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Abstract

We study nanowire-based Josephson junctions shunted by a capacitor and take into ac-
count the presence of low-energy quasiparticle excitations. These are treated by extend-
ing conventional models used to describe superconducting qubits to include the coherent
coupling between fermionic quasiparticles, in particular the Majorana zero modes that
emerge in topological superconductors, and the plasma mode of the junction. Using ac-
curate, unbiased matrix-product state techniques, we compute the energy spectrum and
response function of the system across the topological phase transition. Furthermore,
we develop a perturbative approach, valid in the harmonic limit with small charging
energy, illustrating how the presence of low-energy quasiparticles affects the spectrum
and response of the junction. Our results are of direct interest to on-going experimental
investigations of nanowire-based superconducting qubits.
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1 Introduction

Due to the macroscopic coherence of the superconducting state and their non-linearity as
circuit elements, Josephson junctions are a workhorse of quantum state engineering [1]. They
are the fundamental building block of superconducting qubits [2,3] like the transmon [4] and
the fluxonium [5]. In these quantum engineering applications, the superconducting circuit
embedding the Josephson junction [6] is operated at frequencies ω ∼ 5–10 GHz, which are
much smaller than the superconducting gap of the electrodes,∆/h' 50 GHz for aluminum. As
a consequence, quasiparticles are not involved in the coherent dynamics of the circuit, although
their presence influences the relaxation and dephasing of superconducting qubits [7–17].

New frontiers in superconducting devices force us to reconsider the role of quasiparticles in
Josephson junction dynamics. Most notably, the presence of Majorana zero modes (MZMs)—
topologically protected zero-energy quasiparticles that emerge at the ends of topological su-
perconducting wires [18, 19]—can drastically affect the behavior of a superconducting cir-
cuit. MZMs are able to non-locally encode qubits [18] and, via non-Abelian braiding [20],
allow fault-tolerant processing of quantum information. Therefore, they form a potential
platform for topological quantum computation [21] which is actively being pursued [22].
A junction between two topological superconductors exhibits a 4π-periodic Josephson ef-
fect [18, 23, 24], a hallmark feature of topological superconductivity which has been experi-
mentally sought [25,26]. Several practical schemes for topological quantum computation rely
on the coupling of MZMs across a Josephson junction and on the use of microwave circuits
for control and readout of topological qubits [27–30]. In conjunction with the growing inter-
est in MZMs, different research groups have developed and studied superconducting devices
with semiconductor-based Josephson junctions either in nanowires [31, 32] or 2DEGs [33],
as well as in graphene-based heterostructures [34, 35]. These junctions, characterized by
few conducting channels and potentially high transparency, can also be used for the develop-
ment of qubits based on conventional Andreev bound states (ABSs) [36–40]. The presence
of low-energy ABSs in nanowire-based junctions has been directly measured via microwave
spectroscopy [41–43].

Understanding present and future experimental developments in this direction calls for
adequate theoretical approaches that can fully incorporate the role of quasiparticles in the
circuit dynamics. In most theoretical descriptions of Josephson-junction dynamics, quasipar-
ticles are included as a fermionic bath [44] (see Ref. [45] for a recent exception). In the
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case of Andreev qubits, detailed models which are amenable to an analytical approach are
available in simple limits, such as that of a short Josephson junction with a single conducting
channel [37,46–48]. On the other hand, most of the theory literature treating the presence of
MZMs in superconducting circuits [49–66] relies on simple toy-models with phenomenological
terms representing Majorana couplings, bypassing a microscopic description of the topological
phase.

In this paper, we carefully examine this problem using accurate numerical simulations of
a microscopic model for a one-dimensional topological superconductor. While we confirm the
applicability of simplified models in certain limits, we find that in other, experimentally rele-
vant limits they are insufficient to describe the system’s behavior. We focus on the topological
phase transition and on the case of additional subgap Andreev bound states in the junction,
which we expect to generically appear in wires with large spin-orbit coupling and external
magnetic field. We find that the phase transition does not lead to strong signatures in the
response of the capacitively shunted junction, while additional subgap Andreev states exhibit
complex interplay with the plasma modes and significantly alter the response.

Our numerical simulations are based on matrix product states (MPS) [67–69]. Specifically,
we use the density matrix renormalization group (DMRG) [70–72] and time-evolving block
decimation (TEBD) [73–76] to compute the time-dependent charge correlation function of a
nanowire Josephson junction shunted by a large capacitor (i.e. a transmon circuit) across the
topological phase transition. In the frequency domain, the correlation function determines the
observed spectra in a typical circuit QED (cQED) experiment, making our method suitable for
direct comparison with experimental measurements. This approach allows us to determine
the expected frequency spectra even close to the critical point—a regime which cannot be
captured by existing toy models—and to easily include additional Andreev bound states.

In order to interpret the results of the MPS simulations, and extending previous stud-
ies [48], we also develop a simple perturbative approach which is valid in the harmonic limit,
i.e. when the charging energy is small compared to the Josephson energy. The method allows
one to derive an effective Hamiltonian for the capacitively shunted junction, starting from an
arbitrary quadratic Hamiltonian describing the quasiparticles. The effective Hamiltonian takes
the form of a generalized Jaynes-Cummings model describing the interaction between Joseph-
son plasma modes and quasiparticle excitations. This model describes the energy spectra ob-
tained from the MPS simulations deep in the harmonic limit quite well, but cannot reproduce
non-perturbative effects that arise away from this limit (and are fully captured by the MPS
simulations), such as the charge dispersion of energy levels and certain couplings between
plasma modes and fermionic modes.

