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Abstract

Reconstructions of the primordial power spectrum (PPS) of curvature perturbations from
cosmic microwave background anisotropies and large-scale structure data suggest that
the usually assumed power-law PPS has localised features (up to ~ 10% in amplitude),
although of only marginal significance in the framework of ACDM cosmology. On the
other hand if the cosmology is taken to be Einstein-de Sitter, larger features in the PPS
(up to ~ 20% in amplitude) are required to accurately fit the observed acoustic peaks.
Within the context of single clock inflation, we show that any given reconstruction of
the PPS can be mapped on to functional parameters of the underlying effective theory of
the adiabatic mode within a 2nd-order formalism, provided the best fit fractional change
of the PPS, APy /Py, is such that (AP /Pr)? falls within the 10 confidence interval of
the reconstruction for features induced by variations of either the sound speed c, or the
slow-roll parameter €. Although there is a degeneracy amongst these functional param-
eters (and the models that project onto them), we can identify simple representative
inflationary models that yield such features in the PPS. Thus we provide a dictionary
(more accurately, a thesaurus) to go from observational data, via the reconstructed PPS,
to models that reproduce them to per cent level precision.
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1 Introduction

All observations of the cosmic microwave background (CMB) are consistent with scale invari-
ant, adiabatic, Gaussian initial conditions [1] — widely accepted as evidence of an epoch of
early universe inflation, processed by an intervening ACDM cosmology [2]. This is not to say
that we have directly observed scale invariant, adiabatic and Gaussian initial conditions, since
the most we can do with the limited set of modes we observe (already compressed by projec-
tion onto the 2-dimensional surface of last scattering) is to marginalise over or fix all but a
set number of parameters, and look for the best fit for the remaining parameters consistent
with the observed CMB sky, as with the six parameter ACDM model. It is then necessary to
introduce theoretical priors motivated by an underlying model bias for this process to work. A
common such set of priors involves parameterising the spectrum of curvature perturbations as
a power-law, thus modelling it with only two numbers — an amplitude at some pivot scale and
a spectral index. This is a natural parameterisation in the context of toy models of single scalar
field inflation. One can also allow for mild departures from this model such as a ‘running’ of
the spectral index, or even a running of the running. However such parameterisations would
not be up to task if the data has pronounced localised departures from scale-invariance i.e.
there are sizeable features superimposed on the power-law spectrum. *

Direct reconstruction of the PPS holding all other parameters of the ACDM model fixed
using CMB temperature data, temperature plus polarisation data, or CMB cross correlated with
large scale structure [5]- [33] suggests that small, localised departures from scale invariance
may indeed be present in the data, although with marginal statistical significance. On the
other hand, attempts to match CMB observations with an Einstein-de Sitter (EdS) cosmology
(which has ©, = 0) requires a PPS with larger departures from scale invariance in order to
reproduce the observed acoustic peaks in the CMB power spectrum [36].

This begs the question — what underlying model of inflation could have produced the requi-
site features? Those needed when an underlying EdS cosmology is assumed can be naturally
generated in ‘multiple inflation’ in N = 1 supergravity wherein the inflaton mass changes

INote that this has been invoked (at scales beyond those accessible in the CMB) as a mechanism to produce
primordial black holes (see [3,4] for reviews).
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suddenly due to its (gravitational) coupling to other ‘flat direction’ scalar fields which undergo
symmetry-breaking phase transitions during inflation [34,35]. The bump-like feature required
in the PPS to fit an EdS universe would require two phase transitions in rapid succession —
one which raises the inflaton mass and a second soon after which lowers it [36,37]. Although
additional parameters then need to be introduced to describe this, it is justified by the resultant
overall improvement of the fit to the data e.g. the y2/d.o.f. according to standard information
criteria. Moreover there are other observable signatures and tests of such multiple inflation,
e.g. associated characteristic non-gaussianity [38]. However there may well be other ways
to generate the required PPS in very different models of inflation, or more generally if one
were to assume different underlying cosmologies. It would therefore be useful to provide an
inflation model-independent description of what is required to fit the observational data.

In this investigation, we provide the tools to address this question in an arbitrary context
by detailing a procedure by which one can ‘invert’ any given reconstructed power spectrum for
a given universality class of inflationary backgrounds if the reconstructed features are small
enough. By this, we mean that if the reconstructed spectrum is such that (AP / 7773)3 S (k)
everywhere — where %(k) is the 1 o confidence interval of the reconstruction of the fractional
PPS at any given scale — then a 2nd-order formalism suffices to invert for a representative
background model if the features were to be induced by a variation in the adiabatic sound
speed ¢, or €, the first term in the Hubble hierarchy. That is, it is possible to convert any given
scale dependence for the primordial power spectrum into a time dependence for the parameters of
the underlying effective theory (EFT) of the adiabatic mode [39] in the context of single clock
inflation. Although many background models will project onto the same set of parameters of
the EFT of the adiabatic mode, one can always look for the simplest model that will reproduce
such time dependence and nominate it as the most plausible representative of its class to
reproduce such features. In other words, we present a dictionary, or rather a thesaurus, to map
any given reconstructed primordial power spectrum to a class of models that would reproduce
it.

As elaborated upon in the next section, all models of single clock inflation project onto at
most three independent functions of time in the effective theory of the adiabatic mode up to
quadratic order. Of these, € and ¢, capture the effects of the leading order terms in the deriva-
tive expansion in the parent theory. For features induced by variations in ¢ alone, one can
explicitly reconstruct a potential that would reproduce the required variations in € presuming
a canonical kinetic term, as shown in Appendix B. We find that even ~ 20% amplitude features
can be reproduced with potentials that naively do not appear to differ too significantly from a
polynomial potential over the field range responsible for the observed modes (see Figs. 7 and
9). However, the coefficients of the potential are indeed finely tuned so that the background
trajectory is intermittently knocked off the attractor, thus rendering sizeable features at the
desired scale. We speculate on the microphysical origin of such potentials and their radiative
stability in our concluding discussion. Although we do not consider it in detail in the present
study, we mention in the following section how one can also in principle construct represen-
tative background models for reconstructed features produced by variations in ¢, within the
effectively single clock context. 2

The outline of this paper is as follows — in § II, we review the effective theory of the adiabatic
mode, detailing the method by which one can reproduce the scale dependence of a given
reconstructed APr/Pg by a time dependence in ¢, keeping € fixed, or vice-versa, within a
2nd-order formalism. In § II. A we demonstrate the utility of our formalism with an analytic toy
example of a O(10 %) feature and reconstruct a model potential that reproduces the feature

Features can also be generated in the non-single clock context (see e.g. [40-42]), however the formalism
developed here to ‘invert’ for representative background models does not apply to such scenarios due to added
degeneracies (see also [43] for a recent discussion).


https://scipost.org
https://scipost.org/SciPostPhys.7.4.049

SCIl SciPost Phys. 7, 049 (2019)

to percent level accuracy. In § III and IV, we detail a direct reconstruction of the PPS from
Planck data and present results assuming first the standard ACDM (§ V) and then the very
different EAS cosmology (§VI), again reconstructing possible background model potentials
that reproduce the PPS. Finally in § VII we offer our conclusions. Various details not covered
in the main body of the paper are elaborated on in the appendices.

2 From features to ‘Wilson functions’

The underlying philosophy of effective field theory is no different to that of the Taylor expan-
sion, where in place of expanding a function around a given point with a complete basis of
functions (say monomials in the case of a single variable), one expands an effective action
in terms of a complete basis of operators consistent with the symmetries of the system. The
standard expansion for a Lorentz covariant theory takes the form of a derivative expansion in
canonically normalised fields [44, 45], whose coefficients are to be fixed by a finite number
of measurements at some fixed energy scale. Operators with mass dimension greater than
four are classified as irrelevant, meaning that their effects at energies much lower than the
mass scale defining the operator expansion are subleading. 3 The craft of effective field theory
consists of choosing a suitable operator basis consistent with the symmetries of the system
such that quantum corrections do not generate large anomalous dimensions to these opera-
tors. That is, the bare Lagrangian one writes down describes the propagation of degrees of
freedom that reasonably approximate the true quantum mechanical degrees of freedom. In
the context of adiabatic cosmology, the situation is complicated by the fact that the background
spontaneously breaks Lorentz invariance (increasing the number of operators one can write
down consistent with the remaining symmetries). A suitable operator basis that has come to
be known as ‘the Effective Theory of Inflation’ was proposed in [39] (see also [46] for a review
with an eye to some of the applications presented here).

