic-untwisted, electric-untwisted magnetic-twisted and magnetic-twisted
magnetic-untwisted splittings, respectively.
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Table 2: T;,(N) orbits of splittings from the three terms in (5.75). The first column in-
dicates the support of B~Y(Q, P). The second and third columns give the correspond-
ing constraints on I}, I, for each of the two possible splittings (C.7) and (C.14). The
last column records the counting function. We write k = Nk’ and j = Nj’ whenever
k or j are forced to be multiple of N. O;; is used in the text to denote in the table
above contribution from row i and column j.

O;; Electric type Magnetic type Counted by

An®An | Q—iPen,, 1iPea, —1Q €Ay, FQEN, | 3,

AL @A, || Q—4Penr, 1PeA, |P-1iQeNA:, 1QeA,| &1,

Am®AL || Q—5pP €Ay, wPeN: | P=TLQen,, 1Qen;| &1,

j Nj —
NN || Q—FePEN;, FpPeA, | P—TLQeNA:, 1QeA: | &,(Q/N)

3. (UU,0), (U,U) and (@, UU) stand for electric-untwisted electric-untwisted, electric- un-
twisted magnetic-untwisted, and magnetic-untwisted magnetic-untwisted splittings, re-
spectively.

We shall enumerate the possible splittings according to the following graph of inclusions,

NA,®NA, c An®A,

NA@NAn ¢ o An®NA,
m m

A, ®A,. (C43)
C A ®NA, ©
We will denote X € A the strict inclusion of the vector X in A, meaning that X is a generic
vector in A and does not belong to a smaller lattice A in this sequence

... CNKA, cNKAY C...CNA, CNAY C A, CAY . (C.44)

In the following, it will be convenient to recall the generating function whose Fourier coef-
ficients give the contribution to the measure. According to table 2, the factorizations (A.44)
imply that when the condition is %[B_lf']i € A,,, the corresponding measure factor for the

1/2-BPS charge Bm;B™IT is a Fourier coefficient of A;(7)™!, whereas when dli[B_lF]i €A it
is a Fourier coefficient of A,(7/N)™!. For a magnetic type charge Bm;B'T, A.(7)™! gives a
contribution c;(T') and A, (t/N)™! a contribution c;(I'). On the contrary for an eletric type
charge, Ar(7)"! gives a contribution c;(I'") and A (7/N)~! a contribution c;(T).

There are seven cases of interest:

1. QeA;, ,PEA,, : the only contributions are from O,; and O3,. These two contributions
give (T, T) splittings with Fourier contributions in [Ar(p/N)A(c)]™ . We thus obtain
a single contribution in ¢ (I;)cr (L) (with (C.42)), as expected for twisted 1/2-BPS
charges.

2. Q€A,,,P€A,, : contributions from O;;, Oy1, 014, Oy, and Os, fall in (U, T), (B, UT),
and (@, T T) splitting sectors.

Electric-type splitting : the first charge in (C.7) is purely electric and thus untwisted in
both O;; and O,;, the second one is congruent to an electric charge for k = OmodN,
and a magnetic one otherwise. But since P€A,,, %P € A,, implies that k # OmodN,
and thus the second charge in (C.7) is magnetic-twisted. O;; and O,; combine together
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to give (U, T) splittings with measure factor (¢ (I;)+cy(T7))cy(T,) coming from Fourier
coefficients of (Ak(p)_l + Ak(p/N)_l)Ak(o)_l.

Magnetic-type splitting : the first charge in (C.14) is purely magnetic, and thus twisted
for Os,, untwisted for O,,, and can be either twisted or untwisted for O;,, the sec-
ond 1/2-BPS charge is congruent to a magnetic-untwisted charge for j # Omod N, and
electric-twisted otherwise.

When P — %Q € NA? , Oy, contribute only when j # O0mod N, thus combining with O,
to give (@, TU) splittings with the measure (cy(I3) + cy(T;))cr(Ty) coming from Fourier
coefficients of (Ak(p)_l +Ar(p /N)_I)Ak(cr)_l.

When P — %Q €A, with j # 0modN, Oy, gives (@, T T) splittings with measure c;(T})
cr(Ty) from Fourier coefficients of [Ar(p)Ai(c)]™!. Finally, when j = OmodN, O,
combines with O3, — for which j = 0mod N by construction — to give (U, T) splittings
with measure ¢y (I} )(cy (Iy)+cy(I,)) from Fourier coefficients of (A (o) +A(p /N)_l)
A(0)7L. Recall that we double-count this last splitting, which is the same as the one
defined above from O;; and O,; with I} and T, exchanged, according to (C.19).

3. Q€A ,PENA} : contribution from Oy;, O31, O41, O35 and Oy, fallin (T T, 8), (TU, §),
and (T, U).

Electric-type splitting : the contributions O3, O are both constrained to k = 0modN,
imposing the second charge in (C.7) to be electric-twisted.

If j #0modN and Q— %P € A7, the splitting is (T T, #) and only Oy4; contributes accord-
ingly, with measure c;(T})cr (L) from [Ar(p/N)Ag (o /N)T L.

When Q — %P € A,,, the splitting is (TU,#) and both Os;, O,4; contribute with measure
(cr(Ty)+cy(Iy))er(Iy) from Fourier coefficients of Ar(p /N) 7 (Ar(o) +A(a/N)).

If instead j = Nj’, contributions from O,;, whose condition rewrites Q — ,J<—/,P €A,
%P € NA},, combine with O, to (T, U) splittings with measure cy(T3)(c7(I3) + cy(I3))
from Fourier coefficients of A, (p/N)™* (Ak(a)_l + A (o/N )_1) — note that their sec-
ond 1/2-BPS charge in (C.7) is congruent to a magnetic-untwisted one since P ENA}
implies k’ # 0modN in O,;.

Magnetic-type splitting : contributions from Os,, O4, have j = OmodN by construc-
tion, imposing their second 1/2-BPS charge in (C.14) to be congruent to an electric-
twisted one, as well as P—NTJIQ € NA*, implying the first 1/2-BPS charge to be magnetic-
untwisted for both of them. They thus combine to give (T, U) splittings with measure
(cr(Ty) + cy(Ty))er () from Fourier coefficients in [Ar(p/N)(Ak(0) + Ar(o/N))T 2
Recall that we couble-count this last splitting, which is the same as the one defined above
from O4; and O,; with I} and I, exchanged, according to (C.19).

4. Q€A ,PENA;, : contribution from Oy, Oy, O3, Og1, O12, Ona, 033, and Oy, fall
symmetrically in (U, U), (T T,®), and (@, T T).
Electric-type splitting : P €NA imposes k # 0modN for Oy;, Oy, for which the con-

ditions rewrite %P € NA! , with k" # 0modN, thus implying that the second 1/2-BPS
charge in (C.7) is congruent to magnetic-untwisted one.

Given j = OmodN in O3;, O4, one can rewrite their conditions as Q — i—l,P € A, and
%P € NA}, and these combine with O,;, Oy; to give (U, U) splittings with measure
(cr(y) + cy(M(er(ly) + cy(ly)) from Fourier coefficients of all factors
(Ak(p Y1+ AP /N)_l)(Ak(a)_1 +Ak(0'/N)_1). These are the only contributions from
011 and Oq,, because k #0modN.
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For j # 0mod N, one has Q — ﬁp €A}, and O3, is empty while Oy4; contributes alone
to (T T, 0) splittings with measure c; (T} )cy(T5) from [Ak(p/N)Ak(o/N))]_l.

Magnetic-type splitting : in the case where j = OmodN, all Oq,, Oy, O35 and Oy,
combine, with k # O0modN for each, to give (U, U) splittings measure from Fourier
coefficients of (Ar(p) ™ + Ar(p/N)™1)(Ak(0) ™! + Ar(o/N)1), double-counting the
electric type (U, U) splittings describe above. For j # 0mod N, and when P — %Q €A,
O, contribute alone to (@, T T) splittings, with measure cy(I;)cy () from Fourier coef-
ficients of [A,(p)Ak(0)] 7.

5. QEA,,,PENA,, : contributions from all O;; fall in (U, U), (UU, @), and (@, T T) splitting
sectors.
Electric-type splitting : cases with k # OmodN and Q — %P € A,, appear in O;; and
Oy, together with O3; and O4; when j = OmodN, corresponding to (U,U) split-
tings with the generic measure from Fourier coefficients of (Ak(p)_1 + Ar(p/N )_1)
x (Ar(o) !+ Ag(o/NYT).
When k = O0mod N, cases with j # O0modN get contributions from O;;, O,;, O3; and
041, corresponding to (UU, @) splittings with the generic measure from Fourier coeffi-
cients of (Ak(p)_1 + Ak(p/N)_l)(Ak(o)_l + Ak(a/N)_l).
Magnetic-type splitting : we obtain that k # OmodN in all cases. When j # OmodN,

one has P — %Q €A, and only O;, contributes, giving (@, T T) splittings with measure
cr(T)er(Ty) from [A(p)Ar(0)] ™.