The paper is structured as follows. In Sec. 2 we present the setup and the general model
used to describe a nanowire-based Josephson junction shunted by a capacitor, incorporating
the fermionic degrees of freedom. In addition, we discuss the experimentally relevant probes
and the parameter regimes we will be addressing in this study. As a simple application of the
general model, in Sec. 3 we discuss and review a minimal model with a single low-energy
fermionic mode on each side of the junction, which captures the essential ingredients of a
nanowire in the topological phase. In Sec. 4 we discuss how MPS-based techniques can be
used to calculate the experimentally relevant quantities that probe the response of the system.
We then introduce the microscopic model for the nanowire that we use in our numerical study,
and present the results. In Sec. 5 we consider the limit of small charging energy, and derive an
effective theory based on a perturbative expansion which successfully captures the coupling
between the plasma mode and the fermionic quasiparticles in this limit. We then discuss the
effect of non-perturbative corrections.
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Figure 1: Schematic setup: a semiconducting nanowire proximity coupled to a su-
perconductor, forming a Josephson junction shunted by a capacitor and controlled
by the gate voltage Vg . The right half of the wire is connected to a superconduct-
ing ground. The dashed line represents the partitioning of the system used in our
theoretical model, see main text for details.

2 Setup and model

The setup we consider is schematically depicted in Fig. 1. A semiconducting nanowire is
proximity-coupled to a grounded superconductor on its right half, and to a floating supercon-
ducting island on its left half. A short segment in the middle of the wire, which is not in direct
contact to any superconductor, forms a junction between the two superconductors. The con-
ductance of the junction can be tuned by a gate underneath this middle region. The voltage
on this gate is denoted by Vb and determines the strength of the Josephson coupling between
the floating superconducting island and the grounded superconductor. The island is shunted
by a large capacitance C to the ground. The charge induced on the island is controlled by a
gate with voltage Vg .

The Hamiltonian describing the system is given by

H = Ec(N + N f ,L − Ng)
2 + 1

2c†HBdG(φ)c . (1)

The first term above is the electrostatic energy of the island, with charging energy Ec = e2/2C
and dimensionless gate charge Ng = C Vg/e, where e is the electron charge. The electrostatic
energy is determined by the total number of electrons on the island (counted from the neutral-
ity point), which is the sum of the number of paired electrons in the superconductor, N , and
of the number of electrons in the left segment of the semiconducting wire, N f ,L (to be better
specified below).

The second term in Eq. (1) describes the dynamics of the fermionic degrees of freedom
in the semiconducting wire. The dynamics are prescribed by a Bogoliubov-de Gennes (BdG)
Hamiltonian, HBdG, which includes the coupling between the semiconductor wire and the
superconductors as well as the coupling between the two wire segments across the junction.
For concreteness, we consider a lattice description of the system, such that HBdG is written in
the Nambu basis

c† = (c†
i,↑, c†

i,↓, ci,↑, ci,↓) , (2)

where c†
i,σ (ci,σ) is the creation (annihilation) operator of an electron on site i with spin σ.

To simplify the treatment of the charging energy, we consider a sharp boundary between
the left part of the wire, which is coupled to the floating superconducting island, and the right
part of the wire, which is coupled to the grounded superconductor. We choose to place this
sharp boundary at the left end of the junction, as indicated by the dashed black line in Fig. 1.
Although this choice can have a quantitative effect on the spectrum of the full Hamiltonian
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(with other parameters held fixed), we expect the qualitative physics to be insensitive to a
specific (but generic) choice for the position of the boundary.

The sites i in the lattice description of the wire are divided into two sets, IL and IR, de-
pending on whether they belong to the left or to the right part of the wire. The number of
electrons in the left part of the wire is defined as

N f ,L =
∑

i∈IL

�

c†
i,↑ci,↑ + c†

i,↓ci,↓

�

. (3)

The induced s-wave superconductivity is included in HBdG via pairing terms of the form
∆eiφci,↑ci,↓ + h.c. (if i belongs to the part of the wire coupled to the floating island) or
∆ci,↑ci,↓ + h.c. (if i belongs to the part of the wire coupled to the grounded superconductor),
where ∆ is the induced superconducting gap. The pairing vanishes in the junction region.
In what follows we will consider junctions of finite extent as well as junctions consisting of
a single weak link. The operator eiφ (e−iφ) adds (removes) a Cooper pair to (from) the left
superconductor, and is canonically conjugate to the charge operator N , i.e.

[N , e±iφ] = ±2e±iφ . (4)

The pairing terms in HBdG thus commute with the total charge of the floating island, N +N f ,L ,
which enters in the charging energy in Eq. (1). On the other hand, hopping terms in HBdG
which connect IL and IR do not commute with the charging energy term. More general forms
of the induced pairing, e.g. a spatial variation of the pairing term strength or different pairing
symmetries, could easily be included.

If the fermionic quasiparticles are gapped and one is interested in the behavior of the
system at frequencies ω far below the excitation energy for quasiparticles, i.e. ω� ∆, then
one may replace the Hamiltonian HBdG with its phase-dependent ground state energy,

EGS(φ) = −
1
2

∑

n

εn(φ) , (5)

where εn(φ) are the positive energy eigenvalues of HBdG
1. For a weakly transparent junc-

tion, such as the tunnel oxide junctions used in Al-based superconducting devices, the energy
EGS(φ) is well-approximated by the form −EJ cosφ. In this case, one recovers the canonical
superconducting qubit Hamiltonian, H = Ec

�

N − Ng

�2 − EJ cos(φ). In the “transmon” limit
EJ � Ec , the low-energy excitations of the junction are quantized charge oscillations—due to
Cooper-pair tunneling across the junction—with a characteristic plasma frequency,

