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Abstract

A basic diagnostic of entanglement in mixed quantum states is known as the positive par-
tial transpose (PT) criterion. Such criterion is based on the observation that the spectrum
of the partially transposed density matrix of an entangled state contains negative eigen-
values, in turn, used to define an entanglement measure called the logarithmic negativity.
Despite the great success of logarithmic negativity in characterizing bosonic many-body
systems, generalizing the operation of PT to fermionic systems remained a technical
challenge until recently when a more natural definition of PT for fermions that accounts
for the Fermi statistics has been put forward. In this paper, we study the many-body
spectrum of the reduced density matrix of two adjacent intervals for one-dimensional
free fermions after applying the fermionic PT. We show that in general there is a free-
dom in the definition of such operation which leads to two different definitions of PT: the
resulting density matrix is Hermitian in one case, while it becomes pseudo-Hermitian in
the other case. Using the path-integral formalism, we analytically compute the leading
order term of the moments in both cases and derive the distribution of the correspond-
ing eigenvalues over the complex plane. We further verify our analytical findings by
checking them against numerical lattice calculations.

Copyright H. Shapourian et al. Received 26-06-2019 L)

This work is licensed under the Creative Commons Accepted 04-09-2019 check £
Attribution 4.0 International License. Published 25-09-2019 updates

Published by the SciPost Foundation. doi:10.21468/SciPostPhys.7.3.037

Contents

1 Introduction 1
2 Preliminary remarks 5
2.1 Twisted and untwisted partial transpose for fermions 5
2.2 The moment problem 6
2.3 Partial transpose of Gaussian states 7
3 Spacetime picture for the moments of partial transpose 10
4 The spectrum of partial transpose 12
4.1 Spectrum of p’a 13
4.1.1 Adjacent intervals 13
4.1.2 Bipartite geometry 18


https://scipost.org
https://scipost.org/SciPostPhys.7.3.037
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.7.3.037&amp;domain=pdf&amp;date_stamp=2019-09-25
http://dx.doi.org/10.21468/SciPostPhys.7.3.037

Scil SciPost Phys. 7, 037 (2019)

4.2 Spectrum of pTA 19
4.2.1 Adjacent intervals 20

4.2.2 Bipartite geometry 21

5 Conclusions 22
A Twist fields, bosonization, etc. 23
B Rényi negativity for disjoint intervals 25
B.1 Moments ofpiA 25
B.2 Moments of pa 26

C Partial transpose with supersymmetric trace 27
D Negativity of bosonic scalar field theory 28
References 30

1 Introduction

Entanglement is an intrinsic property of quantum systems beyond classical physics. Having
efficient frameworks to compute entanglement between two parts of a system is essential not
only for fundamental interests such as characterizing phases of matter [1-4] and spacetime
physics [5] but also for application purposes such as identifying useful resources to implement
quantum computing processes. For a bipartite Hilbert space H, ® Hp, it is easy to deter-
mine whether a pure state |¥) is entangled or not: a product state, i.e. any state of the form
|®,) ® |®5), is unentangled (separable), while a superposition state [¥) = Y. a; |<I>g)) ® |<I>1(;)),
where |<I>S/)B) is a set of local orthogonal states, is entangled. The amount of entanglement in
a given state can be quantified by the entropy of information within either subsystem A or B,
in the form of the von Neumann entropy

S(pa) = —Tr(palnpa) ==Y a?lna?, &)

1

or the Rényi entanglement entropies (REEs)

1 1 ,
Ru(pa) = 1-n InTr(py) = -~ IHZ a”, (2)

where p, = Trp(|¥) (¥]) = >, a? |<I>X)) (@X)l is the reduced density matrix acting on H,.
Notice that S(p,) = S(pp) and R,(pa) = R,(pp) and clearly, S, R, = 0 where the equal-
ity holds for a product state. For analytical calculations, S is usually obtained from R, via
S =lim,,1 R,-

It is well-known that eigenvalues of density matrices, i.e. the entanglement spectrum, con-
tains more information than merely the entanglement entropies. The entanglement spec-
trum has been studied and utilized toward better understanding of the phases of matter
[6-23], broken-symmetry phases [24-28], and more exotic phases such as many-body local-
ized states [29-31]. In particular, in the context of conformal field theories (CFTs) in (1+1)d
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the distribution of eigenvalues was analytically derived [32] and was shown to obey a uni-
versal scaling function which depends only on the central charge of the underlying CFT. The
obtained scaling function for the distribution of the entanglement spectrum at criticality was
further substantiated numerically [33, 34], especially for matrix product state representation
at critical points [35-37].

It turned out that extending the above ideas to mixed states where the system is de-
scribed by a density matrix p is not as easy as it may seem. A product state p = p, ® pp
is similarly unentangled. However, a large class of states, called separable states, in the
form of p = Y. p; pg) ® pg) with p; = 0 are classically correlated and do not contain any
amount of entanglement. Hence, the fact that superposition implies entanglement in pure
states does not simply generalize to the entanglement in mixed states. The positive par-
tial transpose (PPT) [38-44] is a test designed to diagnose separable states based on the
fact that density matrices are positive semi-definite operators. The PT of a density matrix
P = 2 Pijki Ie(i),eg )) (egk),eg)I written in a local orthonormal basis {|e£\k)) , Ieg ))} is defined
by exchanging the indices of subsystem A (or B) as in

k j i l
o7 =3 1o, o) 0, o). ®
i

Note that p4 is a Hermitian operator and the PPT test follows by checking whether or not
o contains any negative eigenvalue. A separable state passes the PPT test, i.e. all the eigen-
values of p4 are non-negative, whereas an inseparable (i.e., entangled) state yields negative
eigenvalues after PT'. Hence, the PPT criterion can be used to decide whether a given density
matrix is separable or not. Similar to the entropic measures of pure-state entanglement in
(1) and (2), the (logarithmic) entanglement negativity associated with the spectrum of the
partially transposed density matrix is defined as a candidate to quantify mixed-state entangle-
ment [47-49],

Ty -1
N(P):%’ @)
5(p)=lanTA , (5)

where ||A|| = Trv/AAT is the trace norm. When A is Hermitian, the trace norm is simplified into
the sum of the absolute value of the eigenvalues of A. Hence, the above quantities measure
the negativity of the eigenvalues of p’4. It is also useful to define the moments of the PT (aka
Rényi negativity) via

Na(p) =InTe(p™)", (6)
where the logarithmic negativity is obtained from analytic continuation

Elp)= HEIEZNZn(p)- )

Note that for a pure state p = [¥) (¥|, we have £(p) = R, /2(p4) where p, is the reduced den-
sity matrix on H,. The entanglement negativity has been used to characterize mixed states in
various quantum systems such as in harmonic oscillator chains [50-58], quantum spin mod-
els [59-68], (1+1)d conformal and integrable field theories [69-76], topologically ordered
phases of matter in (2+1)d [77-81], and in out-of-equilibrium situations [82-87], as well as

1A technical point is that there exists a set of inseparable states which also pass the PPT test [45]. They are said
to contain bound entanglement which cannot be used for quantum computing processes such as teleportation [46].
This issue is beyond the scope of our paper and we do not elaborate further here.
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holographic theories [88-93] and variational states [94-97]. Moreover, the PT was used to
construct topological invariants for symmetry protected topological (SPT) phases protected
by anti-unitary symmetries [98-101] and there are experimental proposals to measure it with
cold atoms [102,103].

Unlike the entanglement spectrum which has been studied extensively, less is known about
the spectrum of partially transposed density matrices in many-body systems. It is true that the
PPT test which predates the entanglement spectrum is based on the eigenvalues of the PT,
but the test only uses the sign of the eigenvalues. Therefore, studying the spectrum of the PT
could be useful in characterizing quantum phases of matter. Furthermore, the fact that PT is
applicable to extract entanglement at finite-temperature states and that the eigenvalues have
a sign structure (positive/negative) may help unravel some new features beyond the entan-
glement spectrum. Recently, the distribution of eigenvalues of the PT, dubbed as the negativity
spectrum, was studied for CFTs in (1+1)d [72]. It was found that the negativity spectrum
is universal and depends only on the central charge of the CFT, similar to the entanglement
spectrum, while the precise form of the spectrum depends on the sign of the eigenvalues. This
dependence is weak for bulk eigenvalues, whereas it is strong at the spectrum edges.

