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Abstract

We characterise the equilibrium landscape, the entire manifold of local equilibrium states,
of an interacting integrable quantum model. Focusing on the isotropic Heisenberg spin
chain, we describe in full generality two complementary frameworks for addressing equi-
librium ensembles: the functional integral Thermodynamic Bethe Ansatz approach, and
the lattice regularisation transfer matrix approach. We demonstrate the equivalence
between the two, and in doing so clarify several subtle features of generic equilibrium
states. In particular we explain the breakdown of the canonical Y-system, which reflects
a hidden structure in the parametrisation of equilibrium ensembles.
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1 Introduction

The equilibration phenomena of quantum many-body systems have become a vigorous re-
search topic for both theoretical and experimental studies of condensed matter systems in
recent years. For generic interacting systems a central role has been played by the Eigen-
state Thermalisation Hypothesis [1–3], which offers a unifying framework for characterising
ergodic behaviour. The unconventional equilibration exhibited by (nearly) integrable systems
has also drawn substantial interest, leading to the notion of the Generalized Gibbs Ensemble
(GGE) [4–6]. The anomalous behaviour of integrable systems is due to the existence of in-
finitely many local conservation laws, whose essence is to protect quasi-particle excitations
against decay [7]. The majority of the literature on equilibration in integrable systems has
focused on non-interacting models, where the concept of a generalised Gibbs ensemble is syn-
onymous to prescribing the occupations of single-particle modes [8,9]. Interacting integrable
systems on the other hand exhibit rich spectra of stable excitations which undergo non-trivial
completely factorizable scattering [10]. This places interacting integrable systems in a distin-
guished position, and raises the question whether interactions induce physically discernible
features among equilibrium states. The objective of this paper is to establish a framework to
address this.

We focus our study on the isotropic Heisenberg spin-1/2 chain, a paradigmatic model of
exactly solvable quantum many-body dynamics, due to both its simplicity and physical rele-
vance. Our main result is an explicit construction of the entire manifold of equilibrium states,
which helps expose a rich structure intrinsically linked to inter-particle interactions. We term
this the ‘equilibrium landscape’.

Studies of the thermodynamic properties of exactly solvable models have been tradition-
ally focused on canonical Gibbs equilibrium. Only in recent years has interest shifted towards
the Generalized Gibbs ensembles, predominantly discussed in the context of quantum quench
dynamics in several physically relevant models such as the anisotropic Heisenberg model and
Lieb-Liniger Bose gas [4,11–13]. Here prominence was given to simple initial states of poten-
tial experimental relevance, while more recent works have considered more generally a special
class of ‘integrable’ product states [14–17]. In the present work we pursue a general and sys-
tematic characterisation of the entire space of equilibrium ensembles without appealing to any
initial state specific considerations.

Throughout the work we shall employ a range of techniques from the integrability toolbox,
combining the algebraic, thermodynamic, and functional Bethe ansatz approaches. We begin
by formulating an explicit algebraic construction of the GGE, and then proceed to analyse two
complementary routes for evaluating equilibrium partition sums. On the one hand, the cele-
brated Thermodynamic Bethe Ansatz (TBA) approach [18–20] casts the partition function as
a functional integral, invoking a spectral resolution through coupled interacting quasi-particle
modes. A saddle-point of the functional integral yields an infinite set of coupled integral equa-
tions encoding the equilibrium state. On the other hand, we achieve a regularisation of a
general partition function as a two-dimensional classical vertex model where, similarly as in
the Gibbs canonical ensemble [21–27], the main subject of study is the dominant eigenvalue
of a column transfer matrix. To our knowledge, no previous work on the statistical mechanics
of exactly solvable models, including a large body of work on solvable classical vertex models,
has achieved a similarly comprehensive description of the entire equilibrium manifold of a
model.

For the case of canonical Gibbs equilibrium, compatibility of the two approaches to thermo-
dynamics has been already demonstrated previously in [26]. By means of an integrable Trot-
terisation of the density operator, usually referred to as the Quantum Transfer Matrix, the Gibbs
free energy can be expressed as a solution to the non-linear integral equation [24,25,27,28].

2

https://scipost.org
https://scipost.org/SciPostPhys.7.3.033


SciPost Phys. 7, 033 (2019)

Section 3
equilibrium ensembles

Section 4
Thermodynamic Bethe Ansatz

Section 5
lattice regularisation

Section 6

Figure 1: Outline of the paper. In Section 2 we introduce the Heisenberg spin-1/2
chain and define the main objects of the integrability framework. In Section 3 we
discuss generic equilibrium ensembles and specify the general density matrix. In
Section 4 we cover the TBA approach and systematically discuss analytic properties
of generic macrostates. In Section 5 we regularise the general density matrix and
recast it as a two-dimensional classical vertex model. In Section 6 we define the
mirror system and employ functional Bethe ansatz to demonstrate equivalence with
TBA.

In this regard, a special and seemingly non-generic analytic structure of the transfer matrix
spectrum turns out to be crucial. In this work we demonstrate that typical macrostates from the
equilibrium landscape have a much richer structure which necessitate going beyond the con-
ventional Trotterisation techniques. Through achieving this we establish compatibility with
the TBA formalism on the general grounds, and find that this yields a clear and instructive
picture of the emergence of the equilibrium landscape.

2 The Heisenberg spin chain

In this work we outline our construction for perhaps the most widely studied interacting in-
tegrable quantum system, the one-dimensional isotropic spin-1/2 Heisenberg model [19, 20,
29,30]

H= J
L
∑

i=1

�

1
4
− ~Si · ~Si+1

�

, (2.1)

with exchange coupling J (here J > 0 corresponds to a ferromagnetic ground state) and
periodic boundary conditions ~SL+1 = ~S1. The ~S ≡ (Sx,Sy,Sz) are the local generators of the
su(2) algebra, [Sα,Sβ] = iεαβγS

γ. The model possesses a manifest global su(2) symmetry,

�

H,Sαtot

�

= 0, (2.2)

with Sαtot =
∑L

i=1 Sαi . In this section we summarise the integrable structure of the model,
introducing the concepts and notations which form the foundation of the work.

Spectrum. The degrees of freedom of the spin chain are magnon excitations, corresponding
to spin waves with respect to a reference fully polarised ferromagnetic vacuum. A key feature
of integrability is that the magnons undergo non-trivial yet non-diffractive scattering, implying
that any interaction process can be reduced to a sequence of two-particle scatterings. With
respect to the vacuum state, the quantisation conditions for the magnons are known as the
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Bethe equations [29]

eik(ui)L
M
∏

j=1, j 6=i

S(ui − u j) = 1. (2.3)

Here the magnons are conveniently parametrised by a rapidity variable u, through which their
momentum is

k(u) =
1
i

log

�

u+ i
2

u− i
2

�

, (2.4)

and the two-magnon scattering amplitude is given by

S(u) =
u− i
u+ i

, (2.5)

which depends only on the difference of rapidities. Due to the su(2) symmetry of the model
the eigenstates arrange into degenerate su(2) multiplets, and each highest-weight state (with
respect to the orientation of the reference ferromagnetic vacuum) corresponds to a set of
magnon rapidities {ui} satisfying Eqs. (2.3). The corresponding energy eigenvalue has the
additive form

E = J
M
∑

i=1

�

1− cos k(ui)
�

. (2.6)

The descendant states in a multiplet are obtained by adding zero momentum magnons, i.e.
rapidities with u=∞, for which the scattering amplitude trivialises.