ωp =
p

8EJ Ec , (6)

and (crucially for qubit applications) a slightly anharmonic spectrum.
If, on the other hand, HBdG has low-energy quasiparticle excitations with energies εn ®ωp,

this description is no longer valid. Any correct description must include both the bosonic and
the fermionic low-energy degrees of freedom present in the Hamiltonian of Eq. (1). Low-
energy fermionic excitations naturally appear if the system is driven into a topological su-
perconducting phase, where zero-energy Majorana modes emerge at the spatial boundaries
between trivial and topological regions in the system. Moreover, as the system undergoes the
topological phase transition between the conventional and the topological superconducting
phase, the gap in the bulk of the system closes, giving rise to a continuum of states at ener-
gies below the plasma frequency. In general, one may expect sub-gap quasiparticles to arise

1More precisely, the sum runs over the eigenvalues εn(φ) such that εn(0) > 0, where the index n must be
assigned such that the associated BdG eigenfunctions vary smoothly as φ is varied.
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quite generically in nanowire-based Josephson junctions as well as in junctions based on other
systems engineered to support topological superconductivity, such as proximitized surfaces of
topological insulators [77]. In these systems, many competing effects are involved, such as
large magnetic fields, spin-orbit coupling, and interfaces between materials with very different
properties, which can lead to complicated junction spectra even when the system is not tuned
to the topological phase.

In a realistic model of a nanowire, the number of fermionic degrees of freedom appearing
in HBdG(φ) may be too large to treat exactly. However, we expect that the effect of high-
energy quasiparticles at energies εn�ωp can be captured by their contribution to the phase-
dependent ground state energy. Assuming the latter can be approximated by a cosine disper-
sion, we rewrite the Hamiltonian in Eq. (1) as

H = Ec(N + N f ,L − Ng)
2 − E0

J cos(φ) + 1
2c†HBdG(φ)c , (7)

where now the fermionic degrees of freedom c correspond to the low-energy degrees of free-
dom, and E0

J accounts for the high-energy degrees of freedom.

2.1 Experimental probes and parameters

The dynamics of the junction can be experimentally probed in a circuit quantum electrody-
namics (cQED) setup [6], in which the junction is coupled to a microwave resonator cavity.
The system is driven by an AC field, which corresponds to a time-dependent voltage Vg in
Fig. 1, Vg(t) = Vg + δVg(t). This time-dependent voltage couples to the total charge opera-
tor on the left island, Ntot = N + N f ,L , leading to a small time-dependent contribution to the
Hamiltonian, δH(t) = EcNtot (C/e)δVg(t). We will characterize the response of the system to
this perturbation by the spectral function of the charge operator,

SN (ω) =

∫

d t e−iωt〈0|Ntot(t)Ntot(0)|0〉=
∑

α

δ(ω− (Eα − E0)) |〈α|Ntot|0〉|
2 . (8)

Here, |α〉 denotes an eigenstate of the system with energy Eα, with α = 0 the ground state.
The spectral function exhibits a peak at each transition energy of the system, with the intensity
of the peak related to the matrix element of the total charge operator between the initial and
final states of the transition.

We now discuss interesting parameter regimes for typical cQED circuits which we consider
in our simulations. Transmon qubits typically operate in the regime EJ/Ec ≈ 20 or higher
in order to suppress charge noise. Ec typically varies in the 200–500 MHz range, yielding
plasma frequencies in the 5–10 GHz range. Gate-controlled nanowire junctions allow for a
tunable EJ and thus allow a device to be operated not only in the transmon regime but also
in a regime with lower EJ/Ec . The lower the ratio EJ/Ec , the larger the charge dispersion,
i.e. the dependence of the energy levels on the dimensionless charge Ng . An intermediate
ratio EJ/Ec ≈ 5 is interesting since, as shown in Refs. [60,61], the presence of Majorana zero
modes coupled across the junction is associated with distinct features in the charge dispersion.

2.2 Gauge transformation

To study the model (1), it is useful to perform a unitary gauge transformation, H 7→ UHU†,
with [78]

U = eiφ N f ,L/2. (9)

Under this gauge transformation, the number operator N = −2i∂φ transforms as N 7→ N−N f ,L .
This simplifies the first term in Eq. (1), which after the transformation is given by Ec(N−Ng)2.
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In addition, the fermion operators that belong to the left island transform as ci,σ 7→ e−iφ/2ci,σ,
while the fermions on the right island are unaffected by the transformation. Hence, after the
transformation, the operators ci,σ with i ∈ IL are charge-neutral, while the operator N counts
the total charge of the superconducting island and of the left part of the wire.

The effect of the transformation on the terms in HBdG(φ) is the following. The pairing
terms on the left part of the wire, which initially take the form ∆eiφci,↑ci,↓, lose their phase
dependence and are given by∆ci,↑ci,↓. Meanwhile, terms describing hopping between the left
and the right parts of the wire acquire phase dependence: c†

i,σc j,σ′ with i ∈ IL and j ∈ IR

becomes eiφ/2c†
i,σc j,σ′ .

