
Select SciPost Phys. 7, 031 (2019)

The self-consistent quantum-electrostatic problem
in strongly non-linear regime

Pacome Armagnat, A. Lacerda-Santos, Benoit Rossignol,
Christoph Groth and Xavier Waintal?

Univ. Grenoble Alpes, CEA, IRIG-PHELIQS GT, F-38000 Grenoble, France

? xavier.waintal@cea.fr

Abstract

The self-consistent quantum-electrostatic (also known as Poisson-Schrödinger) problem
is notoriously difficult in situations where the density of states varies rapidly with en-
ergy. At low temperatures, these fluctuations make the problem highly non-linear which
renders iterative schemes deeply unstable. We present a stable algorithm that provides a
solution to this problem with controlled accuracy. The technique is intrinsically conver-
gent even in highly non-linear regimes. We illustrate our approach with both a calcula-
tion of the compressible and incompressible stripes in the integer quantum Hall regime
as well as a calculation of the differential conductance of a quantum point contact geom-
etry. Our technique provides a viable route for the predictive modeling of the transport
properties of quantum nanoelectronics devices.
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1 Introduction: accurate modeling of quantum nanoelectronics

The control of quantum-mechanical systems in condensed matter has reached a level of matu-
rity where researchers seek to further develop these systems into full-fledged quantum tech-
nologies that provide the building blocks for complex devices. As part of this endeavor it is
necessary to develop simulation tools that allow to predict the properties of such devices. This
stage has been already reached for some quantum technologies. For example, the theoretical
description of devices based on superconducting circuits has become reliable enough to be used
for their conception [1]. In contrast, an accurate predictive modeling of semi-conductor-based
circuits turns out to be much more challenging [2–4].

The difficulty with semi-conductors is that the presence of a strong electric field effect
(which is precisely what makes them so useful) is associated with the presence of two vastly
different energy scales. On one hand the various band offsets lie in the 1-eV-range (this is also
the typical voltage applied on the electrostatic gates to deplete an electron gas). On the other
hand, the typical Fermi energy of a two-dimensional electron gas in an heterostructure (2DEG)
lies in the 1-meV-range, i.e. a scale almost three orders of magnitude smaller than the one
above. Addressing this multi-scale quantum-electrostatic problem [5] is not an easy task, yet
it is a prerequisite for the development of quantum technologies such as quantum-dot-based
localized qubits [6] or flying qubits [7].

This article presents a new technique for solving the quantum-electrostatic problem that
is both accurate (i.e. it is able to deal with realistic energy scales in the 10-100 µeV range)
and robust (i.e. its convergence must not rely on the fine tuning of the parameters of the
algorithm). Furthermore, our technique is general-purpose, i.e. it applies to a wide spectrum
of materials (semi-conducting heterostructures but also nanowires, graphene like materials,
topological materials) and geometries (hybrid systems, multi-terminal devices).

In its simplest mean field form, the quantum-electrostatic problem can be formulated as
the solution of a self-consistent set of three equations. For a given electronic density, the so-
lution of the Poisson equation (i) provides the electrostatic potential. For a given electrostatic
potential, the solution of the Schrödinger equation (ii) provides the energy spectrum and wave
functions. Statistical physics provides the last equation: filling up the spectrum according to
the Fermi distribution (iii), yields the electronic density. This problem, hereafter referred as
the (self-consistent) quantum-electrostatic problem, has a long history in both physics and
chemistry: it lies at the heart of both material science and quantum chemistry and is in partic-
ular the central problem solved in density-functional theory calculations [8]. The problem is
also known as the self-consistent Hartree approximation as well as the self-consistent Poisson-
Schrödinger equation. It can be seen as the first step of a systematic treatment of the many-
body effects associated with Coulomb repulsion. The vast majority, if not all, of the approaches
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to its solution use some form of iterative scheme: one calculates the potential from the density
(electrostatic problem), then the density from the potential (quantum problem) and so on un-
til convergence. Earlier approaches used straightforward iterations [9–11]. However, faster
convergence can be obtained by combining several previous approximate solutions to form a
new one in some form of mixing. Mixing approaches include simple under-relaxation [12,13],
Direct Inversion in the Iterative Subspace (DIIS) [14], Anderson [15] or Broyden mixing [16].
Better converging properties can be obtained using root finding methods, such a variations on
the Newton-Raphson algorithm which can be implemented either with an exact Jacobian [17]
or an approximate one [18, 19]. The most sophisticated approaches use different predictor-
corrector algorithms where an approximate problem (often within the Thomas-Fermi approxi-
mation) is solved to obtain predictions of the solution which are corrected iteratively by solving
the full equations [20–26].

Although these approaches have been successful in various contexts, in particular when
the temperature is not too low [27] or when the density of states is rather smooth, they also
fail spectacularly even in simple situations where the density of states has rapid variations in
energy such as in the quantum Hall regime. When they do work, they often necessitate manual
fine tuning of parameters in order to converge, or even require deep physical insight to come
up with a good approximation of the result that can be used to attain convergence. In contrast,
the method presented in this article is stable in these highly non-linear situations.

An important distinction must be made between gapped systems such as band insulators
or molecules and conducting systems such as metals or semi-conductors [8]. In the former, the
filling of the quantum states is unambiguous; the absence of available states at the Fermi level
makes screening impossible. Solving the quantum-electrostatic problem for these systems is
relatively easy since most iterative algorithms converge. The second situation, the quantum-
electrostatic problem for conductors, combines the double difficulty of being non-local (long
range Coulomb repulsion) and non-linear (the electronic density depends on the square of the
wave-function). It is the focus of this article.

Our approach takes a fresh perspective on the problem: instead of looking for
self-consistency iteratively, we obtain self-consistency exactly for an approximate problem.
This approximate problem is already very close to the exact one and can be brought arbitrarily
close iteratively. The main advantage of this point of view is that the self-consistent approx-
imate problem can be solved to arbitrary precision at no significant computational cost; its
solution is provably intrinsically convergent.