The insight of [39] was to exploit the redundancy inherent in a diffeomorphism invariant
theory to foliate spacetime in such a way that the fluctuations of the scalar degree of freedom
that generated the cosmological background are gauged away. In this so-called comoving (or
unitary) gauge, the fluctuating background source has now been absorbed into the metric,
which acquires a propagating scalar polarisation — the comoving curvature perturbation R,
defined via the 3-metric

hij = a262R5ij. (1)

Together with the lapse and shift vectors specifying the foliation (N and N' respectively) this
completely characterises the metric via the ADM decomposition

ds®> = —N?dt* + h;; (dx' + N'dt) (dx’ + N'dt). 2)

The comoving curvature perturbation is the workhorse of the effective theory — it is an un-
gapped Goldstone mode that non-linearly realises time translation invariance in single clock
cosmology. This has two important implications. Firstly, because it is ungapped, R can only
have derivative couplings, meaning that at long wavelengths R = constant will always be a
solution to any order in perturbation theory [47], a statement that can also be proved at the
quantum level [48]. This is the familiar constant super-horizon mode that imprints on the
CMB around last scattering. The second important feature is that the coefficients of any oper-
ators one writes down at different orders have non-trivial relations forced upon them by the

3This mass scale is often referred to as the cutoff of the effective theory, but is better thought of as the scale at
which new physics become relevant, necessitating another effective description that possibly includes propagating
heavier degrees of freedom not included in the original description.
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non-linear realisation. This means that the ‘Wilson functions’ that determine the expansion at
quadratic order necessarily imprint on higher order correlation functions as well. This has the
corollary that any features in the two-point function of the curvature perturbation will corre-
late with features in the three-point function in a manner that can be quantified precisely if the
feature is due to variations in ¢, [49], or more generally [50,51], with additional consistency
relations forced upon higher-point correlation functions [52,53].

The operator basis defining the EFT of inflation is given by

R® H N\ M M}
fd4x\/ [MZ——MZ(]W—BHZ )+2—'2(5g°°)2+3—f(5g°°)3+

_ .M M2
+M;65g%5E! + (5E) +—= (5E”5EU) +. } 3)

where §g% = g% +1 and §E;; is the variation of E;; which is related to the extrinsic curvature
K;; of the hypersurfaces deﬁmng the foliation as

1,.
EiJ-:NKij:E(hij—ViNj—VjNi), 4)
with the ellipses denoting higher order terms. * One obtains the action up to the n™ power of
R by solving for the lapse and shift constraints to the (n—2)™ power [54,55] and substituting
back into the action. Only the following four operators in the EFT expansion can contribute

terms quadratic in R:
Loy~ (658", 65%6E!, (SE))*, GEVSE;;, (5)

where the last two operators give equivalent contributions at quadratic order after integration
by parts. Therefore, considering only the operators (6g%)?, & gOOé'Eii, (5Eii)2 with coefficient
(Wilson) functions Mg (1), Mg(t) and Mg(t) respectively, one obtains the following 2nd-order
action after solving for the lapse and shift constraints:

R?2 (AR _,(3*R)?

— 4, 3 pr2 2

Sz—fd X a EMPI(C_Z_T-i_M T B (6)
S

where in general ¢, and u(t) are complicated functions of the three Wilson functions

Mg' (1), M23(t) and Mzz(t). It can be shown that the functional coefficient of the operator (82R)?

can only be generated by the (5]51?)2 term [68]. However, certain simplifications occur if the

parent matter effective action describing the inflaton background takes the form

m=Lm($,09), (7)

i.e. contains only derivatives that come in combinations of the form (3 ¢)*" in its effective
expansion. In this case, it is straightforward to see that operators of the form (& El?)2 or 56g%°5 E;
will not be generated, since factors of the shift vector cannot appear in powers of (3¢ )" in

the comoving gauge, from which it directly follows that u~2(t) = 0. > However even if such

“The terms in the round parentheses enforce tapdole cancellation — i.e. guarantee that the background one
expands around satisfies the Friedmann equations. If we were to calculate loop corrections to this action, the
tadpole condition would shift accordingly i.e. the background equations of motion are an extremum of the effective
action.

>This will no longer be true if operators containing factors of C¢ appear in the parent matter effective action
- e.g. at the six derivative level, if operators of the form (9 ¢)?0%¢ appear in addition to (3 ¢)°. However, it is
straightforward to show [57] that up to four derivative terms, one can always bring the action of the parent matter
theory into the form (7) even in the presence of couplings to much heavier fields.
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operators were present, from the perspective of the parent theory u~2 corresponds to a mass
scale associated with higher dimensional operators, and will be sub-leading for sufficiently low
energies.

Therefore, considering only the operator (5g°)? with Wilson coefficient Mg (t), which
captures the leading order behavior of higher dimensional operators in the parent theory, one

finds ) )
R> (@R)
— 2 4 3
SZ_Mplfd xa e(g— " ), (8)
with .
H 1 2M.
e=——, = =1——=2, ©)
H2 2 M2H
pl

That is, to leading order in the derivative expansion, one finds that the functions € and ¢,
paramaterise all possible single clock backgrounds (slow roll or not, canonical or not), with
u capturing subleading effects from higher dimensional operators in the parent theory. Of
these functions, € plays a privileged role. It is akin to an order parameter that book-keeps the
expansion — when it vanishes, a symmetry is restored (exact time translational invariance) and
each term in the perturbative expansion for R is suppressed by sequentially higher orders in
€ [54]. Any modifications to the zero and two derivative parts of the parent matter effective
action will manifest in changes in €. The interpretation of ¢, (equivalently, Mg) from the
perspective of the background theory is that it captures the leading order modifications to the
two and four derivative terms in the parent matter effective action.

Although the whole point of effective field theory is to be agnostic about the underlying
high energy description, it is useful to illustrate the significance of the coefficient M24 by com-
puting it in a specific setup. For example, in effectively single field inflation, where the inflaton
is a single light direction in a multi-field space where all other directions are much heavier, °
one finds that:

1 462
c
s eff

Here 0 = Vy/¢, is the angular velocity in field space given background field velocity
b0 = ($.dMV2, with M2, = Vyy — 62, and Vy = NV, V is the derivative of the poten-
tial normal to the trajectory which vanishes when the inflaton is on the potential trough [58].
Intuitively, analogous to a bob-sledder going down a track, the background trajectory slides up
the valley of the potential each time it traverses a bend in field space, resulting in transient re-
ductions in the speed of sound, thus capturing the leading order effects of higher dimensional
operators in the parent theory [59,60]. This can occur without spoiling slow roll [61,62] and is
consistent with the decoupling of the true fast and slow modes of the theory (which no longer
align with the tangent and the normal to the trough of the background potential [57]). Intu-
itively, effectively single field inflation corresponds to ‘sliding up’ the heavy directions without
exciting normal oscillations (in contrast to models referred to in [40-42], where a heavier
clock field no longer decouples). ”
Comparing (9) and (10), we thus read off:
(242
My = %0 . (11)

2
Meff

6Specifically, in a two field setting, if T* and N are the tangent and normal vectors to the background trajectory
$3(t), then one is in the effectively single field regime when T*T*V,V,V < N°N*V,V,V.