We must also discuss the effect of the gauge transformation on the wave functions. A
complete basis for the Hilbert space of the model (1) is given by |n, ~nL , ~nR〉, where ~nL(R) denotes
the vector of occupation numbers for the fermionic degrees of freedom on the left (right) part
of the wire, and n ∈ Z is the number of Cooper pairs (counted from charge-neutrality) in the
left superconductor, i.e. N |n, ~nL , ~nR〉 = 2n |n, ~nL , ~nR〉. A generic many-body state is thus given
(in the original gauge) as

|Ψ〉=
∑

n,~nL ,~nR

Ψ(n, ~nL , ~nR) |n, ~nL , ~nR〉 . (10)

Although we will eventually use this “number basis” in the numerics, it is convenient to tem-
porarily work in the “phase basis”, formed by the states

|φ, ~nL , ~nR〉= (2π)−1
∑

n

eiφn |n, ~nL , ~nR〉 . (11)

The wave function coefficients in the phase basis are

Ψ(φ, ~nL , ~nR) =
∑

n

e−iφnΨ(n, ~nL , ~nR) . (12)

They are 2π-periodic: Ψ(φ + 2π, ~nL , ~nR) = Ψ(φ, ~nL , ~nR). The action of the gauge operator U
on a phase basis state is simply

U |φ, ~nL , ~nR〉= eiφnL/2|φ, ~nL , ~nR〉 , (13)

where nL is the number of electron in the left island. Thus, the gauge transformation maps
the state |Ψ〉 to a new state, |Ψ̃〉= U |Ψ〉, with wavefunction coefficients

Ψ̃(φ, ~nL , ~nR) = eiφnL/2Ψ(φ, ~nL , ~nR) . (14)

Because of the extra phase factor, the boundary conditions for Ψ̃ are periodic or anti-periodic
depending on the parity of the number of fermions in the left island [79]:

Ψ̃(φ + 2π, ~nL , ~nR) = eiπnL Ψ̃(φ, ~nL , ~nR) . (15)

With this new boundary condition, the spectrum of the operator N = −2i∂φ changes from 2Z
(in the original gauge) to Z (in the new gauge). This is in agreement with the fact that, as
mentioned above, N must now account for the total charge of the left island and not only for
the part due to the paired electrons. However, this accounting is only consistent if the parity of
N , which we refer to as the bosonic parity and denote by Pb = eiπN , is the same as the parity
of the number of (now charge-neutral) fermions on the left island, Pf ,L = eiπN f ,L . That is, in
the new gauge every physical state must obey the following constraint:

Pb|Ψ̃〉= Pf ,L|Ψ̃〉 . (16)
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Figure 2: Minimal model describing a nanowire in the topological phase, with Majo-
rana zero modes, γi=1,..,4, at the ends of the topological superconducting regions.

Note that, since Pb = eiπN is the operator that translates φ by 2π, the constraint (16) is simply
a rewriting of (15) in a basis-independent form.

Finally, we comment on the effect of the gauge transformation on the calculation of the
spectral function (8). Since, after the gauge transformation, N is the total charge on the left
island, the correlation function that appears in the integral in Eq. (8) is now simply 〈N(t)N(0)〉.

3 Minimal model for a nanowire in the topological superconduct-
ing phase

We now turn to a minimal realization of Eq. (7), namely the case in which there is exactly
one low-energy fermionic mode on each side of the junction. The setup is chosen to capture
the essential ingredients of a nanowire in the topological phase, hosting one Majorana mode
at each end of each topological segment. We denote the Majorana modes at the ends of the
left (right) island by γ1,2 (γ3,4) as depicted in Fig. 2. Assuming the absence of additional low-
energy fermionic quasiparticles, the effective Hamiltonian, written in the gauge where the
boundary conditions of Eq. (15) hold, is given by:

H = HJ +Hδ +HM , (17)

with

HJ = Ec(N − Ng)
2 − EJ cosφ , (18a)

Hδ = δ(iγ1γ2 + iγ3γ4) , (18b)

HM = iγ2γ3 EM cos(φ/2) . (18c)

The term Hδ couples the Majorana modes within each island. Such a coupling can arise due
to the finite length of each island, and it is chosen to be identical on both islands for simplicity.
In the topological phase, δ vanishes exponentially with the length of each island. The phase-
dependent coupling EM cos(φ/2) originates from single-electron tunneling across the junction.
This model was introduced and studied by Ginossar and Grosfeld [60]. In the present work
we discuss it in the context of the more general model (1), and address additional points that
were not discussed in detail in Ref. [60].

To solve the model (17), we first deal with HJ and Hδ separately, and then consider the
effect of HM , which couples the bosonic and fermionic excitations. The eigenfunctions of HJ
are known exactly in terms of Mathieu functions (approximate eigenfunctions are also im-
mediate to find numerically). Anticipating the role of the boundary conditions (15), we will
find eigenfunctions in the space of 4π-periodic functions. The 2π-periodicity of HJ implies
that [HJ , Pb] = 0, and hence we can choose eigenstates to have well-defined bosonic par-
ity. We denote the m-th energy eigenstate with even/odd bosonic parity by |m,±〉b, and the
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corresponding energy by Em,±. The wave functions ψm,±(φ) = 〈φ|m,±〉b are given by

ψm,±(φ) =
ei(φNg+πνm,±)/2

p
4π im

meνm,±

�

φ −π
2

,
EJ

2Ec

�

, (19)

where meν(z, q) is the Mathieu function with characteristic exponent ν, and where

νm,± =
1
2 ∓ (−1)m(m+ 1

2)− Ng . (20)

The wave functions satisfy the boundary condition ψm,±(φ + 2π) = ±ψm,±(φ). In the limit
EJ � Ec , they reduce to normalized plane waves, ψm,±(φ)∼ eikm,±φ/

p
4π, with km,+ ∈ Z and

2km,− ∈ Z. In the opposite limit EJ � Ec , the wavefunctions are localized near the minima of
the potential −EJ cosφ, i.e. near φ = 0 and 2π.

To describe the fermionic sector, we observe that two Majorana modes together form a
fermionic mode, and define its occupation as ni j = (1 + iγiγ j)/2. A basis for the fermionic
Hilbert space can thus be obtained by arranging the Majorana modes into pairs and specifying
the occupations of the pairs. We focus on the sector with even total fermion parity, and take
the pairs of Majorana modes to be those in the same superconducting region, such that the
basis states also have well-defined fermion parity in each island. Then, the two possible states
are |n12 = n34 = 0〉 and |n12 = n34 = 1〉.