Bound states. The scattering between magnons induces bound state formation. These cor-
respond to the collections of complex magnon rapidities aligning into ‘string’ patterns in the
complex rapidity plane. In the large-L limit the Bethe roots are classified according to the
‘string hypothesis’,

M
⋃

i=1

{ui} 7−→
∞
⋃

j=1

M j
⋃

i=1

j
⋃

a=1

�

u j,i + ( j + 1− 2a) i
2

	

, (2.7)

with all u j,i ∈ R. Bound states of j magnons are accordingly called j-strings, and the set of
j-strings provide the thermodynamic particle content of the model, i.e. M =

∑∞
j=1 M j . The

string rapidities are subject to the ‘string Bethe equations’,

eik j(u j,i)L
∞
∏

j′=1

M j
∏

i′=1

S j, j′(u j,i − u j′,i′) = −1, (2.8)

valid up to corrections which are suppressed in system size L. Here the bare momentum of a
j-string is

k j(u) =
1
i

log

�

u+ j i
2

u− j i
2

�

, (2.9)

and the scattering amplitudes between a j-string and a `-string are

S j,`(u) =
j
∏

a=1

∏̀

b=1

S
�

u+ ( j − `− 2a+ 2b) i
2

�

. (2.10)

The factor−1 on the right-hand side of Eq. (2.8) compensates the self-scattering factor S j, j(0) = −1
from the left-hand side.
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Macrostates. In the thermodynamic limit, defined as L, M →∞ with ratio M/L kept fixed,
the string rapidities distribute densely along the real line. Macrostates are characterised by
the complete set of the string rapidity densities {ρ j(u)}, with Lρ j(u)du being the number of
occupied j-string modes in an infinitesimal rapidity interval du around u. These obey the
log-differential form of Eq. (2.8), the Bethe–Yang equations,

ρ j + ρ̄ j =
1

2π

�

�

�

�

dk j

du

�

�

�

�

− K j,` ? ρ`, (2.11)

where ρ̄ j(u) denotes the corresponding density of holes, i.e. unoccupied modes, and the scat-
tering kernels

K j,`(u) =
1

2πi
∂u log S j,`(u), (2.12)

are the differential scattering phases. Here we use the following short-hand notation for matrix
convolutions

F j,` ? f` ≡
∞
∑

`=1

∫ ∞

−∞
dwF j,`(u−w) f`(w), (2.13)

and adopt the summation convention for the repeated indices. In addition, we also use a
short-hand notation for scalar integrations as follows

f ? g ≡
∫ ∞

−∞
dwf (u−w)g(w), f ◦ g ≡

∫ ∞

−∞
dwf (w)g(w). (2.14)

For each macrostate there is an associated entropy, which is the logarithm of the number
corresponding microstates. This is expressed through the entropy density functional [18,20]

s[ρ j , ρ̄ j] = (ρ j + ρ̄ j) log(ρ j + ρ̄ j)−ρ j logρ j − ρ̄ j log ρ̄ j , (2.15)

where exp
�

Ls
�

ρ j(u), ρ̄ j(u)
�

du
�

counts the number of ways of distributing Lρ j(u)du particles
between the L

�

ρ j(u) + ρ̄ j(u)
�

du many j-string mode numbers on an infinitesimal rapidity
interval du centred at u.

Kernel identities. The scattering kernels K j,` are differential scattering phase shifts which
encode interactions at the level of macrostates. They exhibit a rich structure which we will
exploit throughout this work. Firstly, the Fredholm operator (1+ K) admits a pseudo-inverse
(1− R) through

(1− R) j,` ? (1+ K)`,k = 1, (2.16)

with 1≡ δ j,kδ(u), where the Fredholm resolvent,

R j,`(u) = I j,` s(u), (2.17)

is defined through the s-kernel

s(u) =
1

2cosh (πu)
, (2.18)

and the nearest-neighbour incidence matrix I ,

I j,` = δ j−1,` +δ j+1,`. (2.19)

Here (1− R) admits a non-trivial nullspace and is thus not the true inverse of (1+ K). In par-
ticular, the relation (1− R) j,` ? n` = 0, with boundary condition n0 = 0, has a one-parameter
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solution n j = h j. Similarly the s-kernel admits a pseudo-inverse s−1, which is a left-inverse un-
der convolution, i.e. s−1 ? s? f = f , and which also possesses a non-trivial nullspace. Explicitly
it is,

(s−1 ? f )(u) = f (u+ i
2 − iε) + f (u− i

2 + iε), (2.20)

where ε≡ 0+ is an essential positive infinitesimal which prescribes the avoidance of the poles
of s(u) at u = ± i

2 . The nullspace of s−1, generated by functions ζ obeying s−1 ? ζ = 0, is a
linear span of basis functions logτ(u; w) of the form

logτ(u; w)≡ log tanh
�

π
2 (u−w)

�

, w ∈ P , (2.21)

where P is a strip in the complex plane defined as

P =
�

u ∈ C : |Im(u)| ≤ 1
2 − ε

	

, (2.22)

commonly referred to as the ‘physical strip’. We highlight the explicit dependence on the
infinitesimal regulator ε here, which ensures that the boundaries Im(u) = 1

2 are excluded
from the strip, as it will prove useful in later sections. The functions logτ(u; w) are related
back to the s-kernel through the identity

s(u) = ∓
1

2πi
∂u logτ(u;± i

2). (2.23)

A related object is the discrete d’Alembertian operator

�= s−1 ? (1− R) = s−1 − I , (2.24)

or explicitly,

(� f ) j(u) = f j(u+
i
2 − iε) + f j(u−

i
2 + iε)− f j−1(u)− f j+1(u), (2.25)

for a set of functions f j(u). The associated Green’s function, obeying �G = 1, is given by

G j,k = (1+ K) j,k ? s. (2.26)

The d’Alembertian � inherits a non-trivial nullspace from both (1− R) and s−1. From (1− R)
the functions n j = h j obey �n = 0, while given a set of functions ζ j in the nullspace of s−1,
there exist related functions ν j = (1+ K) j,` ? ζ` which also satisfy �ν= 0. It is further useful
to define kernels K j and their associated amplitudes S j as follows

K j(u) =
1

2πi
∂u log S j(u) =

1
2πi

�

1

u− j i
2

−
1

u+ j i
2

�

, S j(u) =
u− j i

2

u+ j i
2

, (2.27)

with the kernels obeying the identities

1
2π

�

�

�

�

dk j

du

�

�

�

�

= K j(u), (1− R) j,` ? K` = δ j,1s. (2.28)

These provide convenient explicit expressions for the matrix elements of the Green’s function
G j,k and its associated amplitude Ψ j,k as follows

G j,k(u) =
1

2πi
∂u logΨ j,k(u) =

min( j,k)
∑

a=1

K j+k+1−2a(u), Ψ j,k(u) =
min( j,k)
∏

a=1

S j+k+1−2a(u), (2.29)

and in turn for the scattering kernels and their amplitudes through

K j,k(u) = I j,`G`,k(u), log S j,k(u) = I j,` logΨ`,k(u). (2.30)

Finally, we emphasise that the ε regulator is tied to the pseudo-inverse s−1, and in particular
does not appear in the string compounds in Eq. (2.7), nor in the general definitions of kernels
and amplitudes, e.g. Eqs. (2.10), (2.27). In the following we employ a compact notation for
half-unit imaginary shifts not involving a regulator

f ±(v) = f (v ± i
2). (2.31)
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Transfer matrices. The algebraic formulation of integrability is founded upon the Lax rep-
resentation [31–33], see also [34–37] and references therein. The Lax matrices are a family of
operators Lk,1(v, u) : Vk⊗V1→ Vk⊗V1, where Vk denotes the (k+1)-dimensional irreducible
unitary representation of su(2), of the form

Lk,1(v, u) = (v − u)1⊗ 1+ 2i
∑

α=x,y,z

Sα ⊗ Sα. (2.32)

These provide local building blocks for the transfer matrices, a commuting family of operators
acting on the Hilbert space H ∼= V⊗L

1 , which are given as traces over path-ordered products of
operators Lk,1,

Tk(v) = TrVk
Lk,1(v, 0)⊗ Lk,1(v, 0)⊗ · · · ⊗ Lk,1(v, 0), (2.33)

where the trace is taken over the common auxiliary space Vk, with k ∈ N. Trivially, T0(v) = vL .
Integrability ensures that the transfer matrices Tk(v) mutually commute,

�

Tk(v),Tk′(v
′)
�

= 0, (2.34)

for all values of k, k′ ∈ N and v, v′ ∈ C.

