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Quantum scrambling and state dependence
of the butterfly velocity
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Abstract

Operator growth in spatially local quantum many-body systems defines a scrambling
velocity. We prove that this scrambling velocity bounds the state dependence of the out-
of-time-ordered correlator in local lattice models. We verify this bound in simulations of
the thermal mixed-field Ising spin chain. For scrambling operators, the butterfly veloc-
ity shows a crossover from a microscopic high temperature value to a distinct value at
temperatures below the energy gap.
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1 Introduction

Strongly quantum many-body systems have been important in condensed matter [1, 2] and
nuclear physics [3,4] for some time and are likely to become increasingly important with the
ongoing development of quantum information processing technology [5–7]. It is essential to
understand the spatio-temporal dynamics of these systems in highly quantum regimes where
semiclassical methods such as the Boltzmann equation are inapplicable.

Significant progress has been made recently by considering quantum scrambling in many-
body systems [8–13]. Quantum scrambling arises when operator growth under Heisenberg
time evolution redistributes local information to non-local degrees of freedom. It has been
found that scrambling in spatially local systems is characterized by both a rate and a velocity,
e.g. [14–17]. These universal properties are manifested in the so-called out-of-time-ordered
correlator (OTOC):

C(x , t;ρ)≡ tr
�

ρ [O1(0, t), O2(x , 0)]†[O1(0, t), O2(x , 0)]
�

, (1)

defined for local operators O1, O2 in state ρ. The OTOC has been found to reveal a ‘light
cone’ spread of quantum information, with two state-dependent characteristics: the quantum
Lyapunov exponent λ and the butterfly velocity vB. Just outside the light cone (or ‘butterfly
cone’) |x |¦ vB t for t > 0, the OTOC grows as the front is approached according to [18,19]:

C(x , t;ρ)∼ e−λ(|x−x 0|/vB−t)1+p/tp
. (2)

In systems with many local degrees of freedom (e.g. large N systems) the exponent p = 0
and the growth is exponential. This case is reminiscent of the classical butterfly effect. In spin
lattice systems, generally p > 0, so that the front broadens as it spreads.

The butterfly velocity is a state-dependent speed of information propagation that is uni-
versally present in local systems, plausibly controlling important physical processes such as
transport in strongly quantum regimes [20–26]. The state dependence means that the but-
terfly velocity is a more powerful probe of dynamics than the widely employed microscopic
Lieb-Robinson velocity [27]. In this work we will show that this state dependence (e.g. tem-
perature dependence) is tied to the underlying quantum scrambling of operators.

In quantum field theories that describe a nontrivial (quantum critical) continuum limit
of lattice systems, the scaling of the butterfly velocity with temperature is vB ∼ T1−1/z in
the simplest cases [16, 20]. The dynamical critical exponent z describes the relative scaling
of space and time. In this work we will characterize the butterfly velocity in general lattice
models, away from critical points and without a large N limit. We will obtain the temperature
dependence of the butterfly velocity in quantum spin systems, extending previous infinite tem-
perature results [19,28]. The temperature dependence of scrambling in classical spin systems
has been recently discussed in [29].

In a spatially local system the growth of operators determines a ‘scrambling velocity’ vS ,
defined in (8) below. Our first result (9) states that the change of the velocity-dependent
Lyapunov exponent — defined shortly in (6) — with temperature is bounded by the scrambling
velocity. This result is rigorous for one-dimensional systems and plausibly true more generally.
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We verify the bound in numerical simulations of the mixed-field Ising model, focusing on
the temperature dependence of the butterfly velocity. In Fig. 2 below we see that the non-
interacting transverse field model has a temperature-independent butterfly velocity whereas
the velocity is temperature-dependent for the interacting mixed field models. In these curves,
the butterfly velocity crosses over from a microscopic infinite-temperature value to a low-
temperature value. The temperature scale of the crossover is set by the energy gap.

2 Three velocities from locality

It will be crucial to understand three different velocities that characterize spatially local quan-
tum systems. Our results will tie these velocities together. The velocities emerge in any lattice
Λ of spins (or fermions) with a local Hamiltonian

H =
∑

x∈Λ
hx , (3)

where hx are operators localized near lattice site x . Translation symmetry is not required.

2.1 Lieb-Robinson velocity

The Lieb-Robinson velocity defines an emergent ‘light-cone’ causality from local dynamics on
a lattice [27]. It is a state-independent, microscopic velocity set by the magnitude of couplings
in the Hamiltonian, and is insensitive to operator growth or lack thereof.

A convenient and powerful definition of vLR is in terms of space-time rays. That is, consider
an operator O2 located along the ray x = vtn (here n is a unit vector). At large times we can
introduce a velocity-dependent exponent λ(v) that determines the growth or decay of the
norm of the commutator along the ray, ‖[O1(0, t), O2(vtn, 0)]‖ ∼ eλ(v)t . Here O(x , t) denotes
O translated by a lattice vector x in space and a time t with Heisenberg evolution, and ‖ · ‖ is
the operator norm. The causal light cone defined by vLR is such that for all v > vLR the norm
decays exponentially at late times, so that λ(v)< 0. Therefore we can define vLR as the largest
velocity such that the norm does not decay along a ray:

vLR ≡ sup
§

v : lim
t→∞

1
t

ln‖[O1(0, t), O2(vtn, 0)]‖ ≥ 0
ª

. (4)

We shall not keep the dependence on direction n and operators O1, O2 explicit.
For any v > vLR there are (v-dependent) constants ξLR, CLR > 0 such that for all t, x > 0,

‖[O1(0, t), O2(xn, 0)]‖ ≤ CLR‖O1‖‖O2‖e(vt−x)/ξLR. (5)

Intuitively, inequality (5) states that for v > vLR, the norm ‖[O1(0, t), O2(xn, 0)]‖ is exponen-
tially small outside the ray x = vt, with a tail of length ξLR(v).

2.2 Butterfly velocity

The butterfly velocity is defined analogously to the Lieb-Robinson velocity, but using the OTOC
instead of the operator norm of the commutator [10,14]. It therefore depends on the quantum
state ρ.

The ‘velocity-dependent Lyapunov exponent’ is defined by the late time growth or decay
of the OTOC along a ray [18]:

λ(v ;ρ)≡ lim
t→∞

1
t

lnC(v t, t;ρ) . (6)
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Analogously to the Lieb-Robinson case, the butterfly velocity can now be defined as

vB(ρ)≡ sup {v : λ(vn;ρ)≥ 0} , (7)

which is state-dependent. The operator norm bounds the OTOC and hence 0≤ vB(ρ)≤ vLR.

2.3 Scrambling velocity

The Lieb-Robinson bound (5) implies that the size of an operator can grow at most polyno-
mially in time (as td in a d-dimensional system). In contrast, the growth can be exponential
without spatial locality, such as in SYK models [30–32]. Operator growth under Heisenberg
evolution in quantum systems with a local Hamiltonian will therefore define another velocity.
We will call this the ‘scrambling velocity’ vS . For example, in strongly scrambling models, such
as random unitary circuits [33–36], generic operators quickly grow into a superposition of
product operators with radius ∼ vLRt. In this case vS = vLR.

More precisely, we define the scrambling velocity as follows. Given local operators O1 and
O2, the commutator [O1(0, t), O2(x , 0)] will grow along the ray x = v t. We are interested in
the growth of the operator itself rather than its norm or OTOC. Let R(x , t) be the radius of
support of the commutator1 and define

vS(v)≡ lim
t→∞

R(v t, t)
t

. (8)

This is a velocity-dependent velocity because the growth of the operator can depend on the ray
that we follow, just like the exponents in (4) and (6) above. This operator growth is illustrated
in Fig. 1.

Figure 1: Operator growth along a ray: Schematic plot showing the definition of
R(v t, t). The shaded region shows the radius of support of O ≡ [O1(0, t), O2(x , 0)]
along the ray x = v t. R is the radius of the support up to an exponential tail. Because
of the Lieb-Robinson bound for O1(0, t) and that O2(x , 0) sits on the line x = v t, the
support contains the ray x = v t and is within the Lieb-Robinson cone.

In the random circuit, let O1 and O2 be two single-site operators. Inside the Lieb-Robinson
cone, i.e. for |x | ≤ vLRt, the commutator [O1(0, t), O2(x , 0)] has the same support as O1(0, t)
so R(x , t) = vLRt and vS(v) = vLR for |v | ≤ vLR. For general systems and for |v | ≤ vLR we

1The radius of an operator O is the minimal distance R such that O is supported in a ball (centered at an arbitrary
site) of radius R. Throughout the main text ‘support’ should be understood as up to an exponentially decaying tail.
Exponential tails are discussed in detail in the appendices.
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expect that 0 ≤ vS(v) ≤ vLR. A proof of this statement, along with more precise definitions
and technical details, is collected in the appendices.

The definition (8) also captures the absence of scrambling in non-interacting theories.
A non-interacting field obeys φ(x , t) =

∫

d y f (y , x ; t)φ(y , 0), for some function f (y , x ; t).
Although the support of the operatorφ(x , t) spreads out as t increases, it remains a superposi-
tion of local operators. Consider the conjugate pair (φ,π). It follows that
[φ(0, t),π(x , 0)] = i f (x , 0; t). This is a c-number and its support has radius R(x , t) = 0.
Hence vS(v) = 0 for any v .

Even in non-interacting theories, however, more general operators — such as a pair of
entangled quasiparticles moving in opposite directions — can have a nonzero scrambling ve-
locity according to the definition (8). Relatedly, simple operators in weakly interacting the-
ories need not have a small scrambling velocity. In this work we will mostly be interested
in strongly scrambling systems. The bound we obtain will not, in general, usefully constrain
weakly scrambling dynamics.