We start this article by formulating the self-consistent quantum-electrostatic problem in
Sec. 2. In Sec. 3, we address a simple yet illuminating zero-dimensional model that may be
solved exactly. In Sec. 4 we formulate the adiabatic self-consistent problem that forms the
backbone of our method. How to use the adiabatic problem to solve the initial self-consistent
quantum-electrostatic problem is explained in Sec. 5. Our algorithm requires solving a gen-
eralization of the standard electrostatic problem which is explained in Sec. 6. Sec. 7 deals
with the last technical difficulty, the numerical integration of the local density of states. The
last two sections are devoted to two applications of our method. The first is the study of the
compressible/incompressible stripes in the quantum Hall effect (Sec. 9) and the second is the
calculation of the conductance in a quantum point contact geometry (Sec. 10).

2 Formulation of the self-consistent quantum-electrostatic prob-
lem

Let us formulate the quantum problem. We consider a non-interacting Hamiltonian H that
describes a quantum conductor. It can consist of a scattering region connected to electrodes as
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in typical quantum transport problems [28], it can also describe bulk physics in one (infinite
nanowires), two (two-dimensional electron gas, graphene) or three dimensions. All these
systems share an important property. They are infinite, hence possess a proper density of
states as opposed to a discrete spectrum. We suppose that H has been discretized onto sites
i filled with the electronic gas. This discretization can be obtained in various ways. One can
discretize an effective mass or k · p Hamiltonian; one can also construct a tight-binding model
by projecting a microscopic Hamiltonian onto atomic orbitals. The electron gas is subject to
an electrostatic potential U(~r) whose discretized form is written as a vector U of components
Ui . The Schrödinger equation reads

∑

j∈Q
Hi jψαE(i) + UiψαE(i) = EψαE(i), (1)

where ψαE(i) is the electronic wave-function at energy E and the discrete index α labels the
different bands (or propagating channels) of the problem. In the actual simulations performed
in this paper, ψαE(i) have been calculated with the Kwant package [28]. We call Q the set
containing all the sites on which the quantum problem is defined. The number of electrons on
site i ∈ Q is given by filling up the states with the Fermi distribution f (E) = 1/[eE/(kB T ) + 1]
(hereafter the Fermi energy EF = 0 is our reference energy),

ni =

∫

dEρi(E) f (E), (2)

where we have introduced the local density of states (LDOS),

ρi(E)≡
1

2π

∑

α

|ψαE(i)|
2 . (3)

The last equation that closes the problem is the Poisson equation that reads

∇ · (ε(~r)∇U(~r)) =
−e
ε
[n(~r) + nd(~r)], (4)

where e is the electron charge, ε the local dielectric constant and n(~r) is the density of the
electron gas. The nd(~r) term corresponds to any charge density located elsewhere in the sys-
tem, e.g. dopants or charges trapped in an oxide. The Poisson equation is also specified by
its boundary conditions. We shall use Neumann conditions at the boundary of the system as
well as Dirichlet conditions at the electrostatic (metallic) gates. As for the quantum problem,
we suppose that the Poisson equation has been discretized with some scheme such as a finite
difference, finite element or (as we have done, see Sec. 6) finite volume method. The dis-
cretization of the Poisson equation is rather straightforward and most approaches converge
smoothly to the correct solution. The discretized Poisson equation takes the form

∑

ν∈P
∆µνUν = nµ + nd

µ. (5)

We call P the set containing all sites of the system on which the Poisson equation is defined.
We emphasize that the quantum problem is defined on a subset of the electrostatic problem,
i.e. Q ⊂ P . The set P \Q contains regions with dielectric materials, dopants or vacuum. We
often use greek letters for sites µ ∈ P and latin letter for sites i ∈Q.

The problem of (partial) dopant ionization is commonly addressed by supposing that they
correspond to a certain number n0

µ of localized levels with degeneracy g and energy E0 so that

nd
µ =

n0
µ

1+ ge
Uµ+E0

kB T

. (6)
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At very low temperature, the focus of this paper, this equation can only have three solutions:
the dopants are fully ionized nd

µ = n0
µ; no dopants are ionized nd

µ = 0; or Uµ = −E0. In the
first two regimes Eq. (6) fixes the charge density in the Poisson equation. In the last one the
dopant layer acts as an effective electrostatic gate, i.e. as a Dirichlet boundary condition in the
Poisson equation. For the problems studied here, we restrict ourselves to the experimentally
relevant regime where the dopants are fully ionized.

The set of equations (1), (2), (3) and (5) forms the (discrete version of the) quantum
electrostatic problem. Hereafter, its Full Self-Consistent solution is referred to as FSC .

In what follows, our approach will be illustrated with a two-dimensional electron gas
(2DEG) formed at the interface between GaAs and GaAlAs [29]. We model the 2DEG within
the effective mass approximation by discretizing

1
2m?

�

iħh ~∇− eA
�2
ψ+ eU(x , y)ψ= Eψ (7)

on a regular grid using Peirls substitution. We have used a discretization step of 20 nm for
the 3D calculations and 6.3 nm for the 2D calculations. The vector potential ~A is taken in
the Landau gauge associated with a perpendicular magnetic field ~B = ~∇× ~A. The effective
mass m? is set to 0.067 me. Furthermore, we assume the permittivity ε to be ε = 12ε0 in
the semi-conductors. The dopant concentration is adjusted to obtain a 2DEG density equal
to n = 2.11 × 1011 cm−2. We use Neumann boundary conditions at the boundary of the
Poisson simulation box and Dirichlet at the electrostatic gates. The two geometries that will
be considered are shown in Fig. 1 (b) and (c).

3 Role of non-linearities: a zero-dimensional model

Let us start with a very simple zero-dimensional problem that already provides key insights
into the structure of the quantum-electrostatic problem. We consider an infinite homogeneous
2DEG characterized by a – spatially invariant – density n and an electric potential U . The
system is sketched in Fig. 1(a). An electrostatic gate placed at a distance d above the 2DEG
forms a planar capacitor with the latter. The Poisson equation for this problem is readily solved:
it is given by the solution of the infinite planar capacitor problem:

n=
ε

ed
[Vg − U], (8)

where Vg is the electric potential at the electrostatic gate. The quantum problem is also readily
solved. At zero temperature, n is given by the integrated density of states (ILDOS):

n=

∫ µ

dEρ(E), (9)

where µ is the chemical potential. At equilibrium, the total electrochemical potential of the
2DEG has a fixed value U − µ/e = 0 which is our reference potential. The two equations
(8) and (9) form the set of equations to be solved self-consistently. At zero magnetic field, the
density of states (DOS) is constant ρ = m?/(πħh2) and these equations reduce to a trivial linear
system of equations. The situation is more interesting when one switches a magnetic field B
perpendicular to the 2DEG. Indeed, in presence of a magnetic field, the DOS consists of Dirac
peaks at the positions of the Landau levels. The system reduces to

n=
ε

ed
[Vg −µ/e], (10)
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Figure 1: Schematics of the three systems considered in this article. (a) Infinite
2DEG along x and y directions. (b) Quasi-one dimensional wire infinite along the
y direction. (c) Quantum Point Contact geometry. The red part corresponds to the
10 nm thick 2DEG. The green part corresponds to the doping region. The yellow
and dark red part correspond to the electrostatic gates. The gray part corresponds to
effective dielectrics (here GaAs and GaAlAs).