Fusion hierarchy. The eigenvalues Tk(v) of the transfer matrices Tk(v) are called T -functions.
They are polynomial and satisfy the Hirota equation1

T+k (v)T
−
k (v) = φk(v)φ̄k(v) + Tk−1(v)Tk+1(v), k ≥ 0, (2.35)

with initial conditions T−1 ≡ 0, T0(v) = vL , and boundary ‘scalar potentials’,

φk(v) =
�

v + (k+ 1) i
2

�L
, φ̄k(v) =

�

v − (k+ 1) i
2

�L
. (2.36)

The Hirota equation exhibits a gauge freedom corresponding to the overall normalisation of
the Lax matrix. There however exist Y -functions,

Yk(v) =
Tk−1(v)Tk+1(v)

φk(v)φ̄k(v)
=

T+k (v)T
−
k (v)

φk(v)φ̄k(v)
− 1, (2.37)

which are gauge-invariant quantities satisfying the canonical Y -system hierarchy [41,42]

Y+k (v)Y
−
k (v) =

�

1+ Yk−1(v)
��

1+ Yk+1(v)
�

, k ≥ 1, (2.38)

with initial condition Y0(v) = 0.

Thermodynamic inversion identity. In the large-L limit, the entire family of transfer matri-
ces Tk(v) satisfy the useful identity [43]

lim
L→∞

T+k (v)T
−
k (v)

φk(v)φ̄k(v)
= 1, (2.39)

which allows for their inversion. This property can equivalently be expressed as the large-L
decay of the physical Y -functions

lim
L→∞

Yk(v) = 0, v ∈ P . (2.40)

1The Hirota equation (2.35) can be understood as the ‘quantum’ counterpart of the fusion identities for charac-
ters of the ‘classical’ Lie algebra su(2), i.e. fusion identities amongst unitary irreducible representations of su(2).
Additional details on fusion identities can be found in e.g. [24,34,35,38–40].
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Local charges. The transfer matrices serve as generating operators for the local charges
through their logarithmic derivatives [4,43],

Xk(v) =
1

2πi
∂v log

T+k (v)

φk(v)
. (2.41)

These charges are well-defined only on the physical strip, v ∈ P , specified above in Eq. (2.22).
When v approaches the boundary of the strip, the charges acquire a divergent localisation
length [43,44] and thus become singular at the boundaries ∂P = Im(v) = ±1

2 .
The Hamiltonian Eq. (2.1) is given by H= πJ X1(0).

String charge-duality. In the thermodynamic limit, the eigenvalues of the charges Xk(v) are
expressible as a linear functional of the rapidity densities [7]

Xk = Gk, j ? ρ j , (2.42)

where G, given in Eq. (2.26), is the Green’s function of the d’Alembertian �. The inverted
relation, promoted to the level of operators,

ρ = �X, (2.43)

bears the name ‘string-charge duality’. We highlight that this defines the mode operators ρ j
in a manner which is independent of the of the orientation of the reference ferromagnetic
vacuum.

Even though the positive infinitesimal ε does not appear in the definition of the charges
Xk(v), the mode operators ρ j inherit the ε-prescription through the left-inverse s−1 which
enters in the d’Alembertian �, Eq. (2.25). The important consequence of the regulator ε is
that the boundaries ∂P at Im(u) = 1

2 are avoided, ensuring a finite localisation length of the
ρ j , i.e. as ε is strictly positive the localisation lengths are strictly finite, cf. [43, 44]. Thus
ε admits a physical interpretation as a regulator which governs the notion of locality in the
large-L limit.

3 Equilibrium ensembles

The purpose of this article is to characterise the equilibrium landscape of an interacting inte-
grable model, specifically the Heisenberg spin chain. Equilibrium ensembles emerge dynami-
cally in the long-time limit of unitary evolution from generic initial states in thermodynamically
large systems. These can be viewed equivalently in either the canonical sense as density ma-
trices governing the expectation values of all local observables, or in the microcanonical sense
as unbiased collections of eigenstates sharing the same values of all local charge densities.
There are two key mechanisms underlying local equilibration: (i) decoherence, causing the
dynamical phases between individual eigenstates to average out during the relaxation process,
and (ii) the eigenstate thermalisation hypothesis which supposes the local equivalence of dis-
tinct eigenstates from the same microcanonical shell [1–3,45]. Local correlation function are
thus expressible as functionals of the quasi-particle densities characterising a macrostate, see
e.g. [46–48].

For the Heisenberg spin chain, a microcanonical shell corresponds to the set of microstates
associated with a given macrostate, parametrised by the full set of occupied mode distributions
ρ j(u). In this context, the statement of the eigenstate thermalisation hypothesis is substan-
tiated by the Yang–Yang form of the entropy density, Eq. (2.15), see e.g. [6, 49, 50]. The
corresponding (unnormalised) density matrix is [51]

% = exp
�

−µ j ◦ρ j + ~h · ~Stot

�

, (3.1)
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where µ j(u) provide a general set of chemical potentials for the mode operators ρ j . The term
~h · ~Stot incorporates a general Cartan charge of the global su(2) symmetry, which serves to
specify the polarisation direction ~h = (hx, hy, hz) with respect to which the Bethe magnons
are defined, i.e. with respect to a ferromagnetic vacuum oriented in the ~h direction. For
consistency, the chemical potentials must not diverge with j, i.e.

lim
j→∞

µ j(u)

j
= 0. (3.2)

The above functional parametrisation of the density matrix differs from the more com-
monly used definition involving a formal infinite sum over a discrete basis of local conservation
laws (see e.g. [4–6,52]) or a ‘truncated’ GGE [53–55]. We argue however that gauge-invariant
formulation (3.1) not only clearly conveys the physical picture underlying the GGE concept,
it moreover provides a natural and convenient starting point for analysis of the ensemble as
developed in the following sections.

4 Thermodynamic Bethe Ansatz

In this section we revisit the formalism of Thermodynamic Bethe Ansatz, a functional integral
formulation of thermodynamics [18–20]. Partition sums are cast in the basis of Bethe eigen-
states, which in the thermodynamic limit translates to functional integration in the space of
macrostates. In particular, the (generalized) free energy density,

f = − lim
L→∞

1
L

log TrH%, (4.1)

is reformulated as a functional integral over the string rapidity distributions,

f =

∫

D[{ρ j}]
�

�

µ j + h j
�

◦ρ j −
∑

j

s[ρ j , ρ̄ j]
�

, (4.2)

with h = |~h|, and the entropy functional s is specified by Eq. (2.15). Identifying the saddle
point of the equilibrium partition sum through δ f /δρ j(u) = 0, subject to the constraints
(2.11), yields the celebrated TBA equations,

logY j = µ j + h j + K j,` ? log
�

1+ 1/Y`
�

, (4.3)

expressed in terms of the ‘thermodynamic Y -functions’,

Y j(u) =
ρ̄ j(u)

ρ j(u)
. (4.4)

The equilibrium free energy density then becomes

f = −
1

2π

�

�

�

�

dk j

du

�

�

�

�

◦ log(1+ 1/Y j), (4.5)

which can be equivalently expressed in the form

f = s ◦µ1 − s ◦ log(1+Y1), (4.6)

obtained by inserting Eq. (2.16) in Eq. (4.5), and making use of the identities Eq. (2.28), the
TBA equations Eq. (4.3), and that h j belongs to the nullspace of (1− R).
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The TBA equations provide the link between the chemical potentials µ j and the thermody-
namic functions of general equilibrium states. To further elucidate the underlying structure,
we next bring the TBA equations to a local form by convolving with the left-inverse (1−R) of
the Fredholm operator (1+ K), resulting in

logY j = d j + I j,` s ? log(1+Y`), (4.7)

with Y0 ≡ 0, and source terms
d j = (1− R) j,` ? µ`. (4.8)