We now define a basis for the full Hilbert space describing both the bosonic and the
fermionic sectors, using states which obey the constraint in Eq. (16):

|m,+〉= |m,+〉b ⊗ |n12 = n34 = 0〉 , (21a)

|m,−〉= |m,−〉b ⊗ |n12 = n34 = 1〉 . (21b)

These states have equal boson parity and fermion parity on each island; for the remainder
of this section, we will refer to this as island parity. The Hamiltonian HJ + Hδ is diagonal in
this basis; the state |m, p〉 has energy Em,p − 2pδ, where p = ±1 is the island parity. The four
lowest-energy states in the regime with δ�ωp (m= 0, 1 and p = ±) are shown schematically
in Fig. 3(a), illustrating the parity constraint.

The coupling term HM is entirely off-diagonal in this basis, since it couples states of oppo-
site island parity. Its nonzero matrix elements are

〈m,+|HM |m′,−〉= −ηm,m′ EM , (22)

ηm,m′ =

∫ 4π

0

dφψ∗m,+(φ) cos(φ/2)ψm′,−(φ) . (23)

In the limit EJ � Ec , an asymptotic analysis of the integral in (23) shows that the dominant
matrix elements are the diagonal ones, ηm,m = 1−O(z), where z =

p

2Ec/EJ � 1. The matrix
elements in which m and m′ differ by an even integer 2` are subdominant, ηm−`,m+` = O(z`).
The matrix elements in which m and m′ differ by an odd integer, ηm,m+2`+1, are exponentially
small in the ratio EJ/Ec . They vanish identically when Ng is an integer and are largest when
Ng is half-integer.

The low-energy spectrum as a function of Ng is shown in Fig. 3(b) in the two limits of
large δ�ωp (left panel) and δ = 0 (right panel). The colored dashed lines correspond to the
spectrum for EM = 0, while the solid black lines correspond to the spectrum in the presence of a
finite EM . The dispersion of energy with Ng can be understood in terms of instanton tunneling
processes between the two minima of the potential at φ = 0 and 2π (quantum phase slips),

and has a magnitude proportional to e−
p

8EJ/Ec . The dispersion of levels with opposite island
parity is shifted by one unit along Ng , leading to level crossings at half-integer values of Ng
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Figure 3: (a) Schematic representation of the basis states defined in Eq. (21) for
m= 0, 1, in terms of the 4π-periodic bosonic wavefunctions ψm,±(φ), and the occu-
pations of the four Majorana modes present in the system. (b) The energy spectrum
of the Hamiltonian (17), as a function of Ng , for large δ ¦ ωp (left panel) and for
δ = 0 (right panel), with junction parameters set to EJ/Ec = 5. The colored dashed
lines correspond to the spectrum for EM = 0, where the eigenstates are precisely the
states sketched in panel (a), while the solid black lines are obtained for EM/Ec = 0.3.
(c) Excitation spectrum as a function of δ/ωp for Ng = 0, and the spectral function at
δ = 5ωp (blue) and δ = 0 (red). The spectral function is convolved with a Gaussian
with σ/ωp = 10−2.

at δ = 0, see right panel of Fig. 3b. HM introduces a coupling proportional to EMηm,m(Ng)
between states of oppposite parity, leading to avoided crossings at the degeneracy points.

We now study the behavior of the excitation spectrum for a choice of parameters that mim-
ics driving the system from a trivial and fully gapped superconducting phase into a topological
phase with well-separated Majorana zero modes. Fixing Ng = 0 and EJ/Ec = 5, we vary the
coupling between the Majorana modes on the same island from a large value δ � ωp to a
small value δ � ωp, and compare the excitation spectrum with EM = 0 to the one with a
small but finite EM �ωp. The resulting spectra are shown in Fig. 3(c).

For large δ � ωp, the ground state is |0,+〉 and all the states with odd island parity,
|m,−〉, are at high energy. The spectrum of the junction resembles that of a trivial Josephson
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junction, with level spacing set by ωp, up to anharmonic corrections. When δ ≈ ωp/4, there
are degeneracies in the spectrum between states |m,−〉 and |m+1,+〉. At finite EM the coupling
between these states is proportional toηm+1,m, and hence vanishes for Ng = 0. For δ�ωp, the
two states in each doublet, |m,±〉, get closer in energy. In the limit δ = 0 the energy splitting
between these states is set by the larger of the two energy scales EM and the splitting due to
charge dispersion, |Em,+ − Em,−|. Note that for the doublets with odd m, one has Em,− < Em,+
at Ng = 0, and thus the state with odd island parity crosses the one with even parity in energy
as δ is decreased. In Fig. 3(c) this can be seen as the crossing of the lines corresponding to
|1,+〉 (red) and |1,−〉 (green). At finite EM , the coupling between these states gives rise to an
avoided crossing between them, with size of order ηm,mEM .

Using the excitation spectrum, we calculate the spectral function (8) for δ � ωp and
δ = 0 (see right panel of Fig. 3(c)). When δ�ωp, the ground state is simply |0,+〉. Since the
operator N can only couple states with the same parity, only the spectral lines within the even
parity sector are observed in the spectral response. Once different parity states couple due to
finite EM , additional spectral lines can be observed. In particular, for δ = 0, both spectral lines
in the m = 1 manifold can be observed. Deep in the harmonic limit, when |Em,+ − Em,−| → 0,
the eigenstates are superpositions of states with well-defined fermionic parity of the junction
(i.e. occupation of n23), and due to the total fermionic parity constraint also of n14. As the
charge operator N acts locally at the junction, it cannot change the occupation of n14, and
only a single spectral line is visible again. For a further discussion of this limit, see Sec. 5.2.