7 Although we do not pursue it further here, one can envisage reconstructing a potential over any given target
space where the background trajectory turns in such a way that it reproduces the reconstructed ¢, (13).
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As reviewed in Appendix A, any changes in the speed of sound sourced by a time varying Mg
can be shown to induce a change in the power spectrum to 1st-order of the form

0
Al—PR(k) = —kJ dt (1 — clz) sin(2kT) , 12)

PR —c0 s

where P denotes the power spectrum of the fiducial attractor of which we consider the
feature a perturbation, and where we for now work to 1st order in the quantity u(t) =1/ csz—l,
hence the subscript. As shown in [49] and rederived in Appendix A, any features imprinted
by transient reductions in the speed of sound to 1st-order can in principle be ‘inverted’ so that
one could also reconstruct the function Mg (t) that would have generated such features if they
were sourced by transient reductions in the speed of sound alone

1 1_1J° dk A, Pg
o k Pr

2= (k)sin(—2kT). (13)

S
This suggests that provided the feature is small enough, one can always map any non-trivial
scale dependence of the primordial power spectrum onto the time dependence of the param-
eters of the EFT of the adiabatic mode. This of course is not a unique prescription since there
are many ways one can produce the same scale dependence of the two point function of the
curvature perturbation given the independent functions € and c,. A similar exercise keeping
¢, fixed at unity also allows us to calculate the change in the power spectrum induced by a
varying €. To 1st-order in Ae/e one can show that

17372 1[0 dt Ae
o

(k) = E T——( 7)((1 — 2k?72) sin(2kT) — 2k cos(2kT)) . (14)

With a bit more work, we can also invert the integral kernel above to find the time dependence
of Ae/e corresponding to any given A;Pr /Pr (45):

el 2
Aey=2 J dk 21 PR 4y (251n (k7) sin(ZkT)) . (15)
€ ), k Pr kv

It turns out that some remarkable simplifications enable us to extend this inversion to 2nd-
order. The fractional change in the power spectrum to 2nd-order in the EFT parameters
Ae/e(t)oru(t)= 1/c52('c) — 1 (henceforth denoted X (7) in general) is

AP. AP AP
R(k)— LR () + =221, (16)
Pr Pr
where the 2nd-order term has the form
0 T
AP 2
Z—R(k):f d7,X(75) dt1X(t) K (k,71,75) . a7
PR —0o0 —oc0

The full expression for the integral kernel K can be found in [80]. Given a reconstruction
estimate AP,../Pr for the fractional change in the power spectrum, we wish to invert (16)
for the EFT parameters Ae/e(7) or u(7).

Fortunately, as shown in Appendix A, the 2nd-order order fractional change in the power
spectrum for features induced by varying ¢, (46) or € is in fact equal to the square of the
1st-order fractional change for both cases (cf. (47) and (50))

A27’71(10 ~ (= 7)R(k)) (18)

7
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where we note that the right hand side could a priori have consisted of additional terms in-
volving logarithmic derivatives of A;Px/Pr. Although these do not appear at 2nd-order, we
do not preclude their appearance for higher order corrections.

This means that (16) is a quadratic equation in the 1st-order fractional change and can
be inverted for an effective first order fractional change from a given reconstructed power
spectrum as

17772

(k)=- (—1 +\|1+ 4%(1@) . (19)

R

Inserting this fractional change into the integrands of (13) or (15) allows us to obtain the
functional parameters of the EFT of the adiabatic mode that would reproduce the reconstructed
feature accurate up to the neglected terms, which we now quantify.

We note first that the minimum accuracy to which one is obliged to calculate a given quan-
tity is set by the error with which it is determined from observations. In the context of a
reconstructed power spectrum determined to within a given 1 o confidence interval, provided
the higher order corrections induced by a varying parameter in the effective theory is every-
where smaller than or of the same order as the 1 ¢ error, the 2nd-order treatment detailed
above suffices. As discussed in the Appendix (53), if %(k) denotes the 1 o confidence inter-
val surrounding the fractional part of the best-fit reconstructed power spectrum, then if the
neglected corrections are such that

1PR

(k) (k) S 2(k), (20)

€

‘ABP’R

Cs,€ Cs,

then the 2nd-order formalism is sufficiently accurate in accounting for features with a varying
¢, or €. We recall that the expression for the cubic correction is shorthand for a series of terms
that could also include logarithmic derivatives of A;Pr /Pg acting on some factors (which
will typically be of the same order as A;Pr /Py, itself). We note from (19) that if in addition,
the reconstructed feature is such that it dips below A;Pr/Pr < —0.25, then one is obliged
to work to cubic order in perturbations in order to extract a real root for (19).8 We conclude
that we can therefore reproduce features as large as ~ 25% with less than ~ 2% error. Before
turning to the specifics of reconstructing the primordial power spectrum from CMB data given
different model assumptions, we illustrate the utility and accuracy of our formalism with an
analytic toy example.

2.1 Analytic toy model
Consider the toy feature model induced by the fraction change in € given by

_ 2 _ 2
E(N)=c1 exp (_M)""CZ (N —Ny) exp (—w), (21)
€ o )

1 2

with ¢y, ¢, constants, which we plot in Fig. 1. Assuming (21) as the background (the red line
of Fig. 2) we can compare the induced power spectrum by numerically integrating the mode
equation

S SR (G ne e

with the results obtained from the analytic expressions for the fractional change of the power
spectrum (given by (14) and (18)) under a particular time varying €. The 1st-order correction

8Alternatively, the attractor PPS can be lowered to reduce the deficit so that the fractional change does not go
below —0.25.
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0.001 0.34 —— ODE solution
""""" 1st order EFT
—0.051 0.2 2nd order EFT
. &
= _0.101 o 0.14
5 —0.10 >
0.0
—0.151
_01 4
—0.20 , : ‘
0 2 4 6 8 102 107!
N k/ko
Figure 1: Red line: fractional change Figure 2: The dotted/dashed lines

Ae/e (21) with parameters ¢; = —0.159,
¢, = 099, o7 = 1.16, 05 = 0.09 and

are the power spectra obtained via the
1st/1st+2nd-order expressions (14) and

Ny =4. (18) respectively. The red line is the nu-
merical result.
0.3
0.00 1
0.21
—0.051 01
. &
> —0.10 a  0.0q
< <
—0.151 —0.11 —— Second-order formula
. —— Analytic —024 T Numerical evaluation
—0.20 v - Secorvld order ' Third-order error
. . —0.3 — —
0 2 4 6 8 10~ 10~
N k/ko
Figure 3: The superposed dashed line is Figure 4: Numerical evaluation of the

the reconstructed Ae/e obtained from
evaluating (15) using the exact power

power spectrum using the reconstructed
Ae/e shown in Fig. 3, which reproduces

spectrum in (19). the exact power spectrum to within an ac-

curacy of (APr/Pr)e.

(14) is plotted as a dotted (grey) line in Fig. 2, and the 2nd-order correction (18) is plotted as
a dashed (black) line. As expected, the analytic expression at 2nd-order everywhere matches
the exact power spectrum to within an error of (APg/Pz)3, i.e. to the per cent level for
the particular feature model considered here. In Fig. 3, we superpose the result of the re-
constructed e from the exact featureful power spectrum using (19) and (15) with the known
analytic one (21). This reconstructed e is able to reproduce the original fractional change of
the power spectrum to within an error of (AP /Px)>. It is not therefore surprising to see it
almost exactly match the original analytic form for Ae/e. When one numerically obtains the
power spectrum from the reconstructed Ae/e, we see in Fig. 4 that indeed, it reproduces the
original power spectrum to within the appropriate accuracy. Having convinced ourselves that
the formalism works as advertised, we now turn to the problem of inverting for the parameters
of the EFT of inflation using reconstructed power spectra extracted from CMB data.
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3 Reconstructing the EFT parameters

Having established the relation between the EFT parameters, Ae/e(7), andu(t) =1/ CSZ(T)—l,
and the induced fractional change in the PPS, APy /Pr(k), we can now reconstruct the EFT
parameter given estimates of the fractional PPS. The starting point will be a previously esti-
mated PPS and its uncertainty, though it is described in Appendix D.2 how the estimation of
the PPS can be circumvented entirely. Two possible approaches to the estimation, or recon-
struction, of the EFT parameters from the fractional PPS are possible.