Here information about h, which has dropped from the source term as it belongs to the
nullspace of (1− R), instead appears implicitly through the large- j asymptotics

lim
j→∞

logY j(u)

j
= h, (4.9)

which must be supplemented to Eqs. (4.7) in order to unambiguously fix a solution. The
information stored in µ j is preserved by (1 − R), as condition Eq. (3.2) forbids a nullspace
contribution, and so Eq. (4.8) can be readily inverted

µ j = (1+ K) j,` ? d`. (4.10)

The TBA equations are integral equations defined on the real rapidity axis. We now analyt-
ically continue them to the complex rapidity plane, obtaining an equivalent set of functional
relations called the ‘thermodynamic Y -system’ [51]. This is achieved by convolving both sides
of Eqs. (4.7) with the pseudo-inverse s−1 and subsequently exponentiating, resulting in

Y +
j (u− iε)Y −

j (u+ iε) = eλ j(u)
�

1+Y j−1(u)
��

1+Y j+1(u)
�

, (4.11)

with
λ j = s−1 ? d j . (4.12)

This provides a natural decomposition of the source terms,

d j = s ? λ j + ζ j , (4.13)

where ζ j satisfy
s−1 ? ζ j = 0. (4.14)

Owing to Eq. (2.21), we adopt the following generic parametrisation

ζ j(u) =
∑

i

α j,i log[τ(u; w j,i)τ(u; w̄ j,i)], (4.15)

in terms of parameters α j,i ∈ R, and complex-conjugate w j,i and w̄ j,i located in P . Although
the sum involves a finite number of terms, infinite convergent sequences of simple poles and
zeros (α j,i = ±1) which condense along certain contours are also permissible and can be
understood as limits of Padé approximants for complex functions with branch points. We
adopt the convention that all branch cuts in P extend vertically away from the real axis.

The decomposition Eq. (4.13) can also be expressed at the level of the chemical potentials

µ j = G j,` ? λ` + ν j , (4.16)

where here λ= �µ, and ν j encodes the nullspace of µ j inherited from s−1 through

ν j = (1+ K) j,` ? ζ`. (4.17)
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Indeed the thermodynamic Y -system can be obtained directly from the TBA equations Eq. (4.3)
by applying the d’Alembertian � and exponentiating.

To this point the analysis appears completely formal. It however reveals a structure in
the space of equilibrium states. The information from the nullspace of s−1, Eq. (2.21), which
appears to have dropped out from Eq. (4.11), enters instead implicitly via analytic properties
of functions Y j . Specifically, w j,i and w̄ j,i are nothing but branch points of Y j of degree α j,i .
To establish this, we now re-obtain Eq. (4.7) from Eq. (4.11). In order to undo the complex
shifts and transform Eq. (4.11) to the real axis, we introduce adapted Y -functions,

Y
adp

j (u) = Y j(u)
∏

i

�

τ(u; w j,i)τ(u; w̄ j,i)
�−α j,i , (4.18)

which obey Y
adp

j (u+ i
2 − iε)Y adp

j (u− i
2 + iε) = Y j(u+

i
2 − iε)Y j(u−

i
2 + iε) due to τ+τ− = 1,

and are (by construction) analytic on P with constant large-u asymptotics. Substituting these
into Eq. (4.11), taking the logarithm and convolving with s we readily recover Eq. (4.7). The
analytic properties of the thermodynamic Y -functions in P are therefore completely deter-
mined by the data w j,i and w̄ j,i and α j,i . If all α j,i ∈ Z then the Y -functions are meromorphic
on P , while more generally they possess non-integer branch points.

5 Integrable lattice regularisation

In this section we derive an explicit lattice regularisation of a generic equilibrium ensemble.
This is achieved this by re-expressing the density matrix as a product of transfer matrices,
thereby casting it as a two-dimensional classical vertex model on a cylinder.

The mode operatorsρ j are related to the transfer matrices via string-charge duality, Eq. (2.43).
The density matrix Eq. (3.1) can thus be presented in the form

% = exp
�

−µ j ◦ (�X) j + ~h · ~Stot

�

, (5.1)

where the charges X j are the logarithmic derivatives of the transfer matrices, Eq. (2.41). To
proceed it is necessary to be careful about the potential nullspace of µ j under action of the
d’Alembertian �. As described in Section 2, this nullspace is spanned by functions n j in the
nullspace of (1− R), along with functions ζ j in the nullspace of s−1. The condition Eq. (3.2)
forbids a contribution n j , and so the chemical potential decomposes as

µ j = G j,` ? λ` + ν j , (5.2)

where λ= �µ, and ν j = (1+K) j,` ?ζ` encode the nullspace inherited from s−1, �ν= 0. This
essentially repeats the derivation of Eq. (4.16) in Section 4. In the following we will adopt the
same generic parametrisation of ζ j as in Eq. (4.15).

The decomposition of µ j induces a factorisation of the density matrix Eq. (3.1) into three
commuting factors

% = %λ ·%ν ·%~h, (5.3)

given respectively by

%λ = exp
�

−λk ◦Xk

�

, %ν = exp
�

− ν j ◦ρ j

�

, %~h = exp
�

~h · ~Stot

�

, (5.4)

where the first factor is obtained through (G?λ)◦
�

�X
�

=
�

�G?λ
�

◦X= λ◦X. For convenience
we will refer to %λ as encoding the ‘node data’, %ν as encoding the ‘analytic data’, and %~h as
encoding the Cartan charge. We now proceed to analyse each factor in turn.

11

https://scipost.org
https://scipost.org/SciPostPhys.7.3.033


SciPost Phys. 7, 033 (2019)

The node data. The first factor of the ensemble encodes the node data λk,

%λ = exp
�

−
∑

k

λk ◦Xk

�

. (5.5)

To begin we regularise the λk, by invoking a large-rapidity cut-off Λ∞, and casting λk(u) as
a discrete sum on the remaining interval. First it is useful to introduce, for each k separately,
two disjoint domains {−Λ∞,Λ∞} = I(+)k ∪ I(−)k , such that λk(v) ≥ 0 on I(+)k and λk(v) < 0

on I(−)k . That is, we decompose the λk as

λk(v) = λ
(+)
k (v) +λ

(−)
k (v), (5.6)

where λ(±)k (v) = 0 on I(∓)k . Each part can then be regularised via a discrete sum of Dirac
δ-distributions,

λ
(±)
k (v) = lim

nk→∞

Λ
(±)
k

n(±)k

nk
∑

i=1

δ
�

v − x (±)k,i

�

, (5.7)

where n(±)k ∈ N control the resolution of the discretisation, the parameters x (±)k,i ∈ R are chosen

uniformly from the distributions λ(±)k (v), and the overall normalisation is fixed by

Λ
(±)
k =

∫

I(±)k

dvλ(±)k (v). (5.8)

This readily translates to a further factorisation %λ = %
(+)
λ
·%(−)
λ

, with

%(±)
λ
=
∏

k

n(±)k
∏

i=1

exp



−
Λ
(±)
k

n(±)k

Xk(x
(±)
k,i )



. (5.9)

Referring back to the definition of the charges Eq. (2.41), each exponential factor is written
as

Xk

�

v
�

= lim
∆v→0

1
∆v

1
2πi

�

log
T+k
�

v + ∆v
2

�

φk(v +
∆v
2 )
− log

T+k (v −
∆v
2 )

φk(v −
∆v
2 )

�

. (5.10)

Using the inversion identity Eq. (2.39), which is exact in the large-L limit, this becomes

Xk

�

v
�

= lim
∆v→0

1
∆v

1
2πi

log

�

T+k
�

v + ∆v
2

�

φk(v +
∆v
2 )

T−k (v −
∆v
2 )

φ̄k(v −
∆v
2 )

�

. (5.11)

Now, for each factor in Eq. (5.9) we couple the finite difference to the corresponding discreti-
sation parameters n(±)k through the identifications v→ x (±)k,i and ∆v→ iξ(±)k , with parameters