3 Scrambling bounds the state dependence of the OTOC

In the following subsections we prove a bound on the temperature dependence of the velocity-
dependent Lyapunov exponent (6), in one spatial dimension. We also make an argument that
an analogous result holds in higher dimensions. Namely:

|∂βλ(v ;ρ)| ≤
2h
a

�

vS(v)− (ξ+ ξLR)λ(v ;ρ)
�

, (9)

where β is the inverse temperature, a the lattice spacing, ξ the correlation length, ξLR the
microscopic lengthscale in (5), essentially the interaction range, and h ≡ 2supx∈Λ ‖hx‖ for
the Hamiltonian in (3). The content of (9) is that the change with temperature of the Lya-
punov exponent along a ray is bounded by the rate of growth of the commutator along the
ray. Zooming in on the butterfly light cone v ∼ vB, this bound implies that the growth of
the commutator at the butterfly light cone bounds the change of characteristics such as the
butterfly velocity. As (for example) the temperature is increased, these growing operators are
‘activated’ and contribute to scrambling.

A generalization, with full proof in the appendices, is as follows: For any Gibbs state
ρ = e−

∑

i µi C
i
/tr e−

∑

i µi C
i

with mutually commuting conserved charges C i , where µi ∈ R and
C i =

∑

x∈Λ c i
x is a sum of local operators, then

�

�

�

�

∂ λ(v ;ρ)
∂ µi

�

�

�

�

≤
2c i

a

�

vS(v)− (ξ+ ξLR)λ(v ;ρ)
�

. (10)

The definition of c i > 0 is similar to h above: c i ≡ 2 supx∈Λ ‖c i
x‖.

3.1 Outline of proof in one dimension

The following gives an outline of the proof of (9). The logic is straightforward, but technical
complications arise, for example, due to the fact that time evolution generates exponentially
decaying tails in space for local operators, so one cannot assume that local operators have
strictly finite support. These technical points are addressed in the appendices.

Let ρ = e−βH/tr e−βH be a thermal state with inverse temperature β and correlation length
ξ. The steps will be as follows: (i) Differentiate the OTOC with respect to the inverse tempera-
ture, (ii) show that the main contribution to this derivative is from operators inside the support
of the commutator, and (iii) balance the growth of this contribution, due to the growing size
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of the commutator along a ray, with the growth or decay of the OTOC. We now outline these
steps.

(i) Temperature derivative of the OTOC. Taking the derivative of the OTOC (1) with respect
to the inverse temperature gives

∂βC(x , t;ρ) = −tr(ρ eHO†O) = −tr( eH
p
ρO†O

p
ρ) , (11)

where O ≡ i[O1(0, t), O2(x , 0)] and eH ≡ H − tr(ρH) is the Hamiltonian with thermal
expectation value subtracted out.

The Hamiltonian H in (3) is written as a sum of local terms. We can split this sum up into
terms that are inside and outside the support of the commutator O (for some location x
and time t). As in the definition of vS , let O be roughly supported in a ball of center y0
and radius R. Then

eH =
∑

|y−y0|≤R+δ

ehy +
∑

|y−y0|>R+δ

ehy , (12)

where δ > 0 can take any value. As for eH, ehy ≡ hy − tr(ρhy). This decomposition can
now be inserted into the derivative (11).

(ii) Dominance by operators inside the commutator. We first bound the contribution from
outside of the support of the commutator, with |y − y0| > R + δ in (12). Due to the
thermal correlation length ξ, the connected correlation function of ehy with O†O will
decay exponentially in the distance |y − y0|. Thus, for some constant C > 0 and all
y ∈ Λ such that |y − y0| > R: |tr(ehy

p
ρO†O

p
ρ)| ≤ C‖ehy‖‖O‖2e(R−|y−y0|)/ξ. Summing

over |y− y0|> R+δ, the contribution to (11) from operators outside of the commutator
is bounded by

∑

|y−y0|>R+δ

�

�

�tr(ehy
p
ρO†O

p
ρ)
�

�

�≤ C ′ sup
y∈Λ
‖ehy‖‖O‖2e−δ/ξ . (13)

In d spatial dimensions and for R+ δ � ξ, C ′ ∼ Cξ(R+ δ)d−1/ad from doing the sum
over |y − y0|> R+δ (a is the lattice spacing). There is a technical subtlety in obtaining
(13) due to the need to commute factors of

p
ρ through ehy ; we deal with this in the

appendices.

We can similarly bound the contribution to (11) from operators inside the support of the
commutator, with |y−y0| ≤ R+δ. As in the main text, define the maximal local coupling
in the Hamiltonian as

h≡ 2sup
y∈Λ
‖hy‖ . (14)

Note that ‖ehy‖ ≤ 2‖hy‖, so that

|tr(ehy
p
ρO†O

p
ρ)| ≤ ‖ehy‖ tr(ρO†O)≤ hC(x , t;ρ) . (15)

Notice that the inequality still goes through if we take

h= sup
y∈Λ

|tr(ehy
p
ρO†O

p
ρ)|

tr(ρO†O)
. (16)

Now, the number of terms in the first sum of (12) is VR+δ, the number of lattice points
in a ball of radius R+ δ. Therefore, putting together (13) and (15), we can bound the
derivative (11) by:

|∂βC(x , t;ρ)| ≤ VR+δ hC(x , t;ρ) + C ′h‖O‖2e−δ/ξ . (17)
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We will see that in a certain kinematic limit, the final term in (17), from outside of the
support of the commutator, is small compared to the other terms.

(iii) Bounding the derivative by the growth of the commutator. The inequality (17) simplifies
at late times along a ray x = v t. From the definition (6) of the velocity-dependent Lya-
punov exponent, C(v t, t;ρ) ∼ eλ(v ;ρ)t as t → ∞. We furthermore set
δ = (−ξλ(v ;ρ) + ε)t > 0, with ε > 0 a small number. This choice is such that the
final term in (17) decays exponentially faster than the others as t →∞. This final term
is therefore negligible in this limit. In this way, as t → ∞ the following inequality is
obtained:

|∂βλ(v ;ρ)| ≤ h lim
t→∞

VR−ξλ(v ;ρ)t

t
. (18)

This expression bounds the temperature dependence of the Lyapunov exponent in terms
of the late time growth of the commutator along a ray. The late time limit in (18) is man-
ifestly finite in one spatial dimension, d = 1. In one dimension at large radii Vr ≈ 2r/a,
where a is the lattice spacing. In this case, the operator growth in (18) is precisely given
by the scrambling velocity defined in (8). Thus, in terms of the scrambling velocity we
obtain (A more rigorous treatment in the appendices, allowing for exponential tails in
the support, shows that ξ→ ξ+ξLR. We include this shift in the following statement of
the bound.)

|∂βλ(v ;ρ)| ≤
2h
a

�

vS(v)− (ξ+ ξLR)λ(v ;ρ)
�

. (19)

3.2 Generalization to higher dimensions

In higher dimensions, Vr will scale as rd for d > 1 and hence the late time bound (18) is
always trivially true. However, we conjecture that the bound stated in (9) holds for arbitrary
dimensions, based on a Lieb-Robinson type argument. One way of understanding the Lieb-
Robinson bound is to expand

O1(t) =
∞
∑

n=0

(i t[H, · ])n

n!
O1 = O1 + i t[H, O1]−

t2

2
[H, [H, O1]] + . . . , (20)

and observe that in the expansion, for [O1(0, t), O2(x , 0)] to be nonzero, a commutator se-
quence of local terms in H connecting O1 and O2 is necessary, which starts at order n≈ |x |/RH
where RH is the range of local terms in H. For such a high order term to be significant, t has
to be later than |x |/(RHh) and this gives an estimate of vLR ≈ RHh.

In a proof along these lines it is intuitively clear that outside the Lieb-Robinson cone
|x | = vLRt, the leading contributions to the commutator [O1(0, t), O2(x , 0)] come from O1
taking commutators with local terms in H (as shown in (20)), via the shortest path from the
origin to x . Hence it is plausible that the operator [O1(0, t), O2(x , 0)], for |x | � vLRt, is ap-
proximately one-dimensional, along the line connecting 0 and x . Then the bound (9) is still
expected to be true, although possibly with a larger ‘renormalized’ h.

4 Temperature dependence of the butterfly velocity

4.1 Numerical results on the mixed field Ising chain

To motivate the general discussion of butterfly velocities, it will be useful to have some explicit
numerical results for the temperature dependence of the butterfly velocity at hand. To this end
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we have studied the mixed field Ising chain with Hamiltonian

H = −J
N−1
∑

i=1

Zi Zi+1 + hX

N
∑

i=1

X i + hZ

N
∑

i=1

Zi , (21)

where X i , Yi and Zi are Pauli matrices at site i. Numerics is done with a straightforward
generalization of the Matrix Product Operator (MPO) method discussed in [19, 28] to finite
temperatures. Some analytic results on OTOCs in the transverse field model (hZ = 0) can be
found in [37]. In numerics we will have N = 25. More details can be found in the appendices.
Results for the temperature dependence of the butterfly velocity for Pauli Z operators are
shown in Fig. 2.

0.0 0.5 1.0 1.5 2.0
0.6

0.7

0.8

0.9

1.0

Figure 2: Temperature-dependent butterfly velocity in the mixed field Ising chain
(21) with hX = 1.05J and different hZ . The inverse temperature is denoted as β .
The model with hZ = 0 is dual to free fermions and has a temperature-independent
butterfly velocity. The appendices contain more details about numerics and error
estimates.

The numerical results in Fig. 2 exhibit the behavior advertised in the introduction, and
which we will understand in detail below. The transverse field Ising model (hZ = 0) is dual
to free fermions via a Jordan-Wigner transformation. The longitudinal field hZ introduces
interactions. We expect interactions to induce scrambling dynamics and hence a nontrivial
temperature dependence of the butterfly velocity, and this is what the figure shows.