4 Numerical simulations

Building on the picture developed in the previous sections, we now turn to a numerical study,
using DMRG and TEBD, of the spectral function defined in Eq. (8). We will perform the study
on a microscopic model that allows us to treat the behavior both in the topological phase and
in the vicinity of the topological phase transition, as well as to examine the effect of additional
Andreev subgap states in the junction both in the topological and non-topological regime.

Numerical simulations presented in this work were performed using the ITensor library [80].

4.1 Lattice model and numerical techniques

We model the system as a spinful wire with Rashba spin-orbit coupling that is proximity-
coupled to an s-wave superconductor. A large enough Zeeman field perpendicular to the
direction of the spin-orbit coupling drives the system into the topological superconducting
phase [81, 82]. To simplify the numerics, we will consider a single spinful band, while addi-
tional modes that can be present in a real system will be accounted for by the term −E0

J cosφ
in the Hamiltonian (7). Note that the band which is considered explicitly will also contribute
to the Josephson coupling across the junction due to its ground state energy dispersion with
phase, which (in the limit of small transmission through the junction) can be approximated
by −E1

J cos(φ). The total Josephson coupling is then given by EJ = E0
J + E1

J . In practice, for
parameters discussed in the rest of this section E1

J � E0
J , and hence EJ ≈ E0

J .
The continuum version of the normal part of the BdG Hamiltonian is given by

H0 =
k2

x

2m
−µ+αkxσy + Bσx . (24)

In our numerical simulations we use a lattice description of the system. To this end, we in-
troduce the tight-binding parameters corresponding to the hopping amplitude, t = 1/(2ma2),
and the spin-orbit coupling, v = α/a, where a is the lattice constant (see Appendix A for
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the explicit tight-binding Hamiltonian). Unless otherwise specificed, all energies hereafter are
measured in units of ∆.

We describe the system in the gauge introduced in Sec. 2.2, where the Hilbert space consists
of a lattice of fermionic degrees of freedom and a bosonic degree of freedom describing the
total charge on the floating island. We represent this bosonic mode in the charge basis and
as a single additional site. The occupation of this charge mode depends on the ratio EJ/Ec ,
but the number fluctuations grow slowly,




δN2
�

∼ (EJ/Ec)1/2 for EJ > Ec [4], so in practice
we find that truncating to 10− 20 charge states yields sufficiently small error. The charging
energy term acts only on the bosonic charge state, which is coupled to the fermionic modes
via the hopping terms between the left and the right parts of the wire, i.e. via eiφ/2c†

i,σc j,σ′

with i ∈ IL , j ∈ IR (recall that in the charge basis the operator eiφ/2 simply changes the charge
by one). Hence, if the charge site is placed at the boundary between the left and the right
part of the wire, the Hamiltonian is local, simplifying the numerical study. The constraint
introduced by the boundary conditions (15) is handled by defining a conserved Z2 quantum
number PbPf ,L = 1.

To obtain the spectral function SN (ω) as defined in Eq. (8) we first obtain the ground state
|0〉 of the system using DMRG. We then perform time evolution of the state |0̃〉 ≡ N |0〉 in order
to obtain the real-time correlation function 〈0|N(t)N(0)|0〉 = e−iE0 t〈0̃|eiH t |0̃〉. For the time
evolution, we use TEBD with a 4th order Suzuki-Trotter decomposition with a time step of
d t = 0.02, truncating the MPS wavefunction to bond dimension of Mmax = 50 and truncation
error εtr = 10−7. We note that similar numerical techniques could be used to characterize the
correlation function for some other initial state, such as a low-lying excited state or even a
mixed state. This may be of interest to describe experimental situations where finite tempera-
ture or non-equilibrium effects lead to a finite occupation of excited states. The computational
cost of this time evolution is heavily dominated by the terms of the Hamiltonian that involve
the bosonic degree of freedom, which has a large on-site Hilbert space dimension and thus
limits the bond dimension we can treat. To obtain the spectral function in real frequencies,
we typically compute the real-time correlation function up to times t f ' 400 and use linear
prediction methods [83–85] to extrapolate the real-time correlation function to times ∼ 2t f .
We then apply a Gaussian windowing function and finally perform the Fourier transformation.
This allows us to reach a frequency resolution of order 10−2ωp in the parameter regime we
consider.

We consider two different models for the junction, corresponding to the limits of a short
and a finite-length junction, that will be described in detail below.

4.2 Short junction (weak-link model)

We start from the short junction limit, valid for junctions much shorter than the superconduct-
ing coherence length, in which the junction can be modeled as a single weak link between
the islands. All hopping terms on this link are reduced by a factor κ < 1 compared to their
values in the bulk. The transmission of the junction, and hence EM , is determined by κ; for
small κ, EM is proportional to κ. This setup is shown schematically in Fig. 4(a). The exact
tight-binding Hamiltonian is given in Appendix A.

In Fig. 4(b), we plot the spectral function obtained for this model, as a function of the
Zeeman energy B, for Ng = 0 and E0

J /Ec = 5. In the trivial phase, for B ® Bc , a single spectral
line is present (in the frequency range shown) at a frequency ω ≈ ωp, as expected. As the
Zeeman energy is increased and the wire is driven into the topological phase, a second spectral
line appears due to finite EM as discussed in Sec. 3. The avoided crossing between the two
spectral lines in Fig. 4(b), which can be observed close to the topological phase transition
at Bc/∆ = 1, is reminiscent of the avoided crossing between the states |1,+〉 and |1,−〉 in
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Figure 4: (a) Short junction (weak-link) model. The junction comprises a single link
on which the hopping and the spin-orbit coupling are reduced by a factor κ < 1
compared to their values in the bulk. (b) Spectral function obtained with DMRG and
TEBD for the weak-link model, as a function of the Zeeman energy B for Ng = 0.
Junction parameters in units of ∆ are Ec = 0.1, E0

J = 0.5, and wire tight-binding
parameters are t = 1.5, v = 2, µ = 0, κ = 0.1. The length of each part of the
wire is Nx = 40. In the trivial phase, for B/∆ ® Bc/∆ = 1, a single spectral line is
seen, corresponding to the plasma frequency. As the system enters the topological
phase, a second spectral line appears, and an avoided crossing between the two can
be observed (see main text for further discussion). The red dashed lines correspond,
for B < Bc , to the spectral lines expected for a conventional Josephson junction, and
for B > Bc , to those expected for a junction deep in the topological phase. The latter
are obtained using the minimal model given by the Hamiltonian (17) (see main text
for more details).