When j = 0modN, P—%Q € NA,, and O;4, Og9, O35, O,4, contribute, giving (U, U) split-
tings with the generic measure from Fourier coefficients of all four factors in
(Ak(p) ™+ Ar(p/N))(Ak(0) ™t + Ar(o/N)71). These splittings are the same as the
electric type splittings of the same (U, U) type.

6. QENA;, PENA}: all O;; contribute and fall in (U, U), (§,UU), and (TT, ) splitting
sectors.
Electric-type splitting : when k # OmodN, Q — %P € NA; and Oy, Oy, together
with O3; and O4; when j = OmodN, contribute to (U, U) splittings, with measure
contributions from Fourier coefficients of all four factors in (Ak(p Yt + A(p/N )_1)
x (Ar(@) ™+ Ao /NYT).
When k = 0mod N, only the two last orbits can contribute, and when j # OmodN there

is no other contribution than 0,4, leading to (T T, @) splittings with measure c; (I} )cy ()
from Fourier coefficients of [Ar(p/N)Ai(c/N)]7L.

Magnetic-type splitting : when k # 0modN, O, and O,, with j #0modN contribute,
together with O3, and 04, when k = OmodN, to (@, UU) splittings with the generic
measure from Fourier coefficients of (Ar(p) ™ + Ar(p/N)™H)(Ar(o) ™ + Ar(o/N)).
When k #0modN and j = 0modN, O;,, Oy, O3, and Oy, contribute to (U, U) split-
tings with the generic measure from Fourier coefficients of (Ak(p)_l + Aw(p/N )_1)
X (Ak(o)_l + Ak(O'/N)_l), associated to the same splittings of electric type (U, U) de-
scribed above.

7. QENA}, PENA,,: all O;; contribute and fall in (U, U), (#,UU), and (UU, ) splitting
sectors.
Electric-type splitting : when k # OmodN, Q — %P € NA; and Oq;, Oy, together with

O3, and O4; when j = 0mod N, contribute to (U, U) splittings, with the generic measure
from Fourier coefficients of (Ak(p)_1 + Ak(p/N)_l)(Ak(o)_1 + Ak(a/N)_l).
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When k = O0modN, all the four orbits can contribute and j # OmodN. They lead to
(UU,®) splittings with generic measure from Fourier coefficients of
(2k() "+ Akl /N )(Ak(0) ! + Arlo/N) ).

Magnetic-type splitting : when k # 0modN, O, and O,, with j # 0mod N contribute,
together with O3, and 04, when k = OmodN, to (@, UU) splittings with the generic
measure from Fourier coefficients of (Ax(p)™ + Ar(p/N)™H)(Ar(o) ™ + Ar(o/N)T).

When k # 0modN and j = 0modN, O;,, Oy, O35 and Oy, contribute to (U, U) split-
tings with the generic measure (¢ (T3)+cy (7)) (cr () +cy(T,)) from Fourier coefficients
of (Ar(p) ™ + Ak(p/N))(Ar(0) ™ + Ar(o/N)™!), which count the same splitting of
electric type described above.

This concludes the proof of formula (5.92). As a consistency check, we note that these
results are consistent with Fricke duality. Namely, for 1/4-BPS charges belonging to Fricke-
invariant subsets, such as (Q,P)€A; ® A,, or (Q,P)€A,, ® NA” , the possible splittings are
invariant under the exchange of electric and magnetic type; whereas for charges in subsets
that are exchanged under Fricke duality, as (Q,P)€A,,, ® NA,, and (Q,P)ENA* ® NA*, the
possible splittings are themselves exchanged under Fricke duality. Moreover, we find that
all the splittings of electric-magnetic type are correctly double-counted through the splitting
matrices of electric and magnetic type, consistently with (C.19).

D Two-instanton singular contributions to Abelian Fourier coeffi-
cients

In this section, we extract the contributions to the rank-2 Abelian Fourier modes from the Dirac
delta functions in the Poincaré series representation (5.25), (5.57) of the Fourier coefficients

1
f .
o35

D.1 Maximal rank

Starting from (5.24), the sum over y € GL(2,Z)/Dih,4 can be unfolded against the integration
domain,>* by changing variables as Q, — Y TQ,y"!. The contribution of the delta functions
in (5.25) then leads to

R4 . j d3Q -5 5. 5.2 58312
- Z Z p2mia Ta;;Q 2 |Q2|qTC(_ (5Qq ZQQz) Ye(— (pQ2 erl) )
27 Q372
Qen®?,  AEM,(Z)/GL(2,Z) Pa 352
P=%47% yeGL(2,Z)/Dihy

1 (D.1)

x &( tr(l(/)2 1(/)2)92) e_ﬁTr[g_iﬂElYTAT(sl |§|12)Ay+292}/*1@@),7r]

| R —1,,T\rs AT o, Til S orag 1l Ty a
X Pab’cd(;—y)ezm(iﬁyw(“rﬂz YOPALYT 4y, QT d o (Y YT s ) ,

where a factor 2 comes from the center of order 2 of GL(2,7) acting on H,, v = (2 9).
The integral over positive definite matrices P, splits into two Bessel-type integrals, using the

3% Recall that Dih, is the dihedral group of order 8 generated by the matrices (§ %) and (§ §), which stabilize
(%, '2)
172 0 J-
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projectors 7y = (5 ¢), 72 = (5 1)

il X 5 5.2 532
- Z Z p2mia Ta;;Q C(_(SQl ZQQz) )C(_(PQz 2rQ1) )

, ASM,(Z)/GL(2,7)
Y€GL(2,7)/Dih,

o foo @p?e—nTr[nl(%;yTAT(sll |§|12)A)/+2p2)/716'6TY7T):|
0

2
P2 0.2)
[e%e) _ R2 1 S e D.2
» dO'zo_qz—ﬁe—nTr[ﬂ:z(myTAT(Sl |S|12)Ay+202y 'QQTy T)]
o Oz °

R —17 a 1 a
= (VY Ty TATVT )4y oy v QL+ g5 (Ve r Ty )
X Papea(Z)e 2l T g ey )

x 2" ( 3173 T2V TATVI+ g (yay oy Ty “))

The matrices y € GL(2,7)/Dih, in the last two rows can be absorbed by a change of variable

Y Ya) = (y“y_l, YoY1). After relabelling the summation variable as (g) = A(gl), one
2

obtains a sum over all splittings I' = (Q, P) =T} + T, in the lattice A®2

p—2,q—2°
s il a A 1~ 1= 1=
> D A Ay Q) g(my T )g (o))
Qen®?, ,AEMy(Z)/GL(2,Z)
P=2472 e GL(2,7)/Dih,
— Z eZm(a -Q+a®-P)
ren??, o
_ A)71T)? A)IT)?
x > flymA) ) g(— DUg e~ A D
AEM,(Z)/GL(2,Z) (D.3)
y€GL(2,Z)/Dih,
AT'ren?,
— Z eZTEi(a -Q+a®P) Z f(rlarz)
reA?, BEM,(Z)/Stab(r;)

I,hEA, 242

-1 2 —1 2
x Z g(— (BZdll;l) ) Z g(— (BZdEZ) )-

I/d1€EAp 242 Iy/dy€Ap 242

where I; = Bm;B™'T' = (Q;, P;), such that I} + I, = I, and where Stab(r;) is the stabilizer
of m; = (55’1' 5(2)_) inside M(2,7Z). The rearrangement (D.3) holds for arbitrary functions

f(Q), g(x), in particular for the product of Bessel integrals and the measure factors c(x) in
(D.2). The singular contributions to the Fourier modes are thus

(11,12)
4 2 pll)p 1)
(0.), 2Ab, T R . - ap ot 12
Gl == > EmEAR) Y
BEMz(Z)/Stab(TC’) 11,12:0

-1 o2
BrB 'TeA®?,

Kye y (2nRM(T)) Kes_, (27RM(T)
X

M(r) 7 M(Iy) Tt
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(11,1)
1 P l2(T,L,)
S ¢ : apyvr 1272
G(P,q),ZAb,l" __r Z C(F )C(F ) P T2)
aprv =52 2 : . 1+
BeM,(Z)/Stab(;) 1,,15=0 lﬁR 1+l

—1 o2
BrBT'TeA®?,

Kooy (2nRM(T1)) Ko, (2TRM(T))

x q—6 q—6
M(r) =z h M(Ly) 7
(D.4)
(l1,12)
R* LP (I, Ty)
.0), 2Ab, T _ - - PO, TV
Gt == DL ety X e
BeM,(Z)/Stab(r;) 11,1,=0
BmB~'TeAY?,
Kq;_G_ll(zTERM(Fl)) K%—ZZ(ZTCRM(FZ)
X
M@)ZTH o Mm)T
where the measure ¢(I}) is defined by
_ ged(Q? P%,Q- P) d? =3
()= Z C(_ 2 )( 2 p2 )2 :
=0 2d: gcd(Q2,P2,Q-P) (D.5)
r/diens?,

The factorized form of these singular contributions is indeed consistent with the differential
equation (3.20), as discussed in §E.3.