and

n(µ) =
2eB

h

∞
∑

n=0

θ (µ− En), (11)

with θ the Heaviside function, En = ħhωc

�

n+ 1
2

�

the energies of the Landau levels and
ωc = eB/m? is the cyclotron frequency.

Fig. 2 shows the two functions n versus µ for the Poisson problem Eq. (10) (blue line) and
quantum problem Eq. (11) (orange line). Solving the self-consistent equations amounts to
finding the intersection point of these two curves. This is a trivial task where the accuracy of
the solution increases exponentially with the number of evaluations of the two functions: one
curve (Poisson) is strictly decreasing with µ while the other (Quantum) is strictly increasing
so that a simple dissection scheme converges exponentially.

Using this 0D model, one can also verify that iterative algorithms are extremely unstable in
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Figure 2: Zero-dimensional model for the self-consistent quantum electrostatic prob-
lem in the planar capacitor 0D geometry of Fig. 1(a). Orange line: solution of the
quantum problem Eq. (11). Blue line: solution of the Poisson problem Eq. (8). Green
arrows: example of a simple iterative solution of the problem which fails to converge.
Geometric capacitance C = 0.028 F/m2, dopant density n0 = 3.16×1011 cm−2, mag-
netic field B = 2.4 T.

presence of magnetic field. For instance, the green arrows indicate a simple iterative scheme
where one starts with a given chemical potential, calculates the density from the ILDOS, then
gets the potential from Poisson. One applies the preceding sequence iteratively until conver-
gence. The non-linearity of the ILDOS – which reflects the rapid variation of the DOS – makes
this scheme divergent even with a good initial guess for the density. This is a rather extreme
(yet physical) situation where the ILDOS has a highly non-linear staircase shape. Yet, even
under more favorable conditions, the convergence of iterative schemes is seldom guaranteed
and one has to rely on the fine-tuning of the parameters of the algorithm to obtain reliable
results. These parameters characterize e.g. the learning rate or approximate solutions used
by the algorithm to speed up convergence.

In the next two sections, we introduce our algorithm for solving the full (spatially depen-
dent) problem. Conceptually, the idea is to reduce the global self-consistent problem to a set
of approximate local self-consistent problems similar to Eq. (8) and Eq. ( 9).

4 The adiabatic self-consistent problem

The zero-dimensional model of Sec. 3 could be solved exactly – even in the presence of strong
non linearities – because finding its solution amounted to searching for the intersection be-
tween two curves. In this section we will introduce the adiabatic self-consistent problem. It is
a local problem where on each site i ∈ Q one needs to solve an intersection problem similar
to the one in Sec. 3. Hence, it can be easily solved numerically.

The adiabatic self-consistent problem is obtained by making two hypotheses. The first
concerns the quantum problem and is called the quantum adiabatic approximation (QAA). The
second is applied to the Poisson problem and is named the Poisson adiabatic approximation
(PAA). The adiabatic self-consistent problem is similar in spirit to the approximate problem
solved in density functional theory within the Local Density Approximation (LDA) [30]. The
LDA becomes exact in the limit of an infinitely spatially smooth electronic density. Similarly,
the adiabatic self-consistent problem becomes exact when the electric potential is infinitely
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smooth. However, the error of LDA cannot be controlled. In contrast, we can systematically
improve the adiabatic self-consistent problem until its solution matches the FSC solution.

The adiabatic self-consistent problem will be our main tool to solve the self-consistent
quantum electrostatic problem defined in Sec. 2. In the current section, we show how to
formulate and exactly solve the adiabatic self-consistent problem. In Sec. 5, we will show how
to use the adiabatic self-consistent problem to obtain the FSC solution.

4.1 Quantum Adiabatic Approximation (QAA)

The quantum adiabatic approximation (QAA) maps the quantum problem onto a local prob-
lem. We consider an electric potential Ui defined on the quantum site i, with i ∈ Q. We
suppose that we have solved the Schrödinger equation (1) for this potential and computed the
LDOS ρi(E) on each site i using Eq. (3). The density ni is obtained by filling up the states
according to Eq. (2). Now suppose that we introduce a perturbation δU . The electric poten-
tial becomes U + δU , i.e. Ui → Ui + δUi . One should thus recalculate ni[δU]. In principle,
this would imply re-solving the Schrödringer equation for U +δU , which is a computationally
expensive task. Also, the new value of ni[δU] depends on δU j in a non-local way ( j 6= i).
However, if δU is either small or has very smooth spatial variations, one can use the Quantum
Adiabatic Approximation (QAA),

ni[δU]≈
∫

dE ρi(E) f (E +δUi). (12)

In the QAA, one needs not recalculate the LDOS. Eq. (12) is exact to first order in δU (small
perturbation). It is also exact when δU is infinitely smooth (when δUi does not depend on i,
a global shift in energy does not modify the wave functions). We shall find empirically that
the QAA is an excellent approximation for realistic systems. Indeed, effective electrostatic
potentials do vary smoothly, the rapidly varying part of the electric potential at the atomic
level being usually included in a renormalization of the effective parameters of the theory.
Note that with our convention the electrochemical potential is set to zero so that a change of
electric potential δUi is equivalent to the opposite change in the local chemical potential, i.e.
δUi+δµi = 0. The QAA approximation bears two important features: (i) it is a local equation
on each site i and (ii) the knowledge of the LDOS is sufficient to calculate ni for any variation
δU .