In this paper, we would like to study the negativity spectrum in fermionic systems. The PT
of fermionic density matrices however involves some subtleties due to the Fermi statistics (i.e.,
anti-commutation relation of fermion operators). Initially, a procedure for the PT of fermions
based on the fermion-boson mapping (Jordan-Wigner transformation) was proposed [104]
and was also used in the subsequent studies [105-111]. However, this definition turned out
to cause certain inconsistencies within fermionic theories such as violating the additivity prop-
erty and missing some entanglement in topological superconductors, and give rise to incorrect
classification of time-reversal symmetric topological insulators and superconductors. Addi-
tionally, according to this definition it is computationally hard to find the PT (and calculate
the entanglement negativity) even for free fermions, since the PT of a fermionic Gaussian state
is not Gaussian. This motivates us to use another way of implementing a fermionic PT which
was proposed recently by some of us in the context of time-reversal symmetric SPT phases of
fermions [100,101,112]. This definition does not suffer from the above issues and at the same
time the associated entanglement quantity is an entanglement monotone [113]. From a prac-
tical standpoint, the latter definition has the merit that the partially transposed Gaussian state
remains Gaussian and hence can be computed efficiently for free fermions. A detailed survey
of differences between the two definitions of PT from both perspectives of quantum informa-
tion and condensed matter theory (specifically, topological phases of fermions) is discussed in
Refs. [112,113].

Before we get into details of the fermionic PT in the coming sections, let us finish this part
with a summary of our main findings. We study the distribution of the many-body eigenvalues
A; of the partially transposed reduced density matrix,

P(A) = Zé(l—ki) (8)

for one-dimensional free fermions. As a lattice realization, we consider the hopping Hamilto-
nian on a chain

A== Tt(ff,fy+He) +uflf, )
J

where the fermion operators f; and ij obey the anti-commutation relation

{fi:ij} :fiij +fj'i4fi = 5ij and {fiyfj} = {fiT:ij} =0.
Recall that using the regular (matrix) PT — we will refer to it as the bosonic PT —, which
applies to generic systems where local operators commute, the obtained PT density matrix is a

4
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Hermitian operator and its eigenvalues are either negative or positive. However, it turned out
that for fermions a consistent definition of PT involves a phase factor as we exchange indices
in (3) and in general one can define two types of PT operation. As we will explain in detail,
these two types correspond to the freedom of spacetime boundary condition for fermions as-

sociated with the fermion-number parity symmetry. We reserve p4 and p’ to denote the
fermionic PT which leads to anti-periodic (untwisted) and periodic (twisted) boundary condi-
tions along fundamental cycles of the spacetime manifold, respectively. We should note that
o™ is pseudo-Hermitian? and may contain complex eigenvalues, while p ™ is Hermitian and
its eigenvalues are real. We use the spacetime path integral formulation to analytically cal-
culate the negativity spectrum. In the case of p’4, we obtain results very similar to those of
previous CFT work [72], where the distribution of positive and negative eigenvalues are de-
scribed by two universal functions. In the case of p’4, we observe that the eigenvalues are
complex but they have a pattern and fall on six branches in complex plane with a quantized
complex phase of ZA = 27wtn/6. We show that the spectrum is reflection symmetric with re-
spect to the real axis and the eigenvalue distributions are described by four universal functions
along ZA = 0,+£21/6,+4m/6, w branches. We further verify our findings by checking them
against numerical lattice simulations.

The rest of our paper is organized as follows: in Section 2 we provide a brief review of
partial transpose for fermions, in Section 3 we discuss the spacetime path-integral formulation
of the moments of partially transposed density matrices. The spectrum of the twisted and
untwisted partial transpose is analytically derived in Section 4 for different geometries, where
numerical checks with free fermions on the lattice are also provided. We close our discussion
by some concluding remarks in Section 5. In several appendices, we give further details of the
analytical calculations and make connections with other related concepts.

2 Preliminary remarks

In this section, we review some basic materials which we use in the next sections: the definition
of PT for fermions, how to extract the distribution of the eigenvalues of an operator from its
moments, and some properties of partially transposed Gaussian states.

2.1 Twisted and untwisted partial transpose for fermions

In this part, we briefly discuss some background materials on our definitions of PT for fermions.
More details can be found in Refs. [112,113]. We consider a fermionic Fock space H generated
by N local fermionic modes f;, j = 1,---,N. The Hilbert space is spanned by |ny,n,, - ,ny)
which is a string of occupation numbers n; =0,1. We define the Majorana (real) fermion
operators in terms of canonical operators as

C2j-1 :=fj-i-+fj: Cgj = i(fj_fji-): Jj=1,...,N. (10)

These operators satisfy the commutation relation {c;, ¢y} = 26, and generate a Clifford alge-
bra. Any operator X acting on H can be expressed in terms of a polynomial of ¢;’s,

2N
X= Z Z XPl"'Pkcpl “Cpps (11)

k=1P1<p2<pPk

2A pseudo-Hermitian operator H is defined by nH ™! = H with n?> = 1 where 7 is a unitary Hermitian operator
satisfying n'n = nn" = 1 and n = n". Essentially, pseudo-Hermiticity is a generalization of Hermiticity, in that it
implies Hermiticity when n = 1.
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where X, . are complex numbers and fully antisymmetric under permutations of {1,..., k}.
A density matrix has an extra constraint, i.e., it commutes with the total fermion-number
parity operator, [p,(—1)f]= 0 where F = Zj f ]ﬁr fj- This constraint entails that the Majorana
operator expansion of p only contains even number of Majorana operators, i.e., k in the above
expression is even.

To study the entanglement, we consider a bipartite Hilbert space H, ® Hp spanned by f;
with j =1,--- N, in subsystem Aand j = N,+1, -, N4+ Nj in subsystem B. Then, a generic
density matrix on H, ® Hp can be expanded in Majorana operators as

kq+ko=even

p= Z Ppypiy 1, W1 """ py Dgy "+ Dy 5 (12)
kl)kZ

where {a;} and {b;} are Majorana operators acting on H4 and H5, respectively, and the even
fermion-number parity condition is indicated by the condition k; + k, = even. Our definition
of the PT for fermions is given by [101,112]

kq+ky=even

Ta = L0, T ..
p= Z Ppr-piar-ai, b 9pr 7 Apyy bg, b‘lkz’ (13)
kl’kZ

and similarly for p’®. It is easy to see that the subsequent application of the PT with respect
to the two subsystems leads to the full transpose (p%™)™ = pT, i.e. reversing the order of
Majorana fermion operators. In addition, the definition (13) implies that

(p™) = (—1)fapTa(—1)"s, (14)
(o™ = (—1)p(—1)", (15)

where (—1) is the fermion-number parity operator on Hy, i.e. Fy = . jeA ij fj- The first iden-
tity, namely the pseudo-Hermiticity, can be understood as a consequence of the fact that (p 74)"
is defined the same as (13) by replacing i*1 with (—i)*. The second identity reflects the fact
that the fermionic PT is related to the action of time-reversal operator of spinless fermions in
the Euclidean spacetime [101]. We should note that the matrix resulting from the PT is not
necessarily Hermitian and may have complex eigenvalues, although Trp ™ = 1. The existence
of complex eigenvalues is a crucial property which was used in the context of SPT invariants
to show that the complex phase of Tr(pp ™), which represents a partition function on a non-
orientable spacetime manifold, is a topological invariant. For instance, Tr(pp ™) = e'27*/8 for
time-reversal symmetric topological superconductors (class BDI) which implies the Zg classi-
fication. (Here v € Zg is the topological invariant). Nevertheless, we may still use Eq. (5)
to define an analog of entanglement negativity for fermions and calculate the trace norm in
terms of square root of the eigenvalues of the composite operator p, = [(p™)"p ], which
is a Hermitian operator with real positive eigenvalues. On the other hand, from Eq. (14) we
realize that p, = (p’)? where we introduce the twisted PT by

pi‘ = pla(=1)f, (16)

It is easy to see from Eq. (14) that this operator is Hermitian and then similar to the bosonic
PT always contains real eigenvalues. It is worth noting that

(p™) = p, 17
in contrast with the untwisted PT (15). As we will see shortly, this difference between pla
and p ™ in the operator formalism will show up as anti-periodic and periodic boundary condi-
tions across the fundamental cycles of spacetime manifold in the path-integral formalism. The
central result of our paper is to report analytical results for the spectrum of p’ and p .