ξ
(±)
k =

Λ
(±)
k

2πn(±)k

, (5.12)

resulting in

%(±)
λ
=
∏

k

n(±)k
∏

i=1

T+k
�

x (±)k,i + ξ
(±)
k

i
2

�

φk

�

x (±)k,i + ξ
(±)
k

i
2

�

T−k
�

x (±)k,i − ξ
(±)
k

i
2

�

φ̄k

�

x (±)k,i − ξ
(±)
k

i
2

� . (5.13)

Let us highlight that while Eq. (5.13) may in a sense be viewed as an ‘integrable Trotter-
isation’, the Suzuki–Trotter formula [56, 57] has not been invoked. Instead, we coupled the
resolution of the discretisation of λk(u) in Eq. (5.7) with the finite-difference approximation
∆v of the derivative in the definition of the charges.
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The analytic data. We next analyse the factor

%ν = exp
�

−
∑

j

ν j ◦ρ j

�

, (5.14)

where ν = (1+ K) ? ζ, with ζ j given generically by Eq. (4.15). Here we substitute ρ = �X,
bringing it to the form

%ν =
∏

j,k

exp

�∫

R
dz ν j(z)I j,kXk(z)−

∫

R
dz ν j(z)δ jk

�

Xk(z +
i
2 − iε) +Xk(z −

i
2 + iε)

�

�

.

(5.15)
Then exploiting the null property �ν = 0, the exponent becomes recast as a sum of two
contour integrals

%ν =
∏

j,k

exp

�

∮

C+
dz ν−j (z + iε)δ j,kXk(z)−

∮

C−
dz ν+j (z − iε)δ j,kXk(z)

�

, (5.16)

where contours C+ and C− encircle the upper and lower half of the physics strip P in the
counter-clockwise direction, respectively. Here we have shifted the integration contours using

∫

R
dz f (z)X±k (z ∓ iε) =

∫

R
dz f ∓(z ± iε)Xk(z)∓

∮

C±
dz f ∓(z ± iε)Xk(z), (5.17)

along with the asymptotic behaviour lim|u|→∞ ν j(u) = 0. Introducing the functions

γ j(u) = −
1

2πi

dν j(u)

du
, (5.18)

and integrating by parts, we obtain

%ν =
∏

j,k

exp

�

∮

C+
dz γ−j (z + iε)δ jk log

T+k (z)

φk(z)
−
∮

C−
dz γ+j (z − iε)δ jk log

T+k (z)

φk(z)

�

. (5.19)

Specifically, the functions γ j are given through

γ±j (u) = ±α j,i

∑

k

∑

i=1

�

G j,k(u−wk,i) + G j,k(u− w̄k,i)
�

, (5.20)

using identities (2.23) and (2.26).
Now we evaluate the above contour integrals. Recalling the explicit expression

for G from Eq. (2.29), and noting that the poles of kernels K j(u) are of the form,
2πi Resu=0K j(u ±

i
2 k) = ±δ jk, we observe that the poles of γ±j (u) with residues ±α j,i are

located at the null components shifted by integer multiples of i
2 . Given that all the null com-

ponents lie within the physical strip P , the only contribution which does not shift the poles
outside the contours then comes from the term K1(u) which appears only in G j, j(u). In effect,
the analytic data gets shifted by ± i

2 , giving a pole in C− (C+) for each null component in C+
(C−). Thus Eq. (5.19) simplifies to

%ν =
∏

k

∏

i

exp

�

αk,i log

�

T+k (wk,i + iε− i
2)

φk(wk,i + iε− i
2)

T−k (w̄k,i − iε+ i
2)

φ̄k(w̄k,i − iε+ i
2)

��

, (5.21)

upon using the inversion identity Eq. (2.39).
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Finally, Eq. (5.21) must be further regularised in order to convert to a product of transfer
matrices. To achieve this we note the following property: any term α log[τ(u; w)τ(u; w̄)] with
0< α < 1 and w, w̄ ∈ P can be systematically approximated by a sum

∑

a

log
�

τ(u; wz
a)τ(u; w̄z

a)
�

−
∑

b

log
�

τ(u; wp
b)τ(u; w̄p

b)
�

, (5.22)

where the sets of zeros {ωz
a, ω̄z

a} and poles {ωp
b, ω̄p

b} are obtained as the zeros and poles lying
within the physical stripP of a Padé approximation of (u−w)α(u−w̄)α about w0 = Re(w) = Re(w̄).
Applying this to each contribution of ζ j individually we obtain a regularised form

ζ
reg
j (u) =

nz
j

∑

a=1

log
�

τ(u;ωz
j,a)τ(u; ω̄z

j,a)
�

−
np

j
∑

b=1

log
�

τ(u;ωp
j,b)τ(u; ω̄p

j,b)
�

, (5.23)

where both the distinction between distinct zero modes and dependence on the degree of the
Padé approximation are left implicit. In this way we obtain the factor %ν of the ensemble as a
product of transfer matrices

%ν =
∏

k

nz
k

∏

a=1

T+k (ω
z
k,a + iε− i

2)

φk(ωz
k,a + iε− i

2)

T−k (ω̄
z
k,a − iε+ i

2)

φ̄k(ω̄z
k,a − iε+ i

2)

×
∏

k

nz
p

∏

b=1

T+k (ω̄
p
k,b − iε+ i

2)

φk(ω̄
p
k,b − iε+ i

2)

T−k (ω
p
k,b + iε− i

2)

φ̄k(ω
p
k,b + iε− i

2)
. (5.24)

The Cartan charge. The final factor of the ensemble is simply given by

%~h = exp
�

~h · ~Stot

�

≡
L
⊗

j=1

D(~h), D(~h) = exp
�

~h · ~S
�

. (5.25)

There is no trace over an auxiliary space associated with this factor.

5.1 The two-dimensional vertex model

Now recombining the three factors the ensemble takes the compact form

% = %~h
∏

k

Nk
∏

i=1

T+k (θk,i)

φk(θk,i)

T−k (θ̄k,i)

φ̄k(θ̄k,i)
, (5.26)

where we have collected the impurity parameters as follows

{θk,i} ≡
¦

x (+)k,i + ξ
(+)
k

i
2

©

∪
¦

x (−)k,i + ξ
(−)
k

i
2

©

∪
¦

ωz
k,i + iε− i

2

©

∪
¦

ω̄
p
k,i − iε+ i

2

©

, (5.27)

along with their complex conjugates {θ̄k,i}.
The regularised equilibrium ensemble is naturally cast as a two-dimensional classical vertex

model wrapped around a cylinder of circumference L and height 2N , with

N =
∑

k

Nk =
∑

k

�

n(+)k + n(−)k + nz
k + np

k

�

, (5.28)

as illustrated in Figure 2. The ‘Boltzmann weights’ are formally identified with the matrix
elements of Lax matrices, through the Lax representation of transfer matrices provided in
Eq. (2.33). By virtue of the involution property of Eq. (2.34), all stacking configurations of
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k,θk,i

k, θ̄k,i

1

2N

L

L+k,1(θk,i , 0)

L−k,1(θ̄k,i , 0)

D(~h)

Figure 2: An illustration of the integrable two-dimensional vertex model correspond-
ing to a regularised equilibrium macrostate, defined on a cylinder of circumference L
and height 2N . The ‘Boltzmann weights’ are given by the matrix elements of the Lax
matrices attached at each vertex. The square vertices attached at the vertical bound-
ary incorporate the ~h-dependent twist, and the dashed gray lines denote traces over
the auxiliary spaces.

the row transfer matrices are equivalent. Let us emphasise that the resulting vertex model
is not the common six-vertex model, but can be regarded instead as a fused variant thereof.
Indeed, in general there is no upper bound on the ‘number of vertices’, as a generic equilibrium
state requires arbitrary large spin representation labels. The contribution %~h appears as an
additional factor. It plays the role of a boundary twist when the cylinder is wrapped to a torus
(i.e. when the ensemble is traced over).

