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Abstract

Coarsening dynamics, the canonical theory of phase ordering following a quench across
a symmetry breaking phase transition, is thought to be driven by the annihilation of topo-
logical defects. Here we show that this understanding is incomplete. We simulate the
dynamics of an isolated spin-1 condensate quenched into the easy-plane ferromagnetic
phase and find that the mutual annihilation of spin vortices does not take the system
to the equilibrium state. A nonequilibrium background of long wavelength spin waves
remain at the Berezinskii-Kosterlitz-Thouless temperature, an order of magnitude hotter
than the equilibrium temperature. The coarsening continues through a second much
slower scale invariant process with a length scale that grows with time as t1/3. This sec-
ond regime of coarsening is associated with spin wave energy transport from low to high
wavevectors, bringing about the the eventual equilibrium state. The transport displays
features of a spin wave energy cascade, providing a potential profitable connection with
the emerging field of spin wave turbulence. Strongly coupling the system to a reservoir
destroys the second regime of coarsening, allowing the system to thermalise following
the annihilation of vortices.
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1 Introduction

Quenching a system across a continuous phase transition from a high to low symmetry phase
causes the system to spontaneously break symmetry. Immediately after the quench causally
disconnected regions of the system will break symmetry independently, resulting in the for-
mation of domains with independent order parameter orientation. The subsequent growth of
these domains toward the global equilibrium state is known as coarsening dynamics. Although
the microscopic details of coarsening are usually extremely complicated, at a macroscopic level
a much simpler scaling regime can emerge for large average domain size L. Spatial correlations
of the order parameter at different times t then collapse onto a single curve when rescaled by
L, and the domains grow as L ∼ t1/η with the scaling exponent η determined by the dynamic
universality class [1]. Such universal dynamics has been explored in a vast variety of systems,
ranging from the early universe [2] to superfluid formation [3] to opinion spreading in soci-
ology [4]. When the quench produces topological defects, the decay of these defects has long
been thought to provide a unifying framework for understanding the coarsening [1].

Recently, there has been much interest in coarsening dynamics in ultracold atom systems,
which are well isolated from their environment and present a pristine system for studying
nonequilibrium phase transitions [5–13]. Of particular interest are multicomponent conden-
sates, which support a rich variety of order parameter manifolds and associated topological
defects [14,15]. Theoretical studies of coarsening in a variety of cold atom systems [3,16–28]
have culminated in the recent experimental observation of universal dynamics in a quenched
quasi-1D scalar Bose gas [6] and in a quenched quasi-1D spin-1 condensate [7]. Simulations
of a homogeneous quasi-2D spin-1 condensate quenched from the polar phase to the easy-
plane ferromagnetic phase, see Fig. 1(a), identified coarsening dynamics driven by the mutual
annihilation of transverse spin vortices with domain size growing as L ∼ t/ log t [19, 20]. A
log correction to scaling is familiar from two dimensional systems supporting vortices [1].

In this work we study the easy-plane ferromagnetic ordering of a homogeneous quasi-2D
spin-1 condensate after all vortices have annihilated. Remarkably, we find that the annihi-
lation of vortices does not take the system to the equilibrium state. Instead, a nonequilib-
rium background of spin waves remain at the Berezinskii-Kosterlitz-Thouless (BKT) temper-
ature, an order of magnitude hotter than the eventual equilibrium temperature. The coars-
ening then continues via spin wave energy transport from low to high wavevectors that dis-
plays features of a novel turbulent cascade, relevant to the emerging area of spin turbulence
(e.g. see [13,29–32]). We argue that the nonlinear transverse spin wave dynamics arises from
a dynamic coupling to interacting axial spin degrees of freedom. Order parameter correlations
show dynamic scale invariance during the spin wave coarsening, with a length scale that grows
as t1/3. This scaling is distinct from that during the vortex driven coarsening, showing that
there are two renormalisation group fixed points affecting the phase ordering of this system.
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Strongly coupling the system to a reservoir of energy and particles destroys the second scaling
regime, allowing the system to thermalise following the annihilation of vortices. Our results
give new insights into the phase ordering dynamics of isolated systems and provide a potential
profitable connection between phase ordering and wave turbulence.