In practice, we shall construct an interpolant of ρi(E) in order to calculate the integral
Eq. (12) for various δUi . At zero temperature, Eq. (12) reduces to the integrated local density
of states (ILDOS),

ni[δµi]≈
∫ δµi

dE ρi(E). (13)

The shape of the LDOS often contains 1/
p

E singularities (no magnetic field) or Dirac functions
δ(E) (Landau levels in presence of magnetic field). This is illustrated in Fig. 3 where we have
plotted the functions LDOS and ILDOS versus energy for two magnitudes of the magnetic field.
At low magnetic field the integration can be performed with quadrature techniques. At large
magnetic field, however, a different approach is required to handle the presence of the Dirac
peaks. This aspect is discussed in Sec. 7.

4.2 Poisson Adiabatic Approximation (PAA)

The Poisson adiabatic approximation (PAA) maps the Poisson problem onto a local problem.
The exact solution of the Poisson problem can be formally written as

Ui =
∑

j

Gi jn j + U s
i , (14)
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Figure 3: Top: Local density of states ρi(E) (LDOS) at the center of the gas (x = 0)
under B = 0 T (left) and B = 1.86 T (right) as a function of energy for the geometry
of Fig. 1(b). Bottom: Integral of the local density of states (ILDOS) for the same
magnetic fields. The gate voltage is VG = −1 V. Inset: zoom of the main curve showing
the cusp created by the 1/

p
E singularity of the DOS

with i, j ∈ Q. The matrix G is (a discretized version) of the Green function of the Poisson
equation and U s

i accounts for the source terms in the problem. It is important to note that
Eq. (14) is defined only on the sites i ∈ Q where the quantum system lies, i.e. the extra
sites µ ∈ P \Q have been integrated out. In the continuum G is essentially e2/(4πε|r − r ′|),
although it may decay faster at long distances due to the screening effect of the electrostatic
gates. We invert the matrix G and obtain

ni =
∑

j∈Q
Ci jU j + ns

i , (15)

where C = G−1 is the capacitance matrix and ns = −CU s accounts for the source terms.
Eq. (15) has a very similar structure to the Poisson equation (8). However, it is only defined
on the site i ∈ Q. The C matrix is a central object of our approach. How to compute its
relevant elements will be explained in Sec. 6.

Fig. 4 shows the elements of the G and C matrices calculated for the geometry in Fig. 1(b).
As expected, the Green function G is highly non-local: a change in ni has an effect on U j
over a large distance. In sharp contrast, the C matrix is extremely local. Indeed, to a good
approximation, the C matrix is the discretized version of the Laplacian, hence a local operator.
This statement would be mathematically exact if we had not integrated out any sites, i.e.
Q= P . The locality of the capacitance matrix C is the central property on which PAA is based.
In the Poisson Adiabatic Approximation (PAA), we assume that the change δUi is smooth so
that we can approximate Eq. (15) with

ni[U +δU]≈ ni[U] + CiδUi , (16)
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Figure 4: Green’s function G (left) and Capacitance matrix C (right) for the geometry
shown in Fig. 1(b). Top panels: 2D colormaps of Gx x ′ (left) and Cx x ′ (right). Lower
panels: 1D cuts Gx ,0 (left) and Cx ,0 (right). Inset: zoom of the lower right panel.
The C matrix is very local while the G matrix is not.

where the local capacitance Ci is defined as

Ci =
∑

j

Ci j . (17)

Eq. (16) is exact in the limit where δUi can be considered as constant on the scale of the
support of C . As we shall see, PAA is generally an excellent approximation, with a small
caveat explained in Sec. 5.

The applications studied in this manuscript correspond to 1D quantum problems embedded
in 2D electrostatic problems (or 2D embedded in 3D). In such cases,

∑

j Ci j 6= 0 for all i ∈ Q
and the above definition of Ci is sufficient. More generally, one could also study a 2D quantum
problem embedded in a 2D electrostatic problems (or 3D embedded in 3D). In such systems
there will be "bulk" sites where

∑

j Ci j = 0. A bulk site is defined as a site surrounded only
by other Q sites. That is, i ∈ Q is a bulk site if and only if for all µ such that ∆µi 6= 0, one
has µ ∈Q. The presence of these bulk sites where Ci = 0 can generate convergence problems
(in the step II defined in Sec.5). Hence, for bulk sites, it is necessary to enforce a small finite
value of Ci by defining

Ci =
∆ii

Γ
, (18)

where Γ is a numerical constant. We have found emprically that values of Γ ≈ 100 provide a
fast and robust convergence of bulk systems but we defer their study to a subsequent publica-
tion.

4.3 Solving the local self-consistent problems

Together, Eq. (12) and (16) form a local self-consistent problem on every site i ∈Q. This is the
adiabatic self-consistent problem. Solving this set of equations simply amounts to finding the

10

https://scipost.org
https://scipost.org/SciPostPhys.7.3.031


Select SciPost Phys. 7, 031 (2019)

Figure 5: Solution of the local self-consistent problem at x = 0, B = 1.87 T and
with VG = −1 V for the geometry of Fig. 1(b). Blue line: ILDOS Eq. (13) versus
chemical potential δµ. Orange dashed line: local Poisson problem Eq. (16) versus
δµ= −δU . The intersection of the two curves is the solution of the (local) adiabatic
self-consistent problem.

intersection of the Poisson and Quantum curves for every site, which can be done extremely ef-
ficiently. More importantly, the solution always exist and can always be found with exponential
accuracy. In practice, any one-dimensional root finding routine works very efficiently.

Fig. 5 shows an example of the adiabatic self-consistent problem for a given site i ∈ Q,
where we have used the bulk DOS Eq. (11) as the LDOS. This problem and the zero-dimensional
model of Sec. 3 are solved in a similar way. The only difference is that in the adiabatic self-
consistent problem a different intersection must be found for each site i ∈ Q. Observe that
the electrostatic Eq. (16) is almost an horizontal line, i.e. the density depends only weakly
on the potential on this scale. This is a consequence of the electrostatic energy being much
larger than the kinetic energy. A direct consequence is that the convergence of the density is
achieved very rapidly, before one obtains the converged potential. A secondary consequence
is that one should chiefly monitor the convergence of the potential, a more sensitive quantity
than the density.