The temperature-independent butterfly velocity of the transverse field model deserves
some elaboration. There are two points to make. Firstly, the transverse field model is spe-
cial in its duality to a non-interacting integrable system, where vS = 0 for the commutator of
fermion creation and annihilation operators, for example. For interacting integrable systems,
typically vS > 0 and the butterfly velocity is state-dependent [38]. Indeed, we have verified
numerically that the butterfly velocity is temperature-dependent in such models. Interacting
integrable systems are scrambling, even while they are not chaotic.

Secondly, in the transverse field model, Pauli Z ’s in the spin frame are dual to nonlocal
fermion chains by the Jordan-Wigner transformation. Due to this nonlocality, our inequality
doesn’t apply in the fermion frame. In fact, even local operators describing small numbers of
quasiparticles in a non-interacting theory can have vS > 0 by our definition because entangled
pairs of quasiparticles moving in opposite directions technically lead to a linearly growing
radius of support for the operator. We believe that it may be possible to overcome this technical
complication in the future with an improved definition of the scrambling velocity, such that
vS = 0 for spatially separated but entangled non-scrambling operators. Indeed, we shall now
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argue that the butterfly velocity is temperature independent for all local operators in a non-
interacting system.

In a non-interacting theory the propagation of quasiparticles is independent of the state
they are propagating in, due to the absence of interactions between them. While the quasipar-
ticles may have a nontrivial dispersion and hence temperature-dependent average velocity, any
local operator includes modes of all wavevectors and, in particular, maximal velocity modes.
Thus we expect vB is independent of the state. Therefore, the temperature-independence of
the butterfly velocity observed in our numerics is indeed symptomatic of the non-interacting
integrability of the system.

4.2 Bounding the butterfly velocity

The temperature dependence shown in Fig. 2 can be understood from the connections between
the OTOC and scrambling velocity that we have described. The ‘light front’ form (2) for the
OTOC implies that the velocity-dependent Lyapunov exponent is

λ(v ;ρ) = −λ(v/vB − 1)1+p for v ≥ vB . (22)

This precise form for λ(v ;ρ) is conveniently explicit, but the only qualitatively essential aspect
for our results is the presence of a ‘butterfly cone’. As we explained above, in general λ, vB
and p ≥ 0 are state-dependent. Therefore, the ∂µi

derivative in (10) will act on each of these
quantities. Substituting the specific form (22) for λ(v ;ρ) into (10), for v > vB, leads to the
following slightly complicated expression:

aλ(∆v)1+p
�

�

�∂µi
lnλ+ ln(∆v)∂µi

p− (1+ p)
v/vB

∆v
∂µi

ln vB

�

�

�

≤ 2c i
�

vS(v) + (ξ+ ξLR)λ(∆v)1+p
�

, (23)

where ∆v ≡ v/vB − 1 > 0 is a dimensionless measure of how far the velocity is outside the
butterfly cone. A simple consequence of (23) follows, when there is no scrambling. Suppose
that vS(v) = 0. In that case, taking ∆v → 0+, the leading term on the left side of (23) is the
last one. It follows that

vS = 0 ⇒ ∂µi
vB = 0 . (24)

Hence vB is constant for operators that do not scramble. We noted above, however, that this
result is not directly applicable to the transverse field Ising chain.

Increasing variation of vB with temperature is observed in Fig. 2 as integrability is increas-
ingly broken by turning on hZ in the mixed field Ising model. The crossover temperature in
Fig. 2 is set by the energy gap ∆ (of order J for hZ = 0.1 ∼ 0.5J), as we now explain. Intu-
itively, one might expect vB to cease varying at temperatures T �∆. This is what is seen in the
numerical data. We can argue for this by improving an aspect of the proof outlined previously.
As we note there, the proof still goes through if we take h in (9) to be instead given by

h= sup
t>0, y∈Λ

|tr(ehy
p
ρO†O

p
ρ)|

tr(ρO†O)
, (25)

where O ≡ i[O1(0, t), O2(v t, 0)] and ehy ≡ hy − tr(ρhy). This is not an especially tractable
expression in general, but it can be evaluated for a gapped system at zero temperature, where
ρ ≡ |0〉〈0|. In that case h = supy∈Λ〈0|ehy |0〉 = 0, where now ehy ≡ hy − 〈0|hy |0〉. Hence
in gapped systems at low temperatures, we may set h ≈ 0 in the bound (9). It follows that
∂β vB → 0 when T → 0 in a gapped system, consistent with the finite low temperature butterfly
velocities seen in Fig. 2.
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The numerical results in Fig. 3 substantiate the above argument, suggesting that ∂β vB de-
cays exponentially as β∆→∞. In Fig. 3 the bound has furthermore been written as a bound
on the derivative of the butterfly velocity, and is found to be most constraining at intermediate
temperatures and with strong scrambling, where it is within an order of magnitude of the true
value.

0.5 1.0 1.5 2.0
0.01

0.05

0.10

0.50

1

5

Figure 3: Bounding the temperature derivative of the butterfly velocity: Temper-
ature derivative of the butterfly velocity in mixed field Ising chains, with hX = 1.05J
and different hZ in (21). The inverse temperature is denoted as β . The bound (23) is
shown as the dashed curves. In the bound vS is replaced by 3Ja (a = 1 is the lattice
spacing), using the fact that vS ≤ v for v = 3Ja and ξLR = a in the Lieb-Robinson
inequality (5), in the spin duality frame. Curves are cut off when estimated error is
significant (see the appendices for more details).

Our bound combined together with numerics leads to a consistent picture of the temper-
ature dependence of the butterfly velocity in chaotic spin systems with a gap ∆. Stronger
scrambling allows for stronger temperature dependence of vB, which furthermore approaches
a constant at T � ∆. These facts explain the crossover features of the curves in Fig. 2. More
quantitatively, the overall variation vB(β = 0)/vB(β =∞) can be bounded by integrating our
bound from β = 0 to β∆ ∼ 1 (assuming that there are no intervening thermal phase tran-
sitions). For small vS(v), this integration can be done explicitly, leading to a bound on the
change in the butterfly velocity from infinite to zero temperature. For notational convenience
let vB

S ≡ vS(vB). At small vB
S one may take ∆v ∼ (vB

S /vB)1/(1+p) in (23) and the leading term
on the left hand side is again the final one, which integrates to

�

�

�

�

ln
vB(β =∞)
vB(β = 0)

�

�

�

�

®
∫ 1/∆

0

dβ
2hvp/(1+p)

B [1+ (ξ+ ξLR)λ/vB]

aλ(1+ p)

�

vB
S

�1/(1+p)
, (26)

to leading order in vB
S → 0. Typically vB(β = 0)∼ vLR. Schematically we can therefore write

vB(T = 0)¦ vLR e−αvγS /∆ . (27)

Here α is a dimensionful constant, γ a dimensionless constant and we have singled out the vS
and∆ dependences. It follows that (i) as vS → 0, ln vB can vary as a power vγS of the scrambling
velocity, and (ii) if the gap∆→ 0, vB may approach zero at T = 0. Indeed, power law butterfly
velocities vB ∼ T1−1/z , with z the dynamical critical exponent, are found in strongly chaotic
gapless holographic models [16,20].
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5 Final comments

In summary, we have shown how locality of quantum dynamics ties operator growth to the
butterfly velocity. This connection arises because the growth of the spatial support of the com-
mutator right outside the butterfly cone bounds the change of the butterfly velocity with e.g.
temperature. The butterfly velocity is state-dependent and therefore gives a richer characteri-
zation of the finite temperature dynamics than is possible from the microscopic Lieb-Robinson
velocity alone. We have demonstrated these ideas explicitly in numerical studies of quan-
tum chaotic lattice models at finite temperature. Looking forward, we hope that the methods
we have developed can be used to bound other important quantities that underpin quantum
many-body systems, in particular the thermalization length and time, as well as transport ob-
servables such as the thermal diffusivity.
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Appendices

This appendix contains six sections: section A sets up notations and backgrounds for discus-
sions that follow. In section B we review the Lieb-Robinson, Araki and correlation length
bounds used in our proof. Precise definitions for Lieb-Robinson, butterfly and scrambling
velocities are given in section C and we prove several inequalities regarding them. Section D
collects technical lemmas for exponentially local operators and section E gives a rigorous proof
of the general results. Details of numerical implementations and data analysis are presented
in section F.

A Notation

In this section we introduce notations and concepts necessary for a rigorous proof of our result.
The bound will be formulated for a lattice2 Λ of spins in d spatial dimensions, and rigorously
proved for d = 1. There are isomorphic finite-dimensional Hilbert spaces Hx associated to
each lattice site x ∈ Λ and denote Bx as the space of linear operators acting on Hx . An
operator O is said to be supported on a subset S ⊂ Λ if O ∈

⊗

x /∈S CI ⊗
⊗

x∈S Bx , i.e. O is a
sum of product operators that are identity outside S. The minimal set that O is supported on
is called the support of O, denoted as supp O.3

To better characterize the spatial distribution of operators, define superoperators PS and
QS ≡ Id−PS such that PS is the projection onto the subspace

⊗

x /∈S CI⊗
⊗

x∈S Bx . That is, PS
projects onto operators supported on S (so PS[O] = O if O is supported on S). More explicitly

2Technically the infinite lattice should be thought as the limit of a sequence of increasing finite subsystems. We
will not delve into subtleties related to this point.

3Note supp O = ; if and only if O = cI for some c ∈ C.
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PS[O]≡
∫

supp U∩S=;
dU UOU†, (28)

where the integral is Haar averaging over unitaries outside S. However, note QS is not the
projection onto operators supported on Λ−S. Consider an example of two sites Λ= {1, 2} and
an operator O = O1 ⊗O2, where neither O1 nor O2 is the identity. By definition, 0 = P1[O] =
P2[O] 6=Q1[O] =Q2[O] = O.