D.2 Measure factorization in CHL orbifolds

For CHL orbifolds, the contributions from the Dirac delta functions in (5.57) and (5.58) to the
Fourier mode (5.56) can be computed similarly to the full rank case (D.4) by using the results
of Appendix C. Here we explain the factorization of the measure for a general lattice A,_5 ,
of signature (p —2,q — 2), which we denote by A for short. When the lattice is N-modular,
as in the case of the magnetic lattice A,, discussed in section C, one can rewrite the measure
in a form manifestly invariant under Fricke electro-magnetic duality. However, this is not the
case in generic signature. In this section we use the results of the previous section to write the
1/2-BPS charge measure factors coming from the different orbit terms in (5.64). By abuse of
language we shall refer to the charges (Q,P) € A* ® A components as electric and magnetic,
although this terminology is only accurate when q = 8.

For the most generic lattice vectors, namely (Q,P) € A* & A, the only matrices A which
contribute belong either to the electric first orbit of the second set of splittings (C.36), or the
magnetic second orbit (C.39) contribute. They both lead to the factorized measure

= = ng(NQz’PZ)Q] 'P]) dZ -8
(M) =v Z ck( — ; )( > 12 ) 2
d;>0 2d; gcd(NQ3,P;,Qq - Py)
ey 2 p2 9 (D.6)
ng(Qz,Pz,Qz *Py) dz 2
x Z Ck( - 2 )( 2 p2 ) >
d,>0 2d; gcd(Q3,P5,Qy - Py)

(Qq,Py)/dyeNBA

where I is of electric type and T, of magnetic type. As explained in appendix C, this measure
is consistent with splittings into pairs of 1/2-BPS charges of (T, T) type.
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For less generic vectors (Q, P) € A & A, the measure receives additional contributions from
the first term of (5.56), as well as from the first magnetic orbit from the second set (C.37).
Unlike the previous case I} can be either of electric or magnetic type, while I, is always of
magnetic type. When I is of electric type, the resulting measure is given by

s ged(Q?,P2,Q; - Py) d? s
Ck(rl)ck(rz):[ 2, o~ 242 X d(Q%,P2,Q; - P ))
d;>0 1 geallly, 17,01
(Qq,P,)/d1EABGNA
ged(NQ3, PY,Q; - P1) d? 58
+v Z Ck(_ 2d2 )(ng(NQZ PZ Q . P )) (D7)
d,;>0 1 o171
(Q1,P;)/d;EA*®NA*
8 Z . ( ng(Qg,PZZ,Qz'Pz))( d% )%
k - J
3250 2d3 ged(Q%,P2,Q, - Py)

(Qa,Py)/dy€ADA

where only untwisted states can contribute in this case. This result is consistent with splittings

of type (U, T), as explained in Appendix C. When I3 is of magnetic type, the measure is instead
given by

_ _ ged(Q%,P2,Q; - Py)
I I)= —
C(M)er(Ty) [ dlZ;) Ck( 2d12 )(gcd(Q2 P2,Q, 'P1))

1°-1°
(Q1,P,)/d1€A®A

2 q—8
d] 2

ged(NQ3,P2,Q; - Py) Nd?2 =
DI G T i AN )’ ]
d,>0 1 ged( Q1,P1,Qq - 1)
(Q1,P;)/d;ENA*®NA*
Cd Z)PZJ - P. d2 a8
y Z Ck(—g (Qz 22Q2 2))( . 3 ) > ,
dy>0 2d; ng(Qz, P3,Q5 - p,)

(Qq,P,)/dyeA®A
(D.8)

where both twisted and untwisted states can contribute, and where the former only get con-
tributions form the second term in the bracket, while the latter get contributions from both,
which is consistent with splittings into doublets of 1/2-BPS of (@, UT) and (@, T T) type.

For the vectors (Q, P) e A*®N A*, one must add to (D.6) the contribution from the last term
of (5.56), i.e. both electric and magnetic orbits of the third set of contributions (C.26), (C.28).
In this case, I can only be of electric type, while T, can either be of electric or magnetic type.
For electric T, one obtains

= - ng(NQz;PlzﬁQl'P]_) dlz %
a(Ma()=v Z Ck(_ 242 )( «d(NQ2.P2Q, - P ))
d;>0 1 g 1l
(Q1,P1)/d;EA*®NA*
y |: Z c ( ng(Q%,PZZ,Qz ‘Pz))( dzz )%
o —
d,>0 ng ged(Q3, Pzz, Q3 - Py)
(Qq,P,)/dy€A®N A
Iy Z c ( ng(NQZ,PZZ:Qz'Pz))( d% )¥i|
k - J
d,>0 2d§ ng(NQ%, PZZ, Qy-Py)

(Q2,P,)/dyEN* BN A*
(D.9)
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where both twisted and untwisted states can contribute in this case, consistently with splittings
of type (TU,) and (T T,). For magnetic I, one obtains

_ i} gcd(NQ2,P2,Q, - P) d2 -8
(M) = v Z Ck(_ 2d; )( d(NQ2 ;2 P 2
d;>0 1 ged(NQ7, P;y,Qq - Py)
(Q1,P1)/d;EA*®NA*

y |: Z . ( ng(Q%,Pzz,Qz'Pz))( d22 )%
o —
d,>0 ng ged(Q3, Pzz, Q3+ P,)
(Qq,P5)/dycA®A

ged(NQ3, P7,Q; - Py) Nd? w8
+v Z Ck(_ 2Nd2 )( Cd(NQ2 P2 Q 'P )) i|:
dy>0 2 8 2 F5,la " Fy

(Qq,P;)/dyENA*®N A*
(D.10)

where only untwisted states can contribute, consistently with splittings of (T, U) type. In both
cases, the factors of N come from the width of the integration domain (R/NZ)3.

Finally, for vectors Q € A, P € NA*, one must add each contribution specific to the two
last cases as well as the contribution from the second type of orbit of (5.51). Each 1/2-BPS
state I, I, can be either electric or magnetic. When both of them are electric, we obtain

= = ng(Q25P2> Ql : P]_) d2 a8
e =| > e -SRI
d;>0 1 g¢ (Q1)P1:Q1'P1)
(Q1,P;)/d;EASNA
cd(NQ?,P?,Q,-P dz2 48
+u Z Ck(_g ( ; 1 1))( y 12 ) > :|
d,>0 Zdl ng(NQ1,P1 , Q1 'Pl)
(Q1,P;)/d;EA*®N A*
d(Q?%,P2,Q,-P d2 =8
% [ Z Ck(— 8¢ (Q 22Q2 2))( . 3 ) 3
d,>0 2d2 ng(Qza P2 5 QZ : PZ)
(Q2,Py)/dy€A®N A
cd(NQ?,P2,Q, - P. d2 a8
o Z ck(—g ( 5 3 2 z))( . 22 )2],
dy>0 2d; gcd(NQ3, P;,Qo - Py)

(Qq,P5)/dyEA* BN A*
(D.11)

with constraints on the possible splittings, as explained in appendix C, selecting splittings of
type (T T,) only. When both states magnetic, one obtains

o ged(Q3,PL,Q; - Py) d} e
Ck(rl)Ck(Fz):[ Z Ck(— : 12 — )( 2 ; )2
d;>0 2d1 ng(Q JP1>Q1 : Pl)
(Q1,P1)/dyEADA

ng(NszplzﬁQl'P]_) Nd12 %
+ v Z Ck(_ 2Nd2 )( Cd(NQ2 P2 Q .p )) ]
d;>0 1 g 1,01
(Qq.,P1)/dENA*®N A*
TEE L Ly -
(=
dy>0 ng ged(Q3, Pzz, Q3 Py)
(Qq,Py)/dr€ADA
ged(NQ2,P2,Q, - Py) Nd2 -8
T Z Ck(_ ;N;Z )( d(N ng P )2:|>
dy>0 2 gcd(NQ3, P3,Qo - Py)

(Qq,P,)/d2ENA*®N A*
(D.12)
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with again constraints on the possible splittings, selecting splittings of type (@, T T) only. When
one state, say I, is electric, and the other magnetic, one obtains

- - ng(QZJPZJ Ql 'Pl) d2 8
Ck(rl)ck(rz):[ Z Ck(_ : 2;2 )( d(02 P; P ) ’
d,>0 1 ged(Q7, P;,Qq - Py)
(Qq,P))/d;EAGNA
| gcd(NQ%,Pf,Ql-Pl)X d? )_]
=
d;>0 2d? ged(NQ?,P2,Q, - Py)
(Qq,P1)/d1eN*®ONA*
ng(ngpzza Q2 : PZ) d22 %
X[ 2, o~ 2d2 )
dy>0 2 8 2 P52 Py
(Qa,Py)/dreAOA
ng(NQ%,Pzzan “Py) Nd22 e
+v Z Ck(_ 2Nd2 )( Cd(NQ2 P2 Q .P. )) ] 5
dy>0 2 g 2, £5,W2 Py

(Q2,P;)/dyENA*®N A*
(D.13)

where the constraints on the possible splitting here select (U, U) only.