6
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2.2 The moment problem

In the replica approach to logarithmic negativity (5) and negativity spectrum, one first has to
calculate the moments of PT, aka Rényi negativity (RN),

N,Ens)(lo) = InTr[(p™)"], N,Er)(P) - lnTr[(pTA)n]’ (18)

which are fermionic counterparts of the bosonic definition in Eq. (6). The superscripts (ns) and
(r) stand for Neveu-Schwarz and Ramond respectively (the reason for this will be clear from
the path integral representation of such quantities, see Section 3 below). Thus, the analog of
analytic continuation (7) to obtain the logarithmic negativity is

E(p)= lim N (19)
n—1/2

In the following, we review a general framework to analytically obtain the distribution of
eigenvalues of density matrix (or its transpose) from the moments. This method was originally
used to derive the entanglement spectrum of (1+1)d CFTs [32]. Suppose we have an operator
O whose moments are of the form

R, :=Tr[O"]. (20)

In terms of the eigenvalues of O, {4}, we have R, = Zj A;.l = f P(A)AMd A, where P(A) is the
associated distribution function (see Eq. (8)). The goal is to find P(1) by making use of the
specific form of R,, in (20). The essential idea is to compute the Stieltjes transform

fls):= ZR st= fdkip_(i) 21

Assuming that the eigenvalues are real, the distribution function can be easily read off from
the relation

P(A) = % lim Imf (A — i€). (22)

In the following we are going to focus on the complementary cumulative distribution func-
tion or simply the tail distribution, being a very simple object to be accessed for numerical
comparison

Amax
n(A) = J dAP(A). (23)

A
For specific types of operators such as the density matrices and their PT in (14+1)d CFTs, the
moments can be cast in the form,

R, =r,exp (—bn + %) , Vn, (24)

where a,b € R, b > 0 and r,, are non-universal constant. In such cases, the distribution
function is found to be [63]

af(eP—1) 5 _
PO ab) = Amll(Z\/aln(e /A)+6(e P —2), a>0,

_|a|9(€ b—1) 1(2 /lalln(e—b/A )+5(e_b A) a<o,

la|In(e=?/A)

(25)

and the corresponding tail distribution is given by

_ _ | Iy(2v/aln(e7®/1)), a>0,
n(4;a,b) = { Jo(2+/JalIn(eb/A)), a <o, (26)
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where J,(x) and I,(x) are the regular Bessel functions and modified Bessel functions of the
first kind, respectively. Note that (25) and (26) are derived by ignoring the presence of the
constants r,, in (24). This relies on the assumption that they do not change significantly upon
varying n, i.e., lim,_, o %ln r, < o0o. The very same assumption has been adopted for the
entanglement and bosonic negativity spectrum in Refs. [32] and [72] where the derived dis-

tribution functions agree with the numerically obtained spectra.

2.3 Partial transpose of Gaussian states

Here, we discuss how to compute the spectrum of the PT of a Gaussian state from the corre-
sponding covariance matrix. The idea is similar to that of the entanglement spectrum, while
there are some differences as the covariance matrix associated with the partially transposed
density matrix may contain complex eigenvalues. Before we continue, let us summarize the
structure of the many-body spectrum of p’4 and p’# for free fermions,

(A, A7) Im[A;]#0,

Spec[p™]:{ (A,4;) Im[A;]=0, A; <0, (27)
A’i Im[kl] = 0, A’i > 0,
... ) (A, A) A <0,
Spec[p 4] : { A, 2 >0, (28)

where repeating values mean two fold degeneracy. We should note that the pseudo-Hermiticity
of pT4 (14) ensures that the complex-valued subset of many-body eigenvalues of p’ appear
in complex conjugate pairs. This property is general and applicable to any density matrix
beyond free fermions. An immediate consequence of this property is that any moment of p '
is guaranteed to be real-valued.

A Gaussian density matrix in the Majorana fermion basis (10) is defined by

1 1 &
= exp| — Qacicr |, 29
where Q is a pure imaginary antisymmetric matrix and Z(Q2) = £4/det (2 cosh %) is the nor-
malization constant. We should note that the spectrum of Q is in the form of +w;, j=1,...,N

and the £ sign ambiguity in Z(Q) is related to the square root of determinant where we need
to choose one eigenvalue for every pair +w;. The sign is fixed by the Pfaffian. This density
matrix can be uniquely characterized by its covariance matrix,

1
Lix = ETr(pQ[Cj’CkD, (30)

which is a 2N x 2N matrix. These two matrices are related by

Q I+T
r =tanh(—), et= ——. (31)
2 I-T

Furthermore, one can consider a generic Gaussian operator which is also defined through
Eq. (29), but without requiring that the spectrum is pure imaginary. An equivalent description
in terms of the covariance matrix is also applicable for such operators. The only difference
is that the eigenvalues do not need to be real. Let us recall how Rényi entropies (2) are
computed for Gaussian states. The density matrix (29) can be brought into a diagonal form
pa = Z lexp (% Do wnd2nd2n_1), where w,, is obtained from an orthogonal transformation
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of Q. In terms of the eigenvalues of T', denoted by +v;, we have pg = [1,(1+iv,dynds,1)/2,

leading to
N n n
1 1—v; 1+
Rn(p)— m;hl[( 5 ) +( 5 . (32)

We consider a density matrix on a bipartite Hilbert space (12) where the covariance matrix

takes a block matrix form as
r:(IM QB). (33)

1—‘BA 1—‘BB

Here, I, and I'z; denote the reduced covariance matrices of subsystems A and B, respectively;
while Iz = T, describes the correlations between them. We define the covariance matrix
associated with a partially transposed Gaussian state by

[ T il

where [T, J;; = %Tr(pTA[ci,cj]) and [T_];; = %Tr(pTAT[ci,cj]). We should note that I, and I
have identical eigenvalues while they do not necessarily commute [T',,I_] # 0. In general, the
eigenvalues of T, appear in quartets (£, +v;) when Re[ v, ] # 0 and Im[ ;] # O or doublet
+v, when Re[v,.] = 0 (i.e., pure imaginary) or Im[ v, ] = 0 (i.e., real) . £ is because of skew
symmetry I'l = —T. In addition, the pseudo-Hermiticity of p™ (14) implies that

F:l,: =UIL Uy, (35)

where U; = (I, ® I3) is the matrix associated with the operator (—1)". This means that for
every eigenvalue v its complex conjugate v} is also an eigenvalue. As a result, the moments

of PT can be written as
1—v\" 1+ v:\"
i j _
2 2

Note that the sum is now over half of the eigenvalues (say in the upper half complex plane),
due to the structure discussed above.

For p T4 we use the multiplication rule for the Gaussian operators where the resulting Gaus-
sian matrix is given by

N

N,Ens) = Z In

Jj=1

(36)

ﬁi_]l‘i‘].—‘i

e =
-,

Ul ) (3 7)

which is manifestly Hermitian lele to the identity (35). Using Eq. (29), the normalization
factor is found to be ZTA = Tr(p™) = Tr[p(—1)f] = 4/detT,,. From (31) we construct the

covariance matrix I, = tanh(/2) and compute the moments of pTA by
N ~ n ~ n
1—9; 1+ 9,
N =N "1n L)+ :

where £7; are eigenvalues of T, which are guaranteed to be real. Consequently, the logarith-
mic negativity (19) is given by

+nlnZg,, (38)

1+ %

]+mzn. (39)
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For particle-number conserving systems such as the lattice model in (9), the covariance
matrix is simplified into the form ' = o, ® y where y = (I —2C) and C;; = Tr(p fiJ" fi) is
the correlation matrix and o, is the second Pauli matrix acting on the even/odd indices of
Majorana operators (cyj,Cpj—1). In this case, the transformed correlation matrix for ph
given by

—Yaa EiYaB
= ) . (40)
T ( +iyga  YBB )

The eigenvalues can be divided to two categories: complex eigenvalues v, Im[v,] # O
and real eigenvalues uy, Im[u; ] = 0. The pseudo-Hermiticity property leads to the identity
yl = U,y+U, which implies that complex eigenvalues appear in pairs (v, v;). Therefore, the
many-body eigenvalues follow the form,

1+o0y 1+ |v)? + 20 Re[ v ] 1—|v|? + 20 iIm[ v, ]
po =[5 [ L2 [ 2if s 2onimln]

ol o(=0, ox=—0,

(41)

where 0 = {0, = %} is a string of signs. Clearly, the many-body eigenvalues appear in two
categories as well: complex conjugate pairs (4, A}‘f) and real eigenvalues which are not nec-
essarily degenerate.

We can also derive a simple expression for the correlation matrix C=(- ¥)/2 associated

with p Ty

o [ YA Qa+7TasYBA) YaATaBYBB
Y= . . (42)
1YBa YBB

3 Spacetime picture for the moments of partial transpose

In the following two sections, we compute the moments of the partially transposed density
matrix and ultimately the logarithmic negativity. First, we develop a general method using
the replica approach [69, 70, 110] and provide an equivalent spacetime picture of the Rényi
negativity.