Henceforth if the subscript S = {x} is a single-element set, P{x} and Q{x} are written as
Px and Qx for short. Also define the superoperator P r

T with a superscript r > 0 as PS for
S = {y ∈ Λ : ∃ x ∈ T, |x − y | < r}, i.e. projection onto operators supported within a distance
r from the set T , and Qr

T ≡ Id−P r
T .

From (28) we have the following inequalities:

‖PS[O]‖ ≤ ‖O‖, ‖QS[O]‖= ‖O−PS[O]‖ ≤ ‖O‖+ ‖PS[O]‖ ≤ 2‖O‖ , (29)

as ‖U‖= ‖U†‖= 1. Also PS[I] = I , QS[I] = 0 for any S ⊂ Λ. Unless otherwise specified, ‖O‖
will always denote the operator norm, i.e. the maximal singular value of O.

We will be interested primarily in operators that are “exponentially local”, denoted as
B(x , R;ξ, C). We say O ∈ B(x , R;ξ, C) with x ∈ Λ, R, C ≥ 0 and ξ > 0, if for any r ≥ R,

‖Qr
x [O]‖ ≤ C‖O‖e−(r−R)/ξ . (30)

Intuitively, this means O is supported on the ball of radius R and centered at x , up to an expo-
nential tail of lengthscale ξ. Operators supported on a finite number of sites (called “finitely
supported”) are of course exponentially local as well. We shall assume the Hamiltonian is a
sum of finitely supported hermitian terms:

H =
∑

α

JαHα, Hα ≡
∑

x∈Λ
hαx , hαx ∈ B(x , RH ; 0+, 0) , (31)

which also defines RH > 0 and α labels different couplings in the Hamiltonian. Translational
invariance is not necessary but ‖hα‖ ≡ supx∈Λ ‖hαx‖ should be bounded.

A Gibbs state is a density matrix of the form

ρ = e−
∑

i µi C
i
/tr e−

∑

i µi C
i
, (32)

for some µi ∈ R and
C i ≡

∑

x∈Λ
c i

x , c i
x ∈ B(x , RH ; 0+, 0) . (33)

In the proof it is not required that [C i , C j] = 0. With only one i, with µ the inverse temperature
and with C = H, ρ is the thermal density matrix.

B Review of locality bounds

In this section we review some established locality bounds. First is the Lieb-Robinson bound in
local lattice systems [27,39–41]. This both bounds the spread of support of a local operator by
the distance v|t|, where t is the real time of Heisenberg evolution, and also implies an emergent
causality with v acting as the “speed of light”. For a discussion of the relation between (i) and
(ii) in the following theorem, see section 3 of [42].
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Theorem 1 (Lieb-Robinson). There exist v,ξLR, CLR > 0, dependent on lattice geometry and
Hamiltonian, such that

(i) for any t ∈ R, r > 0 and operator O,

‖Qr
supp O[O(t)]‖ ≤ CLR|∂ supp O|‖O‖min{1, e(v|t|−r)/ξLR} , (34)

where |∂ S| is the number of lattice links (say, between x and y) such that x ∈ S but y /∈ S;
(ii) for any t ∈ R, operators O1 and O2,

‖[O1(t), O2]‖ ≤ CLR min{|∂ supp O1|, |∂ supp O2|}‖O1‖‖O2‖min{1, e(v|t|−d)/ξLR} , (35)

where d =min{|x − y | : x ∈ supp O1, y ∈ supp O2} is the distance between the support of O1 and
O2.

In this bound v ∼
∑

α |Jα|‖h
α‖RH , recall (31), i.e. coupling times range of local terms in the

Hamiltonian, and ξLR ∼ RH . So quantities in the Lieb-Robinson bound are set by microscopic
scales, to be differentiated from the butterfly velocity, which is an analog of a “renormalized”
Lieb-Robinson velocity in thermal states [16].

Next is the Araki bound [42–44] extending the Lieb-Robinson bound to complex times.
Note the theorem is specific to one dimension [44] and lA(µi) may be exponential in |µi|; in
this sense the restriction is weaker for complex time evolution:

Theorem 2 (Araki). In one dimension, for any Gibbs state ρ as defined in (32) but with µi ∈ C,
there exist lA(µi), CA(µi),ξA > 0, dependent on lattice geometry and charges C i , such that for
any finitely supported operator O and r ≥ lA(µi),

‖ρOρ−1‖ ≤ CA(µi)| supp O|‖O‖, (36)

‖Qr
supp O[ρOρ−1]‖ ≤ CA(µi)| supp O|‖O‖e(lA(µi)−r)/ξA , (37)

where | supp O| is the number of sites in supp O.

Note, however, from the proof of the Araki bound (e.g., Theorem 3.1 of [44]) one can see
that there are Araki inequalities as stated in Theorem 2 for arbitrarily small ξA, at the expense
of a possibly large lA. Later in the proof of our bound only ξA enters the final expression;
hence at that time one can take ξA→ 0 as a large lA doesn’t affect the result.

Originally the Araki bound is only stated for finitely supported operators but it is straight-
forward to generalize it to exponentially local ones. Such generalization will be useful in
proving our bound, so a proof is given in section D.

Finally we would like to introduce some exponential clustering theorems: for particular
kinds of states, equal-time connected correlations decay exponentially in space. More precisely
for a state (density matrix) ρ, the correlation length of ρ is the ξ > 0 that is optimal with
respect to the following property: there exists C > 0 and a function l0(·)> 0 such that for any
operators O1 and O2 (supported on sets S and T) sufficiently far apart, i.e., d ≥ l0(δ),

|tr(ρO1O2)− tr(ρO1)tr(ρO2)| ≤ Cδ‖O1‖‖O2‖e−d/ξ, (38)

where δ ≡min{|∂ S|, |∂ T |} is the number of lattice links crossing the boundary of S or T , and
d ≡min{|x − y | : x ∈ S, y ∈ T} is the distance between two sets. Note that in this statement,
O1 and O2 could be any, not necessarily local, operators.

Existence of a finite ξ > 0 with the property stated around (38) has been proved for (i)
one-dimensional Gibbs states [43] (restricted to local operators O1 and O2), (ii) ρ = |0〉〈0|
where |0〉 is the unique ground state of a gapped Hamiltonian [40,45], and (iii) thermal states
ρ∝ exp(−βH) in general dimensions at sufficiently high temperatures [46] (clearly ξ→ 0
when β → 0). Of course the Hamiltonians associated with these states must be local, as in
(31) above. It is plausible that the correlation length ξ as defined around (38) is finite for
Gibbs states ρ in general systems with local dynamics and away from phase transitions.
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C Definitions of velocities

In this section we define precisely the (possibly anisotropic) Lieb-Robinson, butterfly and
scrambling velocities introduced in the main text and prove the bound vB, vS ≤ vLR. For def-
initeness fix a class of local operators, denoted as O; for example, O could be all single-site
operators with unit norm, localized at origin. The Lieb-Robinson bound Theorem 1 (ii) can be
stated for such operators along any particular direction n:

Theorem 3 (Operator-dependent anisotropic Lieb-Robinson). For any direction n and operator
O1, O2 ∈O, there exist v, ξLR, CLR > 0, dependent on n, O1, O2, lattice geometry and Hamiltonian,
such that for any t > 0, x > 0,

‖[O1(0, t), O2(xn, 0)]‖ ≤ CLR‖O1‖‖O2‖min{1, e(vt−x)/ξLR} . (39)

From Theorem 3 one immediate candidate for defining the Lieb-Robinson velocity is

v(1)LR (n; O1, O2)≡ inf{v > 0 : ∃ξLR, CLR > 0 with the property stated in Theorem 3} , (40)

that is, the smallest velocity with a Lieb-Robinson inequality. However such a definition shows
some disadvantages in numerical or experimental applications: it is inaccurate to fit data to
exponential tails because the theorem only states an inequality (not an equality), and in fact
in many lattice systems of interest the tail is observed to be sub-exponential (e.g., Gaussian)
[18,19]; also it is impractical, if not impossible, to decide whether such ξLR and CLR exist for
all times, from only a finite number of data points.

A more convenient definition is found in the original Lieb-Robinson paper [27]

v(2)LR (n; O1, O2)≡ sup
§

v : lim
t→∞

1
t

ln‖[O1(0, t), O2(vtn, 0)]‖ ≥ 0
ª

. (41)

We will assume that the limit exists and is a continuous function of v. By definition v(2)LR gives
a causality “lightcone” outside which (for x/t > v) the commutator vanishes exponentially at
late times.

It is relatively easy to see that v(1)LR ≥ v(2)LR :

Proposition 1. For any direction n and operators O1, O2 ∈ O, we have v(1)LR (n; O1, O2) ≥
v(2)LR (n; O1, O2).

Proof. Let v > 0 belong to the set in (40), i.e., there exist ξ, C > 0 such that for all x , t > 0,
‖[O1(0, t), O2(xn, 0)]‖ ≤ C‖O1‖‖O2‖min{1, e(vt−x)/ξ}. Then, for any v′ > v,
limt→∞ t−1 ln‖[O1(0, t), O2(v′ tn, 0)]‖ ≤ limt→∞ t−1 ln(C‖O1‖‖O2‖e(v−v′)t/ξ) = (v−v′)/ξ < 0,
and hence any v′ > v is not contained in the set in (41). Therefore the supremum v(2)LR is at

most v. This is true for any v > 0 in the set of (40), hence v(2)LR ≤ v(1)LR .