6 The mirror system

The vertex-model regularisation of a generic equilibrium ensemble achieved in the previous
section allows for a description of equilibrium states in manner which is complementary to the
TBA analysis of Section 4. Here the free energy density is

f = − lim
L→∞

lim
N→∞

1
L

logTrH

�

%~h

∏

k

Nk
∏

i=1

T+k (θk,i)

φk(θk,i)

T−k (θ̄k,i)

φ̄k(θ̄k,i)

�

, (6.1)

which can be viewed as an inhomogeneous vertical iteration of row transfer matrices Tk. Al-
ternatively this can be re-expressed as a horizontal iteration of an inhomogeneous column
transfer matrix, as illustrated in Figure 3. As the two-dimensional vertex model is homoge-
neous in the horizontal (i.e physical) direction, the iteration of the column transfer matrix is
homogeneous, with the consequence that its dominant eigenvalue yields the free energy den-
sity. In this section we analyse this process in detail. We then pay particular attention to the
re-emergence of the thermodynamic Y -system, Eq. (4.11), in the large-N limit.

Given a two-dimensional vertex model, we introduce the corresponding ‘mirror system’ as
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k,θk,i

k, θ̄k,i

j, 0

T+k (θk,i)/φk(θk,i)

T−k (θ̄k,i)/φ̄k(θ̄k,i)

T j(0)

Figure 3: The equilibrium partition function is computed by wrapping the cylinder
of Figure 2 to a torus, i.e. tracing over the physical sites. This can be viewed as an
inhomogeneous iteration of the homogeneous row transfer matrices T±k (red) of the
physical system as in Eq. (6.1). Alternatively it can be expressed as a homogeneous
iteration of the inhomogeneous column transfer matrices T j (blue) of the mirror
system. The latter admits a dominant eigenvalue as given in Eq. (6.3).

the combination of the auxiliary spaces: HM
∼=
⊗

k V
⊗2Nk
k . The fundamental column transfer

matrix 2 acts on the mirror system as follows

T1(u) = TrV1

�

D(~h)
⊗

k

Nk
⊗

i=1

L+k,1(θk,i , u)

θk,i − u+ (k+ 1) i
2

L−k,1(θ̄k,i , u)

θ̄k,i − u− (k+ 1) i
2

�

, (6.2)

with spectral parameter u, and the trace taken over the common fundamental space V1 of
all the Lk,1 inherited from a lattice site of the original spin chain. That is, in switching to
the column transfer matrix the role of physical and auxiliary spaces is interchanged. We em-
phasise that unlike the row (physical) transfer matrices defined in Eq. (2.33), the column
transfer matrix is inhomogeneous in terms of both impurities and representation labels, and
has a boundary twist encoded by the factor D(~h) which also acts on V1. For notational conve-
nience we proceed by suppressing explicit dependence of T1(u) on impurities θk,i , twist h and
dimension N .

The fundamental column transfer matrix T1(u) allows for computation of the free energy
density through its dominant (i.e. largest) eigenvalue according to the prescription

f = − lim
N→∞

lim
L→∞

1
L

logTrHM
T1(0)

L = − lim
N→∞

logÒT1(0), (6.3)

where ÒT1(u) denotes the dominant eigenvalue. Care must be taken when interchanging the
thermodynamic L →∞ and the scaling N →∞ limits (cf. [21, 22]), and in our analysis we
justify this step by establishing full consistency, as summarised in Figure 1.

One way to proceed to determine ÒT1(0) is to obtain the Bethe equations which diagonalise
T1(u) as a route towards obtaining their spectrum T1(u), and thereby its dominant eigen-
value. Here we instead take a different route and employ the framework of functional Bethe

2The canonical version of the column transfer matrix appears under several different names in the literature,
including the ‘virtual-space’ [21], ‘crossing’ [23], ‘column-to-column’ [58], ‘quantum’ [27] and ‘Matsubara’ [59]
transfer matrix.
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ansatz [24,35,39,60], which conveniently allows for the mirror-system Bethe equations to be
completely bypassed.

With aid of the fusion rule for the Lax matrices, we proceed by embedding T1(u) into the
infinite fusion hierarchy of commuting transfer matrices T j(u). To this end, we extend the
family of Lax matrices Lk,1(v, u) to Lk, j(v, u) : Vk ⊗ V j → Vk ⊗ V j . These are readily obtained
through fusion [34,38,61,62]

Lk, j(v, u) =N−1
k, j (v, u)P j

j
∏

a=1

L(a)k,1

�

v, u+ ( j + 1− 2a) i
2

�

P j , (6.4)

where each of j copies L(a)k,1 acts on Vk ⊗ V(a)1 , P j :
⊗ j

a=1 V
(a)
1 7→ V j is the totally-symmetric

projection operator,

P j =
j
∏

a=1

~S · ~S− a(a− 1)
j( j + 1)− a(a− 1)

, (6.5)

with ~S =
∑ j

a=1
~S(a), and Nk, j(v, u) =

∏ j−k
a=1(v − u+ (k− j − 1+ 2a) i

2) is the common polyno-
mial produced by fusion. Correspondingly, the higher-spin column transfer matrices are given
explicitly as

T j(u) = TrV j



D(~h)
⊗

k

Nk
⊗

i=1

L+k, j(θk,i , u)L−k, j(θ̄k,i , u)
∏min( j,k)

a=1

�

θk,i − u+ (k− j + 2a) i
2

��

θ̄k,i − u− (k− j + 2a) i
2

�



 ,

(6.6)
where here D(~h) acts on V j .

In particular, analogously to the physical T -functions Eq. (2.35), the hierarchy of column
T -functions T j(u) satisfy the Hirota equation

T +j T −j = ϕ jϕ̄ j + T j−1T j+1, j ≥ 0, (6.7)

with initial conditions T−1 ≡ 0, T0 = 1, and the scalar potentials

ϕ j =
∏

k

Nk
∏

i=1

Ψ−1
j,k (u− θk,i), ϕ̄ j =

∏

k

Nk
∏

i=1

Ψ j,k(u− θ̄k,i), (6.8)

with Ψ j,k given by Eq. (2.29). By construction, T j(u) are meromorphic functions of rapidity
variable u. The boundary twist manifests itself as non-trivial large-u asymptotics

lim
|u|→∞

T j(u) =
sinh (( j + 1)h/2)

sinh (h/2)
≡ χ j(h), (6.9)

parametrised by h = |~h| through the su(2) characters χ j(h) obeying the ‘classical limit’ of the
Hirota equation

χ2
j (h) = 1+χ j−1(h)χ j+1(h). (6.10)

The associated ‘gauge’-invariant Y-functions

Y j =
T j−1T j+1

ϕ jϕ̄ j
=

T +j T −j
ϕ jϕ̄ j

− 1, (6.11)

are again meromorphic functions, obeying the canonical Y-system relations [42]

Y+j Y
−
j =

�

1+Y j−1

��

1+Y j+1

�

, (6.12)
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with large-u asymptotics
Y∞j ≡ lim

|u|→∞
Y j(u) = χ

2
j (h)− 1. (6.13)

The above functional relations, Eqs. (6.7), (6.11) and (6.12), are valid for the full spectrum
of T j(u) at finite N . To specify a particular eigenvalue, it is necessary to identify their analytic
data in the physical strip P . This is made transparent by transforming the functional relations
to integral equations on the real rapidity axis. To perform this step, it is useful to introduce
adapted T -functions,

T adp
j (u) =

T j(u)
∏

i τ(u; t z
j,i)

, (6.14)

obtained by factoring out their (possible) zeros t z
j,i in P , so that logT adp

j (u) are analytic on
P with constant large-u asymptotics. The absence of poles of T j(u) in P can be seen from
the denominator in Eq. (6.6). Now manipulating Eq. (6.11), by taking the logarithm and
convolving with s, we obtain

logT j =
∑

i

logτ
�

u; t z
j,i

�

+ s ? log
�

ϕ jϕ̄ j

�

+ s ? log
�

1+Y j

�

. (6.15)