Fig. 3(b).
To validate our numerical results, we overlay on the spectral function the spectral lines

expected deep in the trivial and the topological phase, obtained using the minimal model
discussed in Sec. 3. These are plotted as red dashed lines in Fig. 4(b). For the trivial phase
(B < Bc), the position of the spectral line is calculated from HJ of Eq. (18a) with Josephson
energy set to E0

J . For the topological phase (B > Bc), we use the the Hamiltonian (17) with
δ = 0 and a value of EM determined numerically from the 4π-periodic component of the
ground state energy deep in the topological phase (more specifically, at B/∆= 2), as explained
in detail in Appendix B. As can be seen, our numerical results indeed agree very well with these
values in both limits.

4.2.1 Topological phase transition

The finite-size gap at the transition is determined by the spin-orbit coupling strength as
ε ∼ α∆/(BL) (see Ref. [86] for details). For the parameters used to obtain Fig. 4, we have
ε ∼ ωp. To probe the response of the system closer to the continuum limit we consider a
smaller spin-orbit coupling, such that many states cross the plasma frequency close to the
topological phase transition, but still large enough to have a sizable gap in the topological
region. However, we still do not observe any significant features in the spectral response as-
sociated with the gap closing, as can be seen in Fig. 5, where we also plot the energies of
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Figure 5: Spectral function obtained with DMRG and TEBD, for the weak-link model,
as a function of the Zeeman energy B for Ng = 0. Junction parameters in units of
∆ are Ec = 0.1, E0

J = 0.5, and wire tight-binding parameters are t = 1.5, v = 0.6,
µ = 0, κ = 0.1. The length of each part of the wire is Nx = 40. White solid lines
are the energies of 2-quasiparticle excitations obtained from the BdG Hamiltonian
for a phase difference of φ = 0 between the superconducting islands. Around the
phase transition point Bc/∆ = 1, as the bulk gap is closing, multiple 2-quasiparticle
states cross the plasma frequency. However, the effect of these states on the spectral
function is very small. The inset shows a zoom-in on the region close to the phase
transition, on a logarithmic color scale.

the two-quasiparticle excitations on top of the spectral function. We attribute this to the fact
that the critical states have weak dependence on the phase difference at the junction, and
thus small matrix elements of the charge operator N which determines the spectral response
via Eq. (8). An intuitive picture for this observation is that the critical states are delocalized
throughout the entire wire length, and thus have a limited support close to the junction.

4.3 Finite-length junction

We now consider a finite-length junction, which is modeled as a finite segment of length W
of normal (non-superconducting) wire. The hopping and the spin-orbit coupling between the
left (right) superconducting region of the wire and the junction is reduced by a factor κL(R)
compared to their values in the bulk. The exact tight-binding description of the model is given
in Appendix A and is shown schematically in Fig. 6(a).

In Fig. 6(b) we plot the spectral function obtained for this model. We find that in this
case the structure of the spectral function is more complicated with additional spectral lines
appearing both in the trivial and in the topological phase. To understand this spectral function,
we first obtain the spectrum expected on the basis of the minimal model of Sec. 3 deep in
the trivial and topological phase, as we did for the short junction case (see previous sub-
section for more details). The red dashed lines plotted on top of the spectral function for
B < Bc (B > Bc) correspond to this spectrum. In addition, we plot as white solid lines the
energies of two-quasiparticle excitations, obtained from the tight-binding BdG Hamiltonian at
a phase difference ofφ = 0 between the superconducting islands, as a function of B. These are
the fermionic excitations (in the even parity sector) originating from the second term in the
Hamiltonian (1), neglecting the dynamics of the field φ and the finite charging energy. It can
be clearly seen that the lines in the spectral response originate from avoided crossings between
these two types of excitations. In Sec. 5 below, we will present a perturbative approach that
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Figure 6: (a) Finite-length junction model. Sites depicted in blue correspond to the
two parts of the nanowire which are proximitized. The orange sites in the middle re-
gion are not subject to a superconducting pairing term, but otherwise have the same
model parameters as the rest of the wire. The hopping and the spin-orbit coupling
between the proximity-coupled left (right) part of the wire and the normal junction
region are reduced by a factor κL(R) compared to their values in the bulk. (b) The
spectral function for a finite-length junction model as a function of the Zeeman en-
ergy B for Ng = 0. Junction parameters are Ec = 0.1, E0

J = 0.5, Ng = 0, and wire
tight-binding parameters are t = 1.5, v = 2, µ = 0, κL = κR = 0.3. The length
of each part of the wire that is coupled to a superconductor is Nx = 30, and the
length of the junction is W = 6. Red dashed lines, plotted on top of the spectral
function for B < Bc (B > Bc), are the spectral lines expected deep in the trivial (topo-
logical) phase (see main text for more details). White solid lines are the energies of
2-quasiparticle excitations obtained from the BdG Hamiltonian for a phase difference
of φ = 0 between the superconducting islands.

will allow us to understand this coupling and to calculate the avoided crossings in the harmonic
limit, i.e. for EJ/Ec →∞.