2 Background

A spin-1 condensate can be described by three interacting classical fields ψm for condensates
in the three spin components with spin projections m = −1, 0,1. The quasi-2D Hamiltonian
density within a uniform trap [11] is [33–36],

H = −
1
∑

m=−1

ψ∗m
ħh2∇2

2M
ψm +

gn

2
n2 +Hs, (1)

where M is the atom mass, n =
∑

m |ψm|2 is the areal density, gn is the quasi-2D density
interaction strength and Hs encompasses the spin dependent terms,

Hs =
gs

2
n2|F|2 +

1
∑

m=−1

qm2|ψm|2. (2)

The first term in Hs is the spin interaction energy, with spin density F=
∑

mm′ψ
∗
mfmm′ψm′/n

2

for spin-1 matrices ( fx , f y , fz) ≡ f, and quasi-2D spin interaction strength gs. The sign of gs
determines whether the interactions are ferromagnetic (gs < 0), which occurs in 87Rb [37], or
antiferromagnetic (gs > 0), which occurs in 23Na [35]. Here we consider the ferromagnetic
case. The second term in Hs is a quadratic Zeeman splitting of the spin components, which can
be induced using either DC magnetic fields or AC microwave stark shifts [15,38]. A linear Zee-
man term pnFz can also be included, but conservation of nFz means this term does not affect
the system dynamics and can be removed via the unitary transformation e−ipmt/ħhψm → ψm.
The quasi-2D regime is obtained from a 3D system by tightly confining the system in one
direction and integrating over the resulting spatial profile along that direction [5,36].

The relative strength of the two terms in Hs produces a rich phase diagram, from which
a variety of quenches can be explored. The zero temperature mean field phase diagram for
ferromagnetic interactions and with q > 0 is shown in Figure 1(a). A quantum critical point
at q = q0 ≡ 2|gs|n0 (n0 is the mean condensate density) separates the unmagnetised polar
phase (all atoms in the m= 0 condensate) from the easy-plane ferromagnetic phase with spin
order parameter F⊥ ≡ (Fx , Fy) (for quantization along Fz). The order parameter manifold of
F⊥ is SO(2) with transverse spin vortices as topological defects. These vortices consist of a
positive or negative phase winding of the transverse spin angle θ (tanθ = Fy/Fx), and can
only decay via the mutual annihilation of two vortices of opposite sign. Vortices with negative
phase winding are also termed antivortices. The energy scale q0 defines a time scale ts ≡ ħh/q0
and the spin healing length ξs ≡ ħh/

p

Mq0.

3 Results

3.1 Quench dynamics: anomalous phase ordering

We simulate the condensate dynamics following an instantaneous quench of the quadratic Zee-
man energy from deep in the polar phase to q = 0.3q0 in the easy-plane ferromagnetic phase,
see Fig. 1(a),(b). Symmetry breaking and the production of transverse spin vortices following
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Figure 1: (a) A spin-1 ferromagnetic condensate is unmagnetised (“polar”) for q > q0
and magnetises in the transverse plane (“easy-plane”) for 0 < q < q0. The point
q = q0 is a quantum critical point (QCP). We explore the ordering of transverse spin
following a quench from q � q0 to q = 0.3q0. (b) Coarsening of transverse spin
domains [colormap shown in (a)]. This is associated with collisions between trans-
verse spin vortices (red triangles) and antivortices (black circles), which can then
mutually annihilate, resulting in a growing intervortex spacing Lv (red bar). A sec-
ond length scale Lsw giving the thermal wavelength of spin waves grows much more
slowly (black bar), such that the transverse spin remains out of equilibrium long after
all transverse spin vortices have annihilated. The central time axis quantifies the first
stage of vortex driven coarsening, the time of last vortex annihilation, and the subse-
quent stage of spin wave thermalisation. (c) Spatial correlations of transverse spin at
different times, showing that long after all vortices have annihilated the correlations
still decay more rapidly than the equilibrium prediction (upper black dashed line).