Before we proceed, let us briefly review the replica approach to find the entanglement
entropy. Next, we make connections to our construction of PT. A generic density matrix can
be represented in the fermionic coherent state as

:Jdadd dpdp p(a,p)|a) (ﬁ_le_aa_ﬁﬁ, (43)

where a, @, f and 8 are independent Grassmann variables and we omit the real-space (and
possibly other) indices for simplicity. The trace formula then reads

"] —f l_[ i | [[oo pJeS i, (44)
i=1
where the subscripts in 1); and v)); denote the replica indices and T is called the twist matrix,
0 -1 0

0 0 -1 O°
T=| . . . . (45)

- =1

1 0 0
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(b)

POV .

T b Tt

;‘a

Figure 1: (a) Spacetime manifold associated with Z Nn(a), Eq. (53), for n = 4. The
operator e'*™ twists the boundary condition of the cycles between two successive
sheets, shown as the green path with dashed lines. (b) Equivalent picture in terms
of twist field where we define a multi-component field on a single spacetime sheet.

The above expression can be viewed as a partition function on a n-sheet spacetime manifold
where the n flavors (replicas) 1); are glued in order along the cuts. Alternatively, one can
consider a multi-component field ¥ = (31,---,,)’ on a single-sheet spacetime. This way
when we traverse a close path through the interval the field gets transformed as ¥ — TW.
Hence, each interval can be represented by two branch points 7,, and 7:1_1 —the so-called twist
fields— and the REE of one interval can be written as a two-point correlator [114],

Zr = (T,T, '), (46)

where u and v denote the real space coordinates of the two ends of the interval defining the
subsystem A.

Let us now derive analogous relations for the moments of partially transposed density
matrix. Using the definition of the PT in the coherent state basis [112]

(s s) (Pa, ¥ = liYha, Y¥5) (i, Pl s (47)

we write the general expression for the moments of p4 as

239 =T(p™)"] = f [ Tawidd; [ TloGhiyp]eSuPalt atneZobulitn,  (4)
i=1

i=1

where 1) ;; and W js refer to the field defined within the s = A, B interval of jth replica. Here, we
are dealing with two intervals where the twist matrices are T and T~ as shown in Fig. 1(a).
Therefore, it can be written as a four-point correlator (1(b))

2 = (T A T ) Taup) T, (V) - (49)

Note that the order of twist fields are reversed for the first interval.

11
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From the coherent state representation, we can also write the moments of p

n

20 =T((p™)") =J [ Tawid: [ [l wo]eX iTmiezu il o)
i=1

i=1

The twist matrix for interval A is modified to be

0 - 0 -1
T=| 1 o (51)
0 1 0 0
0 1 0

which can be viewed as a gauge transformed twist matrix T~'. Analogously, Eq. (50) can be
written in terms of a four-point correlator

29 = (T ) T o) T ), 52)

where 7~; and ﬁ_l are twist fields associated with T.

For fermions with a global U(1) gauge symmetry (i.e., particle-number conserving systems)
there is a freedom to twist boundary condition along the fundamental cycles (e.g. the dashed-
line path in Fig. 1(a)) of the spacetime manifold by a U(1) phase (or holonomy). The boundary
conditions are independent and in principle can be different for different pairs of sheets. If we
assume a replica symmetry (i.e. uniform boundary conditions) v); — e!*));, the expression for
the PT moments in the operator formalism is given by

Zy (@) = Tr[(p Tae'*a)"]. (53)

Let us mention that some related quantities such as Tr[(p e!*F)"] were previously introduced
and dubbed charged entanglement entropies [115]. They were further used to determine
symmetry resolved entanglement entropies which is the contribution from the density matrix
to the entanglement entropies when projected onto a given particle-number sector [116,117].

From (53), we get a family of RN parametrized by a. However, for a generic fermionic
system (including superconductors), the U(1) symmetry is reduced to Z, fermion-parity sym-
metry. Hence, the two quantities of general interest would be

Zy(a=m) =2 =Tl(p™)], (54)
Zy,(a=0) =2z =Til(p")"]. (55)

We should reemphasize that either quantities are described by a partition function on the same
spacetime manifold (Fig. 1) as in the case of bosonic systems [70], while they differ in the
boundary conditions for fundamental cycles of the manifold. In other words, Zj(\?:) and Z/(\r/i
correspond to anti-periodic (i.e., Neveu-Schwarz in CFT language) and periodic (Ramond)
boundary conditions, respectively. This can be readily seen by comparing T~ and T. These
boundary conditions correspond to two replica-symmetric spin structures for the spacetime
manifold. This is different from bosonic PT of fermionic systems [107, 110], where RN is
given by sum over all possible spin structures. Essentially, the RNs associated with the two
types of fermionic PT are identical to two terms in the expansion of bosonic PT in Ref. [107].
In what follows, we compute the two RNs for two partitioning schemes:

e Two adjacent intervals which is obtained by fusing the fields in v, and ug. Hence, the
RNs are given in terms of three-point correlators

Z/(\ZS) = <7;_1(UA)7:12(VA)7:1_1 (VB» s (56)

12
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and

23 = (T ) QDT 08)), (57)
where we introduce the fusion of unlike twist fields,

Q2 :=T,T,. (58)

e Bipartite geometry where the two intervals together form the entire system which is in
the ground state. This time the RNs are obtained by further fusing the fields in u, and
vg and the final expressions are therefore given by the two-point correlators

23 = (T2 ) T2 0)), (59)
and
7 = (9, (1) Q2(va)). (60)

4 The spectrum of partial transpose

As mentioned, the first step to compute the tail distribution of the eigenvalues of partially
transposed density matrix is to find its moments. To this end, it is more convenient to work
in a new basis where the twist matrices are diagonal and decompose the partition func-
tion of multi-component field ¥ to n decoupled partition functions. For REE, this leads to
_17(n-1/2
Ip, = l_[kz—(n—l)/z Zy.n» where
~1
Zin = (TeaWTI0)). (61)

The monodromy condition for the field around 7y, and 7, are given by v — ei2mk/myy,, |
The calculation of the above partition function can be further simplified in terms of correlators
of vertex operators using the bosonization technique in (1+1)d. For instance, in the case of
REE, (61) can be evaluated by [114]

Zin = (Vi@V_ (v)), (62)

where Vi (x) = e~ %09 is the vertex operator and the expectation values is understood on
the ground state of the scalar-field theory £y = #auqsamp. The correlation function of the
vertex operators is found by

(Vi (z1) Vi () o< [ | |z —2 | (63)

i<j

where V,(z) = e'*?(®) is the vertex operator and Zj e; = 0. Hence, we can write for the
partition function

2
Zg, oclu—v[ 2T, (64)
leading to the familiar result
1
Ro=" nju—v+ - (65)
6n
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for the REE of 1d free fermions. Note that ellipses come from the proportionality constant in

(64) which show sub-leading terms and may depend on microscopic details. In what follows,
we apply the bosonization technique to evaluate Zﬁ:) and Z/(\r/Z similar to what we did for
the REE. The scaling behavior of RNs in the lattice model is compared with the analytically
predicted values of slopes (derived below) for various exponents n =1,---,7 in Fig. 2, where
the agreement is evident. We should note that the slope does not depend on the chemical

potential u in the Hamiltonian (9).

4.1 Spectrum of p’

In the case of RN (48), we can carry out a similar momentum decomposition as

(n—1)/2
(ns) _ (ns)
zP= [1 2™, (66)
k=—(n—1)/2
where
2 = (T ) Tin (V) T (up) Ty (V) 67)

is the partition function in the presence of four twist fields. We then use (63) to compute the
above correlator for various subsystem geometries. We should note that the following results
only include the leading order term in the scaling limit, £,{, — o0, where ¢; and {, are the
length of A and B subsystems, respectively.

4.1.1 Adjacent intervals

Here, we consider adjacent intervals (c.f. upper panel of Fig. 2(a)). The final result is given by

—aky a4k 2k2
Z]EHS): Zl " 62 " (€1+€2) n2 o |k/Tl| < 1/3, (68)
n
FU1, L5 1k/n)) - (€ + €)W 0ED ke /n] > 173,

where f(x,y;q) = %[xz(q_l)(_zqﬂ) y22a+D) 4y s y]. Notice that the exponents change
discontinuously as a function of k. This can be understood as a consequence of the 27t ambigu-
ity of the U(1) phase that the Fermi field acquires as it goes around the twist fields. Essentially,
we need to find the dominant term with the lowest scaling dimension in the mode expansion
(see Appendix A for more details). Adding up the terms in the ZE:) expansion, the final ex-
pression in the limit of two equal-length intervals £; = £, is simplified into /' ,E“S) =c,Inl+---
where

—%En—%%)) n=~6N,

_ ) —3(n—3 n=6N +1,6N +5,

@) l(ntd)  n=6eN+2.6N+4 (69)
—%(n+%) n=06N + 3,

where N is a non-negative integer. It is worth recalling that for the bosonic systems, the spec-
trum of PT contains only positive and negative eigenvalues. As a result, we see even/odd effect
for the moments. Here, however, the moments Zr(lns) have a cyclic behavior with a periodic-
ity of six, which signals the possibility for the eigenvalues to appear with a multiple of 27t/6
complex phase. As we will see below, this is indeed the case in our numerical calculations.
We should also note that the above result can be obtained from the adjacent limit v, — up of
two disjoint intervals (67) as explained in Appendix B. Taking this limit is a bit tricky and was

14
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Figure 2: Comparison of numerical (dots) and analytical (solid lines) results for the
scaling behavior of the moments of partial transpose (48) in the up row and (50)
in the down row for two subsystem geometries: (a) two adjacent intervals, and (b)
bipartite geometry. In (a), intervals have equal lengths £; = £, = £ and 20 < £ < 200
on an infinite chain. In (b), the total system size is L = 400 and 20 < £ < 100.
Different colors correspond to different moments n.

previously overlooked in Ref. [110], where it was incorrectly deduced that Zﬁf) = 0 for two
adjacent intervals.