We similarly transform the Y-system relations, Eq. (6.12), to the real axis. The procedure
is analogous to that described in Section 4, specialised to meromorphic data only. Introducing
adapted Y-functions

Yadp
j (u) = Y j(u)

∏

b τ(u; y p
j,b)

∏

a τ(u; y z
j,a)

, (6.16)

by again multiplying out all (possible) zeros y z
j,a and poles y p

j,b on the physical the strip P ,

so that logYadp
j (u) are analytic on P with constant large-u asymptotics. Substituting this into

Eq. (6.12), taking the logarithm and convolving with s, we end up with the coupled integral
equations

logY j = d j + I j,`s ? log(1+Y`), (6.17)

with source terms
d j =

∑

a

logτ(u; y z
j,a)−

∑

b

logτ(u; y p
j,b). (6.18)

The spectrum of the T -functions is thus given by Eq. (6.15), where the Y-functions obey
Eq. (6.17), and eigenvalues are specified by the locations of the analytic data tz

j,a, y z
j,a, y p

j,a. To
determine this state-dependent data, one has in general to resort to the Bethe equations. The
Y-functions however inherit certain zeros and poles directly from the impurity data through
the scalar potentials in Eq. (6.11). To identify these we need the following properties which
can verified from the definition of Ψ j,k in Eq. (2.29): if w belongs to the lower-half of the strip
P then Ψ j,k(u−w) has a zero at u= w+ i

2 if and only if j = k, and has no poles in P , while if
w belongs to the upper-half of the strip P then Ψ j,k(u−w) has a pole at u= w− i

2 if and only
if j = k, and has no zeros in P . Then from Eq. (6.8) one deduces that zeros of the Y-functions
are located at

¦

x (−)k,i +
�

1+ ξ(−)k

�

i
2

©

∪
¦

ωz
k,i + iε

©

, (6.19)

along with their complex conjugates, and we remind that ξ(−)k < 0. Correspondingly, the poles
of the Y-functions appear at

¦

x (+)k,i +
�

1− ξ(+)k

�

i
2

©

∪
¦

ω
p
k,i + iε

©

, (6.20)

along with their complex conjugates, with ξ(+)k > 0.
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The eigenstate for which these are the only zeros and poles of the Y-functions inside P is
a distinguished state of the mirror system. In particular, the corresponding T -functions T j(u)
are analytic and free of zeros in the strip P for this state, a further consequence of Eq. (6.11).
As any zero of a T -function in P yields a negative definite contribution to Eq. (6.15), i.e.

logτ(u; w)< 0, u ∈ R, w ∈ P , (6.21)

it is natural to anticipate that this state gives the dominant eigenvalue determining the free
energy density through Eq. (6.3). In the following we establish this assertion by taking the
large-N limit, and demonstrating that it reproduces precisely the TBA description of Section 4.

6.1 The scaling limit

In the preceding analysis we considered the mirror system at finite N . At this level, there is no
strict distinction between the impurities encoding the node and analytic data from Eq. (5.27).
Now we take the large-N scaling limit in which this distinction becomes manifest. We focus
on the distinguished state identified above for which all the T -functions are analytic and free
of zeros in the physical strip P .

The task is to inspect the large-N scaling limit for both Eq. (6.15) and Eq. (6.17). For
Eq. (6.15) the non-trivial N -dependent term is log

�

ϕ jϕ̄ j

�

. For clarity, we consider below the
contributions coming from the node and analytic data separately, that is we split

log
�

ϕ jϕ̄ j

�

=
�

log
�

ϕ jϕ̄ j

��

λ
+
�

log
�

ϕ jϕ̄ j

��

ν
. (6.22)

The node data λ j involves a sum over pairs of impurities

¦

x (±)k,i + ξ
(±)
k

i
2 , x (±)k,i − ξ

(±)
k

i
2

©

, (6.23)

yielding

[log
�

ϕ jϕ̄ j

�

]λ =
∑

σ=+,−

∑

k

n(σ)k
∑

i=1

log





Ψ j,k

�

u− x (σ)k,i + ξ
(σ)
k

i
2

�

Ψ j,k

�

u− x (σ)k,i − ξ
(σ)
k

i
2

�



 . (6.24)

Individual contributions, which can be deduced with aid of Eq. (2.29), are of the form

−
Λ
(±)
k

n(±)k

G j,k

�

u− x (±)k,i

�

. (6.25)

In the large-N limit, the net contribution of Eq. (6.24) yields

lim
N→∞

[log
�

ϕ jϕ̄ j

�

]λ = −G j,k ? λk, (6.26)

upon removing the large-rapidity cut-off Λ∞ and converting sums to convolution-type inte-
grals. In the process, the impurities re-condense in accordance with Eq. (5.7).

The contribution from the analytic data stemming from zeros {ωz
k,i + iε− i

2 , ω̄z
k,i − iε+ i

2}
and poles {ωp

k,i + iε+ i
2 , ω̄p

k,i − iε− i
2} inside P , reads

[log
�

ϕ jϕ̄ j

�

]ν = −
∑

k

nz
k

∑

a=1

log





Ψ+j,k

�

u−ωz
k,a − iε

�

Ψ−j,k

�

u− ω̄z
k,a + iε)



−
∑

k

np
k

∑

b=1

log





Ψ−j,k

�

u−ωp
k,b − iε

�

Ψ+j,k

�

u− ω̄p
k,b + iε

�



 .

(6.27)
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Employing the identity logΨ±j,k = ±(1+K) j,k?logτwhich follows from Eqs. (2.23) and (2.26),
this becomes

[log
�

ϕ jϕ̄ j

�

]ν = −(1+ K) j,` ? ζ
reg
`

, (6.28)

with ζreg
j given by Eq. (5.23). Here the infinitesimal regulator ε can be safely dropped. As the

degrees of the Padé approximations tend to infinity with N , we then obtain

lim
N→∞

[log
�

ϕ jϕ̄ j

�

]ν = −(1+ K) j,` ? ζ`. (6.29)

Thus combining the contributions from the node and analytic data we recover the TBA chem-
ical potentials (4.16),

lim
N→∞

log
�

ϕ jϕ̄ j

�

= −µ j . (6.30)

Next we take the large-N scaling limit of Eq. (6.17). Here we must examine the source
terms d j given by Eq. (6.18). The node data consists of pairs of zeros and poles, cf. Eq. (6.19),

¦

x (±)k,i +
�

1∓ ξ(±)k

�

i
2 , x (±)k,i −

�

1∓ ξ(±)k

�

i
2

©

, (6.31)

each contributing to d j a term

log
�

τ
�

u; x (±)k,i +
�

1∓ ξ(±)k

�

i
2

�

τ
�

u; x (±)k,i −
�

1∓ ξ(±)k

�

i
2

��

. (6.32)

Since there are nk terms, in the nk→∞ limit we are left with

Λ
(±)
k

n(±)k

s
�

u− x (±)k,i

�

, (6.33)

employing Eq. (2.23). The full contribution to d j in the large-N scaling limit then retrieves the
node data, that is s?λ j . The contribution from the regularised analytic data, which is for finite
N straightforwardly given by ζreg

j , and in the large-N limit converges to ζ j . In conclusion,

lim
N→∞

d j = d j = s ? λ j + ζ j , (6.34)

are precisely the source terms (4.15) of the local form of the TBA equations Eq. (4.7).

Free energy. Having taken the continuum scaling limit, we can now determine the eigenval-
ues of T -functions T j(u) encoding the distinguished state. In particular, employing Eq. (6.30)
in Eq. (6.15) we obtain

logT1(0) = −s ◦µ1 + s ◦ log
�

1+Y1

�

. (6.35)

Finally, substituting this into Eq. (6.3) as the dominant eigenvalue we re-obtain precisely the
expression for the free energy given by Eq. (4.6). As the large-N scaling limit of the canoni-
cal Y-functions Y j satisfy the local TBA equations Eq. (4.7) due to Eq. (6.34), we have fully
recovered the TBA description of Section 4.