such a quench have been observed in experiments with 87Rb [5]. Conservative dynamics of
our system is simulated by numerically integrating the three coupled Gross-Pitaevskii equa-
tions (GPEs) obtained from Eq. (1) [14],

iħh
∂ψm

∂ t
=

�

p̂2

2M
+ qm2 + gnn

�

ψm + gsn
∑

m′
F · fmm′ψm′ . (3)

Further numerical details are described in Appendix A.1. A homogeneous system can be re-
alised in experiments using a flat bottomed trap [11,39].

We quantify order in the system by spatial correlations of F⊥,

G(r, t)≡ 〈F⊥ (r, t) · F⊥ (0, t)〉 , (4)
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where angular brackets denote an ensemble average (see Appendix A.2). Figure 1(c) shows the
evolving correlation function Eq. (4). For times 102 ts ® t ® 103 ts, the growth of order is scale
invariant and driven by the mutual annihilation of transverse spin vortices of opposite sign, see
Fig. 1(b), with correlations decaying to zero at a length scale on the order of the intervortex
spacing. This vortex driven coarsening has been described in previous work [19,20]. We find
that all vortices have annihilated by a time t ≈ 2.8 × 103 ts, after which correlations extend
to the boundary. The correlations can then be compared to the equilibrium (thermalised)
prediction [36,40],

Geq(r)∼ r−ν, ν=
Teq

4TBKT
. (5)

Here TBKT = πK/2kB is the BKT temperature associated with the unbinding of transverse spin
vortices [41], with K = ħh2n0(1− q/q0)/2M the spin wave stiffness and kB Boltzmann’s con-
stant. The equilibrium temperature Teq of our microcanonical system is calculated by equipar-
titioning the energy liberated by the quench amongst all collective modes of the system [20],
which gives ν ≈ 0.011. This equilibrium prediction is shown in Fig. 1(c). Surprisingly, even
after very long simulation times t = 105 ts, correlations of transverse spin only agree with the
equilibrium prediction for length scales r ® 5ξs. For larger length scales the correlations decay
more rapidly. This absence of equilibrium following the annihilation of topological defects is
not predicted by the current theory of coarsening dynamics [1].

3.2 Spin wave energy transport driving phase ordering

To identify the origin of the unexpectedly slow ordering displayed in Fig. 1(c) we look at the
distribution of energy in the gradient of the transverse spin angle ∇θ (this vector field is pro-
portional to currents of Fz magnetization [42]). We firstly perform a Helmholtz decomposition
∇θ = vi + vc with ∇ · vi = 0 and ∇× vc = 0. The first contribution vi , known as the incom-
pressible field, arises from vortex excitations while the second contribution vc , known as the
compressible field, arises from transverse spin wave excitations. The spectral energies of the
incompressible and compressible fields are given by,

εµ(k, t) =
K
2

¬
�

�ṽµ(k, t)
�

�

2¶
, µ= i, c , (6)

where ṽµ(k) = l−1
∫

d2rvµ(r)e−ik·r is the Fourier transform of vµ(r) and angular brackets
denote an ensemble average (see Appendix A.2).