We now discuss the spectrum of p’ for two adjacent intervals. It is instructive to look
at the many-body eigenvalues as obtained in (41) from the single-body eigenvalues of the
covariance matrix (40). From the numerical observation that Im(v;) # 0, we may drop the y;
factor in (41). Hence, the many-body spectrum simplifies to

A0',0": l_[ WRoy l_[ Wrot s (70)

o(=0}, 0(=—0,
where
1+ |v|? + 20, Re[ v, ]
Oy = (71a)
1—|v|? + 20, iIm[ v, ]
O = —— (71b)

and o = % is a sign factor. We should note that the complex and negative real eigenvalues
come from product of wy,, . This fact immediately implies that for every complex eigenvalue
Aj, A;f is also in the spectrum, since w;_,, = w}kak. Moreover, the negative eigenvalues are at
least two-fold degenerate.

In the case of free fermions, we numerically observe that w;, — |w1i|eii2?n as we go
towards the thermodynamic limit Ny = N — 00. As a result, the many-body eigenvalues are
divided into two groups: first, real positive eigenvalues, and second, the complex or negative

15


https://scipost.org
https://scipost.org/SciPostPhys.7.3.037

Scil SciPost Phys. 7, 037 (2019)

(a) (b)

0.1 / 300
S, S 200
»—81 '“\ é)
100
-0.1
0
01 0 01 02 03 3 2 - 1 2 3 0 2 4
Re() /(e )3) (bln [Ass A2

Figure 3: Spectral properties of p’ for two adjacent intervals with length ¢ on
an infinite chain. (a) Many-body eigenvalues are plotted over the complex plane.
The solid gray lines are guides for the eyes and a hint for the phase quantization. (b)
Histogram of complex phases of eigenvalues which indicates nearly quantized phases
in units of 7t/3. (c) Tail distribution function of modulus of eigenvalues. The solid
line is the analytical result (73b). To compute the many-body spectrum, we truncate
the single-particle spectrum with the first 28 largest (in euclidean distance from +1
on the complex plane) eigenvalues.

eigenvalues which take a regular form A i~ |A]- |eﬂ%si where s ;=1,2,3. Figure 3(a) shows the
numerical spectrum of p’. To explicitly demonstrate the quantization of the complex phase
of eigenvalues, we plot a histogram of the complex phase in Fig. 3(b) where sharp peaks at
integer multiples of /3 are evident. Due to this special structure of the eigenvalues, the
moments of p’4 can be written as

2 =2 1
—ZA”+2cos( )Z|Alj|"+zcos( )Z|A2]|"+cos(nn)ZMg]|“ (72

where {4,;},a =0, 1,2, 3 denote the eigenvalues along ZA = a7 /3 branches. Note that {1},
{2435}, i.e., positive and negative real eigenvalues, are treated separately, while {1,;} and {A,;}
represent the eigenvalues for both ZA = +7/3 and ZA = £27/3 branches. A consequence of
Eq. (72) is that there are four linearly independent combinations of the eigenvalues in Zﬁj).

This exactly matches the four possible scaling behaviors of Zﬁs) from our continuum field
theory calculations (69).
As a first characterization of the negativity spectrum, we compute the distribution of mod-

ulus of eigenvalues. To this end, it is sufficient to consider Zﬁs) for multiples of n = 6N which
is Zj(\r}:) = Zk |Ak|". Substituting (69) for b and a in (25) and (26), we get

bO(A A
P(|A|)=6(AM—|A|)+\E%MW 62), (733)
n(|Al) = Io(V68), (73b)

where

§=1+/blnfAy/Al (74)
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Figure 4: Spectrum of eigenvalues of p 4 with a certain complex phase (c.f. Fig. 3(a))
for two equal intervals on an infinite chain. Solid lines are the prediction in Eq. (76b).
Dots are numerics, with different colors corresponding to different subsystem sizes.
We use the same numerical procedure as in Fig. 3 to obtain few thousand largest (in
modulus) many-body eigenvalues from a truncated set of single particle eigenvalues.

and A, is the largest eigenvalue given by
.1 Toan 1
b=—InAy = lim —InTr(p )" = - In/. (75)
n—oo n 3

Figure 3(c) shows a good agreement between the analytical formula (73b) and the numerically
obtained spectra for various subsystem sizes. We should note that there is no fitting parameter
in (73b) and we only plug in A,; from numerics.

We can further derive the distribution of eigenvalues along different branches in Fig. 3(a).
The idea is to analytically continue Z/(\I}:) with n = 6N +m to arbitrary n and solve the resulting
four linearly independent equations generated by (72) to obtain the moments >, i |)sz|" for

each s = 0,---,3. This calculation relies on the assumption that lim,_, ., %” does not depend
on m, which is indeed the case in (69). Hence, we arrive at

b6y — 12D o
Pu(2) = 80 = Mbao + —— i > [Mapaph(2a58) — Mappy(2655)],  (762)
p=1
1< _
n (M= /;Maﬁzo(zaﬁg)JrMaﬁJo(zaﬁg) , (76b)

where P,(A) and n,(A), @ = 0,---,3 describe the distribution of eigenvalues along the
ZA = an/3 branch. Here, M and M encapsulate the coefficients

1 2] 2 1
~ 1 1 |-1 -1
1 =22 -1

(ay,ay,dy,d,) =( %, 1, %, v3), and & and b are defined in Eqgs. (74) and (75), respectively.
Several comments regarding the phase-resolved distributions (76a) and (76b) are in order.
The largest eigenvalue A;; > 0 is located on the real axis and hence only appears in Py(A).
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Figure 5: Spectrum of modulus of eigenvalues of p4 for bipartite geometry along
the real and imaginary axes. The total system size is L. = 2{ for each £. Solid lines are
the prediction in Eq. (85b). Dots are numerics, with different colors corresponding
to different subsystem sizes. A numerical procedure similar to that of Fig. 3 is used to
obtain few thousand largest (in modulus) many-body eigenvalues from a truncated
set of single particle eigenvalues.

The distribution of modulus is found by (P, + 2P; + 2P, + P3) which reproduces (73a). It is
easy to check that the distribution is normalized and consistent with the identity Trp 4 =

)

J AP(A)dA = f A[Py(A) + Py(A) — Py(A) — P3(A)]dA

Am
= | ABGy—A)+ 52 L(2E)1dA =1, (78)
0 152

It is also possible to study the scaling of the maximum eigenvalue (in modulus) IAg\?)l along
each branch. For the bosonic negativity, there are only two branches (positive and negative
real axis) and it was found that the scaling of the maxima is the same in the thermodynamic
limit [72]. In our case, for a given branch (labeled by a) the maximum |7L§\f[‘)| (with |lg4| =2Ay)
can be extracted as

1
In|A{y] = lim ;mZIAEf")I” =—b, (79)
J

where the result is independent of a. This again implies the same scaling along each branch,
up to a possible unknown constant due to non-universal coefficient that we are dropping in
the above formulas (see Eq. (24)).