One approach is to use the inverse relations mapping AP /Pr (k) to X(7), i.e. (13) and
(15) and thereby transform the estimated PPS P,..(k) into an estimate of X (7). This approach
will be adopted here. However, since the estimated PPS, being a reconstruction from noisy
data, will be jagged, the estimate of X(7) will be so, too.

Another strategy would have been to maximise the likelihood associated with the PPS with
respect to X(7). The relation between X(7) and the PPS it induces is given by the forward
relations (12) and (14). The likelihood compares the induced PPS to the PPS estimated from
observations, weighting the discrepancy by the PPS covariance matrix. A penalty on the rough-
ness of X(7) is then added to the likelihood to select a realistic solution. This is discussed in
detail in Appendix D.

The starting point of our work is a previously estimated PPS. It was recovered from the
Planck Public Release 2 temperature and polarisation data using Tikhonov regularisation pe-
nalising first-order derivatives® of the PPS, as explained in detail in [31]. The Planck TT, TE
and EE likelihood function consists of a pixel-based component for multpoles £ < 29 and a
Gaussian pseudo-C, component for 30 < ¢ < 2508. The fractional PPS APy /Pr (k) was then
constructed by subtracting the reconstructed PPS Py, (k) from the power-law PPS 73%0 “(k) and
dividing by the latter. The PPS and its uncertainty was estimated on a grid of 1900 wave
numbers from k;, = 6 x 107 Mpc ™! to k., = 0.75Mpc L.

4 Reconstructing the inflaton potential

As reviewed in Appendix B, it is possible to reconstruct a potential that would reproduce an
arbitrary time varying profile for e assuming a canonical kinetic term for the inflaton. '© We
caution that this is not the same problem as reconstructing the action for the inflaton back-
ground in general, since as discussed in §II, there will be many background models that project
onto the same Wilson functions of the EFT of the adiabatic mode and thus many degeneracies
exist (cf. [63-66]). Our goal here is to furnish a simple representative from the equivalence
class of models that would reproduce any given profile for e(7). From (57), the field profile

1S
N

¢(N)=¢oiMp1f dN"4/2e(N), (23)

N,

where the choice + corresponds to whether we want the inflaton (and the potential it descends
in) to move towards increasing or decreasing values of ¢. The potential can correspondingly

“More precisely, the penalty is proportional to fooo dlogk (dlog Py /dlogk — (n, — 1))*> where departures from
a power-law o< k™! with spectral index n, are penalised.
101t is also possible to reproduce this procedure given an a priori fixed non-canonical form of the kinetic term.
This is one of the many model degeneracies inherent in our procedure. However, since goal of the present exercise
is merely to write down a simple representative model, assuming a canonical form is sufficient for our purposes.
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be reconstructed through (58):

N

V(N)=V(N,)exp [—% J

N,

. de
an' (55 +6e)]. (24)

Inverting for ¢ as a function of N and substituting into the potential above results in V(¢).

Before turning our attention towards explicit reconstructions from CMB data, we make a
quick detour to discuss how one could obtain any given reconstructed PPS with a variation in
the speed of sound. We note that one could just have straightforwardly inserted the expression
(19) into (13) to find the reconstructed cs2 as a function of time, however it turns out that when
one does so for both ACDM and EdS around an attractor for which ¢, = 1, one necessarily
requires transient phases of ¢, > 1. One can evade this by requiring that the attractor be such
that it has some constant ¢, < 1 (cf. [61]), in which case the relevant inversion formula is
given by:

0
1 1 1 dk A Pr . . .
2 2 nJ_ K pp (Osin(2kaT) =

It should not come as a surprise that there are many ways to obtain the same PPS from different
choices for the functional parameters of the EFT of inflation, and the above is a manifestation of
this degeneracy (see also [67-70] for a discussion of dualities between different backgrounds
that produce the same PPS). An analysis of whether CMB data shows evidence for variations
in the sound speed have been done within a 1st-order formalism [71,72], and our formalism
to invert for ¢, readily applies to this case as well. However, as discussed in §II, reductions in
¢, are sourced by operators that are at least two degrees higher in derivatives than those that
source changes in €, and so if our goal is to look for the simplest representative background
models that can reproduce any given reconstructed features, it is reasonable to restrict to
features induced by variations in €.

5 Results for ACDM

The PPS estimated from Planck Release 2 data assuming a ACDM model consistent with the
best-fit Planck Release 2 parameters is shown in Fig. 5 including estimated Bayesian and
frequentist uncertainties and a fiducial power-law PPS with spectral index ng, = 0.968. There
are few indications of departures from a power-law PPS when the best-fit ACDM cosmological
model is assumed. The most notable deviation is near k ~ 2 x 107> Mpc ™! which receives
dominant contributions from multipoles £ ~ 28.

The reconstruction of €(7) shown in Fig. 6 derived from this PPS is normalised such that
the pivot scale k, = 2x 107> Mpc~! exits the horizon at N = 0 e-folds. An attractor background
slow-roll parameter ¢ = 10~* was assumed.

The reconstruction displays a prominent peak around N ~ 3.5 e-folds due to the { ~ 28
feature. The 10 confidence interval on the reconstruction is given by the square root of the
diagonal elements of its associated covariance matrix, obtained as described in Appendix A.

On the plot two error bands are shown, one confidence interval derived considering only
the diagonal elements of the frequentist covariance matrix which describes the error in the
reconstructed PPS, and the other considering the full matrix. These bands only indicate the
trend in the error band as a complete analysis would require evaluating the full likelihood. In
the diagonal approximation the statistical significance of a feature may appear to be high, but
including the full covariance matrix increases the uncertainty in the reconstruction and lowers
the significance. This is essentially because of cosmic variance on large scales which propagates
to intermediate scales due to correlations between nearby wave numbers. Moreover the EFT
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—— ACDM reconstruction
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Figure 5: Reconstruction (blue line) of the PPS from Planck Public Release 2 TT, TE
and EE data assuming a ACDM cosmological model with cosmological parameters
listed in the table (right). The purple band indicates the 1o confidence interval and
the light blue band indicates the 1o credible interval. A power-law PPS (red dashed
line) with ny = 0.968 is superimposed.

parameters are non-local functions of the PPS, so they receive contributions from a range of
wave numbers with finite support. However, it is beyond the scope of this work to present a full
statistical analysis, our aim here being to demonstrate accurate EFT parameter reconstruction
from a cosmological data set.

Using (55) and (24) we obtain the potential V (¢ ) corresponding to the reconstructed € for
ACDM, which is shown in Fig. 7. The first thing to note is that the potential itself appears not
dissimilar to that produced by a smooth polynomial. However the derivatives of the potential
exhibit fine scale features, whose purpose is to knock the inflaton off the attractor solution as
it evolves (right panel, Fig. 7). As expected, the derivatives of the potential closely track the
reconstructed € since the potential definition of the slow roll parameter €, = M 51(3¢ V/V)?

tends to the Hubble hierarchy definition e = —H/H? when e < 1. One might reasonably ask
how such effective potentials could be produced from an underlying parent theory. We shall
detail various possibilities in our concluding discussion.

6 Results for Einstein-de Sitter

The same procedure, reconstructing the PPS from the Planck Public Release 2 data, was re-
peated for a cosmology without dark energy, the flat EdS cold+hot dark matter (CHDM) model.
As shown earlier [36,37] it requires a Hubble constant of h ~ 0.44 and a 12% hot dark matter
component of neutrinos with > m, = 2.2 eV, As seen in Fig. 8, large features in the recon-
structed PPS are necessary for the EAS cosmology to match the data. These consist of a bump
around k ~ 2 x 1072 Mpc~! followed by oscillations that continue until k ~ 2 x 10~ Mpc™.
These oscillations ensure that the model fits the small scale CMB acoustic peaks. A model in-
volving two successive phase transitions during multiple inflation which reproduces the gen-
eral shape of the reconstructed PPS had been proposed in [36,37], however it admittedly does
not yield the oscillatory small-scale fine structure.