The evolving spectral energies εµ(k, t) are shown in Fig. 2(a),(b). The incompressible
spectral energy, Fig. 2(a), shows a k−2 decay when vortices are present, in agreement with
the infrared (ξsk < 1) scaling of a distribution of quantum vortices [43,44]. Once all vortices
have annihilated the spectral energy drops abruptly. In comparison, the compressible spectral
energy, Fig. 2(b), shows nonequilibrium features across the duration of the simulation. The
initial condition of our simulation results in a flat high energy distribution εc(k, 0)≈ 200kBTeq.
For times t ¦ 103 ts, the compressible spectral energy shows three approximate regimes,

εc(k, t) =







εlw(k, t), k < klw(t),
�

εlw(klw, t)/klw
−α� k−α, klw(t)≤ k < keq(t),

kBTeq/2, keq(t)≤ k.
(7)

We have introduced the evolving wavevectors klw(t) and keq(t) to signify the boundaries be-
tween the three regimes of εc(k, t). The spectral energy εlw(k, t) is the long wavelength portion
of εc(k, t), with energy per mode εlw(k, t) ≈ 10kBTeq ≈ kBTBKT/2 in the wavevector window
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Figure 2: (a) The evolving incompressible field spectral energy εi(k, t) displays a
predicted k−2 scaling and rapidly drops after all vortices have annihilated. (b) The
evolving compressible field spectral energy εc(k, t) (solid lines) shows three regions:
a persistent high temperature long wavelength region with a temperature approxi-
mately equal to TBKT; a steep region with an approximate k−4 scaling; and a short
wavelength thermal region. The spectral energy of Fz excitations εFz

(k, t) (dashed
lines) closely follows εc(k, t) for times t ¦ 400ts. The interacting Fz fluctuations
can mediate the thermalisation of the transverse spin waves. (c) The combined spec-
tral energy of transverse and axial spin waves, Esw(t), is decomposed into a low
wavevector portion Elow(t), which decreases in time, and a high wavevector portion
Ehigh(t), which increases in time, consistent with a cascade of energy from low to
high wavevectors. The total spin wave energy Esw(t) also decreases in time indicat-
ing energy flow away from spin waves.

considered. This nonequilibrium temperature, being approximately at the BKT temperature,
corresponds to the typical energy of a single transverse spin vortex [41, 45], and may be a
remnant of interactions between spin waves and vortices during the vortex driven coarsen-
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ing. For k > klw εc(k, t) decays steeply as k−α with an exponent α ≈ 4 until the equilibrium
distribution εc(k, t) = kBTeq/2 is reached at a wavevector keq(t). The structure of εc(k, t) is
suggestive of a turbulent cascade, with a high temperature long wavelength energy source cas-
cading to a short wavelength thermal field. We provide further evidence of this shortly. With
no vortices present, the persistent nonequilibrium features of εc(k, t) must be responsible for
the anomalously slow ordering that we observe in Fig. 1(c).

The observed dynamics of epsilonc(k, t) necessarily involves nonlinear interactions. The
field conjugate to the transverse spin phase θ , i.e. the generator of rotations of θ , is nFz ,
leading to dynamic coupling between transverse spin waves and the axial spin waves of Fz [20,
36]. The interacting axial spin waves can therefore mediate transverse spin wave interactions.
(Transverse spin waves can also interact via nematic Nzz = |psi−1|2 + |ψ1|2 fluctuations [36],
however we find Nzz fluctuations are thermalised after the vortices have annihilated and are
therefore relatively small.) Expanding the system Hamiltonian to quadratic order in Fz and
Nzz fluctuations [36] gives the spectral energy of axial spin fluctuations,

εFz
(k, t) = n0

ħh2k2/2M + q
2(1− q/q0)

¬
�

�F̃z(k, t)
�

�

2¶
, (8)

where F̃z(k) ≡ l−1
∫

d2r Fz(r)eik·r and angular brackets denote an ensemble average (see Ap-
pendix A.2). For times t ¦ 400ts the spectral energy εFz

(k, t) closely follows εc(k, t), see
Fig. 2(b), indicating that the dynamics of the two spectra are coupled and in equilibrium with
each other. The nonlinear interactions of axial spin waves can allow the redistribution of en-
ergy in εFz

(k, t) and then dynamic coupling to transverse spin waves can actuate the same
effect in εc(k, t).