When the charge vectors(Q, P) lies in an even finer sublattice, such as A@ NA, NA*®NA*,
and so on, the measure is still given by (D.13), but it includes less generic type of splittings
like (UU,) or (B, UU), as explained in appendix C.

Thus, we have established that the delta function contributions to the Abelian Fourier
coefficients factorize into the product ¢;(I})c,(I3) of the measures associated with each 1/2-
BPS component for all splittings I' = I} + I, of an arbitrary 1/4-BPS charge T' in CHL models
with N = 2,3,5,7. This factorization is required for consistency with the differential equation
(3.20), as further discussed in §E.3.

E Consistency with differential constraints

In this section we analyze the consistency of the asymptotic expansion of the the two-loop
modular integral G, .4 near the degenerations O(p,q) — O(p —2,q — 2) and degeneration
O(p,q) — O(p—1,q—1) with the differential equation (3.3). In the first case we consider both
the constant terms and generic rank-2 Abelian Fourier coefficients, and show consistency with
the quadratic source term in (3.3). In the second case for brevity we restrict to the constant
terms.

E.1 Differential equation under the degeneration O(p,q) — O(p —2,q —2)

Here we write explicitly the differential equation 3.3 in the variables relevant to the degener-
ation limit O(p,q) — O(p — 2,q — 2). Using the decomposition (5.3), and changing variable
R =e~?, the metric on the moduli space reads

2P, P = 4d¢p + 2P, PH” + 2P, ;PP + 29 My g dalda) + e* vy vy, (E.1)

with . _
Vi =dp —3e;a' - da’ (E.2)
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and the Maurer—Cartan coset component

d¢q5 6, —p,” ff_ J}prda}' ‘/_ Jilpgldaﬁ ;&%Jw;
. @ l__lfLaIIdaI 2 P, p :3/(; ; PLa daI (£.3)
_T Pra’ da; PPy 0 Vi pre’ daj
1 vy Syripfldal Sytipflaal —dgsi+p,”

Beware that in this section we use the symbols p; and pg for the G, 5, o =
O(p—2,9—2)/[0(p—2)xO(g—2)] projection p; ;Q", and not for the G, ;, = O(p,q)/[0(p)xO(q)]
projection p; ,7Q* as in the body of the paper. We use Greek letters of the beginning of the
alphabet, i.e. {a,f,7,0,€,7,0}, to denote local indices along G,_, ,_,, and Greek letters of
the middle of the alphabet, i.e. {x,A,u, v, 0,0, 7}, to denote indices along SO(2)\SL(2,R).
The covariant derivative of a vector Z, in the tangent frame must obey the usual equation

dz, = 2P%8,.7, = 2P% (DyeZ, — Bpea124) , (E.4)

allowing us to write down its action, for any vector Z, = (Z,,Z,)

DyyZ, = (%5“%—@“”% €430y ) Za + = (5U[u $120,0),
Dusa = = Pwilpr! (5o = 3eyely)2u + 56002060812, €9
DysZq = %e“pvuipml(% — %eijafaw)za ,
and on any vector Z; = (Z4,Zs) as
Dy3Zy = (45wa¢ Dyy + %e 130p)Za + = (o 85,0 v]Zp)
DyyZs = %e_d’wipml(% Sijaﬁqp) (E.6)
D,4Zs = %e_‘pvuipml(ai” 8~-a13¢)Z + = (Saa nZp—6u624),
where vui € SO(2)\SL(2,R) such that
Dyyv,' = %5p(uvv)i — %5vai, (E.7)

and finally, the operator D, =Dy the differential operator on the Grassmanian O(p—2, q—2),
which acts on the projectors p;. !, prs' as

1 1
Da/ﬁpLyl = £5aprﬁI > DaﬁdeI = 56ﬁapLaI . (E.8)

In this decomposition, the tensor G, .4 admits six independent components

3
G;,Lv,ap = Zé(uv,(sap)G)LA,KK > Guv,UB - 5 GO‘5 AT 50’(HGV)5,AA > Guv,yﬁ )
1
G,uﬂ,vé = Gﬁ[u,v]ﬁ - EGMV,IJ’S 5 G,uﬁ,y5 5 Gaﬁ,yﬁ 5 (E9)

but for simplicity we shall only consider the components G, G55 and Gqp 5 that admit

a non-trivial constant term. The differential operator D(HéDv)@Gab,cd acts diagonally on the
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various components of fixed number of indices along the Grassmanian, so it is consistant to
only consider the components with an even number of indices along the sub-Grassmaniann in
the differential equation (3.20). Using the Fourier decompositions

— 2mi(T,a) TNn 2rminy
Gab,cd - Z Gab cd® +ZGab cd® >
reA*®A n#0
Foped = Z F;"deeZni(F,a) + Z NCZemel) (E.10)
TEA @A n#0

one obtains from (3.20)

(2D, "D,y — (8 + 4 — 2Dy + (3 +8)(3y + 20— 10)5,,, — 4me Ty, - T, )G

3n r I—T; Ad T ApI—Tixd r
=~ 0p By D, (o Fon M = E Mo ) = 3E o (E.11)
[LeA*®A
(ZD(HTDV)T —(8p +q—2)Dy, + 3(8y +6)(3s +29—8)5,, — 4ne—2¢ T Try )GE ) 5
8—q 6—q 29—
_ T r A r
- 26.U«VGUp Yo +——0 G;M))/E + —50'(M5V)P aff,A L — 2 5 50)0 Gaﬂ A
r r
+D(M 51’)(0(; )A ap DU)(MGV)(pl,a[S + 60‘/3’ G;w op
_ Fr-Tid _ph FlTd
27 Z opd(u V)Y5 FU)Yd(M v)6(p ) 3nF .bW op,y6?’ (E.12)
I eA @A

and
(2% e — (8 +q—2)D,, + 5(35 +4)(3p + 29— 6)5,,, — 4me Ty, - er)Ggﬁ v

'-I; d r
—3n Foiiap. Froxts =37y ap s »
r,eA* oA

= 354G (E.13)

Y6),uv

.. _R2 . . . .
where the additional term of order O(e™®") comes from the Abelian Fourier coefficients of the
quadratic source in F,;.4 involving nonzero Taub-NUT charge,

2 Fegta Feayy = D Flrapea®™ ™. (E.14)
n#0 TreA*@A

It is a non-trivial task to compute these Fourier coefficients from the explicit non-Abelian
Fourier coefficients of the tensor F,; 4, which we shall attempt to carry out in this paper.
Introducing for brevity the vector Gr

— (G GF

F
v Cpoy5r Gapys)s (E.15)

we find that the differential operator with two indices along the sub-Grassmaniann acts on ér
according to

4D(nﬁD9)ﬁéF = (4D(nﬁD6)ﬁ + 57;9 8¢ —8n%e ¢ FLnKFLGK)éF
5o G —8,(:G.

k(P Y 5)|6),Tv v)|0),p0
+8inv/2e? FL(mK _5;<(p G£)|9),Y5 + 59)(YG5)K,pO' >
850Gy + 001 Cayap (E.16)
65(PU G'I;U) )/5 45779GPU ™V
+| 265065 25n9GPM6 +25n(Y55)9Gp0 B
65 n(@0p1161Gy5) "~ 83(ni(@Gpy o) y6)
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where the term linear in T involves the components of G' with an odd number of indices
along the sub-Grassmaniann. Using this action, we find the differential equation obeyed by
the components with two indices along the sub-Grassmaniann G,_, ;_»,

(ZD(,,] aDa)C + 5 5 98(]5 —471'26_24) FLT]KFLQK)GF
T r
Ok Coye)r ~ OxGuyanpo
+ 4irv/2¢? e K _6K(p GC?)|9),Y5 + 59)()’6116)1<,p0
010)aGpyys T 00)r Opyap
(5 _q)57]9G;U',T’U 2
T T T T
= (4 q)5719Gp0 rYé + (6 - q)5|77)(YG5)(r9|,po + 5Y5Gn9,po : 59(}’55)77Gp0,)t .
K
(3=9)810Gyp 5+ 28 =Sy ((Gpy, @Lir9 +30(ap,G5),n0 ~30n((@0),161Gys)

3F _Fl_d
YRS A 3
—n > | 2F " Fe)p = 2Py Forse” |~ 3mFpor-  (B17)
I eA*®A 3F ! F 1d
nd(ap,"y5)0

E.2 Zero mode equations

In this subsection we analyze the consistency of the differential equations (E.11), (E.12),
(E.13), (E.17) with the results in §5 for the constant term G° ab.ed” As mentioned earlier, the
unfolding method fails to capture exponentially suppressed corrections to the constant term,
which are sourced by the quadratic terms Zrﬁéo FOF~1 and Fff ab.ed defined in (E.14) on the
right-hand side of the differential equation, and can be ascribed to instanton anti-instanton
configurations. These terms can in principle be computed by solving the differential equation.
Here we concentrate on the perturbative part of G° ab.ed’ which is sourced by the square of the

perturbative part of F,;.4.The latter is given by [22, (5.29)]