5 Relaxing the Adiabatic self-consistent problem

The PAA and QAA approximations have been designed such that the initial global self-consistent
problem can be reduced to a set of local problems that can be solved exactly and efficiently. In
this section we propose an algorithm to relax these two approximations, and thus obtain the
FSC solution of the full quantum-electrostatic problem. The convergence towards the exact
solution is achieved by iteratively improving the local problems until they match the global
one. Although this relaxation is iterative, one iterates on the adiabatic self-consistent problem,
in contrast to iterating on the solution as is usually done. In practice, we observe extremely
fast convergence, typically in a single iteration of the quantum problem (the computational
bottleneck calculation). The relaxation of PAA and QAA is done using three relaxation steps,
I, II and III, which will be now detailed.

I. In Sec. 4 we have argued that the Poisson approximation is generally accurate. There is,
nonetheless, a caveat to this argument. In fact, the PAA is of very high accuracy inside
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Figure 6: Relaxation of PAA and QAA for the geometry of Fig. 1(b). Left panels:
density versus position. Right panels: electric potential versus position. Top panels:
iterating over step I (excluding the sites with zero density). Middle panel: iterating
over step II (relaxing the Poisson adiabatic approximation). Bottom panels: iterat-
ing over step III (relaxing the quantum adiabatic approximation) with several steps
II (not shown) performed after each step III. Blue lines: various iterations. Thick
orange dashed line: final converged result (FSC). Insets: zooms of the main curves.

the electronic gas where screening occurs. However, in regions where the electronic gas
has been depleted (ni = 0) there is no screening, hence the electric potential changes
abruptly and the PAA fails. This problem is readily solved however: since we already
know the density on these sites (it is zero), we do not need to solve a local adiabatic
problem there. The first relaxation step, i.e. Step I, thus aims to detect such regions
and remove them from the list of sites where the local self-consistent problem is solved.
More precisely, we define the set Q′ ⊂ Q of sites where the density is non-zero and
restrict the adiabatic self-consistent problem to Q′. This has a strong influence on the
electrostatics since the local capacitances Ci strongly depend on the partitioning of Q
into Q′ and Q \Q′. Indeed, since the PAA approximation is no longer performed on
the sites belonging to Q \Q′, their electrostatics is treated exactly. Hence the solution
of the new adiabatic self-consistent problem on Q′ results in an updated solution. Note
that in the new solution some sites i may become depleted and hence the set Q′ must
be updated again. This is achieved by performing step I once again. The procedure is
repeated a few times until the set Q′ no longer evolves. We emphasize that only a finite
number of iterations of step I are needed to obtain the final set Q′ (typically less than
five). These iterations are computationally non-demanding since the same LDOS is used
for all of them. As we shall see, the electronic density obtained after their completion is
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almost indistinguishable from the FSC solution of the exact problem.

II. The purpose of the second kind of step is to relax PAA on the remaining sites i ∈ Q′.
This is achieved by solving the exact Poisson problem: given a density n (such as the one
obtained at the last step I iteration), one calculates the exact potential U , solution of the
Poisson equation n= CU . The density n is the new source term ni[Ui] in Eq.(16) and the
potential U serves as the new reference potential. Once Eq.(16) has been updated, we
can solve the corresponding adiabatic self-consistent problem. Step II can be repeated
until convergence. Note that, in practice, the Poisson equation and local capacitance are
obtained by solving the mixed Poisson problem as explained below in Sec. 6. Typically
very precise convergence is obtained within one or two step II iterations.

III. A third kind of step relaxes the QAA on the sites i ∈Q′. This is achieved by re-solving the
quantum problem to update the LDOS. The new LDOS is integrated to update Eq. (12).
Once Eq. (12) has been updated, we can solve the corresponding adiabatic self-consistent
problem. Typically, we find that performing a single step III is sufficient. Calculating the
ILDOS is the computational bottleneck of the calculation.

We emphasize that the relaxation steps I, II and III can, in principle, be performed in any
order or even simultaneously. The most important one is step I, which is also the cheapest
computationally. Hence, it should be performed first until convergence. Step III is far more
computationally demanding than I or II since it implies solving the quantum problem. Hence,
to optimize the number of step III iterations, it is preferable to first achieve convergence of
step II. After each step III iteration, several step II iterations should be performed. Also, after
each step III iteration, we reset step I, i.e. set Q′ ≡ Q and perform the step I relaxation
until convergence. This is usually not needed but guarantees that the algorithm does not get
trapped in a wrong Q′ partition. After this sequence of relaxation steps, the final (supposedly
exact) result is the FSC (Full Self-Consistent) solution to the quantum-electrostatic problem
and is free from any initial approximations. We note that we have used plain iteration steps II
and III. The relaxation could possibly be further accelerated by using mixing schemes such as
DIIS, Anderson or Broyden algorithms.

Fig. 6 shows an example of performing several iterations of step I (upper panels), II (central
panels) and III (lower panels) for the geometry of Fig. 1(b). The left panels show the density
while the right panels show the potential. After each step III, a few steps II are performed. In
most panels the curves for various iterations are almost superposed. The insets show zooms
of the main curves which are also mostly superposed. The final converged FSC result is shown
by a dashed orange curve. For the initial LDOS, we used the bulk (constant) DOS that is
known analytically. In this case, it does not depend on energy. As anticipated, we observe
that the initial solution of the adiabatic self-consistent problem is of bad quality, an indication
that the PAA is a bad approximation in the depleted regions where the electric potential varies
abruptly. However, after the vanishing density sites have been removed from the set of active
sites Q′ (after convergence of the steps I, cf. upper panels), we find that the density is almost
indistinguishable from the final converged FSC result. We still observe a small (a couple of
mV) discrepancy in the electric potential (see the zoom of the upper right panel). While this
discrepancy is small on the global scale of Fig. 6, it is still important for quantitative transport
calculations (cf. Sec. 10). The central panels illustrate the evolution of the solution upon
performing several steps II. One observes that by relaxing the PAA, the results only change
very slightly. This confirms that the PAA is an extremely good approximation inside the 2DEG.
Since the bulk DOS was initially used, the results obtained after the steps II correspond to a
self-consistent Thomas-Fermi calculation. In the last (lower) panel we perform the step III
where the ILDOS is recalculated to relax the QAA. We find that one unique step is sufficient to
obtain a fully converged result.
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6 A mixed Neumann-Dirichlet Poisson solver

In usual electrostatic problems, one calculates some elements of the Green’s function G. In-
deed, in the standard Poisson problem one uses the density nµ as an input and calculates the
potential U = Gn as an output. The Poisson problems that are repeatedly solved in our al-
gorithm, however, involve elements of the capacitance matrix C . In this section, we explain
how to formulate and solve a generalized Poisson problem that provides direct access to the
relevant elements of the capacitance matrix C .