To provide further evidence for the presence of an energy cascade in Fig. 2(b) we decom-
pose the total spin wave energy

Esw(t) =
∑

k

2πk(εc(k, t) + εFz
(k, t)) (9)

into a low wavevector portion

Elow(t) =
∑

k<kmid

2πk(εc(k, t) + εFz
(k, t)) (10)

and a high wavevector portion

Ehigh(t) =
∑

k≥kmid

2πk(εc(k, t) + εFz
(k, t)), (11)

where we choose kmid = 0.5ξ−1
s . In Fig. 2(c) we plot the energy changes

∆E(t)≡ E(t)− E(105 ts) of these three quantities for times after all vortices have annihilated.
The energy Elow decreases in time while Ehigh increases, consistent with an energy cascade
from k < kmid to k ≥ kmid. There is also a net decrease in the total spin wave energy Esw,
showing that energy is also lost from the spin wave excitations, either to other quadratic exci-
tations [36,46–48] or to excitations beyond quadratic order. In principle, one could solve for
the dynamics of these additional excitations to obtain effective spin wave dynamics that would
transport energy from low to high wavevectors. Figure 2(b) shows that the spin wave energy
transport is associated with an approximate k−4 scaling of εc(k, t) and εFz

(k, t). (Note the
spectral energies in most studies of 2D turbulence include a k phase space factor so that the
k−4 scaling observed here would normally be described as k−3 scaling.) There are currently
no predictions for such a cascade within weak wave turbulence theory [49, 50]. To confirm
that the energy transport shown in Figs. 2(b),(c) is a turbulent cascade would require showing
that the energy transport is local in wavevector space.
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Figure 3: (a) The evolving spatial correlations of transverse spin after all vortices have
annihilated (inset) collapse onto a single curve (main figure) according to Eq. (12)
when rescaled by the growing length scale Lsw(t). The nonequilibrium (decaying)
portion of rνG(r) shows a r−0.21 algebraic decay that indicates a nonequilibrium tem-
perature of T ≈ 0.9TBKT. The flat dashed line indicates equilibrium correlations. (b)
The length scale Lsw(t) grows as t1/3 for t > 103 ts, much slower than the t/ ln(t/ts)
growth of average intervortex spacing Lv(t). The largest thermarlised wavelength
extracted from εc(k, t) is 2πkeq(t)−1, which follows the growth of Lsw(t).

3.3 A second regime of scale invariance

The robust shape of εc(k, t) for times t ¦ 103 ts (see Fig. 2(b)) suggests a regime of scale
invariance driven by spin waves, beyond the scale invariant coarsening dynamics driven by
vortex annihilation. To explore this we consider the late time dynamics of correlations of
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transverse spin, Eq. (4), which in a scale invariant regime will evolve as [51,52],

G(r, t) = r−ν f
�

r
L(t)

�

(12)

for some universal function f and growing length scale L(t). The r−ν correction factor ensures
G(r,∞) ∼ r−ν, consistent with equilibrium. Since ν ≈ 0.011 � 1, the correction is only
significant when G(r) is close to ordered.

The evolving correlation function for times after all vortices have annihilated is shown
in the inset to Fig. 3(a). The correlations exhibit a short wavelength ordered portion that
grows slowly in time and a nonequilibrium long wavelength portion. The correlation functions
collapse onto a single curve after rescaling according to Eq. (12), see Fig. 3(a). We define the
rescaling factor Lsw(t) by G(Lsw, t) = 0.8G(0, t), which follows the boundary between the
ordered portion of the correlation function and the nonequilibrium portion. This length scale
is governed by spin waves and grows as a power law Lsw ∼ t1/3 for times t ¦ 103 ts, i.e. times
after all vortices have annihilated, see Fig. 3(b). The length scale 2πkeq(t)−1, where keq(t) is
introduced in Eq. (7) and defined more precisely in Appendix A.3, follows the growth of Lsw(t).
For comparison, the scale invariance during vortex driven coarsening is associated with the
more rapidly growing average intervortex spacing Lv(t) (defined in Appendix A.4) [19]. The
nonequilibrium portions of the correlation functions in Fig. 3(a) clearly exhibit an additional
algebraic decay G(r) ∼ r−0.21−ν ≈ r−0.22. The value of the decay exponent corresponds to a
temperature of T ≈ 0.9TBKT, see Eq. (5), and is consistent with the nonequilbrium temperature
of εlw(k, t) from Eq. (7).