The EdS €(7) estimate of Fig. 10 again exhibits a large peak at N ~ 3.5 but now also
features seemingly sharp oscillations at N ~ 5 corresponding to the small scale oscillations in
the PPS. Repeating the same error analysis as was done for the ACDM case, the error in the
reconstructed EFT parameter due to the uncertainty in the estimated PPS was obtained. Both
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Figure 6: The right panel shows the 2nd-order reconstructed € for the APgp/Pr
estimated from Planck data assuming ACDM (left panel, dashed blue line). The
blue (full covariance matrix) and green (its diagonal approximation) shaded bands
indicate the 10 uncertainties in € due to errors in the estimated PPS. The orange line
in the left panel is the PPS obtained by numerical integration of the reconstructed €.

o \C/;Lr‘vvi:.lg : 0.01525 ---- Constant €
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e I = 0.01475
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Figure 7: The left panel shows the potential V = V(¢)/V(¢,) corresponding to the
reconstructed Ae/e superposed on the attractor potential (dashed blue line) — the
right panel is its derivative.

the full and diagonal contributions of the PPS covariance matrix to the standard deviation of e
were again considered. It is seen that the off-diagonal elements make a large contribution to
the uncertainty in € and lower the statistical significance of the features. However the sharp
feature at N ~ 5 is still required when an EdS cosmology is assumed.

Although this may seem like a sudden change in an EFT parameter over < 1 e-fold, the
degree of suddenness is quantified by the second term in the Hubble hierarchy n = é/€eH,
which is bounded throughout by |n| < 1.5, leaving us safely within the single clock regime [73]
(also true for the ACDM case (Fig. 7)). As in the previous section, one can reconstruct the
potential that could have given rise to the reconstructed feature that best fits an underlying
EdS cosmology (cf. Fig. 9). We see again that the potential itself looks similar to a smooth
polynomial over the field excursion needed to produce the observed modes. However, its
derivatives vary along the trajectory tracking e closely in just such a manner as to knock the
background off the attractor, producing the required features. This occurs in a manner that
produces a fit to the reconstructed PPS accurate to the percent level without needing to invoke
any phase transitions (as in [36,37]). It remains for us to elaborate on the nature of the parent
theory that could have produced such an effective potential.
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Figure 8: The estimated PPS for the EdS cosmological model with neutrino dark
matter from Planck Release 2 TT, TE and EE data. The left panel shows the recon-
structed PPS (blue line) with credible (purple band) and confidence intervals (light
blue band) with ng = 0.968 power-law PPS (red dashed line) superimposed. The
right panel shows the cosmological parameters.
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Figure 9: The left panel shows the potential V = V(¢)/V(¢,) corresponding to
Ae/e superposed on the attractor potential (dashed blue line), and its derivative
(right panel).

7 Discussion

Having seen how to reconstruct potentials that can produce any given power spectrum, one
might wonder how such effective potentials might arise in realistic settings. Viewing the effec-
tive action for the inflaton background as having been obtained by integrating out all heavy
degrees of freedom in the parent theory, one can for example obtain leading order (adiabatic)
corrections to the inflaton potential of the form (cf. (63) and (71))

9, M?
O Vew(9) = 22—71(2"5)1\42(@ In[ M%(¢)/u?], (26)

where the above was obtained by integrating out a heavy field with an effective mass given by
M?(¢) that is taken to vary weakly enough with respect to ¢ i.e.

PO M/M* <1, (27)

where ¢, denotes the background trajectory, and where the inflaton effective potential is given
by the sum of the above correction plus the background field contribution V¢ = V¢ + Vew

14


https://scipost.org
https://scipost.org/SciPostPhys.7.4.049

SCIl SciPost Phys. 7, 049 (2019)

1.2 € reconstruction
0.251 -~ Std. deviation
/ A 1.11 Diag. approx.

10*e(N)

—0.509 —---

—0.75 1 Second-order formula

PPS reconstruction

1o credible interval

10° 104 10 102 10! 0 3
k (Mpc™) N

'S
A
o

Figure 10: The right panel shows the 2nd-order reconstructed € for the APy /Pr
(left panel, dashed blue line) estimated from Planck data assuming the EdS
cosmological model. The green (diagonal approximation) and blue (full matrix)
bands indicate the 10 uncertainties in € due to errors in the estimated PPS. The
orange line is the result of numerical integration of the power spectrum given the
reconstructed e.

(cf. eq. 63). Violating (27) necessarily implies particle production resulting from higher
orders in the adiabatic expansion that one can calculate (reviewed in Appendix C). Indeed, the
possibility of localised particle production events along the inflaton trajectory was considered
in [74-78] and can generate additional features in the effective potential. However one has to
study these cases more carefully given the possibility of production and subsequent decay of
isocurvature modes — removing us from the single clock context upon which this study relies.
One can nevertheless quantify the requirement of staying within the adiabatic approximation
in generating the features in the effective potential required to produce the finer features, such
as in the EdS case (cf. Fig. 10). Re-expressing (27) as

1/_—— log M \/7M ~logVew < 1, (28)

where the partial derivative is with respect to ¢ = ¢/ My, we find that the logarithmic deriva-
tive of the potential around the finer feature in Fig. 9 to be order unity. Given the value of €
around the fiducial attractor presented in the plot is ¢, = 10™%, and given the assumption that
the mass of the heavy field is much greater than Hubble, the condition (28) is readily satisfied.

We stress that the formalism developed here allows one to obtain the parameters of the
EFT of inflation given any particular set of assumptions for the reconstruction. The examples
presented here were of reconstructions presuming a background ACDM or Einstein-de Sitter
cosmology with a fixed set of parameters, but are equally applicable to other examples. !
One can thus ‘invert’ for background models that could reproduce any given reconstructed
primordial power spectrum provided (APg /Px)° is less than the 1 ¢ confidence interval of
the reconstruction (k).

HFor instance, one can consider the possibility that discrepancy between low redshift measurements of H, and
those obtained from CMB observations can be projected onto a primordial power spectrum with specific features
[79].
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A Feature inversion

We recall the leading order action (8):

R?2  (OR)?
— 2 4 3
SZ_Mled X a G(g— az . (29)

We imagine the background of interest (characterised by c,(7) and e(7)) is a small perturbation
about a fiducial attractor solution with constant € and ¢, = 1, to which it tends at early and
late times. The small quantities Ae/e(7) and u(t) = 1/c,(7) — 1 then define a perturbative
expansion. We use the in-in formalism to calculate the fractional change in the power spectrum
at 1st- and 2nd-order in Ae/e(7) and u(t). Some of the details not elaborated upon in this
appendix can be found in [80].

The interaction Hamiltonian for a feature induced by a change in ¢, (with € held fixed)
can be read off from (29) as

Hyy = EMSIJ d3x a(0)*u()(R/(7))?, (30)

and the corresponding interaction Hamiltonian for a feature induced by a change in € (keeping
¢, fixed) as

A
Hine = eMSJ dx (1) () (<(R)? + (G RY?). (31)
The curvature perturbation is expanded in Fourier modes as
R(T) = ﬂ(a Ri(0)e®* + &l R (1)e k) (32)

and quantised with the commutation relation [dy, &lt,] = (21)36C)(k + K’). The fiducial at-
tractor defines the ‘free field’ mode functions

iH .
Ri(7) = ————(1 + ikt)e 7, (33)
k MPIV €k3

The perturbation of order n to the two-point correlation function of curvature fluctuations at
time 7 induced by a feature is given by

AW (Rk(T)Rk’(T» =1i" J dTn J dTn—l Tt
—00 —o0
T2

f dty <[Hint(771)’ o+ [Hine(72), [Hine(71), Rk(T)Rk/(T)]]]>O . (34
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Here the subscript on the expectation value denotes that the quantities appearing in the ex-
pectation value are free field interaction picture operators evaluated in the adiabatic (Bunch-
Davies) vacuum'2. The dimensionless power spectrum is related to the two-point correlation
function by

3
25+ K)PR(K) = 55 (RyOIR,(0)) 35)

which is evaluated at the end of inflation when 7 = 0. Substituting the Hamiltonian (30) in
(34) and using (33) gives

0
A—PR(k) = —kf dvu(t)sin(2kT) (36)
Pr

—0Q0

for the fractional change in the power spectrum due to a variation in the speed of sound with
€ held constant.