Conversely to show that v(1)LR ≤ v(2)LR , we need the following lemma:

Lemma 1. For any positive functions f (x , t) and g(x , t), if limits

lim
t→∞

1
t

ln f (vt, t) = λ f (v), lim
t→∞

1
t

ln g(vt, t) = λg(v) , (42)

exist, are uniform for v ∈ [v0,∞), and λ f (v) + a < λg(v) for some a > 0 and all v ≥ v0, then
there is t0 > 0 that

f (x , t)< g(x , t) ∀ x ≥ v0 t, t ≥ t0 . (43)
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Proof. Because the limits (42) are uniform, for any ε > 0 there is T (ε) > 0 such that for any
t ≥ T (ε) and v ≥ v0, ln f (vt, t)/t < λ f (v)+ ε, ln g(vt, t)/t > λg(v)− ε. Now choose ε = a/2
and t0 = T (a/2), we have ln f (vt, t)/t < λ f (v) + a/2 < λg(v) − a/2 < ln g(vt, t)/t hence
f (vt, t)< g(vt, t), for all t ≥ t0, v ≥ v0.

Proposition 2. v(1)LR (n; O1, O2) ≤ v(2)LR (n; O1, O2), given the limit in (41) is uniform for all

v > v(2)LR (n; O1, O2).

Proof. We would like to prove the proposition in the following two steps:
Step one: For any v > v(2)LR , we show that (i) implies (ii), and (ii) implies (iii), where

(i) limt→∞ t−1 ln‖[O1(0, t), O2(v′ tn, 0)]‖< 0 for any v′ ≥ v;

(ii) ∃ε,ξ > 0 that limt→∞ t−1 ln‖[O1(0, t), O2(v′ tn, 0)]‖ ≤ (v− v′)/ξ−ε for any v′ ≥ v;

(iii) ∃C ,ξ > 0 that ‖[O1(0, t), O2(xn, 0)]‖ ≤ C‖O1‖‖O2‖min{1, e(vt−x)/ξ} for x , t > 0.

Step two: By definition (41) we have for any v > v(2)LR , (i) holds for v; so (iii) is true for v

as well, and v should be in the set on the right-hand side of (40) hence v(1)LR ≤ v. This shows

that v(1)LR ≤ v(2)LR .
So now it remains to prove that (i)⇒ (ii) and (ii)⇒ (iii):
(i) ⇒ (ii): For clarity let’s denote λ(v) ≡ limt→∞ t−1 ln‖[O1(0, t), O2(vtn, 0)]‖, then (i)

says that λ(v′) < 0 for any v′ ≥ v and to arrive at (ii) we hope to find ε,ξ > 0 such that
λ(v′)≤ (v − v′)/ξ− ε for all v′ ≥ v.

Before construction of ε and ξ, it is remarkable that there is a restriction on λ(v′) from
Theorem 3: the Lieb-Robinson bound states that there are some C0, v0, ξ0 > 0 such that
λ(v′)≤ limt→∞ t−1 ln(C0‖O1‖‖O2‖e(v0−v′)t/ξ0) = (v0 − v′)/ξ0 for all v′ > 0.

We shall construct ε > 0 first. Note (v − v′)/ξ ≤ 0 for v′ ≥ v, hence it is required that
λ(v′)≤ −ε for all v′ ≥ v. So we may choose ε = infv′≥v(−λ(v′)/2)≥ 0. To show that ε > 0, we
have to check that −λ(v′)> 0 is bounded from zero on [v,∞). The only concern is λ(v′)may
be arbitrarily close to zero when v′ →∞; but this is not possible because from the previous
paragraph −λ(v′)≥ (v′ − v0)/ξ0→∞ as v′→∞. Hence ε > 0 is well-defined in this way.

Then to satisfy λ(v′) ≤ (v − v′)/ξ − ε for all v′ ≥ v, choose (ξ0 is there for future con-
venience) ξ ≡ max{ξ0, supv′≥v(v − v′)/(λ(v′) + ε)} (as constructed in the last paragraph the
denominator is always negative). The task is then to show that ξ <∞; similarly the only place
things could go wrong is when v′→∞, but in that limit |λ(v′)+ε| ≥ |λ(v′)|/2≥ (v′−v0)/2ξ0
hence limv′→∞(v− v′)/(λ(v′)+ε)≤ 2ξ0 is bounded. So ξ > 0 is well-defined as well and (ii)
is proved.

(ii)⇒ (iii): We would like to apply the Lemma 1 for f (x , t) = ‖[O1(0, t), O2(xn, 0)]‖ and
g(x , t) = ‖O1‖‖O2‖e(vt−x)/ξ. Note in this case λ f (v′) = λ(v′) ≤ (v − v′)/ξ− ε = λg(v′)− ε
for any v′ ≥ v. Then by the lemma there is t0 > 0 such that ‖[O1(0, t), O2(xn, 0)]‖ ≤
‖O1‖‖O2‖e(vt−x)/ξ for all x ≥ vt and t ≥ t0. Hence for (iii) to hold it suffices to choose that
C ≡ max{2, sup0<x<vt or 0<t<t0

f (x , t)/g(x , t)}. As before we have to check that the supre-
mum is not infinite. We will discuss the three cases (a) 0 < x < vt, (b) 0 < t < t0 with
x ≥ v0 t, and (c) 0< t < t0 with 0< x < v0 t separately.

For 0 < x < vt, f (x , t)/g(x , t) = ‖[O1(0, t), O2(xn, 0)]‖/‖O1‖‖O2‖e(vt−x)/ξ is less than
‖[O1(0, t), O2(xn, 0)]‖/‖O1‖‖O2‖ ≤ 2. So indeed f (x , t)/g(x , t) is bounded in this region.

For 0 < t < t0 and x ≥ v0 t, f (x , t)/g(x , t) = ‖[O1(0, t), O2(xn, 0)]‖/‖O1‖‖O2‖e(vt−x)/ξ

can be bounded using the Lieb-Robinson Theorem 3: there is some C0, v0,ξ0 > 0
such that ‖[O1(0, t), O2(xn, 0)]‖ ≤ C0‖O1‖‖O2‖e(v0 t−x)/ξ0 ≤ C0‖O1‖‖O2‖e(v0 t−x)/ξ

(by construction ξ ≥ ξ0) so f (x , t)/g(x , t) ≤ C0e(v0−v)t/ξ which is a bounded function for
0< t < t0.
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Finally for 0< t < t0 and 0< x < v0 t, f (x , t)/g(x , t) is bounded because it is continuous
and the region is bounded. Hence we’ve shown that C > 0 is well-defined and with ξ appearing
in (ii), (iii) is true.

Henceforth the Lieb-Robinson velocity will be defined as vLR ≡ v(1)LR = v(2)LR . The technical
uniformity condition is true for known examples. The same proof shows the equivalence of
two definitions of the butterfly velocity. For future use only the definition corresponding to
v(2)LR is recorded:

vB(n; O1, O2,ρ)≡ sup
§

v : lim
t→∞

1
t

lnCO1O2
(vtn, t;ρ)≥ 0

ª

, (44)

where the OTOC CO1O2
(x , t;ρ) is defined in (1). As the velocity-dependent quantum Lyapunov

exponent is defined as in (6), an equivalent definition of vB reads:

vB(n; O1, O2,ρ)≡ sup{v : λO1O2
(vn;ρ)≥ 0} . (45)

As expected, the butterfly velocity in any state is bounded by the Lieb-Robinson velocity:

Proposition 3. vB(n; O1, O2,ρ) ≤ vLR(n; O1, O2) for any O1, O2 ∈ O, density matrix ρ and
direction n.

Proof. This follows from definition (41) and (44), and CO1O2
(x , t;ρ)≤ ‖[O1(0, t), O2(x , 0)]‖2.

Finally the scrambling velocity can be precisely defined in the language of exponentially
local operators, defined around (30). Let O ≡ i[O1(0, t), O2(v t, 0)], then4

vS(v ; O1, O2,ξ)≡ inf
C>0

lim
t→∞

1
t

inf {R≥ 0 : ∃ x ∈ Λ, O ∈ B(x , R;ξ, C)} , (46)

where the smallest ball, with radius R and centered at x , is understood as roughly the “sup-
port” of the commutator O. The quantities ξ and C characterize the exponential tail that we
neglected in the main text. Clearly vS ≥ 0 and decreases with increasing ξ.

For any triple (v,ξ ≡ ξLR, CLR) from Theorem 1, we now show that vS(v ;ξ) ≤ v. Thus
we have an upper bound of vS by velocities with a Lieb-Robinson inequality. Note the ξ-
dependence of vS was omitted in the main text. More precisely, if O2(v t, 0) is within the “sup-
port” of O1(0, t), for scrambling systems at late times we would expect ‖[O1(0, t), O2(v t, 0)]‖
to equilibrate to a nonzero constant value; if so, vS ≤ v:

Proposition 4. Given v , ξ > 0, O1, O2 ∈ O, if for any t > 0, O1(0, t) ∈ B(0, vt;ξ, C) for some
v > |v |, C > 0 and limt→∞ ‖[O1(0, t), O2(v t, 0)]‖> 0, then vS(v ; O1, O2,ξ)≤ v.

Proof. Let O(t)≡ [O1(0, t), O2(v t, 0)], c ≡ limt→∞ ‖O(t)‖> 0. As |v |< v, Qr
0[O2(v t, 0)] = 0

for r ≥ vt at late times. Then O(t) = [P r
0[O1(0, t)],P r

0[O2(v t, 0)]] + [Qr
0[O1(0, t)],

P r
0[O2(v t, 0)]]. But the first term is supported in the ball of radius r centered at origin, so
‖Qr

0[O(t)]‖ = ‖Qr
0[Q

r
0[O1(0, t)],P r

0[O2(v t, 0)]]‖ ≤ 4‖Qr
0[O1(0, t)]‖‖P r

0[O2(v t, 0)]‖
≤ 4C‖O1‖‖O2‖e(vt−r)/ξ, where we have used the definition (30) that for all t > 0 and r ≥ vt,
‖Qr

0[O1(0, t)]‖ ≤ C‖O1‖e(vt−r)/ξ with the inequalities (29).
So there is a time t0 > 0 that for all t > t0, ‖O(t)‖ ≥ c/2 as well as ‖Qr

0[O(t)]‖ ≤
4C‖O1‖‖O2‖e(vt−r)/ξ for all r ≥ vt. Hence ‖Qr

0[O(t)]‖ ≤ C ′‖O(t)‖e(vt−r)/ξ, for all t > t0 and
r ≥ vt, if we choose C ′ = 8C‖O1‖‖O2‖/c. That is, O(t) ∈ B(0, vt;ξ, C ′) for t > t0 hence by
definition (46), vS(v ; O1, O2,ξ)≤ v.