3.4 Comparison with open system dynamics

Our analysis so far has considered isolated, energy conserving dynamics. It is of interest to
compare our results with open system quench dynamics, where the condensate is coupled
to a reservoir of energy and particles. Using a stochastic Gross-Pitaevskii theory (see Ap-
pendix A.5), we model a spin-1 condensate strongly coupled to a reservoir with fixed temper-
ature and chemical potential, which we choose such that the equilibriated energy and particle
number matches those of the conservative dynamics. We then simulate the same quench as
for the isolated system dynamics. Figure 4(a) shows the evolution of transverse spin corre-
lations, Eq. (4), for the open system dynamics. The vortex driven coarsening is comparable
to the isolated system case, with correlations showing scale invariant growth. For times af-
ter t ≈ 2 × 103 ts correlations in the open system dynamics show excellent agreement with
the equilibrium prediction Eq. (5). For comparison, all vortices have annihilated by a time
t ≈ 1.8× 103 ts. The results in Fig. 4(a) are in stark contrast to the results in Fig. 1(c) for the
isolated system. Indeed, differences in the two cases are apparent from the evolving spin do-
mains, Fig. 1(b) and Fig. 4(b), with the open system being more ordered in the spaces between
vortices. For the large reservoir coupling strength we have used here, spin waves in the open
system are able to rapidly thermalise directly with the reservoir rather than via interactions
with other spin waves. However, we emphasise that microscopically derived reservoir cou-
pling strengths are much smaller than the value we use here [53], and therefore the isolated
system dynamics are a realistic approximation to experiments.

The growing length scales Lv and Lsw for the open system dynamics, defined as for the
conservative dynamics, are shown in Fig. 4(c). The growth of Lv in the open system is very
similar to the isolated system growth (denoted by Lv,ISO in this figure). In the open system,
however, there is no second growing length scale, and Lsw follows the growth of Lv.

The decay of transverse spin correlations for open system dynamics following quenches to
different values of q show good agreement with Eq. (5) once all vortices have annihilated, see
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Figure 4: Open system results. (a) Spatial correlations of transverse spin at different
times during the coarsening. The correlations agree very well with the equilibrium
prediction Eq. (5) (dashed line) after all vortices have annihilated. (b) Coarsen-
ing of transverse spin domains [colormap shown in Fig. 1(a)]. Spin vortices and
antivortices are marked by red triangles and black circles respectively. Comparing
with Fig. 1(b), it is clear that the transverse spin is more ordered in the space be-
tween vortices in the open system dynamics. (c) The growth of intervortex spacing
Lv follows the isolated system growth Lv,ISO. The length scale Lsw follows the growth
of intervortex spacing Lv, indicating the absence of a second coarsening process.
Inset: Algebraic decay exponent νfit for different q quenches (dots) obtained from
single trajectory simulations by fitting to the transverse spin correlation function for
2ξs ≤ r ≤ 100ξs and averaging the result across times 5× 103 ts ≤ t ≤ 104 ts. The
error bars give the standard error of this mean. For q > 0.1q0 the fitted exponents
agree well with the equilibrium prediction from Eq. (5) (solid line).

Fig. 4(c) inset. (The temperature and chemical potential for these quenches have been ad-
justed as a function of q; see Appendix A.5.) The small deviation at the smallest q value might
be caused by axial spin fluctuations, which become stronger as q → 0 due to a diminishing
energy gap. Indeed, we expect that the physics will be modified in the limit q→ 0, since the
ground state manifold changes from SO(2)×U(1) to SO(3), resulting in changes in collective
mode excitations [47,48] and vortex topology [21].