From the above, it should be clear that one can simply apply an inverse integral transform
to obtain the functions u(7) in terms of AP /Pr. In order to implement the inversion, u(7)
is extended over the entire real line as an odd function of T (implying AP /Pyx is an even
function of k, similarly extending k over the entire real line) and the sin function is written as
a sum of exponentials. Then an inverse Fourier transform yields

u(r)———J dk APR(k)sin(Zkr). (37)
TT 0 k PR

With slightly more work, one can show that a time variation in € results in a feature of the
form

0
APR(k) - %J i—ff( )((1 — 2k%72)sin(2kT) — 2k T cos(2kt)). (38)

By again extending the function Ae/e over the entire real line as an odd function this can be
rewritten as

A
PR(k)— f de Ae(T)(—l-I—leZ 2 2k1)621’"

O 1 1082 138,
— d e 0 e e ol i 3
T 2k T € (T) ( T2 2072 Tar)e (39

Since by assumption that Ae/e vanishes asymptotically an integration by parts results in

APR ® e [ 1d 1d) A
k)=— dre?™i{|—=————— | — . 0
() ZkJ et 2d72  tdrt e(T) (40)
Performing the inverse Fourier transform gives the following inhomogeneous differential equa-
tion for Ae/e
& 2d « e AP
— 4+ =) == k dk e 72k ——R (), 1
(drz Td’L’) € (%) nf_oo ‘ Pr (k) )

12When working to 2nd-order, one has to be mindful of an important subtlety as to how one selects the correct
vacuum, with the formal equivalence between the in-in correlation function and the expression (34) no longer
valid when one deforms the contour of integration to pick up a small imaginary part in the infinite past [81].
However this difference manifests only when calculating loops
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This can be solved by factoring the differential operator on the right hand side as

1d d ) Ae 4i [%° n AP
—(r)=— k dk e72k* —R (k). 42
Tsz( dT) € 2 T J_Oo ‘ Pr © “2)
Evidently, any kernel satisfying the inhomogeneous equation
1d d
erd GO ECOR 43

whose solution consistent with the boundary conditions imposed on Ae€/e is

e—ZlkT i i
k) = PPN D D 44
(v k) =23 ( kr) e (44)

and can be used to obtain Ae/e as a functional of APy /Pr. Convolving the above with the
integrand of (42) finally gives

By = 2 f %APR(k)(l_COS(ZkT)—sin(ZkT)) (45)
€ T ), k Pr kv
0 2
- 2 f %Apn(k)(zsm (k) sin(ZkT)).
T ), k Pr kt

An expression for the 1st-order fractional change in the power spectrum when ¢ and € vary
simultaneously can be found in [46].

It is a straightforward if slightly tedious exercise to calculate the feature induced by a
change in the speed of sound to 2nd-order in perturbation theory. After some manipulation it
can be expressed in the remarkably simple form (see [80] for details)

0 2
A
ﬁ(k) = k? J dtqu(t,)sin(2k7,) | . (46)
Pr oo
Comparing this to the 1st-order result (36), we thus see that
AP, P
SR o) = (5 R(k)) (47)
PR CS S

Proceeding similarly, one can show for a non-zero Ae¢/e that the 2nd-order feature that results
is given by

0
A d 2 d ) .
;PR(k):—ZJ 72 Ae Z)J T1 Ae 1){ ) Tz [ lk(fz—zrl)]lm[e—:krz]
R _

+ k2 Im[ lk(fz_zﬁ)(l — lle)(l + 1kT2)2] Im [e_isz(l + ik'cz)]
— T% Im [eik(fz_zﬁ)(l — ikr2):| Im [e_”"z(l + ikTZ)]

— T% Im [eik(”_z“)(l + ile)z] Im [e_ikTZ ]} .

As done for u(7), by extending Ae/e as an odd function over the entire real line the factor in
the inner most integrand can be expressed as

E(1’1) :J d—wh(w)e”*”l (48)
€ oo 2T
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where h(w) is also an odd function. Interchanging the 7; and w integrals, performing the 7,
integration explicitly and then performing a contour integral for w results in the intermediate
expression

AP ®dr, A
2 R(k) - | 2 e(fz)h(zk)e—zl’” (1+ 2ikt, —2k272), (49)
oo 2172
where the simplification is due to the fact that various terms do not contribute residues, and
that the only poles of the integrand are at w = +2k. Recognising the combination in the
parentheses from (39), and evaluating h(2k) as the Fourier transform of (45) finally results in

E (A 1Pr (k)) (50)

Therefore for features induced by variations in either ¢, or €, we see from summing the 1st-
and 2nd-order corrections that the induced fractional change in the power spectrum is given
by the simple expression

APR(k) - A;]DR(k) +( 1%(@) 51)
R

AZPR B2PR 1y

where the ellipses denote terms from third order in perturbation theory that could possibly in-
clude logarithmic derivatives of the  1st-order fractional change e.g.
(A PR3y (A 1Pry2_d Tlogk APPR etc. Neglecting these for now, we can invert any given recon-
struction for the functional parameters in the EFT of the adiabatic mode up to 2nd-order by
inserting the reconstructed power spectrum into the left hand side of the above and solving

for A;Pr/Pr. The result is

A1 PR(k) = (—1 +\|1+ 4%(@), (52)
Pr

where the input reconstructed power spectrum is denoted AP,../Pr. Employing (52) as the
input fractional change in the power spectrum in either (37) or (45) implies that the profiles
thus obtained for ¢, or € will reproduce the reconstructed power spectrum up to the accuracy
of the terms neglected in (51), that is, to order (A;Pg/Px)°. Thus within our 2nd-order
formalism, one can invert for parameters of the EFT of inflation that can reproduce reconstructed
features as large as 25% with roughly two percent precision, as demonstrated in Fig. 2.

We return now to the limits of validity of the expression (52), which presumed the negligi-
bility of the third order corrections. We first observe that the 2nd-order inversion cannot hold
for features that dip below AP /Pr = —1/4 since the argument of the square root becomes
imaginary below this, meaning that the higher order terms in the expansion are needed in or-
der to extract a real root. Furthermore, we note that the precision with which we are obliged
to calculate is such that any inferred EFT parameters must reproduce the reconstructed fea-
ture to within the 1 o confidence interval %(k) denoted by light blue bands in Figs. 6 and 10.
Hence, one can justify neglecting higher order corrections whenever it is comparable to the
1 o confidence interval of the reconstructed power spectrum (k) since that sets the threshold
for the required accuracy of our model inversion. Therefore, provided that the reconstructed
feature is such that

(APR 3

<
- ) <300 | 53)

then the 2nd-order formalism detailed above suffices, where the left hand side of the above is
understood to be a series of terms possibly including terms containing logarithmic derivatives
of the 1st-order feature, as discussed below (51).
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A.1 Error analysis

We obtain covariance matrices X, and 3. for u(7) and Ae/e(7) respectively from X, the
covariance matrix for AP,../Pr(k). When displayed in plots, the confidence intervals of the
u(t) and Ae/e(t) reconstructions are given by the square root of the diagonal elements of
¥, and X.. We calculate the confidence intervals of the EFT parameters both neglecting and
including the off-diagonal elements of X, displaying both error bands. It should be kept in
mind that these confidence intervals only partially account for the uncertainties in the EFT
parameters as the parameter values at different e-folds N and N’ are correlated.