We compare the analytical results with the numerical simulations for each branch in Fig. 4.
As expected, the numerical spectra reach the continuum field theory calculations as we make
the system larger. We should point out that in contrast with the bosonic negativity spectrum
and the entanglement spectrum which are given solely in terms of I,(x), the modified Bessel
function of the first kind, here the fermionic negativity spectrum contains the Bessel functions
J,(x) as well. Recall that unlike I,(x) which is strictly positive for x > 0, J,(x) does oscillate
between positive and negative values. Nevertheless, there is no issue in P,(A) which has to be
non-negative, as the linear combinations of I, and J, in (76b) are such that they are strictly
positive over their range of applicability within each branch.
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4.1.2 Bipartite geometry

Here, we consider two intervals which make up the entire system as shown in the upper panel
of Fig. 2(b). In this case, the branch points are identified pairwise as u, = vz and v, = ug,
where ¢; = v, —uy,. The partition functions in momentum space are found to be

_gk
e, |k/n| < 1/4,

— ki—1)2
(P k) > 174,

(ns) __
Zen = (80)

Similar to the adjacent intervals, the discontinuity in the k-dependence comes from the 27
ambiguity of the U(1) monodromy (Appendix A). As a result, we have N,E“S) =c,In(l)+---
where

—%(n—%) n=4N,
Cy = —§(n—g) n=2N+1, (81)
—E(Tl+ﬁ) n=4N + 2.

A benchmark of these expressions against the scaling of RN in numerical simulations is shown
in Fig. 5(c). Because of the cyclic analyticity of the N,EHS) modulo four, we expect to have the
many-body eigenvalues along the real and imaginary axes. In other words, the complex phase
of eigenvalues are multiples of 27t/4.

We now derive the complex phase structure of many-body eigenvalues from the single par-
ticle spectrum. In the current case, the density matrix is pure leading to the identity y? = I for
the covariance matrix. This property implies that the spectrum of the transformed covariance
matrix (40) can be fully determined by the covariance matrix associated to the subsystem A,
i.e., yaa in Eq. (40). Hence, the single particle eigenvalues are given by

vk:‘U,k'FiV].—‘UJi, (82)

and its Hermitian conjugate for v;, where w;’s (k = 0,---,N,) denote the eigenvalues of
Yaa [104]. Using (41), the many-body eigenvalues can be written as

(83)

: 42
Aoor= | ] —1+‘27"“" 1 —le“zl oy
o)=07 o)=—07

This decomposition has two types of factors: real positive and pure imaginary. Therefore, the
many-body eigenvalues manifestly lie on the real and imaginary axes. Moreover, the many-
body spectrum contains pairs of pure imaginary eigenvalues +iA ;. The real negative eigenval-
ues are also two-fold degenerate since they are obtained from the product of even number of
pure imaginary factors. In contrast, the real positive eigenvalues are not necessarily degener-
ate. As a result, the moments of p 4 take now the following form

o n
Z/(\/:) = ;7&&- + 2COS(?); | 211" + cos (””)z 2251, (84)

where {1,;},a = 0,1,2 denote the eigenvalues along ZA = am/2. This expression in turn
implies that there are three types of combinations of different branches for all n, which is
again consistent with (81). By analytically continuing the three cases, we derive the moment
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> i |A4;j|" for each branch. The resulting distributions are found to be

bO(Ay — IAD) | < -
Pa(A):5(7LM—7L)5aO+4|A;—|g > Mypagli(2a58) — M,aJ;(2d8) |, (85a)
p=1
2
1 ~ -
na(A)= 5 | 2 Maplo(2a58) +MoJo(20E) |, (85D)
p=1
where M and M encode the coefficients
1 2 1
MM=(1 o |-1 ], (86)
1 —21 1

(ay,ay,d) =(2,1,2+/2) and £ is defined in (74) with b=—1In A, = %lné. As shown in Fig. 5,
the above formulas are in decent agreement with numerical results.

Also in this case the maximum (in modulus) || along the different branches can be
evaluated through Eq. (79), giving (up to an unknown non-universal constant) In|A},| = —b
independent of a. Finally, also for the bipartite geometry, a consistency check is obtained from
Trp ™ = 1, which simply follows from a calculation analogous to Eq. (78).

4.2 Spectrum of pTA

Again, the first step to find the moments is the momentum decomposition of (50), yielding

(n-1)/2
(0 _ (r
z2= ] z%, (87)
k=—(n—1)/2
where the partition function
20 = (T ) T (V) T () T () - (88)

is subject to modified monodromy conditions for the ﬁ’n and ﬁ_nl, which are

Yy — e @mk/m=mq),  This monodromy is different from the supersymmetric trace [118] (see
Appendix C for the definition and more details).

4.2.1 Adjacent intervals

In this case, we find that

o1k =Ly 2k -1 _olkj12k—1 kik)_1
29 oc (UREDIEED 0D (g g s, 89)

It is important to note that for k < 0, we modified the flux at u; and v; by inserting addi-
tional 27t and —27t fluxes, respectively, where the scaling exponent takes its minimum value
1)

(c.f. Appendix A). Summing up Z ]E , terms, we get

NO =cDne) +cPn(ty) + P ln(l; +£5) + -, (90)
where
(w—_L (no + i), (o1
° 12 n,
1 1
2) _ (3) —
cr(lo) = cflo) =13 (no - Tl—o) , (92)
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Figure 6: Tail distribution function for the spectrum of p’4 of two equal adjacent in-
tervals on an infinite chain. Solid lines are the analytical distributions from Eq. (97b).
Dots are numerics, with different colors corresponding to different subsystem sizes.
We use the same numerical procedure as in Fig. 3 to obtain few thousand largest (in
modulus) many-body eigenvalues from a truncated set of single particle eigenvalues.

for odd n =n,, and

1(n 2
M_.@Q__2(le_=2 93
Cne Cne 6(2 ne)’ ( )
1/n 1
(3) — e
cl/=——=+—, 94
ne 6(2 ne) ©4)

for even n = n,. As a consistency check, we show in Appendix B that the above formulae can
be derived from two disjoints intervals as the distance between the intervals is taken to be
zero. Notice that the even n case is identical to the general CFT results [70]. Also, from (19)
we arrive at the familiar result for the logarithmic negativity,

E="In| —=—|+---. 5
n(zl 0 (95)

For equal length intervals, we may write N ,Sr) =c,Inl +--- where

B —l(n +nlo) n=n, odd,
= { —g (%j— i) n= n: even. (96)

As expected for Hermitian operator p’4, here the moments /\/',Er) only depend on parity
of n, i.e., whether n is odd or even. This means that the eigenvalues are real positive or
negative. We can also see this from the fact that the single particle spectrum is real. The
many-body eigenvalues follow the form A, = | o= +(1+0, v )/2, where v, are single-particle
eigenvalues of the covariance matrix (42). As discussed in the previous section, we carry out
the same procedure to derive the distribution from analytic continuation of moments (in this
case there are only two branches). The final result reads

P =50y ~ 1)+ 2 () + VELQVERL 970
1
n(A) = 5[Jo(28)sgn(2) + o(2v28)], (97b)
where & obeys the same form as Eq. (74) with a slight difference that b = —InA;; = %lnf.

We present a comparison of the above expression with numerical spectrum of free fermions
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on the lattice of different lengths in Fig 6. There is a good agreement between analytical and
numerical results.

We further find that, as it was the case for the bosonic negativity, the scaling of the min-
imum and maximum eigenvalue is the same. Finally, we confirm that the distribution prob-
ability is properly normalized such that ka(?L)d?L = Tr[p(—1)f] and it is consistent with
&= %lnﬁ, Eq. (19), which follows from

Am
£= lnf dAIAP(A) = ln[?tM +f dA bTﬁzl(zﬁg) _ %me. 98)
0

4.2.2 Bipartite geometry
In this case, we start by computing the correlator

—2(|Z% -1y

2 = (92 (un) Q2 () o< ;2052 o

Here again, we have to minimize the scaling exponent for k < 0 by inserting additional 27
fluxes (c.f. Appendix A). The RN is then found to be Nrgr) =c,In({;) +--- where

_ —%(n +%) n=n, odd,
Cn_{ —%(%ﬂo—%) n=n: even. (100)

From this, we derive the distribution of many-body eigenvalues to be

PA) =6y —A)+ %gm[—ﬁJl(zﬁg)sgn(x) +21,(48)], (101a)
n(2) = S [o(2V2E)5n(2) + (49)), (101b)

where £ is given in (74) and b =—1InA;; = éln[.
We finish this part by a remark about the covariance matrix. Using the fact that y2 = I for
pure states, the covariance matrix (42) can be further simplified into

- —2v L —i
Y:( Taa™%Yaa TaB ) (102)
YBA YBB

Similar to the adjacent intervals, we can calculate the many-body spectrum out of eigenvalues
of the above covariance matrix. We confirm that the numerical results and analytical expres-
sions match. However, we avoid showing the plots here as they look quite similar to Fig. 6.