4 Conclusion

We have shown that vortex driven coarsening of an isolated easy-plane ferromagnetic spin-1
condensate does not take the system to equilibrium. Instead, a second regime of scale invariant
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coarsening associated with transport of spin wave energy scales more slowly as t1/3. Strongly
coupling the system to a reservoir of energy and particles destroys this second coarsening
process and equilibrium is reached after the vortex driven coarsening.

The presence of two dynamic scaling regimes in the isolated dynamics shows that there are
two renormalisation group fixed points affecting the phase ordering. The first, associated with
vortices, has been ascribed to the model E dynamic universality class [19]. The second slower
scaling, Lsw ∼ t1/3, matches that of the scalar model B dynamic universality class [1, 54],
however the order parameter does not: the scalar model B universality class describes a one
component conserved order parameter, whereas the order parameter in our system has two
components and is not conserved. There is, however, a second important field in our system
that does satisfy the properties of the scalar model B universality class: the conserved nFz
field. It could be possible that the dynamics of the nFz field belongs to the scalar model B
dynamic universality class, even though this is not the order parameter of the system, and that
the dynamic coupling between nFz and θ leads to model B scaling emerging in the correlations
of transverse spin. However, model B is also a dissipative model whereas we have shown that
strong dissipation destroys the second scaling regime. Hence the second scaling regime might
alternatively belong to a currently unidentified dynamic universality class unique to isolated
systems. We have shown that this second scaling regime displays features of a spin wave
energy cascade, thus identifying a potential connection between the fields of wave turbulence
and phase ordering dynamics.

The nonequilibrium background of spin waves that remain after the vortices have anni-
hilated is at a temperature very close to TBKT. These spin waves may have thermalised with
the vortex field during vortex driven coarsening, either via scattering off of vortices or via spin
wave production after vortex annihilation (see [55]). The absence of interactions once all
vortices have annihilated would then leave behind high temperature spin waves, reminiscent
of photons decoupling from matter in the early universe to produce the cosmic microwave
background. This intriguing process may be ubiquitous in phase ordering systems involving
topological defects interacting with collective mode excitations.
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A Numerical details

A.1 GPE simulations

The GPE simulations are conducted on a 2D square grid with dimensions l× l = 400ξs×400ξs
covered by an N × N = 512 × 512 grid of equally spaced points. In experiments in 87Rb,
gn/|gs| ∼ 100 [37]. We use a more modest ratio gn/|gs| = 10, which is sufficient to suppress
density fluctuations at the energy scale we are interested in. The mean condensate density
is taken to be n0 = 104ξ−2

s . We evolve our system using a recently developed fourth order
symplectic integrator [56] to ensure that energy, atom number and nFz magnetization are
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conserved effectively. We find that total energy and atom number are conserved to within a
factor of 10−9 across the full simulation time. The total axial magnetization

∫

d2r n(r)Fz(r)
remains below 10−6n0l2. We use a time step of 0.02ts for each integration step. The kinetic
energy time step is evaluated spectrally using fast Fourier transforms, and we employ periodic
boundary conditions. Our initial state is the polar state (ψ1,ψ0,ψ−1) =

p
n0(0,1, 0) + δ,

where δ is noise added to Bogoliubov modes on top of the ground state at q =∞, as in [20],
which seeds the symmetry breaking evolution. Noise added this way corresponds to adding on
average half a particle per mode according to the truncated Wigner prescription [57]. We then
evolve our system using Eq. (3) at a quadratic Zeeman energy q = 0.3q0, so that the quench
is effectively instantaneous at t = 0.