_ 8— 12

uvpo
P = e“"qwéya (S%qém — 2%)5(5) :
Flp 5= €% Fapys(9) +3e7D96,46,5)E(), (E.18)
where
£8) = ———(&(54,5) +uN 7 £*(5L,NS)) (E.19)
(N + 1) 2 27

is a specific solution of the Laplace equation

&(S). (E.20)

2D, DP7E(S) = %(D_zbo +DyDg)E(S) = %‘@

It is then straightforward to find a particular solution to Eq. (E.17)

_ —g\2 X
Gl po = 31X D5, 5,0)((31) (S — 2D E(SIDE(S))
GO, 5=—2e09(E5, 2D, )E(S)G,5(9) —2meX 095 5(5)(5525,, — 2D, )E(S),

Gopr5 =€ ¥ Gupys(9) = 564 VPE(S)S up Gro) (9) —3me* D96 45 5,5 (S, (B21)

with G, .5(¢) solution to an equation analogue to (3.20) with source term quadratic in

Fapys(@), and G,p(¢p) solution to the equation on the sub-Grassmaniann G,_5
~ 4_

2D, “Dg)aFap = “7-0759ap + (6= D81)aTp)s + O apFys + 12F upys - (E.22)
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One can then check that GO 1s also a solution to (E.11), (E.12) and (E.13), using the identity

FO

8 — g2
01 O, —FO, AFO Kd—2(8—q)2((7q) +1)5,,2— (8 — q)*(10— Q)ED,,,E

kd(u = A
+8(10 — q)D,, D, EDPOE — 16D, D, ED,, DPOE  (E.23)

and the fact that for any two symmetric tensors X ,,, and Y),,, one has
X(unYoo) = 306 (ur, 0 po) XMV = XY, ) (E.24)

The most general solution is obtained by adding a solution of the homogeneous equation
without source term, given by

& 6—q)(7— .

va’pa %C 26-D¢ 5 (B pc) 5

G —q)¢ (8- 3ra\G 7— .

G0, 5 =—Ee0(585, 9D, )E(8)G,5(p) + e 25D95,,5,5

G(?L/a’,y5 - 6_4¢ Gaﬁ,)ﬂ(‘P) - %3(4_(1)(1)5(5)5(&/5’6)/5)((,0) +c e2(5_q)¢5<a/3’5y(5> ,  (E.25)

with ¢ a numerical constant, Gaﬂ’ﬁ((p) a solution to the homogeneous equation (3.17) on the
sub-Grassmanian, £ a solution to (E.20) and Qaﬂ(cp) solution to the homogeneous equation
(3.34) on the sub-Grassmanian. The explicit results (5.44), (5.60) for the constant term Gab od
obtained by unfolding method for generic values of q indeed lie in this class, upon setting

== 1) 2
Gap(9) = 3(Gos" 2 (P) + G5 (),
Gap(9) = 3(Gos" 2 (9) = G5 (),

(N—-v)(1—vNT7)
c=§€(7—q)€(6—q) NZ_1 :

For special values of g one must take into account additional source terms due to logarithmic
divergences. For example for ¢ = 8, one has instead

FO, o =22 (4(D4uy Doy — 8vDorp))E(S) — 2K6(,118 o) ) »

2 (=L, 8)+uN T e (5L, NS)),

(E.26)

uvpo
F;jm = —7295,5 (x5, +2D,,£(5)),

Foos =€ 2 (Fapys(9) +38(ap8,6)(E(S) 2K ), (E.27)

where £(S) = m(fl S)+ (‘,A’l(N S )) satisfies a Poisson equation with a constant source

term,
A 1 _ _ A
ZDpO-DpUE(S) = E(D_ZDO + DzDo)S(S) =K. (E.28)

One finds the particular solution to E. (E.17),
GO\ oo = =31 45, 80) (K> = 2D E(S)DE(S)) (E.29)
= (x6,, +2D,,E(5))(2,5(0) +275,5(£(S) — 2x9))

GO 5 =€ (Cupr5(9) — Z(E(S) — 2k )5 (ap, Gy ) (9) — 376 0, 8,5 (£(5) — 2690 )7,

2D *Derabap = —28,5Gap —261)a9p)5 + BapFys + 12F apys +36K6(apbys) »
2D, DgyaGapys = —3610Yap,ys +30(ap,Yy5)n0 — 5(8106 (ap,Gys) +20,(a0p j619y5))
37'[,'.7: nelap, .F 5)(9 . (E.BO)
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This is indeed consistent with the result (5.70) from the unfolding method, upon setting
_ 3  _ k
K=o =~ 82

E.3 Abelian Fourier coefficients

In this subsection we show that the generic Abelian Fourier coefficients of the tensor G, .4
computed in section 5 satisfy the differential equation (E.11), including the quadratic source
term.

For simplicity we shall only consider the component of the Fourier coefficient with all
indices along the decompactified torus G¥;; f)Ab (QP) — G®2(Q,P). The latter is
proportional to the scalar function

~28uc€p)y

d*Q
Gr(Q,P)=R® >’ J g APC[AT (g AT JLATTATY, (E3D)
AeM,(Z)/GL(2,Z) J P, |Qz|
(B

p—2,q—2
with

Qr-Pr PR

LAT,AY) = e—nRz tr[vAQ;lATvT]—Zntr[nzA— (o, Fi)a ] .

One can rewrite the differential operator in (E.11) as

(E.32)

(DuiDss + (g =58, )Gr(Q, P)e?i@ +e)
= ((H(-R&)* — LR +q—5)5,, — 3Du(—RO +q—2) + D, D,y,  (E:33)
—27‘[2R2(V QR Q- PR)VT)G(pq)(Q P)e 27i(Qa’ +Pﬂ2)
Acting with this differential operator on R8L(A"TQ,A™!) one obtains
(nR2(vAQ;'ATYTY + T2y A0 ATYT — 2m(Q3%PRQR égR)le TR0, T L(AT,ATY)
(E.34)
which allows to rewrite (E.34) as a total derivative in ,,

(DD +(a=5)8,0, JREIQI T L(ATTQA)e2HQ +P)

2 2 TyT SQ 10 —1y,27i(Qa +Pa2) (E'BS)
= (nR%v vAZ AT )RR 7 LATO,A e

By integration by parts, it follows that the Fourier coefficient would satisfy the homogeneous
differential equation if the Fourier coefficient C[A™!(#,%#)A™T; Q, | did not depend on ;.

We shall now show that the dependence of the Fourier coefficients of 1/®,, in Q,, due
to the poles at large |Q,| accounts for the appearance of the quadratic source term in the
differential equation. Using (5.25) and (A.90), we obtain
d3Q,

12q
Q]

ARCT[AY (2 o)A T |LATTOAY)

Q-p P?

G»9(Q,P) = R8 Z J
P

AEM,(Z)/GL(2,Z)

A (g)EAfzz -2

+R_8 >, |A|2c( (QQ;QZ;)A )11)( (A_l("QZPZf)A_T)zz)

A€M,(Z)/Dih,
e

P—2,4-2

a3 1 . -
X f o |uzq(_§5(vz)—(f‘I(Q‘?ZPQ};E)AT)leIgn(vZ)+|(A1(Q9ZPQ,;5)AT)12|)L(A 10,4
P,

+O(e ). (E.36)
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The differential operator (E.35) annihilates the finite part of the Fourier coefficient, and gives

(Du*Dis + (g —5)5,,)Gr(Q, P)e?i@e +7a)

= 1 Z |A|2c(_ (A_l(QQ.Zp Zf)A_T)ll )c(_ (A—I(ngp Zf)A_T)zz)
A€M,(Z,)/Dihy

A71 (8) GA(BEZ ,q—2

1 : - . —
" (%(Duapva - 5)5’”) N 27TR2(VA7I(1A l(QQ.ZP pr)A TTCz)ATvT)M)

o
d d .
Xf ﬁ_zqf g_zngL(A_ (% 2)A)e2rQa+Pa) 4 o), (E.37)
0 2 Jo

2 2
Py O,

where the differential operator acting on the first term in (E.36) gives a total derivative, while
the second term factorizes after integrating the Dirac delta function, and the third is integrated

by part using d%zsign(tr(l‘/’z 12)05) = 6(v,)(04) and

01TT—Q2Q'p T — —1Q2Q'P -7 TT
vA(7 o)ATvT]A (Q p p2JAT] =2vArqA (Q p 2 ATmpATVT L (E38)
Further using (E.34) to express (DMaDv& +(d— 5)5MV)L(A_T(%2 fz)A_l )eZ“i(Qal“Lpaz), and in-
serting 1t + 7, = 1 on both sides of (E.35), we see that the terms which involve two powers

of 1, or two powers of 7, cancel out since they are total derivatives with respect to p, or to
04, leaving only terms involving one factor of 7t; and one factor of m,:

(Du*Dy + (g —5)8,, ) GP(Q, P)e2riQe +7a)

n @ (& o)A Dy @G SA oy (Cdp, [(Tdo
= - Z |A|2c(— - > )c( . 5 ) é é
0 0

2

A€M, (Z)/Dih, P 2 g
A (Q) Assz 2 2
P =242
Rz 1 1
T - QG Q- Py -T_ —1( @ q-r TT
x(vAn(l(O_zpzA VIVA— 2471 (%, o m)ATT — 2471, %) AT ) ATy )W

XRlOL(A_T(pZ(S) —l)eZTti(Qa 14Pa?) + O(e—Rz)

T G G )A 11 (A (&, %Ay
> e )e(= )

A€M, (Z)/Dih, 2
A (Blertss
d ® do R?
xf gfq f 125; (vAnl( ATvTyA—2A" 1( %4 QL'fL)A_T)ﬂ:zATvT)
= = 0909 i (1)
o p 2 Jo g2 2
2 2
xRIOL(AT(5 0 A 1)e2mQ1HP) | oK) (E.39)

where in the last step we recognized Q% + Q}% = Q%. Defining for i = 1 or 2 the tensors

P R(vA), (VA —2mpy (A7 (2, V) ATy

Ll oo (P2) = RO(VA)[(VA), (VA), ' (vA) e 72

L oa(P2) = iR(A), (vA), (vA), (A7 (%)) e

(E.40)

{ i p— 2 . —_
R OA), Ay —2mpy (A7 X, I ATy
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one obtains

(D,Dys +(d —5)5,,,)GP9(Q, P) e2FQ0+P) 4 0 (e )

(@ ar)AT @ aP)A"T
_.n Z c(—(A Z,00)A )ll)c( (A1 (g, oA )22)8“8[)162““@1#&2)
) 2 2
A€M, (Z)/Dih,
A ((}g)a\?mz
o

dpy 4 daz 9 B daz

(J T;qLUpﬁ(u(pz) 14—q LV)KA, (0-2) +2 12 12— o-p(‘u|a(p2) 12 12—q V)KAQ(O-Z)
0 2 0 g 2 0

Py P
_ oK LpA sab 2mi(Qa'+Pa?) @, B B () (.0), BoB™ (
= —2me¥eP*5%Pe D at (E.41)

BeM,(Z)/Stab
BnIB-l(g)eAgzzq 5
that indeed recovers (3.20),
4 T n 9 el peal-T
(Duapvﬁ+(d_5)5p, )G(;pq o = ESK(O.EP)AE vé‘ﬂ Z Fapi;r(Lva)f)L 1a
T EA*@A
_ 3n el el—Tiq
= = > PO poo e (E.42)
[ EA*®A

Thus, we have shown that the abelian Fourier coefficients with generic 1/4-BPS charge are
consistent with the differential constraint (3.20). This is a strong consistency check on the
validity of the unfolding method in this sector.

E.4 Differential equation in the degeneration O(p,q) - O(p—1,q—1)

We now briefly discuss the consistency of the constant terms (4.20) computed in §4 with the
differential equation (3.20). We follow [22, §B] for the parametrization of the Grassmannian
and of the decomposition of the covariant derivative operators.

The operator D ; decomposes into D3, D, 4 e D,i> D4 actmg on any vector F, = (Fy, F,),

al

D,iF, = —%%Fa

D,F, = %e‘d)v'”a%ﬂl+%(Fa,—5a/5F1),

Di4F, = %ﬁ’ 4 831 (E.43)
and on any vector Fj = (Fﬁ,, F;), as

DyiFy = _%%Fé’

DiF, = %e_%'”a%F@,

DyyFy = %e_¢v aaaIF += ( SapFi,Fa) » (E.44)

whereas Da/é reduce to the differential operators on the sub-Grassmannian that act on the

projectors piy, PRy
D 365 D _spla=1384,Dk (E.45)
aﬂpLY a}’pRﬁ > afPra = 2944PRa - .
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In this decomposition, the tensor G, (¢ admits 3 independent components Gy 5, G1p,y5 and
Gup.y5, but only the first and last have a non-trivial constant term. Using the Fourier decom-
position

— Q 2miQ- — Q 2miQ-
Gab,cd - Z Gab,cd e miQa > Foped = Z Fabcd e miQa P (E.46)
QEeA* QEeA*

we obtain that the first component of (3.20) with (e, f) = (1, 1) reads

2 —2¢ 2\~ _ Q Q—Q1k Q Q—Q1k
((8¢ +4)(9p +q—5)—8n’e ¢QR)Gaﬁ,11 =—4n Z (Flkla/a’Flll ' _Flllk(aFﬁ)lll )’
Q€A
2,-2¢ 12\ ~Q _ Q Q Q—Q1k
(3 +2)(3y +q—3)— 872 2#QR)Ge, ;= 65(4p G, — 67 > F s Fodk,
Q€A
(E.47)
where the sum over k in the r.h.s. runs over all indices o and 1.
Introducing for brievity the vector G2
~Q _ ~Q Q
G?=(Gyp11Gp ) (E.48)
the differential operator D(é‘an)d acts on G2 as
2D,°D,:Gq + 2D, D,:G2 = DWGU— (9, + ‘12;2)( 9 26y, 5 o )
nc n ¢ ’
" _2677(‘7‘(;1[5),}/5 o 25n(YG15),a/5
(E.49)
where we define for short
DO =—iv2e7?(Q,,(8y +q—2) +2Qgs DY) . (E.50)

The off-diagonal component of the differential equation (3.20) with (e, f) = (1,7n) take
the form

Q) Q — Q _ Q Q—Q1k Q Q—Qik _ opQ Q—Qik
DGy 5 = 2005 +3)Gy, s—T Z (FllllkF’qyﬁ s 2 G Fann )’
QieA*
@~ _ Q _ _ Q _ Q _ Q
D76 5 = (0 +2)G g 5— (95 +q 4)(5n/5Gy5,11 5n(7G5)/3,11) OysGp 11
Q @ pQ-Qik |, Q1 pQ-Qik Q@ pQ-Qik Q1 pQ-Qik
+5/3(7G5)n,11_2” Z (F11<11[5Fy5n1 +F1k1y5F1ﬂ'r;1 _Flklﬁ(yFE)ln1 _Flkll(rFé)ﬁn1 )’
Q en*
Q) ~Q — _ _ Q Q Q
Dn Ga/ﬁ,y5 - 2(3¢+q 4)(57)(0‘G[3‘)1,y5+5TI(YG6)1,(1[5)+35(aﬂGy5),1n
_ Qq Q—Qi1k
6w . Pl s Foatk, (E.51)
Qi eA*

The component of the differential operator with two indices along the subgrassmaniann
(e,f)=(n,?), acts as

4D(TIED9)@@Q = (4,2)(,,7 &De)d + 6779 8¢ - 87[26_2¢QLT) QLQ)éQ

GQ
T\ =8103aC 115 ~ 010 Coy1,ap (E.52)

Q Q 2
n ( 2G 16,15 ~ 2000 G115+ 201 950,11 )

Q Q
601(a®8).101G;5)11 ~ 40 nl(aC

»11 B),16),1r8)
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and thus we obtain the differential equation on the sub-Grassmaniann G,_, ;_,

(ZD(,,)&DQ)& + %5179 3¢ - 4ﬂ2€_2¢QLnQL9)éQ

GQ
+ 4ni«/§e_¢QL(n ( Q )L.yo Q )
_59)(0‘G[3)1,}/6 - 59)(r G5)1,a[5
Q Q Q
_ ( (4— Q)5n9G}21,Y5 +(5 _Q)5|n)(yG5)(%|,11 +0,5G,9 11 0 0 )
Ch q)57l9Ga/3’,y5 +2(6— q)5|n)<(aG/3),(e|,|y5) + 35(a/5,Gy5),n9 - 367)((a5/3),|6|Gy6),11

11d(n~ 08)yd lyd(n~ 0)61

3 -Q Q—Qid
2Fpdiap. Fro)o

—2r Z

QieA*

FQl FQ—Qld _FQl FQ_Qld
. (E.53)

The constant terms sourcing the perturbative part of ng .q are given by [22, (4.16)]

F?lll =a e—(q—6)¢ g(q —6),
FPs=be 99E(q—6)55, (E.54)
Foﬁ}/ﬁ = e_¢f(l/5)’5 +c e_(q_6)¢§(q - 6)5((1/3 5Y5) N

a
with a, b, ¢ constants which were computed in [22] (a = W, b = @, c= %).
As mentioned in the previous section, the unfolding method fails to capture exponentially
suppressed corrections to the constant term, which are sourced by the instanton anti-instanton
quadratic terms ZQI;AO FUF~Q on the right-hand side of the differential equations (E.47),
(E.51), (E.53). These terms can in principle be computed by solving the differential equation.
Here we focus on the perturbative part sourced by the constant terms in (E.54).
We find the particular solution to equations (E.53)

6%, 5 =~ @I E (g — )7 — )yo(9) — 22 (7 — e KN E(g—6)%5
1,06 = 1g° €(q DYys\p 9 qe €(q ap >
2
GO =e 290G, s(0)— L e IOE(G—6) 61,5 Gy () — e 24P E (g — 6)25 55
apyé apys\P) "¢ q (B, Fy5)\P) ™ 73 q (apOys) >

(E.55)

and b = 73;qc in (E.54), which matches the result obtained in [22, (4.16)]. Qaﬁ’ﬂg(ap) isa
solution to the equation (3.20) on the sub-Grassmaniann G,_; ,_; with source term quadratic

in Fopy5(), and G,p(¢p) satisfies the equation (B.18) along G,_; ;1

N 3— q
2Dy " Doy Gap = —5~ 0n6Y9ap + (5~ D0pmyaFpyel + OapTno +12Fapye - (E56)

One can check that GSb,C d which matches the
results [22, (4.16)].