5 Conclusions

In summary, we study the distribution of the eigenvalues of partially transposed density ma-
trices, aka the negativity spectrum, in free fermion chains. Taking the PT of fermionic density
matrices is known to be a difficult task even for free fermions (or Gaussian states). However,
recent studies [100, 101, 112] suggest that this difficulty could be circumvented if we use a
different definition for partial transpose which is closely related to time-reversal transforma-
tion. In a matrix representation of a fermionic density matrix, e.g. in Fock space basis, the
latter operation involves multiplying a Z, complex phase factor in addition to the matrix trans-
position where the phase factor solely depends on the fermion-number parity of the state of
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subsystems to be exchanged in the transpose process. It turned out that the phase factor in

the fermionic partial transpose lead to two types of partial transpose operation p’4 and p .
The difference is that p4 is pseudo-Hermitian and may contain complex eigenvalues, while

o is Hermitian and its eigenvalues are real. This is in contrast with the fact that the standard
partial transpose p 4 is always a Hermitian operator which implies a real spectrum. In this
paper,we presented analytical and numerical results for the negativity spectra of two adjacent
intervals on a free fermion chain using both types of fermionic partial transpose. In the case of
o4, we find that the negativity spectra share a lot of similarities with those found in a previous
CFT work [72]. However, in the case of p’4, we realize that the eigenvalues form a special
pattern on the complex plane and fall on six branches with a quantized phase of 27n/6. The
spectrum in the latter case is mirror symmetric with respect to the real axis, and there are
four universal functions which describe the distributions along the six branches. The sixfold
distribution of eigenvalues is not specific to complex fermion chain (described by the Dirac
Hamiltonian) with ¢ = 1 and also appears in the critical Majorana chain with ¢ = 1/2. We
further confirmed that our analytical expressions are applicable to the Majorana chain upon
modifying the central charge c. The fact that the negativity of two adjacent intervals is given
by three-point correlators of twist fields suggests that our free fermion results for the negativ-
ity spectrum may be generalized to other (possibly interacting) fermionic CFTs. Our method
is also applicable to the case of two disjoint intervals; however, the result may not be as uni-
versal since the negativity of two disjoint intervals involves four-point correlator of twist fields
(which depends on the full operator content of CFTs).

Given our free fermion results in one dimension, there are several avenues to pursue for
future research. A natural extension is to explore possible structures in the negativity spectrum
of free fermions in higher dimensions. It would also be interesting to understand the effect of
disorder and spin-orbit coupling on this distribution. In particular, the random singlet phase
(RSP) [119], which can be realized in the strongly disordered regime of one-dimensional free
fermions, is characterized by logarithmic entanglement entropy [63, 120, 121] that is a hall-
mark of (1 + 1)d critical theories. An interesting question is how the negativity spectrum
of critical RSP differs from the clean limit which was studied in this paper. Another direc-
tion could be studying strongly correlated fermion systems and specially interacting systems
which have a description in terms of projected free fermions such as the Haldane-Shastry spin
chain [122,123]. Furthermore, it is worth investigating how thermal fluctuations affect the
negativity spectrum in finite-temperature states. Finally, the negativity spectrum may be useful
in studying the quench dynamics and shed light on thermalization.
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A Twist fields, bosonization, etc.

The Rényi entanglement entropy (REE) of a reduced density matrix p is defined in Eq. (2).
For non-interacting systems with conserved U(1) charge, we can transform the trace formulas
into a product of n decoupled partition functions. Let us first illustrate this idea for REE [114].
We can diagonalize the twist matrix T in Eq. (45) and rewrite the REE in terms of n-decoupled
copies,

Zg, = f [ Tdwid e [ [LoGhr, )] eXiteint, (103)
k k

where A, = o275 for k = (n—1)/2,---,(n—1)/2 are eigenvalues of the twist matrix. In
this new basis, the transformation rule ¥ — T for the field passing through the interval
becomes a phase twist, i.e., 1; — A Y. Therefore, the REE can be decomposed into product
of separate factors as

(n=1)/2
Zn,= || Ziw (104)
k=—(n—1)/2

where Z; , is the partition function containing an interval with the twisting phase 2mk/n. We
reformulate the partition function in the presence of phase twisting intervals in terms of a
theory subject to an external gauge field which is a pure gauge everywhere (except at the
points u; and v; where it is vortex-like). This is obtained by a singular gauge transformation
ifx dx™AK (x)
Pr(x) = e o T Ty (), (105)
where x, is an arbitrary fixed point. Hence, for a subsystem made of p intervals,

A= Ule[ui,vi], we can absorb the boundary conditions across the intervals into an exter-
nal gauge field and the resulting Lagrangian density becomes

L= (8, +145 )y, (106)
where the U(1) flux is given by
e
ewavAﬁ(x)=2n;2[5(x—ui)—5(x—vi):|. (107)

i=1

Note that there is an ambiguity in the flux strength, namely, 2tm (integer m) fluxes may be
added to the right hand side of the above expression, while the monodromy for the fermion
fields does not change. To preserve this symmetry (or redundancy), Z; must be written as
a sum over all representations [124-127]. The asymptotic behavior of each term in this ex-
pansion is a power law £~ %= in thermodynamic limit (large (sub-)system size). Here, we are
interested in the leading order term which corresponds to the smallest exponent a,,.

As we will see in the case of entanglement negativity, we need to consider m # 0 for
some values of k. Let us first discuss this expansion for a generic case. Let S, be a partition
function on a multi-sheet geometry (for either Rényi entropy or negativity). As mentioned,
after diagonalizing the twist matrices S, can be decomposed as

Sy=>InZ, (108)
k
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where Z; is the partition function in the presence of 2p flux vortices at the two ends of p
intervals between u,;_; and u,;, that is

Zy = (e[ Al ) (109)
in which
2p
M8, A, () =21 D v 5(x — 1), (110)

i=1

and 27y ; is vorticity of gauge flux determined by the eigenvalues of the twist matrix. The
total vorticity satisfies the neutrality condition Zi vi,; = 0 for a given k. In order to obtain the
asymptotic behavior, one needs to take the sum over all the representations of Z; (i.e., flux
vorticities mod 27),

Z=>.7", (111)
{m;}

where {m;} is a set of integers and
L)
Zim = <e1f A d2x> , (112)

is the partition function for the following fluxes,

2p
e“vavAg”)’k(x) =27 Z Vi,i0(x —u;), (113)
i=1

and V; = vy ; + m; are shifted flux vorticities. The neutrality condition requires ), m; = 0.
Using the bosonization technique, we obtain

(m) _ 2V Vi j
2" = Cpmy | [l =P, (114)
i<j
where Cyp,} is a constant depending on cutoff and microscopic details. We make use of the
. IR ~ ~ _ N2 .
neutrality condition —2 33, Vi Vi,; = 25; ¥ ; and rewrite

Z~ D Cpmy 2T = 5 iy €2, (115)
{m;} {m;}

where { is a length scale. From this expansion, the leading order term in the limit { — oo
is clearly the one(s) which minimizes the quantity ), Tzi’i. This is identical to the condition
derived from the generalized Fisher-Hartwig conjecture [128,129]. A careful determination
of the leading order term for REE by a similar approach was previously discussed in Ref. [125-
127].

We now carry out this process for Zﬁ:) in Eq. (67) for two adjacent intervals. Here, we
need to minimize the quantity

fm1m2m3(7’)=(V+m1)2+(V+m3)2+(—21’+m2)2 (116)

for a given v =k/n=—(n—1)/2n,---,(n—1)/2n by finding the integers (m,, m,, m3) con-
strained by Zi m; = 0. For instance, let us compare (0,0, 0) with (—1,1,0),

fooo(V) = 61’2, 117)
fo110(») =62 —6v+2. (118)
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So, we have

1
fooo(¥) > f_110(») for v> 3 (119)

Similarly, we find that

1
fooo() > fi—10(») for v< 3 (120)
In summary, we resolve the flux ambiguity by adding the triplet (m;, m,, m3) as follows

(0,0,0) v <1/3
(-1,1,0),(0,1,—1) v>1/3 (121)
(1,-1,0),(0,-1,1) v<—1/3.

This leads us to write Eq. (68). Finally, similar derivation can be carried out to arrive at Egs.
(80), (89) and (99).

B Rényi negativity for disjoint intervals

In this appendix, we derive the RN associated with p’ and p for two disjoint intervals and
show that upon taking the distance between the intervals to zero, we recover the results for
two adjacent intervals as discussed in the main text.

B.1 Moments of p’

This geometry is characterized by vy —uy = £, ug —v4 =d, and vy —up = {, (c.f. Fig. 7(a)).
The leading order term of the momentum decomposed partition function in the case of disjoint
intervals is given by

(ns) x 2k? /n?

ns

Zk,n = Cko (W) +--- (122)
1t2

where

U+l +d)d
Tl Dt d)

(123)

Consequently, the RN is found to be

2
(ms) _ [ —1 1 ( X ) 12
N3 ( o )n 0 +e (124)

We compare the above formula with the scaling behavior of the numerical results in Fig. 7(b),
where we find that they match.