A.2 Ensemble averaging

Correlations Eq. (4) and spectral energies Eq. (6) and Eq. (8) are computed using an ensemble
average of the form,

ḡ(u) = 〈g(u)〉 , (13)

where u = r, k and g(u) denotes the result of a single simulation trajectory. In the GPE
simulations, the ensemble average is over 30 simulation trajectories conducted with indepen-
dent initial noise. In the open system simulations, the ensemble average is over 10 simula-
tion trajectories. We also average ḡ(u) over azimuthal angles of the coordinate u, such that
ḡ(u)→ ḡ(u) for u ≡ |u|. Correlation functions are additionally averaged over space, i.e. we
replace F⊥(0) ·F⊥(r) by F⊥(r′) ·F⊥(r′+r) in Eq. (4) and average over the spatial coordinate r′.

A.3 Definition of keq

The wavevector keq introduced in Eq. (7) is obtained as follows. We firstly skew the spectrum
εc(k) by multiplying by k. We then define keq as the position of the local minimum that
appears in kεc(k) at the start of the equilibrium portion of the spectral energy. To improve
resolution, we firstly interpolate the numerical values for kεc around its minimum and then
find the minimum point of the more highly resolved interpolated data.

A.4 Vortex detection and averaging

We detect vortices by evaluating the phase winding of the transverse spin angle around pla-
quettes of our simulation grid. The average intervortex spacings in Fig. 3(b) and Fig. 4(c)
are defined as Lv(t) ≡


p

l2/Nv(t)
�

where Nv(t) is the vortex number for a single simulation
trajectory at time t and angular brackets denote an ensemble average over the 30 simulation
trajectories for the GPE results and the 10 simulation trajectories for the open system results.
The results for Lv in Fig. 1(b) are for the single trajectory displayed.

A.5 Open system simulations

To model open system evolution we couple our condensate to a reservoir of energy and parti-
cles with fixed temperature T and chemical potential µ. The dynamics is simulated using the
simple growth stochastic Gross-Pitaevskii equations (SGPEs) [53,57–59],

iħhdψm = (1− iγ) (Lm[ψm]−µψm) d t + dW (r, t). (14)

Here

Lm[ψm] =

�

−
ħh2∇2

2M
+ qm2 + gnn

�

ψm + gsn
∑

m′
F · fmm′ψm′ (15)
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is the conservative evolution operator from Eq. (3), µ is the chemical potential and γ is a di-
mensionless damping. The precise value chosen for γwill not affect equilibrium properties, but
will affect the rate that equilibrium is approached. The term dW (r, t) is Gaussian distributed
complex noise with delta correlations,




dW ∗(r, t)dW (r′, t)
�

=
2γkBT
ħh

δ(r− r′)d t. (16)

The SGPEs Eq. (14) take the form of Langevin equations.
The temperature (as a function of q) is chosen to be that obtained by equiparitioning

the energy liberated by the quench amongst the 3N2 numerical modes, as was done in the
calculation of Teq for the microcanonical system. The energy liberated is the energy of the
polar state evaluated at the final quadratic Zeemen energy q [20]. The temperature is then,

kBT =
q0

12N2

�

1−
q
q0

�2

n0l2. (17)

The chemical potential (as a function of q) is chosen to be that of a zero temperature spin-
1 condensate in the easy-plane phase, which is obtained by solving Lmψm = µψm. This
gives [14],

µ= gnn0 + gsn0 +
q
2

. (18)

These choices of T and µ give steady state energy and atom number within 1% of the conser-
vative GPE results. We use γ = 10−2, which gives |dW | ® q0|ψm|d t, and therefore reservoir
scattering events occur within the time scale of spin interactions. The microscopically de-
rived value for γ will be considerably smaller than this [53], resulting in the GPE dynamics
overwhelming the reservoir interactions.

We evolve Eq. (14) using an interaction picture fourth order Runge-Kutta integrator with
periodic boundary conditions and kinetic energy evaluated to spectral accuracy. The noise is
added in a single step following the Runge-Kutta integration of the (1− iγ)(Lm[ψm]−µψm)
term [60]. Numerical parameters and initial condition sampling are the same as for the GPE
simulations.
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