6.1 Problem formulation

We begin by sorting the sites of the set P =D ∪N into two categories that we call "Dirichlet"
sites (set D) and "Neumann sites" (set N ) in reference to the corresponding boundary condi-
tions. The set N contains the sites where the density is an input and we want to calculate the
potential. Therefore, N contains all the sites inside the dielectric (zero density) as well as the
sites with dopants (known density). The depleted sites of the quantum problem Q \Q′ are
also elements of N . The set D contains the sites where the potential is an input and we want
to calculate the density. Hence, for the calculation of the local capacitances, D contains all the
sites where the adiabatic self-consistent problem is defined Q′ ⊂ D. Moreover, the sites that
correspond to electrostic gates (standard Dirichlet boundary conditions) also belong to D.

Writing Eq. (5) in a block form for the Dirichlet (D) and Neumann (N) blocks, it reads
�

∆NN ∆N D
∆DN ∆DD

�

·
�

UN
UD

�

=

�

nN
nD

�

. (19)

In the above equation nN and UD are the known inputs of the problem while nD and UN are
yet to be determined. After reshuffling the above equation, we arrive at the "mixed Neumann-
Dirichlet Poisson problem",

�

∆NN 0
∆DN −1

�

·
�

UN
nD

�

=

�

1 −∆N D
0 −∆DD

�

·
�

nN
UD

�

. (20)

Solving this problem amounts to solving a set of linear equations with the right-hand side as
a source term. This is readily achieved with sparse solvers such as the MUMPS package [31].
Two different quantities must be calculated with the mixed Poisson solver, respectively the
source term ni[U] and the local capacitance Ci .

To calculate ni[U], one sets nN and UD to their known values. The density nN is the result of
the local self-consistent calculations. UD is equal to the input gate potential at the electrostatic
gates.

To calculate the vector Ci for i ∈ Q′, one sets nN = 0 and UD = 0 except for sites
i ∈ Q′ where Ui = 1. The output vector nD (projected on Q′) contains the needed elements
Ci = (nD)i .

6.2 Finite volume discretization

In order to obtain the ∆µν matrix from the continuum problem, a discretization scheme of
some sort must be used. Many approaches could be employed, including finite-difference and
finite-elements methods. Here we use a finite-volume approach that has the advantage of solv-
ing a problem which is physically meaningful for any finite value of the discretization length
a. In particular, this method has the advantage of respecting charge conservation inside the
Neumann sites independently of the discretization length a. Since the quantum-electrostatic
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problem is extremely sensitive to any variation of the charge, strict charge conservation is very
important to ensure fast convergence with respect to a.

One starts by meshing the simulation box to obtain the P sites. One includes all the sites
Q of the quantum system (this is important to avoid any interpolation difficulty between the
quantum and Poisson problem). Then one adds a regular grid around the quantum sites.
This grid matches the lattice of the quantum system to avoid introducing artificial noise due to
lattice mismatch. Another grid with a larger value of a can be used far away from the quantum
system.

In a second step one constructs the Voronoi cells associated with our mesh using the Qhull
algorithm [32]. An example of the final discretized geometry with the Voronoi cells is shown in
Fig. 7 for the system of Fig. 1(b). For clarity, Fig. 7 shows very few cells. In actual calculations
we use meshes with typically 104 sites in 2D and 106 sites in 3D.

To calculate the∆µν matrix, we apply the Gauss theorem to each volume cell. One obtains,
without approximation,

nµ =
∑

ν

Φµν , (21)

with nµ the total charge inside the cell.

Φµν =

∫

Sµν

ε(~r) ~E(~r) · ~n dS (22)

is the flux of the electric field ~E through the planar surface Sµν that connects cell µ with cell ν
(~n is the unit vector point perpendicular to this surface). In the electrostatic limit, the electric
field is irrotational which reads

∮ ~rν

~rµ

d~r · ~E = Uµ − Uν . (23)

To close our system of equations, we suppose that the electric field varies smoothly on the
scales of the Voronoi cell. Up to O(a3) corrections one obtains

Φµν =
εµνSµν

dµν

�

Uµ − Uν
�

, (24)

where dµν is the distance between the center of the two cells and εµν = 2εµεν/(εµ+εν) is an
averaged dielectric constant obtained from the conservation of the flux through the surface.
Together, Eq. (21) and Eq. (24) define the ∆µν matrix.

7 Calculation of the integrated local density of states

Solving the local quantum problem obtained with the Quantum adiabatic approximation im-
plies calculating the ILDOS as a function of the chemical potential for every site of the quan-
tum system Q. The numerical integration of the LDOS can be difficult in some situations:
one example is shown in Fig. 3. There, the LDOS has singularities at zero fields and Dirac
functions in presence of magnetic field. A direct calculation of the integral of Dirac functions
using quadrature rules is bound to failure. In this section we explain how to circumvent this
problem using quadrature methods over momentum instead of energy. We note that a pop-
ular approach to calculate the density uses complex contour integration with, for instance,
the so-called Ozaki contour [33]. Although this method works very well at equilibrium (but
not out-of-equilibrium), it is unsuitable for our purpose as it provides the density for a single
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Figure 7: Sketch of the discretized Poisson problem for the geometry of Fig. 1(b).
The 2DEG and depleted 2DEG voronoi cells belong to the sites in Q′ and Q \ Q′
respectively. The dopant and dielectric voronoi cells correspond to Neumann sites,
i.e. belong to N ⊂ P . The cells forming the electric gate belong to D ⊂ P .

value of the chemical potential. Indeed, we require the full function ILDOS versus chemical
potential to solve the adiabatic self-consistent problems.