As a consistency check, we show that the RN between adjacent intervals can be derived as a
limiting behavior of the disjoint intervals. = However, we realize from (122) that
limy_, Z]glrf) = 0 (as is done also in Ref. [110]). A more careful treatment goes by consid-
ering higher order terms coming from different representations in (115)

25 25105 1-1)
(ns) X n2 X nitn
Zk,n =Ck0(_£ E ) +Ck1 (_f E ) [g(£1,£2;k/n)+g(€1+d,£2+d,k/n)]+-~-,
1t2 1t2
(125)

26


https://scipost.org
https://scipost.org/SciPostPhys.7.3.037

Scil SciPost Phys. 7, 037 (2019)

where g(x,y;q) = x2(x/ y)2|q|+x < y and ¢y, are coefficients dependent on the microscopic
details. Next, we obtain the leading order term in the coincident limit d = ¢, where ¢ < £, {,.
To this end, we rewrite the above expansion (125) as

(ns) _ [2k%/n® (0) 4 _2lk/n|(Ik/nl-1) (1) |
Z, =€ Mz + e TRz (126)
where the scaling dimensions are

[Z]Eorz] -~ L—6N2/n2’ (127a)
[21513] -~ L—Z(Skz/nz—Slk/n|+1)_ (127b)

As we see, for |k/n| > 1/3, the second term is dominant. This immediately implies that upon
taking (¢; + d) ~ {;, we recover the original result (68).

B.2 Moments of pTA

Similarly, we find the k-th contribution to the n-th moment of pTA to be

@ _ 2lk/nl(k/n-1/2) 1
Zya =X (20k/n=1/2)2 2k n? T (128)
1 2

which gives rise to the following form for the RN,

N = O In(ey) + <P In(t) + P ln(x) + -+, (129)
where
1 2 —
_] 76 (no+2)  m=n, odd, (130)
n _% (ne _ nie) n=n, even,
2
@__(n—1 131
K ( — ) (131)
1 1 _
] 2 (no - n_a) n=n, odd, (132)
n _% (%4_%) n=n, even.

We compare the scaling behaviors of analytical expressions and numerical results in Fig. 7(c).
As we see, they are in good agreement.

It is easy to verify that taking the adjacent limit d = ¢ of two disjoint intervals in Eq. (129)
leads to Eq. (90). We should note that in this case the leading order term in the momentum
expansion (128) remains always the same (128) in contrast with the previous case (125).

C Partial transpose with supersymmetric trace

Let
NEI(p) = InTi[(pT)"], (133)

where Tr is the supersymmetric (susy) trace for the interval A. The susy trace is distinct from

the regular trace in that the T matrix which glues together pi‘ for fermions is given by (45),
while the susy trace is similar to a bosonic trace (even though applied to a fermionic density
matrix) where the T matrix is given by (145) (see below). It is easy to see that T" = (=1t
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Figure 7: Comparison of numerical (dots) and analytical (solid lines) results for the
scaling behavior of the moments of partial transpose (48) and (50) for two disjoint
intervals (the geometry is shown in panel (a)). Here, d = 40 and intervals have
equal lengths ¢; = £, = { where 20 < ¢ < 200 on an infinite chain. The analytical
results are given by Eq. (122) in panel (b) and Eq. (128) in panel(c). Different colors
correspond to different moments n.

for the regular trace of fermionic density matrices whereas T" = 1 for the susy trace. Clearly,
there is no difference between the susy and regular traces for even n when considering (p 4)".
The susy trace was used previously to define the susy entanglement entropies [118]. (See
Refs. [130-132] for related works.) In terms of the partial transpose (13), the susy trace is
simplified into

InTr(pTpa-.. pTapTaT)  n even,

InTr(pTapTat... pTa) n odd, (134)

=]

which was studied by some of us in [112] and was shown to obey the same expressions as the
bosonic negativity [70] for both even and odd values of n. In this appendix, we briefly report
the results for various geometries. A technical point is that the monodromy of the field around
’ﬁ)n for the susy trace is given by 1, — e*mk/nm=¢n)a)y, where ¢, = 7 or m(n—1)/n for n
even or odd, respectively [110,133].

1. Disjoint intervals: in this case the moments (133) become
NEsY) = Win(e,6,) + P In(x) + -, (135)

where x is defined in (123), cfll) =—(n?—1)/6n, and

1 1

—=|n,—=— n=n, odd,

P={ P ( ° 1“0) ° (136)
—zz\l7 + w n=n, even.

2. Adjacent intervals: when the distance d — 0, i.e., x — 0 in the above expression, the
moments take the form

NES) = Wn(e,6,) + Pl + )+, (137)
where
1 1
0=dd=g5(n) 0
o
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for odd n =n,, and

1(n 2
M__2(Ze_2 139
Cp, c ( > ne), (139)
1(n 1
() = e
c — | =+—, 140
e 6 ( 2 ne) (140)
for even n = n,.
3. Bipartite geometry: finally, in this case one has
N = ¢, In(ly) +- (141)
where
o —% (no — nio) n=n, odd, (142)
" —%(%—%) n=n, even.

D Negativity of bosonic scalar field theory

As we have seen in the main text, calculating negativity boils down to computing correlators
of twist fields. In this appendix, we briefly review the conformal weights of the twist fields in
the complex scalar field theory,

1
Ly= 4_75J Vol (143)

from which we can compute the correlators of twist fields and derive expressions for the en-
tanglement of free bosons. Similar to fermions, the moments of density matrix in the coherent
basis read as

[p"] —J ]‘[d¢ dqb* p(¢;‘,¢i)]e2f»f 4Tt (144)
where
01 0 ...
0 0 1 O
T= A . . (145)
10 0

For the moments of the partial transpose, we have

Zy, =Trl(p™)"] J [ [agido; ﬂ [P (7, @] 2 LI 071000 (146)
i=1

In the case of free bosons, the moments can be written as a product of partition functions of
decoupled modes,

n—1

Zr, = | [(TSHOTea0)), (147)
k=0
n—1

Zy, = | [T )T 0T (L)), (148)
k=0
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Hence, our objective here is to find the conformal weight of 7 ,, 77( ,» and their adJo1nts It
is worth noting that in the case of bosons k takes positive integer Values k=0,1,---,n—1.
This is because the global boundary condition is periodic, i.e. the twist matrix obeys T“ =1.
As usual in the conformal field theory, the computation goes by placing a twist field 7; ,, at the
origin which leads to a ground state 7 ,(0)|0) where ¢(z) and ¢*(z) are multivalued fields
with the boundary conditions ¢ (e'?"z) = eiznk/”qb(z) and ¢*(e?"z) = e_iznk/nqﬁ*(z). Next,
we compute the correlator

(0080 ® " Vijn = (T, (0010, 0, [ Tin(0)) (149)

to find the expectation value of the energy-momentum tensor via

. /1 . 1
(1o =~lim {32929+ g0 (150
Using the fact that
ATy
T in(0)10) ~ —3Tn(0)[0) + -, (1s51)

we can read off the conformal weight A7, .

Let us start with 7y , and T 1. The correlation function (149) can be directly computed by
the mode expansion of ¢ ﬁeld or can be simply derived from the asymptotic behavior z — w
and z — 0 or w — oo. The result is found to be [134,135],

1 1. —k/n[2(1—=k/n)+wk/n
—5 (0680 Dy =W [( (Z/_ L)z 4 ] (152)
which leads to
k k
Ar =Ara=—|[1—-]. (153)
Tion Ten ~ 2n n

We should note that doing this calculation for complex Dirac fermions, instead, leads to A7, =
k2/2n?. So, the Rényi entropies are given by

2 n+1
Ry = ZATM 1ne_( - )1 L. (154)

1—n n

One can do a similar calculation for 7;(271. In this case, the boundary condition is ¢ (e'?"z) =
e!4™k/n ¢ (2). For k/n < 1/2, the result is identical to (153) up to replacing k/n by 2k/n. For
1/2 < k/n < 1 however, the effective phase shift is 2w(2k/n — 1) and we need to substitute
k/n in (153) by 2k/n — 1. This result can also be understood from the mode expansion.
Consequently, we arrive at

k (1 - %) k1
(27—1)(1—5) 7<a<l
Using the following expression for the moments of partial transpose,
Ny =cWIn(l,€,) +cPInl; +£) +--, (156)
we find
n?—4
—c _Z Ags = Ton N even (157)
k,n Tl12—n]. n Odd
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and
nl P2 even
—cP=> @Ay, —Ap)=1 , (158)
k=0 ' 7 1 odd

which are the familiar results [ 70].
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