B Potential reconstruction from ¢

We review in this Appendix how to reconstruct a potential given a specified history of € assum-
ing that the inflaton — denoted ¢ — is a minimally coupled, canonical normalised scalar field
(see [73] for a similar reconstruction applied to large features of the sort that can generate
primordial black holes). We begin with the equation of motion expressed in terms of e-folds
N as the time variable

d%¢ dH\d¢ IV
H>— + 3H2+H—)—+—=O, 5
dN2 ( dNJdN Jd¢ (>4)
equivalent to
o (93— 2 -r_¥
N 3 e)[ €+dN v | (55)

which follows from the definition 2M Ifle =(d¢/dN )? and the Friedmann equations. Presum-
ing now that € < 3, one can approximate the above as

de dlogV—3

— =—be+—F—. 56

N = T T dN (56)
The defining equation for € means that we can straightforwardly reconstruct the field profile
given € as a function of N

N
Pp(N)=¢.* Mplf dN’y/2¢(N") . (57)
N,
Similarly, we can also straightforwardly integrate (56) to obtain
VN,)exp| —= NdN’( de +6e) — V(N) (58)
o N N dN’ a ’

yielding ¢ and V as functions of N determined entirely by the time dependence for € that
we’ve obtained from the results of Appendix A. It remains to compute V as a function of ¢.
To do this, we note that if

VIN) =) cagald ()], (59)

n=0

where the g, are some basis of functions,'® and if V(N;) and ¢ (N;) are known at 0 < i < m
discrete points, then by demanding the expansion for V(¢) truncate at some order m, we
obtain a system of m+ 1 equations in m + 1 unknowns. We can thus solve for the co-efficients
¢; for 0 < i < m, providing an approximation to the potential to order m. For a sufficiently
simple € time dependence, one can go further and explicitly invert (57) to obtain N as a
function of ¢, substituting back into (58) to obtain V(¢).

Beg. g, =¢"or g, = e™® for some fixed k etc. The convergence of the procedure detailed above will depend
greatly on choice of basis functions adapted.
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C Effective actions and particle production

In this Appendix, we show how features in the effective potential can be viewed as a sum of
terms that include the Coleman-Weinberg correction as the leading adiabatic contribution, plus
additional terms corresponding to localised particle production events in the parent theory.
What follows closely reproduces the discussion in the appendix of [46]. We begin with the toy
example of a heavy field vy coupled to the inflaton ¢:

5= [ velloos- o)+ [ velvos- Twene . @

where we allow for the mass scale M to depend on ¢ in a manner that we will specify shortly.
We presume that M is parametrically larger than any scale in the action for the inflaton. We
integrate out 1 to obtain the (1PI) effective action

eiWIo] — ,iSin¢] J Dy o3 YO [e]y Sl I det(—O+ M2[$ 1)TV2, 61)
where S;¢[ ¢ ] is the first term in (60). Hence

Wigl= f V8] 5606 — Vi(#)] + STrlog(—0+ M), (62)

One can evaluate the trace log term in a number of ways. If for instance, M is independent
of ¢ then the functional determinant can be evaluated exactly (for a heat kernel derivation
relevant to the present discussion see the Appendix of [46]), and results in a correction to the
potential for ¢ of the form

M

42 log[Mz/,uz]. (63)

Veff(¢) = Vins + Ve + 641

Here V,, represents divergent terms that arise given any particular regularisation scheme (e.g.
d—4 poles in dimensional regularisation)'* that are to be subtracted by suitable counterterms,
and u represents the renormalisation scale in a mass independent regularisation scheme (or
a cutoff A would appear in a mass dependent regularisation scheme). The correction term in
(63) is the Coleman-Weinberg [82] effective potential. 15 We note that because the functional
determinant in (61) was evaluated on a fixed background metric guvs there are additional
curvature corrections to (63) that serve to renormalise the Einstein-Hilbert and cosmologi-
cal constant terms, in addition to producing higher order curvature corrections that will be
suppressed at low energies. In what follows, we presume all couplings to have been fixed by
renormalisation conditions.
Recalling (61), we see that we can rewrite (62) as

W[qb]:J V=g 5600 —Viu(9) |~ 11082, (91, (69

where Z,, is given by
Zw[qﬁ] = f Dql) e_%fw(—EHMZ[d)Dl/’. (65)

14Since we do not consider derivative interactions between ¢ and +)), there is no wave-function renormalisation
for ¢ up to one loop.

15 Allowing for M2(¢) to depend on ¢ will result in derivative corrections to (62) that would reproduce the usual
derivative expansion of the effective action.
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Hence the (quantum corrected) equations of motion for ¢ are obtained from variations of
W([¢], resulting in

06 — Vin$) = 58, M2[$1(), (66)

Here . 5
2 fDl/’ ¢2 e—sz(—mM (¢ Dy

¢ = [ Dy et [vi-araeieDy

) (67)

where evidently the right hand side of (66) is a correlation function of two coincident fields
and thus also needs to be suitably regularised. The subscript on the expectation value is to
indicate that it is a functional of ¢ and its derivatives. If we demand that in the asymptotic past,
M?[¢]— M?, where M is a constant heavy scale, and if (M2[¢ ]—M?)/M? < 1 for all ¢, then
we can evaluate the above using the Schwinger-Keldysh or in-in formalism in some adiabatic
approximation scheme. If the initial state was in the adiabatic vacuum, then the net result of
time evolving in the interaction picture would be to leave the state in the adiabatic vacuum
if the time evolution of ¢ (to be viewed as an external field) is such that ¢ oM /M 2«1 0f
this condition is not satisfied, then the vacuum evolves into an excited state described at any
given moment by the Bogoliubov coefficients a; and f3;, which rotate the mode functions u;
of the 1) field according to:

Vi = O Uy + ﬁkUi . (68)

The hard part of the calculation lies in evaluating these coefficients, but one can still formally
proceed assuming this has been done. Since we are dealing with a conservative system, time
evolution will not excite modes of arbitrarily high energy, and so the Dyson operator corre-
sponding to (68) evaluated at that moment is given (up to a phase) by the equivalent unitary
operator

U(©) = e~ 7 J10xei—0;a] (69)

Here alz and q; are the creation and annihilation operators associated with 1) in the interaction

picture, and ©; = 6,e'% are related to the Bogoliubov coefficients (68) as a; = cosh 6,
B = e~%sinh 6,. We can therefore formally evaluate (1/)2)¢ as

1 d3k
(¥?)y = (0lUT(@)y*U(O)]0) = PP J z—wk[l+2|ak/5k|cos(26k)+2|ﬁk|2], (70)

where wi = k? + M?2. The various terms in the square brackets above are familiar to us — the
first term contains the Coleman-Weinberg correction. To see this, we bring this contribution
to the left hand side of (66), and realising that when M?(¢) varies slowly enough, we obtain
the correction

3 M*($) Pk M)
a@nP ). JErMz | 32m

M) In[M?/p2| = 8y Vew(d). (7D

This represents the first term in the adiabatic expansion corresponding to the change of the
vacuum energy density of the v field along the inflaton trajectory. The second term in the
square brackets of (70) is a phase associated with each excited wave number. As discussed
in [83, 84] the so-called ‘random phase’ states (such as thermal states or eigenstates of the
number operator) will have contributions that vanish when integrated over. Finally, the last

term in (70) is )
dgk |/jk| 1 d3k ny
2y _ | &K =_ [ 22
W _f w (2m)3 a3f wy (2m)3’° (72)

where n; above is the number density of particles with comoving momenta k.
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From this, we conclude that the 1PI effective action contains the Coleman-Weinberg correc-
tion as the leading adiabatic contribution, with additional contributions that can be interpreted
in the parent theory as the transient production of heavy quanta. The real challenge of course
is formally calculating the contributions which sum up to (72) since these depend not only
on ¢, but also its velocity, acceleration, etc and correspond to higher order terms in the adi-
abatic approximation scheme used in calculating (67). These additional terms will resum to
the usual derivative expansion with which we are familiar.

D Reconstruction preliminaries

Reconstruction can be viewed in the context of Bayesian inference. Then Tikhonov regular-
isation, which is a procedure that gives a unique solution to otherwise ill-posed problems '°
and which will be used here, is interpreted as maximum likelihood estimation with a prior on
the norm of the squared n-th derivative of the quantity to be reconstructed. In this case, the
quantity to be reconstructed is the change, possibly fractional, in the EFT parameter function
X (7) formed into a vector X.