All velocities can be maximized over direction n to recover their isotropic definitions, or
over O1, O2 ∈O to remove the operator dependence.

4To make sure the limit exists, we have used the limit superior lim and the limit inferior lim.
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D Bounds for exponentially local operators

In this section we collect some lemmas and generalize Theorem 2 and the exponential cluster-
ing condition (38) to exponentially local operators. Readers are encouraged to review sections
A and B. The following inequality will be useful: for any A, B ≥ 0 and k,γ > 0,

∞
∑

n=dke

(An+ B)e−γn ≤ (Ak+ A+ B)e−γk(1− e−γ)−2 , (47)

where dxe denotes the least integer greater than or equal to x . To show this, by doing the
summation exactly it is easy to check that for any A, B ≥ 0, γ > 0 and integer m≥ 1,

∞
∑

n=m

(An+ B)e−γn ≤ (Am+ B)e−γm(1− e−γ)−2 , (48)

and the inequality (47) follows because if m = dke, m ≤ k + 1 in the linear factor and k ≤ m
implies that e−γm ≤ e−γk as well.

The following lemma bounds the product of two exponentially local operators:

Lemma 2. Let O1 ∈ B(x , R;ξ1, C1) and O2 ∈ B(x , R;ξ2, C2), then for any r ≥ R,

‖Qr
x [O1O2]‖ ≤ 2(C1 + C2)‖O1‖‖O2‖e(R−r)/max{ξ1,ξ2} . (49)

Proof. Note that for any r > 0, O1O2 = P r
x [O1]P r

x [O2] + O1Qr
x [O2] + Qr

x [O1]P r
x [O2], and

Qr
x [P

r
x [O1]P r

x [O2]] = 0. So by (29) and (30), for r ≥ R ,

‖Qr
x [O1O2]‖ ≤ 2‖O1‖‖Qr

x [O2]‖+ 2‖Qr
x [O1]‖‖O2‖

≤ 2C2‖O1‖‖O2‖e(R−r)/ξ2 + 2C1‖O1‖‖O2‖e(R−r)/ξ1 . (50)

Next is the Araki bound (cf. Theorem 2) for exponentially local operators:

Theorem 4. For any one-dimensional Gibbs state ρ as defined in (32) with µi ∈ C and operator
O ∈ B(x , R;ξ, C), there exists C ′(µi ,ξ, C) > 0 (dependent on lattice geometry and C i as well)
such that for all r ≥ R+ lA(µi) + a,

‖ρOρ−1‖ ≤ C ′(µi ,ξ, C)‖O‖(1+ 2R/a), (51)

‖Qr
x [ρOρ−1]‖ ≤ C ′(µi ,ξ, C)‖O‖[1+ 2(r − lA(µi))/a]e

(R+lA(µi)+a−r)/(ξA+ξ) . (52)

Here lA(µi) and ξA are those appearing in the Araki bound, and a is the lattice spacing.

Proof. For the first inequality, let m ≡ d(R+ a)/ae. Decompose O = P(m−1)a
x [O] +

∑

n≥m On,
where On ≡ Pna

x Q(n−1)a
x [O] = Pna

x [O]−P(n−1)a
x [O]. Then by Theorem 2 with (29) and (30),

for n≥ m,

‖ρOnρ
−1‖= ‖ρPna

x Q(n−1)a
x [O]ρ−1‖ ≤ CA(µi)(2n+ 1)‖Pna

x Q(n−1)a
x [O]‖

≤ CA(µi)(2n+ 1)‖Q(n−1)a
x [O]‖ ≤ CA(µi)(2n+ 1)C‖O‖e(R−na+a)/ξ . (53)

Also by Theorem 2, ‖P[O]‖ ≤ ‖O‖ and m≤ (R+ a)/a+ 1= R/a+ 2,

‖ρP(m−1)a
x [O]ρ−1‖ ≤ CA(µi)(2m− 1)‖P(m−1)a

x [O]‖ ≤ CA(µi)(2R/a+ 3)‖O‖ . (54)
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Sum (53) with (47) (where A= 2, B = 1, k = (R+ a)/a and γ= a/ξ) to get the bound

‖ρOρ−1‖ ≤ CA(µi)(2R/a+ 3)‖O‖+ CA(µi)C(2R/a+ 5)‖O‖(1− e−a/ξ)−2 . (55)

Denote C1(µi ,ξ, C) = 3CA(µi) + 5CA(µi)C(1− e−a/ξ)−2, so that

‖ρOρ−1‖ ≤ C1(µi ,ξ, C)‖O‖(1+ 2R/a) . (56)

For the second inequality, expand O = P;[O] +
∑

n≥0 On, where P;[O] is proportional to
identity and On ≡ Pna

x Q(n−1)a
x [O] = Pna

x [O]−P(n−1)a
x [O]. Because Qr

x [I] = 0,

Qr
x [ρOρ−1] =

∞
∑

n=0

Qr
x [ρOnρ

−1] . (57)

Let δ ≡ α(r − lA(µi) − R − a) ≥ 0 for any 0 < α < 1 and split the sum (57) into two
parts: 0 ≤ na < R+ δ + a and na ≥ R+ δ + a. Apply Theorem 2 for the first part (also note
‖On‖ ≤ 2‖O‖ by (29)):

‖Qr
x [ρOnρ

−1]‖ ≤ 2CA(µi)(2n+ 1)‖O‖e(lA(µi)+na−r)/ξA , (58)

and further with inequalities (29) and definition (30) for the second part:

‖Qr
x [ρOnρ

−1]‖ ≤ 2‖ρOnρ
−1‖ ≤ 2CA(µi)(2n+ 1)‖On‖

≤ 2CA(µi)(2n+ 1)‖Q(n−1)a
x [O]‖ ≤ 2CCA(µi)(2n+ 1)‖O‖e(R−na+a)/ξ . (59)

Overall, sum (58) as geometric series after applying n≤ k and sum (59) with (47) (where
A= 2, B = 1, k = (R+δ+ a)/a and γ= a/ξ):

‖Qr
x [ρOρ−1]‖ ≤ 2CA(µi)(2k+ 1)‖O‖e(lA(µi)+ka−r)/ξA(1− e−a/ξA)−1

+ 2CCA(µi)(2k+ 3)‖O‖e(R−ka+a)/ξ(1− e−a/ξ)−2

≤ 2CA(µi)[1+ 2(r − lA(µi))/a]‖O‖e−(1−α)δ/αξA(1− e−a/ξA)−1

+ 2CCA(µi)[3+ 2(r − lA(µi))/a]‖O‖e−δ/ξ(1− e−a/ξ)−2 , (60)

where in the second inequality we have replaced ka = R+δ+ a in the exponents and applied
the bound k ≤ (r − lA(µi))/a (because α≤ 1) in the prefactors. Now

‖Qr
x [ρOρ−1]‖ ≤ C2(µi ,ξ, C)‖O‖[1+ 2(r − lA(µi))/a]e

(R+lA(µi)+a−r)/(ξA+ξ) , (61)

if one choosesα= ξ/(ξA+ξ) to equate the exponents and C2(µi ,ξ, C) = 2CA(µi)(1−e−a/ξA)−1+
6CCA(µi)(1− e−a/ξ)−2.

Finally it suffices to choose C ′(µi ,ξ, C)≡max{C1(µi ,ξ, C), C2(µi ,ξ, C)}.

Observe that the operatorρOρ−1 as stated in (52), is not exponentially local explicitly (due
to the prefactor that is linear in r). To work around this the following corollary of Theorem 4
is particularly useful:

Corollary 1. For any ε > 0, there is a eC ′(µi ,ξ, C ,ε) such that

ρOρ−1 ∈ B
�

x , R+ lA(µi) + a;ξA + ξ+ ε, eC
′eεR/(ξA+ξ)2‖O‖/‖ρOρ−1‖

�

. (62)

Proof. First note that for ζ(ξ)≡ ξA + ξ,

eR/ζ = eR/(ζ+ε)eεR/ζ(ζ+ε) ≤ eR/(ζ+ε)eεR/ζ
2

, (63)

so it suffices to find eC ′(µi ,ξ, C ,ε) such that for all x ≡ r − lA(µi)− a ≥ 0,

C ′(µi ,ξ, C)[1+ 2(x + a)/a]e−x/ζ(ξ) ≤ eC ′e−x/(ζ(ξ)+ε) , (64)

which clearly exists.
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Finally we generalize inequality (38) to exponentially local operators as well; for future
use we will work in one dimension only:

Theorem 5. Let ρ be a one-dimensional state with ξ, C and l0(·) > 0 as stated around (38). If
O1 ∈ B(x , R1;ξ1, C1), O2 ∈ B(y , R2;ξ2, C2) and |x − y | ≥ l0(2) + R1 + R2,

|tr(ρO1O2)− tr(ρO1)tr(ρO2)|

≤ 2(C + C1 + C2)‖O1‖‖O2‖e(R1+R2+l0(2)−|x−y |)/(ξ+ξ1+ξ2) . (65)

Proof. Let ∆ ≡ |x − y | − l0(2)− R1 − R2 ≥ 0, and define r ≡ R1 + α1∆ and s ≡ R2 + α2∆ for
α1,α2 > 0 and α1+α2 < 1. Denote c(O1, O2)≡ tr(ρO1O2)− tr(ρO1)tr(ρO2) for convenience
and observe |c(O1, O2)| ≤ 2‖O1‖‖O2‖. Then

c(O1, O2) = c(P r
x [O1],P s

y[O2]) + c(Qr
x [O1],P s

y[O2]) + c(O1,Qs
y[O2]) . (66)

By inequality (38), (note δ = 2 if S and T are intervals in (38) and ‖P[O]‖ ≤ ‖O‖)

|c(P r
x [O1],P s

y[O2])| ≤ 2C‖O1‖‖O2‖e−l0(2)/ξe−(1−α1−α2)∆/ξ , (67)

and by definition (30),

|c(Qr
x [O1],P s

y[O2])| ≤ 2‖Qr
x [O1]‖‖O2‖ ≤ 2C1‖O1‖‖O2‖e−α1∆/ξ1 , (68)

|c(O1,Qs
y[O2])| ≤ 2‖O1‖‖Qs

y[O2]‖ ≤ 2C2‖O1‖‖O2‖e−α2∆/ξ2 . (69)

Now choose α1 = ξ1/(ξ+ ξ1 + ξ2) and α2 = ξ2/(ξ+ ξ1 + ξ2) so that the exponents with ∆
are all equal. Sum them up to get (65).