For simplicity, we restrict ourselves to calculations at zero temperature (the method is
readily extended to arbitrary temperatures). The ILDOS on site i ∈Q is defined as

ni[µ] =

∫ µ

dE ρi(E), (25)

where the lower bound of the integral is the beginning of the spectrum. The LDOS ρi(E) is
itself defined in terms of the wave functions of the system with momentum k as,

ρi(E) =

∫ π

−π

dk
2π

∑

α

|ψαk(i)|2δ[E − Eα(k)], (26)

where Eα(k) is the dispersion relation of the corresponding band. The above expression is
valid for translational invariant systems such as the geometry of Fig. 1(b). For more general
geometries, such as Fig. 1(c), the momentum k is to be understood as the momentum in the
semi-infinite electrodes. To calculate the ILDOS, we insert Eq. (26) into Eq. (25) and invert
the order of the integrals. The integral over energy can be performed exactly and we arrive at

ni[µ] =

∫ π

−π

dk
2π

∑

α

|ψαk(i)|2θ[µ− Eα(k)], (27)

where θ (x) is the Heaviside function. Eq. (27) can now be evaluated by standard quadrature
techniques that sample the k points. One can readily understand why this change of variable
E = Eα(k) is particularly advantageous in the case of the quantum Hall effect. There, the
dispersion relation Eα(k) is extremely flat due to the presence of the dispersion-less Landau
levels. By sampling in E-space, one is almost certain not to sample correctly these Landau
levels. By sampling in k-space, however, the points get automatically positioned where they
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are needed. Furthermore, the integral for many values of µ is performed simultaneously at no
additional computational cost.

While the above scheme provides the exact ILDOS, one could also consider using approxi-
mate (but computationally less intensive) forms of the ILDOS. An obvious choice it to use the
bulk DOS as the LDOS. This leads to the Thomas-Fermi approximation. One could also use the
adiabatic approximation such as in [4] where the 3D LDOS is replaced by the solution of 2D
problems that depend on the third dimension. Iterative methods such as the Kernel Polynomial
Method (KPM) are also natural approaches for obtaining the ILDOS [34].

8 Summary of the Algorithm

Let us summarise the different phases of our method. Fig. 8 shows the corresponding flowchart.
First, the self-consistent adiabatic problem must be initialized. To initialize the ILDOS one can
solve the quantum problem with a vanishing electric potential U = 0. Calculating the ILDOS,
however, is the most computationally expensive step in the algorithm. Therefore it is often
more efficient to intialize the ILDOS with the bulk value for the material. This corresponds to
the Thomas-Fermi approximation. Using such an initial ILDOS provides an accurate electronic
density and allows one to reduce the number of quantum calculations (step III) by one. The
algorithm is usually not sensitive to how the Poisson problem is initialized. One calculates the
initial source term ni(U) by supposing e.g. an absence of screening (no charge in the quantum
part Q). The local capacitances Ci are calculated assuming that all quantum sites are active
(Q′ =Q). Once the adiabatic self-consistent problem has been constructed, it is solved on all
active sites by finding intersections between 1D functions.

In a second phase, the ILDOS (step III), the source density ni(U) (step II) and the list of
active sites (step I) must be updated until convergence to the FSC solution. We have found
that the order in which the steps I, II and III are performed is not critical. Fig. 8 shows the
flowchart that we have used in this article. It aims at minimizing the number of computation-
ally intensive steps III. Following the flowchart one starts by repeating step I until the Q \Q′
decomposition has converged. Then one iterates over step II until the local poisson problem
has converged. Finally, one iterates over step III until the integrated local density of states
(ILDOS) has converged. After each iteration of step I, II or III the adiabatic self-consistent
problem is updated, solved and its convergence verified. Once the Q \Q′ decomposition, the
local poisson problem and the ILDOS have converged to a desired accuracy, the result of the
adiabatic self-consistent problem can be used to calculate observables. The latter can be, for
example, the local current density or the conductance, such as calculated in Sec. 9 and Sec. 10

9 Application to the quantum Hall effect

We are now ready to apply our algorithm to situations where the density of states varies
abruptly, i.e. when the quantum-electrostatic problem is highly non-linear. A rather extreme
situation is the quantum Hall effect where the ILDOS has the staircase shape shown in Fig. 3.
In this section, we consider the geometry of Fig. 1(b) in presence of a perpendicular magnetic
field. The physics contained here has been discussed in a separate paper [35]. The results
shown below aim at illustrating the algorithm as well as providing additional data that were
not shown in [35].

Fig. 9 shows the electronic density (top), electric potential (middle) and band structure
(bottom) for three values of the magnetic field (left, middle and right). The blue curves cor-
respond to the Thomas-Fermi approximation, i.e. to solving the self-consistent problem with

17

https://scipost.org
https://scipost.org/SciPostPhys.7.3.031


Select SciPost Phys. 7, 031 (2019)

Figure 8: Flowchart for the relaxation steps I, II and III.

the ILDOS of an infinite bulk system (perfect staircase of Landau levels). In the Thomas-Fermi
approximation, we recover the Shklovskii-Chklovskii-Glazmann picture of compressible and
incompressible stripes [36,37]. The compressible stripes are regions of constant potential and
varying density while the incompressible stripes are zones of constant density and varying
potential. In the incompressible stripes, there are no accessible states at the Fermi energy.
We further observe that the full self-consistent solution (orange lines) is significantly different
from the Thomas-Fermi approximation. In particular, the steps in density are no longer present
and the ones in the potential only appear at high enough field.

The positions xν of the center of the incompressible stripes can be estimated from the
electronic density calculated at zero field n(x , B = 0) since, with very good approximation,
n(xν, B = 0) = νeB/h with ν = 1, 2, . . . . The width δxν of these plateaus can also be esti-
mated using a simple energetic argument. The creation of the incompressible stripe involves
the creation of the small electric dipole of charge δqν with respect to the B = 0 density.
On one hand, we have δqν ≈ e∂x n(xν, B = 0)δxν. On the other hand, electrostatics im-
poses δqν ≈ c(ε/δxν)(ħhωc/e). Here c(ε/δxν) is the effective capacitance of the problem and
(ħhωc/e) is the kinetic energy gained by creating the stripe which compensates the correspond-
ing electric energy (ωc = eB/m? is the cyclotron frequency). We arrive at [36]

δxν ≈
√

√ cεħhB
em∗∂x n(xν, B = 0)

, (28)

with the constant given by c ≈ 5.1 for our particular geometry. To verify the above expression,
Fig. 10 shows the gradient of the density ∂x n (top panels) and of the electric potential ∂x U
(bottom panels) as a function of position x and magnetic field B. The gradients vanish for
the incompressible and compressible stripes, respectively. Left and right panels correspond
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Figure 9: Density (top), potential (middle) and band structure (bottom) for different
magnetic fields (from left to right B = 2.2, 3.73,4.8T) for the geometry of Fig. 1(b).
Thomas-Fermi approximation is shown in blue lines while the Full self-consistent
(FSC) result is shown in thicker orange lines. The horizontal lines indicate the integer
filling factors ν (n= νeB/h) and the multiple of the cyclotron frequencyωc = eB/m?.
Gray and white regions indicate the compressible and incompressible stripes, respec-
tively.

respectively to Thomas-Fermi and FSC which are difficult to distinguish at this scale. The dif-
ferent types of stripes are easy to identify. The dashed line corresponds to the width predicted
with Eq. (28) which match the numerics quantitatively.