In order to make numerical analysis possible the EFT parameter is first expressed in terms
of piecewise constant functions ¢;(7) that are equal to unity between 7; and 7;,; and zero
otherwise

N
X(7)= > X;¢;(7) . (73)
j=1

The components X; are collected in the vector X. A similar basis ¢;(k) is constructed for

M
APg/Pr(k)= > papi(k), (74)
i=1
and the components p; are collected in the vector p. Recognising that the relation between
X(7) and APy /Pr(k) is linear, a matrix Wy exists that relates X to p, namely that
p=WyX. (75)

The elements (Wy);; are obtained by calculating APx/Pr(k;) due to a ‘unit vector’ varia-
tion X(7) = ¢;(7) such that for the speed of sound 1/c52('z,') —1 = u(7), (denoted u when
decomposed) we have

0 Tj+1
(Wy)ij = —k; J d7 ¢;(7)sin(2kt) = —k; J dr sin(2k; 1) . (76)
—0Q Tj
Similarly
Tj+1
(We)ij = kiJ dr (k;7)?[(1 —2ki272)sin(2kiﬂ:)—2kir cos(2k;7)], (77)
T

j
for the fractional change in the slow-roll parameter Ae/e(7) (denoted € when decomposed).

The uncertainties in the estimated PPS p are described by a covariance matrix %,. Assum-
ing that this is sufficient to describe the statistics of p, the likelihood is then

P(pIp) = L(p, p) o< exp (—(p—p) X, (p— $)/2) , (78)

16111-posed problems either do not have a unique solution or the solution is unstable to small perturbations of
the input data.
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and inserting (75)

P(BIX) = L(X, p) o< exp (—(WxX — p)" 5, (WxX —p)/2). (79)

We use a prior that exponentially suppresses the roughness R(X) of a solution which is given
by the integral of the squared derivative of X with respect to log 7,

ax 2 (° dx )2
dl = d — . 80
OgT(dlog’c‘) f_oo TT(dT) (80)

Replacing derivatives by finite differences it becomes

0

R{X(7)} =J

—0Q

N—1 x x.\2 A=l
— i+1 7 i _ i 2 2y —yT
R(X) = E : Ti(Tiz1—74) (—) = Z AT X — 22X X+ X)) =XTX, (8D
i—1 Tit1 — T =1 2T
where
T1 _ "
AT AT
_T Sl T
AT, ATy ATy ATy
T = .. .. . . (82)
_ "N TN-2 TN-1 _ N2
Aty_y ATy Aty ATN_2
TN T

ATyn_s ATy

Note that if the penalty on roughness had been on squared derivatives with respect to 7 (linear)
then the roughness matrix would have been

1 -1
-1 2 -1
r= . (83)
-1 2 -1
-1 1
The prior is given by
P(X) o< exp(—AR(X)/2) = exp(—AXTX/2) , (84)

where A is a (hyper)parameter that controls the prior and is an important parameter in reg-
ularisation. The solution will depend on A, though since the prior is subjective there is no
preferred choice of A except that it should correspond to how much roughness in the EFT
parameters one is from the outset willing to accept as plausible. The roughness of the final
solution will decrease with A and as A — 0o, X — C where C is a constant.

With the likelihood and the prior given the posterior is

P(X|p) o< P(PIX)P(X) = exp(—(WxX — )" B (WxX —p)/2— 2AX'TX/2),  (85)
and its maximum is also the minimum of
Q(A) = —2log P(X|p) = (WxX — )" = (WxX — p)/2 + AX'TX/2, (86)
which in this Gaussian case is

X = (Wy 2 "Wy + AT) "Wy BT = Mp . (87)
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This is a linear map M from the data p to the solution X. The inverse Hessian H™ which gives
the Bayesian covariance matrix X, or credible intervals of X, is

H!= (w§z;1wx +A0)7t. (88)

In the frequentist picture, the starting point is also (86) but it is now seen as a penalised
log likelihood with a penalty AX'TX on roughness. The maximum likelihood solution is the
same as before, namely (87), but the error analysis is different. In the frequentist view, there
is nothing special about the data p and so other realisations of the data should be considered.
The error propagation from p to X must then be determined. Since there is a linear map
represented by the matrix M between p and X the covariance matrix of p, %, is related to T,
the frequentist covariance matrix of X, by a similarity transformation

Y =MZ,M". (89)

In performing the reconstructions a choice of A must necessarily be made. As A is increased
the reconstructions will be biased, i.e., there is a systematic shift of the mean of the reconstruc-
tions away from the true solution, but the variance of the reconstructions will decrease. As A
is decreased, the variance increases but the bias decreases.

The roughness is given by

0 2
dlog T ( de(r) ) — €Te, (90)
P dlogt

where I is the roughness matrix, the discretised form of the differential operator in the integral
(90). Equivalently, the reconstruction is the minimum of (twice) the penalised negative log
likelihood

QA) = (Wee—f))TZ};l(Wee—f))+AeTI‘e, (2]

where P is the estimated fractional PPS change, X, is the covariance matrix of the fractional
PPS change and A is the regularisation parameter which controls the degree to which a solution
with roughness is disadvantaged with a high penalty, and consequent preference for smooth
solutions when a high value of A is chosen.

For a given A the minimum of (95) is

é= (wle;lwe + Ar)—lezglfa =Mp, (92)

where M maps between p and €. The speed of sound case is discussed in Appendix D.1.
Given that this reconstruction method has a statistical interpretation the uncertainties of
the solution are clearly defined. The Bayesian covariance matrix is the inverse Hessian

T = (W ='W, + A1), (93)
and the frequentist covariance matrix
Yy =M2,M', (94)

originates from the propagation of uncertainties from the data p described by covariance ma-
trix %, to the solution é = Mp, which, since the relation is linear, is given by a similarity
transformation.

The reconstruction of u has the additional complication that u should be everywhere non-
negative which is a constraint that makes the likelihood non-Gaussian and a numerical solution
necessary. This case is discussed in Appendix D.1.
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D.1 Positivity of EFT parameter changes

The posterior probability distribution (85) is Gaussian in X and so the maximum likelihood
solution X may take negative values depending on the data p. However, the speed of sound c;
should not be greater than unity, or rather the departure of the inverse square speed of sound
from unity u(t) =1/ csz(fz,')—l must be positive. To impose this constraint, we minimise instead
twice the negative log likelihood

Q1) = —2log P(v|p) = (W, exp(v) — p) =, (W, exp(v) — p) + Aexp(v) Texp(v) ,  (95)

with respect to the vector v where u = exp(v). Then even if a v with negative entries was
found as the minimum exp(v) will be positive. As this likelihood is non-Gaussian with respect
to v no analytic solution of ¥ given p exists. Instead, a solution can be obtained by numer-
ical minimisation using gradient quasi-Newton methods such as BFGS. The uncertainties on
i = exp(V) are evaluated as in the previous case.

D.2 Sidestepping the PPS

The EFT parameter X is estimated from the PPS p which is itself an estimate from data. Though
not done here, it is possible to reconstruct the EFT parameter X directly from a data set d. Given
a linear relation between the PPS p and the data set d such that

d=Wp, (96)
and given that
p=WxX, 97)
then
d=W(WyxX)=WX. (98)
Here the new transfer function,
W =WWy , (99)

can now be used instead of W in the procedure of reconstructing p from d with the only
difference that now X will be reconstructed from d using W’. This procedure is more correct
as it collapses two regularisations, obtaining p from d and then obtaining X from P, into one.
If done in two steps there is a bias due to the penalty term introduced in each step which is
not easily quantified and there are furthermore two regularisation parameters A, and Ax to
take into account. With the collapse and the use of W’ to reconstruct X from d there is only
one regularisation parameter and all preceding formulae can be used to correctly account for
the uncertainties in X as they are induced by the uncertainties in d.
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