E Proof of the bound

In this section we give a proof of the bounds stated in the main text. To avoid clutter of
notations, all quantities in this section may depend on lattice geometry, Hamiltonian H (31)
and charges C i (33) implicitly.

Theorem 6. For any one-dimensional Gibbs state ρ as defined in (32) with correlation length
ξcor (read around (38) for a definition), ε,δ > 0, any operators O1, O2 and x ∈ Λ, t > 0, there
exist A(µi ,ξ, C ,ε), B(µi)> 0 such that

�

�

�

�

∂ CO1O2
(x , t;ρ)

∂ µi

�

�

�

�

≤ Asup
y∈Λ
‖c i

y‖‖O1‖2‖O2‖2(1+ 2R/a)eεR/(ξ+ξA)2 e−δ/(ξcor+ξA+ξ+ε)

+ 2c i (R+δ+ B)CO1O2
(x , t;ρ)/a , (70)

and
�

�

�

�

∂ CO1O2
(x , t;ρ)

∂ Jα

�

�

�

�

≤ Aβ sup
y∈Λ
‖hαy‖‖O1‖2‖O2‖2(1+ 2R/a)eεR/(ξ+ξA)2 e−δ/(ξcor+ξA+ξ+ε)

+ 2βhα (R+δ+ B)CO1O2
(x , t;ρ)/a+ 2

∫ t

0

ds
q

CO1O2
(x , t;ρ)C[Hα(−s),O1]O2

(x , t;ρ) , (71)

where a is the lattice spacing and ξA is defined in Theorem 2. The inverse temperature is denoted
as β and Jα labels couplings in the Hamiltonian (31). Denote O ≡ i[O1(0, t), O2(x , 0)]; R, ξ and
C are such that O ∈ B(y0, R;ξ, C) for some y0 ∈ Λ. Finally

c i ≡
∫ 1

0

ds c i(s)≡
∫ 1

0

ds sup
y∈Λ

|tr(ρs
ec i

yρ
1−sO†O)|

tr(ρO†O)
, (72)
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where ec i
y ≡ c i

y − tr(ρ c i
y), and same for hα with c i

y replaced by hαy . And if C i commute with each
other, c i can be chosen as

c i ≡ sup
y∈Λ

|tr(pρec i
y
p
ρO†O)|

tr(ρO†O)
≤ 2sup

y∈Λ
‖c i

y‖ . (73)

Proof. We start with proving (70). By definition (1) and (32),

∂ CO1O2
(x , t;ρ)

∂ µi
= −

∫ 1

0

ds tr(ρs
eC iρ1−sO†O) , (74)

where for any operator C , eC ≡ C − tr(ρ C). Now recall C i is a sum of local terms (33):

C i =
∑

y∈S(r)

c i
y +

∑

y∈Λ−S(r)

c i
y , (75)

for any S(r)≡ {y ∈ Λ : |y − y0| ≤ r}. For any y ∈ Λ, by definition of c i(s),

|tr(ρs
ec i

yρ
1−sO†O)| ≤ c i(s) tr(ρO†O) . (76)

The inequality (76) is good enough for the terms in S(r). For the remaining terms with
y away from y0 we have a better estimate because connected correlation decays when op-
erators are far apart. There is a technical complication due to the fact that the factors of ρ
are separated by – and do not necessarily commute with – the ec i

y . For this reason we need to
use the Araki bound to show that operators remain sufficiently local under conjugation by the
density matrix. Indeed by Lemma 2, O†O ∈ B(y0, R;ξ, 4C) and from Theorem 4 and Corollary
1, there is C1(µi ,ξ, C ,ε)> 0 and l(µi)> 0 such that for any 0≤ s ≤ 1,

‖ρ−sO†Oρs‖ ≤ C1‖O†O‖(1+ 2R/a) , (77)

ρ−sO†Oρs ∈ B
�

y0, R+ l(µi) + a;ξA + ξ+ ε, C1eεR/(ξA+ξ)2‖O†O‖/‖ρ−sO†Oρs‖
�

. (78)

Hence by Theorem 5, because tr(ρec i
y) = 0, for any 0≤ s ≤ 1,

|tr(ρs
ec i

yρ
1−sO†O)|= |tr(ρρ−sO†Oρs

ec i
y)|

≤ 2C2eR+l(µi)+a+RH+l0(2)−|y−y0|)/(ξcor+ξA+ξ+ε) , (79)

where C2 is defined in terms of the prefactor Ccor(µi) in (38) as, using (77),

C2 ≡ Ccor sup
y∈Λ
‖ec i

y‖‖ρ
−sO†Oρs‖+ C1eεR/(ξA+ξ)2 sup

y∈Λ
‖ec i

y‖‖O
†O‖

≤ CcorC1 sup
y∈Λ
‖ec i

y‖‖O‖
2(1+ 2R/a) + C1eεR/(ξA+ξ)2 sup

y∈Λ
‖ec i

y‖‖O‖
2 . (80)

Now bound the sum (75) by choosing r = R+ l(µi)+ a+RH + l0(2)+δ and apply (76) for
y ∈ S(r) and (79) for y /∈ S(r), (denote ζ≡ ξcor + ξA + ξ+ ε)

|tr(ρs
eC iρ1−sO†O)| ≤ c i(s)(1+ 2r/a)tr(ρO†O) + 4C2e−δ/ζ(1− e−a/ζ)−1 , (81)

and use the inequality (80) and ‖ec i
y‖ ≤ 2‖c i

y‖ to reduce to the form (70).
Proving (71) is essentially the same except in the first step:

∂ CO1O2
(x , t;ρ)

∂ Jα
= −β

∫ 1

0

ds tr(ρs
eHαρ1−sO†O) + 2 Re tr

�

ρO† ∂O
∂ Jα

�

, (82)
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there is an additional term due to coupling dependence of O1(0, t). By definition,

∂O
∂ Jα

= −
∫ t

0

ds [[Hα(s), O1(0, t)], O2(x , 0)] , (83)

and (71) follows from the Cauchy-Schwartz inequality for the inner product
〈O1, O2〉 ≡ tr(ρO†

1O2).
Finally if C i commute with each other, the first step (74) can be replaced with

∂ CO1O2
(x , t;ρ)

∂ µi
= −tr(

p
ρeC ipρO†O) , (84)

and the same proof goes through with c i as in (73). It is bounded by 2 sup‖c i
y‖ because

p
ρO†O

p
ρ is a positive operator and for any operator S and positive operator T , |trST | ≤

‖S‖tr T .

The theorem, as stated, seems complicated; but the physics is much clearer in terms of the
velocity-dependent Lyapunov exponent (6):

Corollary 2. For vS(v ; O1, O2,ξ) defined in (46),
�

�

�

�

∂ λO1O2
(v ;ρ)

∂ µi

�

�

�

�

≤
2c i

a

�

vS(v ; O1, O2,ξ)−λO1O2
(v ;ρ)(ξcor + ξ)

�

. (85)

Proof. Divide both sides of (70) by t CO1O2
(x , t;ρ), choose

δ(t) = (ξcor + ξA + ξ+ ε)
�

−λO1O2
(v ;ρ)t + εR/(ξ+ ξA)

2 + εt
�

> 0 , (86)

x = v t and take the limit t →∞ (assuming the limit and derivative commute):
�

�

�

�

∂ λO1O2

∂ µi

�

�

�

�

≤ 2c i
�

vS +
�

ε + εvS/(ξ+ ξA)
2 −λO1O2

�

(ξcor + ξA + ξ+ ε)
	

/a . (87)

Finally let ε,ξA→ 0 to conclude5.

The operator O must decay at large distances at least as quickly as the rate set by ξLR
(appearing in any triple (v,ξLR, CLR) with a Lieb-Robinson bound Theorem 1). Therefore we
take ξ = ξLR in the main text. We have already noted in section C that this then defines a
vS(v ;ξ)≤ v.

The coupling dependence of λO1O2
(v ;ρ) can be bounded in the same way:

Corollary 3. If CO1O2
(v t, t;ρ)∼ κ2

1eλO1O2
(v ;ρ)t and

C[Hα(−s),O1]O2
(v t, t;ρ)∼ κ2

2‖h
α‖2eλO1O2

(v ;ρ)t (88)

for κ1,κ2 > 0 and ‖hα‖ ≡ supy∈Λ ‖hαy‖ at t →∞,
�

�

�

�

∂ λO1O2
(v ;ρ)

∂ Jα

�

�

�

�

≤
2βhα

a

�

vS(v ; O1, O2,ξ)−λO1O2
(v ;ρ)(ξcor + ξ)

�

+ 2‖hα‖κ2/κ1 . (89)

If we assume that the growth rate of the OTOC does not depend on choices of operators,
i.e., the growth rate in (88) is λO1O2

(v ;ρ), the same as that of CO1O2
(v t, t;ρ), this corollary

shows that divergence of ∂J vB at zero temperature pinpoints quantum phase transitions at
which the system becomes gapless. Indeed, if to the contrary the system is gapped, as observed
in Fig. 3 and discussed in the main text, the first term on the right side of (89) is expected to
vanish at zero temperature so the right-hand side of (89) should be finite, contradicting the
divergence of ∂J vB via an inequality similar to (23). Cusps of scrambling characteristics are
indeed observed at quantum critical points in e.g. [47,48].