In conclusion,

for a general equilibrium state of the Heisenberg spin-1/2 chain, the thermodynamic
Y -functions coincide with the large-N scaling limit of the distinguished canonical
Y-functions associated with the dominant eigenvalue of the mirror system.
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u

Y j(u)

i/2

−i/2

C+

C−

Y j(yz) = 0
Y j(yp) =∞

Figure 4: Schematic depiction of the analytic data for a typical meromorphic Y-
function associated with the dominant eigenvalue of the fundamental column trans-
fer matrix T1(u) at finite N . The analytic data comprises zeros (red circles) and
poles (blue crosses) in the complex strip P . The integration contours C+ and C−,
encircling the upper and lower halves of the physical strip P , are separated from the
lines u = ± i

2 by the regulator ε. The contributions from the regularised node data

λ j appear separated by distance ξ(±)j =
�

�Λ
(±)
j

�

�/2πn(±)j from the lines u = ± i
2 . The

analytic data lie within the contours C±, with clusters of zeros and poles appearing
as Padé approximants of non- integer branch points.

7 Discussion

In the preceding sections we considered generic equilibrium states and developed the dual
approaches of TBA and lattice regularisation, as summarised in Figure 1. The central role
in establishing their equivalence is played by the mirror system, which provides a compact
regularisation of a given equilibrium state. The mirror system exhibits a ‘universal’ canonical
structure, seen here in Eqs. (6.7)-(6.13), which is deep-rooted in the fusion properties of the
underlying quantum symmetry algebra. One of the key findings of this work is however that
in thermodynamic/large-N limit the canonical structure is superseded by an emergent equi-
librium landscape, encoded in non-trivial node terms λ j and generically non- meromorphic
thermodynamic Y -functions involving branch points inside P . There are several discernible
aspects which deserve a brief discussion.

Breakdown of the canonical Y-system. The thermodynamic Y -system generically contains
state-dependent node terms λ j , see Eq. (4.11). This non-canonical form, which is seemingly
conflict with the expected universality of the canonical Y-system [42], has been previously
observed the context of quantum quenches where several explicit examples have been identi-
fied [7,16,63]. Here we clarify this aspect.

The Y-functions at finite N obey the canonical Y-system, Eq. (6.12), with n(±)j zeros and
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poles stemming from the regularised λ j residing are finite distance ξ(±)j = |Λ(±)j |/2πn(±)j from
the boundary of P . A subtlety however arises in the thermodynamic scaling limit N →∞,
where ξ±j invariably become smaller than the positive infinitesimal regulator ε which controls

the width of the physical strip P as in Eq. (2.22). 3 In this event, a subset of the analytic data
leaves the nullspace of s−1 by escaping from the integration contours C± and finally collapsing
onto the boundary of P at Im(u) = 1

2 . This piece of information emerges through the re-
condensed λ j as in Eq. (6.34), rendering the thermodynamic Y -system of the non-canonical
form. Indeed, a simple example of a non-canonical Y -system is provided by the canonical
Gibbs equilibrium state, specified by λ j(u) = πJ β δ j,1δ(u) and ζ j(u) = 0. The corresponding
TBA source term thus reads d j = s ? λ j = πJ β δ j,1s(u), in agreement with [26].

Non-meromorphic Y -functions. As observed in the TBA analysis, in general the thermo-
dynamic Y -functions are non-meromorphic complex functions. This is to be contrasted with
the canonical Y-functions of the mirror system describing regularised macrostates which are
manifestly meromorphic on P . The non-meromorphic structure appears in the large-N scaling
limit, when the analytic data from the interior of P form macroscopic condensates. A degree-
N Padé approximation of a generic non-meromorphic Y -function in terms of a canonical (i.e.
meromoprhic) Y-function provides a particular algorithm of information compression.

Non-canonical asymptotics. A third subtlety concerns the large-u asymptotics of the ther-
modynamic Y -functions. At finite N the canonical Y-functions possess a one-parameter family
of large-u asymptotics parametrised by h, cf. Eq. (6.13), expressed through the solution to the
classical limit of the Hirota equation Eq. (6.10). In the large-N limit however, upon removing
the regulator Λ∞ → ∞, these asymptotics may decouple, with the Y -functions acquiring
non-canonical large-u asymptotics provided the large-u asymptotics of the chemical potentials
µ j(u) are non-trivial. A particular instance of this is an infinite-parametric family of ‘disper-
sionless’ states, that is the class of states characterised by constant µ j .

8 Conclusion

In this work we have undertaken a comprehensive study of the equilibrium landscape of the
isotropic Heisenberg spin-1/2 chain. We have developed a robust and unified framework
which encompasses both the Thermodynamic Bethe Ansatz and the two-dimensional vertex-
model regularisation approaches to thermodynamics. In particular we have explained the
emergence of a splitting of the chemical potentials µ j into two contributions: the node data
λ j which determine the thermodynamic Y -system, and the analytic data ζ j which encode
the branch points of the Y -functions in the physical strip P . These characterise equilibrium
states in distinct ways, endowing the equilibrium landscape with a structure that is deserving
of further exploration.

There are several novel features of the work worth highlighting. Firstly, we express the
generic density matrix Eq. (3.1) in a form which reflects the underlying su(2) symmetry of
the model, which clarifies how the polarisation of the mode operators ρ j is set. In our TBA
analysis, we demonstrate on general grounds that the equilibrium Y -functions are generically
non-meromorphic in the physical strip P . Our lattice regularisation of a generic ensemble
treats the node and analytic data separately. For the node data we invoke a discretisation of
the λ j(u), and achieve a variant of ‘Trotterisation’ without actually appealing to the Suzuki-
Trotter formula. For the analytic data we develop a contour integration procedure, and intro-

3We remind that in distinction to N , ε is not an adjustable parameter of the regularisation scheme.
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duce Padé approximants to regularise generic branch points of Y -functions. In Section 6 we
reconnect the TBA and vertex model approaches by identifying a distinguished eigenvalue of
the mirror system, and use it to demonstrate complete equivalence of the descriptions. The
interconnected nature of our analysis is summarised in Figure 1.

A technical point emerging from our study is an explanation of the breakdown of the
canonical Y-system, i.e. the emergence of the thermodynamic Y -system. Put simply, this is
due to competition between the infinitesimal regulator ε ≡ 0+ which is tied to locality of the
ρ j , and the regularisation parameter N which is finite for any vertex model approximation of
the ensemble and diverges in the scaling limit. At finite N all the poles and zeros of the Y j lie
on the physical strip P of Eq. (2.22) and the corresponding Y-system is canonical, Eq. (6.12).
The poles and zeros resulting from the node data λ j however approach the boundary of the
strip as 1/N , so that in the large-N limit they escape P , resulting in the appearance of node
terms in the thermodynamic Y -system, Eq. (4.11).

Throughout the work we have adopted a universal language, which should facilitate ex-
tensions to other models solvable through the Bethe ansatz framework. The simplest gen-
eralisation of the model considered here is its uniaxial anisotropic deformation [19]. The
extension to the ‘hyperbolic’ (easy-axis) regime, with quantum deformation parameter q ∈ R,
is straightforward and readily follows from an analytic continuation of the local degrees of
freedom (i.e. the scattering matrix) of the isotropic model considered here. In distinction, in
the ‘trigonometric’ (easy-plane) regime with the deformation parameter q = eiγ at the roots-
of-unity γ = m/` ∈ R, the total number of local degrees of freedom depends quite intricately
on the values of co-prime integers m and `, see [20, 40, 64]. To implement our approach,
the compete set of unitary local charges is required, already identified previously in [7]. The
closure of the functional hierarchy and the string-charge duality requires here an extra family
of non-unitary charges [44,65,66].

Going forward, an important open question is whether there exist physically discernible
features associated with the structures identified here. Addressing this will require analysing
the correlation functions of local observables [47, 59, 67–69]. We anticipate that it will be
interesting to examine the splitting between node and analytic data in this context, and hope
that the framework we provide offers a solid foundation upon which to proceed.
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