We now proceed to the calculation of the conductance of a ballistic conductor. Assuming all
channels are perfectly transmitted (no reflection), the Landauer formula takes the particularly
simple form

g = −2e2
∑

α

∫

dk
2π
θ (vαk)vαk

∂ f
∂ E
[Eα(k)], (29)

where vαk = ∂kEα(k)/ħh is the velocity of the mode α at the Fermi energy and the Heavyside
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Figure 10: Gradient of the density (top) and potential (bottom) as a function of the
magnetic field B at Vg = −0.75V for the geometry of Fig. 1(b). Left panel: FSC, right
panels: Thomas-Fermi. The black lines correspond to the theoretical estimate for
xν while the dashed lines correspond to xν ±δxν/2 for the first three Landau levels
ν= 1, 2,3.

function selects channels with positive velocity. The conductance obtained as a function of
the gate voltage for two temperatures and magnetic fields are shown in Fig. 11. These calcu-
lations show the crossover between channel quantization at low field and the quantum Hall
effect at high field. It is interesting to note that the presence of a degenerate band at the
Fermi level in the quantum Hall regime leads to a non-quantized conductance even though
the system is perfectly ballistic. The dashed orange line shows the corresponding estimate
g = n(x = 0, B = 0)e/B which fits fairly well the conductance outside of the plateaus.

We proceed with the calculation of the local density of current J(x) which is given by

J(i) = −2e2
∑

α

∫

dk
2π
|ψαk(i)|2θ (vαk)vαk

∂ f
∂ E
[Eα(k)]. (30)

The dependance of J(x) as a function of position and magnetic field is shown in the colormap
in Fig. 12. Note that we only discuss the out-of-equilibrium current. In the quantum Hall
regime there is also an equilibrium current flowing in the incompressible stripes. Here, it
has been subtracted. Fig. 12 provides the answer to a small paradox: in incompressible stripes
there are no available states at the Fermi level, and thus no out-of-equilibrium current can flow
in these zones. Therefore, the current can only flow in the compressible regions. However,
in the latter the dispersion relation is flat, hence the states have vanishing velocity, and thus
vanishing currents. Therefore it would naively seem that no out-of-equilibrium current can
flow in the system. This paradox is only present in the Thomas-Fermi picture. Indeed, the FSC
calculations clarify the question of where the current flows. Unsurprisingly, we find that the
current density lies mostly at the boundary between compressible and incompressible stripes.
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ent gate voltages Vg = −0.43,−0.41,−0.4 and −0.37V (top to bottom) for a QPC.
Left: density of the 2DEG (black corresponds to zero density). Right: electric poten-
tial (blue corresponds to negative potential where the 2DEG lies, white is zero and
red corresponds to positive potential where the 2DEG is depleted). An additional side
gate Vs = −0.8 depletes the gas far away from the QPC. The dashed lines indicate
the gates of the QPC. The scale of variation of the potential is shown in Fig. 14

10 Applications to a quantum point contact

We now turn to a second application, the study of the quantum point contact (QPC) geometry
of Fig. 1(c). QPCs are important historically as the first device where conductance quantization
was observed [38,39]. They can be considered as the electronic equivalent of the optical beam
splitter and as such play a central role in electronic quantum optics [40].

Fig. 13 shows colormaps of the density and electric potential around the QPC for different
values of the confining gate potential Vg applied to the QPC. These FSC results correspond
to a 2D quantum problem with around 104 active quantum sites (Q sites) embedded in a 3D
Poisson problem with around 106 electrostatic sites (P sites). Fig. 14 shows cuts of the col-
ormap at various positions. The electron gas is present in regions where the electric potential
is negative. Typical values of the potential in these regions is of a few mV. Convergence with
an accuracy better than 10µV is needed around the QPC to obtain reliable results for transport
calculations.

We end this section with the calculation of the conductance versus gate voltage, the actual
observable measured in most experiments. The results are shown in Fig. 15 for various itera-
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Figure 14: Cut of Fig. 13 at constant x (left) and y (right) for the density (upper
panels) and potential (lower panels). The cut correspond to x , y = 0 (blue), 100
(dashed orange) and 200 nm (dot dashed green). The QPC gate voltage is set at
Vg = −0.37 V

tions of step III. Each iteration corresponds to a new calculation of the ILDOS. Iteration 0 is the
Thomas-Fermi approximation. It provides an accurate density but the g(Vg) curve is not quan-
titative (offset of the pinch voltage of 0.2V and wrong size of the conductance plateaus). The
results are fully converged after a single iteration of the ILDOS. These calculations, which map
the input experimental parameters to the experimental observables, are directly comparable
to experiments [41].

11 Conclusion

We have developed a new algorithm that is able to solve the quantum-electrostatic problem
even in highly non-linear situations. Perhaps more importantly, we have observed that the
algorithm converges extremely rapidly without requiring any parameter tuning. This is true
even at zero temperature and/or under high magnetic field. This opens the possibility for
direct and detailed comparisons between experiments and simulations, a prerequisite for using
simulations at the design stage of quantum devices.

Acknowledgements

We thank Y-M Niquet, M. Wimmer and A. Akhmerov for interesting discussions. This project
is funded by the US Office of Naval Research, the French-USA ANR PIRE, the French-Japon

23

https://scipost.org
https://scipost.org/SciPostPhys.7.3.031


Select SciPost Phys. 7, 031 (2019)

0.45 0.40 0.35
Vg [V]

0

1

2
g 

[e
2 /h

]

iteration 0
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5

Figure 15: Conductance of a QPC in units of e2/h as a function of the gate voltage
Vg for different quantum iterations (QAA). The zeroth iteration (blue line) corre-
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