The most general solution to (E.53) is obtained by adding a solution of the homogeneous
equation without source term

is also solution to (E.47), setting a = w

~ e (_ ~
Ghiys =g (7~ D TIE(@—6)G5(¢),

o B ¢ _(aos)0 . (E.57)
Gupys =€ " Gapys($)— T T99E(q—6)6(ap,Yys) (),

with gNaﬁ’Y(g(ap) a solution to the homogeneous equation (3.17) on the sub-Grassmaniann

Gp—1,4-1, and Gaﬁ(cp) solution to the homogeneous equation (3.34) on G,_; 4. The results
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(4.59) and (4.60) for the constant term ng cd obtained by the unfolding method in this de-
composition lie in this class, upon setting for generic q

vNT7 +1 e e
Gup = 7 3G () + 6L, (),

T N-1 2

(E.58)
Gap ()= G (),

with ¢ = % as in [22].

F Beyond the saddle point approximation

In the analysis of the large radius limit of the genus-two modular integral in §5.1, we neglected
the dependence of the Fourier coefficients C,_,(n, m, L;,) of the meromorphic Siegel mod-
ular form 1/®;_, on ,, and evaluated the integral over 2, arising in the Abelian rank-two
orbit in terms of a matrix variate Bessel function. Since the integral over 2, is dominated
by a saddle point at large R, and since Cy_,(n,m, L;),) is constant in the vicinity of the sad-
dle point (at least at generic point in the moduli space G,/K,) , this approximation correctly
captures the leading behavior of order e 2™RM(QP) at large R, as well as the infinite series of
perturbative corrections around the saddle point. As a result of the poles in 1/®;_, however,
the Fourier coefficient C,_5(n, m, L; £2,) is only locally constant, and this approximation misses
contributions from the region where this Fourier coefficient differs from its saddle point value.
Here we shall estimate these effects and find that

1. poles occuring at large |2, give rise to contributions of order e 2"RM(QuP+M(Qz.P,)

for all possible splittings (Q,P) — (Q;, P;) + (Q,, P,) of the total charge into a pair of
1/2-BPS charges; these contributions are subleading away from the walls of marginal
stability, but crucial for the smoothness of the physical couplings across the wall;

2. deep poles occuring at [Q,| < @ give rises to subleading contributions exponentially

. . 2
suppressed in e~ 4In2IR

and anti-instantons.

which can be interpreted as |n,| pairs of Taub-NUT instantons

In either case, the gist of the argument is as follows: one decomposes the integral

d3Q dBQ
J §2 C[Qz]e—ZTES[QZ] — Z CkJ —§2 e—ZTCS[Qz] , (ED
P, [Qy]278 k w, Q|27

with a locally constant insertion C[£2,] into a sum over chambers W, where C[Q,] = C is
constant. Applying the saddle point approximation, one can bound the integral over W, at
large R as

1 g
——log( ——— 27l 2]) = S[Q5(W)]+o(R), (E2)
27 Wy |92|§_S

where Q3 (W) is the minimum of S[Q] on W;.

E1 Poles at large |Q,|

Recall that the saddle point lies at

R 2
* __ 71 1(1 S 1 P —Qr - P
= M(Q,P)A [Sz (51 IS|12)+'QRAPR'(—Q§ o QF R) ]A’ (E3)
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. . . . i
where A is a non-generate integer matrix, which we decompose as A = ((1) f)(%l p )y for

y € SL(2,7). We consider the component of the diagonal divisor D where the matrix

_ _ i . s qe . .
(} (1))A TQ,A 1((1) l{) becomes diagonal. On this divisor, we parametrize 2, as

13
—pat( 1 0\(p2 0)(1 -
2 =rA( 2 95 2 TR ")
It is straightforward to compute the minimum of the action
S[Q,]= R—ztr[Q ATE (L SA]+ afeat( %, @A) (E5)
272 55, st 2% Qe ke B '

on the surface parametrized by o, and p,, because the matrices in the traces are then diagonal.
The minimum is reached at

I S 0 )
0 2 R7£R2 -1
2, =rat( 1)(”@0 s )(3, a, (E6)
/25,P2

with

S1%1 = R(y/ 2 (@r — 12 + 1 2528 R(M@Q—1R0)+ M({BP)),  E7)

which we recognize as the sums of the actions associated to 1/2-BPS states with charge
(Q,P))=(Q— %P, 0) and (Qq,P,) = (%P, P), as announced. Taking j = O for simplicity and
parametrizing the distance away from the divisor v = 0 by € such that

S Qg - P, Q2P2
—1—&26 = QR.PR: > 2(81—682), (F8)
Sy |Qr APyl S5 +(S;—¢€Sy)

the perturbation of the action at small v, gives

o _ S, —€S, S1
S[RAT(T )A = S[Q)]+2Rvy1/Q2P; (\/5 G |S|)+(’)(V22)

= S[Q,]—2Rvyy/ Q]%PR2 SP e+0(e?)+0(v.) . (E9)

For € small enough, i.e. 2; close enough to the wall v, = 0, one sees indeed that the action
increases monotonically away from the wall, and therefore, the minimum of the action in the
neighboring chamber must indeed be reached along the wall. All the other cases are then
determined from this one by SL(2,7Z).

E2 Deep poles

When the determinant |Q,| becomes sufficiently small, the contour C = [0,1]® + iQ, starts
intersecting additional poles of the form

m?—m'p +ny0+ny(po—v3)+jv =0, (E10)

with ny # 0, 4(m'n; + m?n,) + j2 = 1. This intersection occurs for generic values of Q,, which
make the Fourier coefficient C(m, n, p; Q) itself ill-defined. In this section it is convenient to

parametrize 2, as
1 1 =
Qy=— . (F11)
> ( T |7 )
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Eq. (E10) can be solved for 7,,v; as a function of 7,5,V, p1,07,

(£ 1—40n, + nypy) )
v, =— —4(n, +n m; —ny,o1)—— |,
1 211y J 1T 2P UMy — N0y V2
1 4n2 )2 4n2
T1 =2+ myp1) 1—4(n1+n2p1)(m1—n201)——V2 —\|1—4(n; +nyp4) T2
(E12)

The solution is real only if V2 —4V?2(n; + n2p1)2’c§ - 4n§ > 0, which requires V2 > 4n%, ie.
that |Q,| < 1/(2n,)?.

In order to bound the contribution from this region, we shall look for the minimum of the
action (E5) on the domain P, with |Q,] < ﬁ For simplicity we consider the case A =1,
but the argument is general. Extremizing over 7 in the parametrization (E11) one obtains the
solution

. R2V2 |Qg+SPg|? | R4V4
—Pp - (QR +81PR) + 1\/|QR /\PRl2 + T% + =

T* :Sl +Sz (F13)
2 , R2v2 ?
PR+
at which point the action becomes
+SPI2 4
S[t*,V]= \JR4V2+2R2|QRS—R|+W|QR/\PR|2. (E14)
2

At large R the action grows monotonically in V, so the minimum of the action on the domain
V > 2|n,| is reached on the boundary at V = 2|n,|, where it evaluates to

+SP2 1
S[t*,2|n,|]1= \J (2n2R2)2+2R2|QRS—R|+—2|QR/\PR|2. (E15)
2 le

S . . _4nR? S
The correction in this domain are therefore exponentially suppressed as e #™ "2l which is the
expected magnitude of a contribution for |n,| pairs of Taub-NUT instanton anti-instantons.