5Regarding the limit ξA→ 0 we refer readers to the discussions following Theorem 2.
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Figure 4: Comparison with Exact Diagonalization. The solid curves are from ED
numerics in a mixed field Ising chain with N = 10, hX = 1.05J and hZ = 0.5J (see
(21) for the Hamiltonian) and ρ is the thermal state with T = J . In the first panel,
each curve shows the time dependence of the OTOC at a fixed distance (O1 = Z1 and
O2 = Zx+1). For finite bond dimension truncations χ = 8, 16 and 32, the MPO result
agrees with ED at early times, and starts to deviate when the truncation is reached,
which is near J t = 2,3 and 4 respectively. In the second panel, each curve is a spatial
profile of the OTOC at a fixed time. Propagation of a butterfly wavefront is clearly
observed. For all χ the agreement with ED is remarkable until the MPO truncation
ε = 10−14 kicks in after lnC drops to approximately −25.

F Numerical details

Our method is a generalization of the Matrix Product Operator (MPO) approach to calculating
the butterfly velocity, presented in [19], to finite temperature states. The algorithm is imple-
mented with the ITensor library, with operators O1(0, t), O2(x , 0) and thermal density matrix
ρ represented as MPOs and evolved with a Time-Evolving Block Decimation (TEBD) method
(for MPOs). For general quantum systems the thermal entanglement entropy is expected to
be extensive. We find in practice that the MPO representation of thermal states works at suf-
ficiently high but finite temperatures (in our case, 0 ≤ βJ ≤ 3). Numerical truncation ε in
the MPO is set to ε = 10−14 and maximal bond dimension is denoted as χ = 256. We will
only investigate the mixed field Ising model with hopping J and external fields hX and hZ as
defined in (21), and probe the OTOC with Pauli Z operators (O1 = O2 = Z in (1)). Scram-
bling characteristics are then determined by least-squares fitting of lnC at the wavefront to the
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Figure 5: Examples of fitting. Dashed curves are from MPO numerics and fit-
ting of (2) to wavefront is marked as solid. Each curve is lnC for a fixed
J t = 0.2,0.4, . . . , 4.8. The first plot is for β = 0 and hX = 1.05J , hZ = 0 with
a fitting vB = 1.95Ja, p = 0.46 to be compared with exact values vB = 2Ja and
p = 0.5 (a = 1 is the lattice spacing); the second plot is for βJ = 3, hX = 1.05J ,
hZ = 0.3J and the best fitting is vB = 1.39Ja with p = 0.65.
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Figure 6: Fitted butterfly velocity at hX = 1.05J , hZ = 0.4J and βJ = 3 for different
hyperparameters δ and t0 (J t1 = 4.4 and a = 1). For small t0, fluctuation with
respect to δ is insignificant due to a larger amount of data. However, at these early
times there is a systematic error leading to a dependence on t0. When J t0 > 2 the
fitting is not stable. The optimal choice of hyperparameters, from the figure, would
be J t0 ≈ 1.5 with δ ≈ 1.0.
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Figure 7: Scrambling characteristics in (2) fitted for numerics in mixed field Ising
chain (21) with hX = 1.05J , different longitudinal field hZ , inverse temperature β
and hyperparameters t0 and δ (with J t1 = 4.4). Solid curves are guides to the eye
of fits at J t0 = 1.5 and δ = 1.0.

expression (2).
The wavefront is determined as follows. First, due to numerical truncation with ε = 10−14

only data with lnC > −22 will be used. This delimits the right end r of the wavefront; the
default left end l0 is then defined as the position where ∂x lnC is half the value at r. To eliminate
the arbitrariness of l0 a hyperparameter δ > 0 is introduced and the left end l ≡ r − (r − l0)δ.
When δ = 1, l = l0 and when δ = 0, l = r; hence δ tunes the range of the wavefront, ending
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at r.
As a sanity check our implementation is verified against Exact Diagonalization (ED), which

may be regarded as the MPO approximation with no bond dimension restrictions (χ =∞).
The result is shown in Fig. 4. From the figure the MPO algorithm matches with ED perfectly
at times before maximal bond dimension restriction is reached and starts to deviate after-
wards. However, as shown in the figure, the wavefront dynamics is well captured by the MPO
approximation, even after the bond dimension is saturated inside the butterfly cone. Such
effectiveness of MPO (at least at infinite temperature) is observed in [19] and explained by
the fact that at the wavefront the operator O1(0, t) is less complex, so only a smaller bond
dimension is necessary.

A careful error analysis is necessary to extract reliable information from the nonlinear fit
to the five parameters (C ,λ, x0, vB, p), appearing in (2). Here C is the prefactor. Three major
causes of systematic errors are identified: finite bond dimension χ, a finite time range [t0, t1]
of data and inaccuracy of the functional form (2). The convergence with respect to bond
dimensions is verified: for all data used the difference in lnC between χ = 256 and χ = 512 is
less than 0.05 and our main results do not depend on such a small difference. Also the fitting
as presented in Fig. 5 is visually reasonably good, even for the chaotic Hamiltonian hZ = 0.3J
at low temperature βJ = 3.

The effect of a finite range of data and inaccuracy of the functional form is quantitatively
manifested as dependence on the hyperparameters δ and t0. Since the butterfly velocity is
defined in the late time limit, t0 should not be too small; but because only data up to time
t1 are available, t0 cannot be arbitrarily large either. Moreover, larger t0 means less data and
more significant numerical instability. In Fig. 6, dependence on δ and t0 of the fitted butterfly
velocity for βJ = 3 and hZ = 0.4J is shown. We will work with the values δ = 1.0, J t0 = 1.5
and J t1 = 4.4.

With this choice of hyperparameters, we produce the figures in the main text. Errors are
estimated via slightly tuning hyperparameters. Details are summarized in Fig. 7, with fitted
values of p and λ given as well. From the plot errors are estimated to be within a scale of 0.05,
0.05 and 0.5 for vB(β)/vB(0), p and λ/J respectively.

The correlation length ξ is extracted with MPO numerics as well, as the inverse spatial de-
cay rate of connected two-point correlations tr(ρZ15Z15+x)− tr(ρZ15)tr(ρZ15+x) in an N = 50
chain with operator insertions at sites 15 and 15 + x , where x = 0, 1, . . . , 20. The exponen-
tial fit is remarkably good with correlation lengths at different temperatures and longitudinal
fields shown in Fig. 8. Given the correlation length ξ along with p and λ from Fig. 7, the
bound is evaluated (with error estimates) in Fig. 9. In evaluating the inequality (23) we have
used vS ≤ v for v = 3Ja and ξLR = a (cf. section C), where a Lieb-Robinson inequality with
(v,ξLR) = (3Ja, a) is verified in numerics and a is the lattice spacing.
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Figure 9: Temperature dependence of the butterfly velocity for different longitudi-
nal fields hZ and hyperparameters t0 and δ with hX = 1.05J . Upper bounds are
evaluated according to (23) shown as the dashed lines in the top of the figure.
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Math. Phys. (V. Sidoravičius, ed.), Springer Netherlands, Dordrecht, 591 (2009).

[43] H. Araki, Gibbs states of a one dimensional quantum lattice, Commun. Math. Phys. 14,
120 (1969), doi:10.1007/BF01645134.

[44] G. Bouch, Complex-time singularity and locality estimates for quantum lattice systems, J.
Math. Phys. 56, 123303 (2015), doi:10.1063/1.4936209.

[45] M. B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun.
Math. Phys. 265, 781 (2006), doi:10.1007/s00220-006-0030-4.

[46] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera and J. Eisert, Locality of temperature,
Phys. Rev. X 4, 031019 (2014), doi:10.1103/PhysRevX.4.031019.

[47] Y. Ling, P. Liu and J.-P. Wu, Holographic butterfly effect at quantum critical points, J. High
Energ. Phys. 10, 025 (2017), doi:10.1007/JHEP10(2017)025.

[48] S. Sahu, S. Xu and B. Swingle, Scrambling dynamics across a thermalization-localization
quantum phase transition, (2018), arXiv:1807.06086.

29

https://scipost.org
https://scipost.org/SciPostPhys.7.4.045
http://dx.doi.org/10.1103/PhysRevX.8.031058
http://dx.doi.org/10.1103/PhysRevB.97.144304
http://dx.doi.org/10.1103/PhysRevB.98.220303
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1007/s00220-006-1556-1
http://arxiv.org/abs/arXiv:1004.2086
http://dx.doi.org/10.1007/BF01645134
http://dx.doi.org/10.1063/1.4936209
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1103/PhysRevX.4.031019
http://dx.doi.org/10.1007/JHEP10(2017)025
http://arxiv.org/abs/arXiv:1807.06086

	Introduction
	Three velocities from locality
	Lieb-Robinson velocity
	Butterfly velocity
	Scrambling velocity

	Scrambling bounds the state dependence of the OTOC
	Outline of proof in one dimension
	Generalization to higher dimensions

	Temperature dependence of the butterfly velocity
	Numerical results on the mixed field Ising chain
	Bounding the butterfly velocity

	Final comments
	Notation
	Review of locality bounds
	Definitions of velocities
	Bounds for exponentially local operators
	Proof of the bound
	Numerical details
	References