G Non-Abelian Fourier coefficients

In this section we show that the non-Abelian Fourier coefficients in the degeneration (p,q) —
(p — 2,9 — 2) can be deduced from the (Abelian) Fourier coefficients in the degeneration
(p,q) — (p —1,q —1). First, recall that the Fourier expansion of an automorphic form F
on G, , with respect to the maximal parabolic subgroup with Levi GL(1) x O(p —2,q —2),
corresponding to the grading (5.3), which we copy for convenience,

S0, ... ® (gl ©sl, @ 5op_2,q_2)(0) e(2®(p+q— 4))(1) o1, (G.1D
consists of three parts:

1. the constant term F (R, t), defined as the average of F with respect to (a'!,+)) parametriz-
ing the grade (1) and (2) components in (G.1);

2. the Abelian Fourier coefficients Fq, p(R, t), defined as the average of the product of F by

a character e~2™(Qu+Pa:2) with (Q, P) in the lattice A;‘fzz -2

131


https://scipost.org
https://scipost.org/SciPostPhys.7.3.028

Scil SciPost Phys. 7, 028 (2019)

3. the non-Abelian Fourier coefficients Fy, (R, t,a) for M; € Z\{0}, defined as the average
of F times e 2™M1¥ over 1) € [0, 1].

The non-Abelian Fourier coefficient can be further decomposed by diagonalizing a half dimen-
sional Lagrangian subspace in the grade (1) space, e.g. dual to the lattice A,_, ;_, of magnetic
charges. This leads to the ‘wave function representation’

Fu,(R t,a',a) = ) > Fuu® 6P —Ma,) e Pemihaw) (G

e Ap—2g-2 PEMiA, 54 o+l
MyAp—3,q—2

However, an alternative representation of the same non-Abelian Fourier coefficient can be
obtained by diagonalizing not only translations in 1 and a, but also in S, corresponding to the
positive root in the s[(2) factor appearing in the grade 0 component of (G.1). This amounts to
performing the (Abelian) Fourier decomposition with respect to a different maximal parabolic
subgroup associated to the decomposition (4.4),

s0,,~(p+q— 2) o (gl @ 5op_1’q_1)(0) o(p+q—2)?. (G.3)

The only task is to relate the coordinates (R, S, ¢, a', a®) appropriate to (G.1) to the coordinates
(R',¢’,a’) appropriate to (G.3). To this aim, let us parametrize the (SO(p) x SO(q))\SO(p, q)
Grassmannian in the parabolic gauge as

g(R: SZ:S]_: ¥,dy,dy, 1.0) = L(R’ SZ) SO)UZ(SI)Ue.m.(al:a2)Ul(¢) ) (G4)

with L(]-) 1: (P) C SO(P - 23 q— 2)) L(17 SZ) O)UZ(Sl) c SL(2) R) and Ue.m.(ala a2)U1(¢) in the
unipotent radical. One straightforwardly computes that

[L(R, 52,‘P)Uz(51):|Ue.m.(a1,az)U1(¢) (G.5)
= L(R,S3,¢)U(81)Ue . (a1,0)Ue 1, (0,a2)U; (4 — %al - ay)
= [L(R; Sy, @)Uelm.(al;O)JUZ(Sl)Ue.m.(O; a, —S1a1)U; (Y — %al tdy + 551012) )
where L(R,S,, ¢)U. . (a1,0) € RY x SO(p —1,q — 1) and Uy(S;)U, 1, (0,a’)U;(3)") belongs

to the corresponding abelian unipotent radical. Using this parametrization, the non-abelian
Fourier coefficients can simply be obtained from the Fourier coefficients (4.44) by substituting

R’ = RS,

1 S 1 r oA
Q. = ‘/?SZ(RM1+F2(MZ—a1-P+§a12M1)) ifa=q—1
Ra PR&_alR&Ml 1fd<q_1 ’
1 Sz 1 _2 f _ 1
Q/ _ \/?SZ(RMI—E(MZ—Ql'P'FialMl)) mra=p-—
La Pro—aipeM; ifa<p—1
Q’a/ g Ml(l,b—%al 'a2+%Slaf)+P'(a2—Sla1)+M281 B (G6)

where Q = (PM;,M;) € A,y 4 splitinto P € A, 5, 5, and (M;,M,) € I, ;, such that
Q? = P2 —2M; M,. The index u = 1 is combined with the index a ranging from 1 to p — 2 of
SO(p —2) to give the index a ranging from 1 to p —1 of SO(p — 1), whereas the index yu =2
corresponds to the index 1 in the decomposition (4.44). The non-Abelian Fourier coefficient
Fy (R, t,at,a®) of G%2 s then

1

(p.q), 2nab,M; __ ».9),(BM1,M5) 2mi(My—a;-P+5a>M;)S 2mi(P-ay—sMyaj-a

Cabea = E: ZGab,cd P 2riMymar Py aiMs |o2mPamathare) - (G.7)
PeN, 342 "My€EZ
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with the classical action

Sa(M, My, P) = \/ (R2M; +Sy(My—a, - P + %anl))2 +2R2S,(Pg —a;gM;)?,  (G.8)
and

P()(PL a; M) Kes_ (27Sq)

G »(BM1,M;) 6G(P La- 1)(P Ml,MZ: 3, )(P al)z

B.yo _gq2 a3 _ >
by 4 ws)yF 5
PL > a].L > 1 Kﬁ (znsd)
G(Pq) ,(BM1,M,) — 3(R25 ) G(p 1q— U(PM M. @, a ) Y i 2
aB,y2 2 1 2’5’ T iv2 e ’
Scl2
Kq -9 (27'CSC1)
Gﬂf,?z(fMl M) _(stz) G(P Lo- “(PMl,Mz, £ AP:al)T’ (G.9)
S 2

cl
whereas the components with y = 1 are obtained by replacing Q} , = P,—a; M, fora =1, p—2
by Q’Lp_1 in (G.6). The tensor Gg’[?’q_”(R M, M,) is defined on SO(p—1,q—1) from (4.45) in

the parabolic gauge in which g(£, t,a;) = L((E)7, (2)2, ¢)Ue m (a1, 0), withQ = (B My, My),
and with the index a = p — 1 interpreted as u = 1, according to (G.6). Note that the tensor

Gg;’qfl) (P, My, M,) is not invariant under the shift of a; by a vector e € A,_ ,_,, but satisfies

GU (B My, M3 &, 0y +€) = G (P —eMy, My, My—e-P+3*My; &, 0,01) , (G.10)

which ensures that the decomposition (G.7) is consistent with the action of the Heisenberg
group generated by the grade 1 and 2 components in (G.1). Note that the wave function
representation (G.2) of the non-abelian Fourier coefficient can be recovered from (G.7) by a
Poisson resummation on M,.

H Covariantized Polynomials

In the degeneration limit O(p,q) — O(p — 1,q — 1) studied in §4, the monomials f’gl)_"a_(Q)
with [ > 0 are of degree i —2I, and defined by

1

- 1
2. PRQ=0Qu,Qu— 5,5,
=0
~ (H.1)
PO =05,
pOWQ)=1.

In the degeneration limit O(p,q) — O(p —2,q — 2) studied in §5.1, the monomials PSR._. @
with [ > 0 are of degree i — 21, and defined by

Z o 1
P =T I o
Lyt'L,6 47 Yo

Pg‘?(r) = Q51
POM) =1.

(H.2)
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For the Abelian rank-2 orbits (5.33), the polynomial are contracted with their matrix-
variate Bessel function as

l I mod
ZP( )'LW S)B( p 2)(2) - AK Te) 1—‘Lcc FLﬂ 1—‘L T 566MVB(0) (Z)

af, yé g=5=1 5 L
3 K M)
_4 aﬁ (FLY 1—‘L5) )B (Z)
3 =(0
t o 25(%,5@5“@2;)%(2),
2
[ l d
2 Poplys B2 (2) = T Tiy Ty Bl (2)
1=0,1 2

(H.3)
- —5(y5 Ip)“B )7 p(Z),

Duw I mod
2. Poots T SBL 2 (2) = FLWFLMWB?;%W(Z)
2

q7—
[=0,1
5By, (2,
4mn 5 po
(O)W 3103 _ »(1)
PoosoSBL (D=Tys:BL ()
PlotuBes =5 0.Be0B M)

For the singular contribution (D.4), the monomials P&ﬂlfj}i with 1,1, = 0 are of degree
i —2l; —2l,, and defined by

2
(11,1)

Z Z Paé ;5(F1> I5,8) = 6, 0c¢) FlLalrlLﬁKFZLyTFZLée + 63k, 0 e) FZLa)LFZL[J’KrlLyTFIL5E

1,=01,=0

3

3

— 47(5(a/5,FL1yFL15> + 5(a[5,FL2yFL25)) — @5(01/5,@5),
11 -

Z Z Pp/lj ;5(1—‘1> 15,8) =Tip,pTory " Torsyr T Tonip pliry LiLs)e

1,=01,=0

3
— 22 (8 5.Ti1p) + 8y6.Tr2p) )

1
(ll2) 1
Z Z Pro 15T 12,8) = Tipypliise + Doryplarso — 220p06y6:

po,yYo
11_012
PO (1}, 15,8) = 8 po (Ti5e) + Targey)
po,t& 122, (po,\L1L57) 2L57))>
0,0 .
P;()a f)w(rl’ F2’S) - 6(pa,5rv)’
(H.4)

where I' =T + T}.
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