5 Effective theory for the coupling between bosonic and fermionic
modes

We now examine the observed avoided crossing betweens the bosonic plasma mode and fermionic
subgap states in more detail. To this end, in Sec. 5.1 we develop a perturbative theory in the
harmonic limit. In Sec. 5.2 we discuss non-perturbative couplings that cannot be captured
by the perturbative expansion, and show their effect on the spectrum of the problem using a
simple model.

5.1 Harmonic expansion

We start from the Hamiltonian (7), where we assumed that the effect of the high-energy quasi-
particles is captured by their contribution to the phase dependent ground state energy that can
be approximated by a cosine dispersion −E0

J cos(φ). In the limit E0
J � Ec , phase fluctuations
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are small and centered around φ = 0. Therefore, we can ignore the fact that φ is a compact
variable, and thus also the periodic or anti-periodic boundary conditions (15). In this approx-
imation, the Ng -dependence of the Hamiltonian can be “gauged away” by generalizing the
gauge transformation (9) to U = eiφ(N f ,L−Ng )/2 and the dependence of the eigenvalues on Ng
is lost.

Expanding the cosine dispersion to lowest order in φ, we denote by H0,b the resulting
harmonic oscillator Hamiltonian acting on the bosonic degree of freedom,

H0,b = EcN
2 + 1

2 E0
Jφ

2 =ω0
p

�

a†a+ 1
2

�

. (25)

Here ω0
p =

q

8E0
J Ec , and a† and a are harmonic oscillator raising and lowering operators,

respectively. We will denote the eigenstates of H0,b as |m〉, where m is the occupation level of
the harmonic oscillator.

We now expand HBdG(φ) around φ = 0,

c†HBdG(φ)c= c†
�

HBdG(0) +φ H ′BdG(0) + · · ·
�

c . (26)

We denote the zeroth order term in this expansion by H0, f and diagonalize it to obtain

H0, f =
1
2c†HBdG(0)c=

∑

i

εi

�

Γ †
i Γi −

1
2

�

. (27)

Here, the operators Γ †
i (Γi) create (annihilate) quasiparticle excitations with non-negative en-

ergies εi . We define a corresponding Nambu spinor Γ† = (Γ †
i , Γi) and denote the single-particle

unitary that diagonalizes HBdG(0) by V , i.e. c= VΓ. We will denote the eigenstates of H0, f as
|~ν〉, where ~ν= (νi), with νi ∈ {0, 1}, is the vector of occupations of the quasiparticle levels. In
particular, the ground state will be denoted as |~0〉. The excited states are then given explicitly
as |~ν〉=

∏

i(Γ
†
i )
νi |~0〉.

We take the sum H0 = H0,b +H0, f as the unperturbed Hamiltonian for the problem. Note
that since H0,b( f ) acts solely on the bosonic (fermionic) degrees of freedom, the eigenstates of
H0 are simply the tensor products |m, ~ν〉 ≡ |m〉⊗ |~ν〉. Their unperturbed energies are given by

Em,~ν = mω0
p +

∑

i

νiεi + const. (28)

The second term in the expansion (26) acts as a perturbation to H0, which we denote as
δH. This term introduces a coupling between the bosonic and fermionic degrees of freedom.
Noting that the phase φ has the representation φ =

p
z(a + a†), where z = (2Ec/E

0
J )

1/2 is a
small parameter, and using the basis |~ν〉 for the fermionic states, δH can be written as

δH = 1
2

p
z(a+ a†)Γ†

�

V †H ′BdG(0)V
�

Γ . (29)

The matrix elements of H ′BdG(0) are related to the dispersion of the quasiparticle levels with the
phase across the junction, and hence to the current carried by these levels. The perturbation
δH introduces a coupling between the states |m, ~ν〉 and |m′, ~ν′〉 when m′ − m = ±1, with a
matrix element proportional to 〈~ν|Γ†[V †H ′BdG(0)V ]Γ|~ν

′〉.
The problem can now be easily tackled numerically, solving the Hamiltonian H0+δH with

a truncated basis consisting of low-energy many-body states. The spectral function SN (ω) of
Eq. (8) can also be computed numerically using that, in the harmonic limit, N = i(a†−a)/

p
z.

The spectrum and the spectral function calculated for the finite-length junction model (see
Sec. 4.3) using this approach are plotted in Fig. 7, for the same model parameters as in Fig. 6.

Comparing Figs. 6 and 7, we find that many of the qualitative features appearing in the
spectral function are reproduced within the harmonic expansion. In particular, the character-
istic behavior of the spectral function near avoided level crossings can be easily understood.
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Figure 7: (a) Excitation spectrum and (b) spectral function obtained using the har-
monic expansion for a finite-length junction with the same parameters as in Fig. 6.
The black dashed lines in (a) correspond to the excitation energies of the unperturbed
Hamiltonian, while the blue solid lines are obtained including the perturbation to
lowest order in φ. The truncated basis used here consists of two lowest energy har-
monic oscillator states and two-quasiparticle fermionic states constructed from four
lowest energy single-particle states. For presentation purposes we plot the spectral
function in (b) convolved with a Gaussian with σ = 5× 10−3.

For concreteness, consider a crossing between the unperturbed levels |1, ~0〉 and |0, ~ν〉 as the
magnetic field B is tuned through some value B0. Near the crossing, we may approximate the
unperturbed energies as E1,~0(B)≈ω

0
p and E0,~ν(B)≈ω0

p+2λ(B−B0), where 2λ≡ E′0,~ν(B0). In-
cluding the perturbation δH and solving the resulting two-level problem, we obtain hybridized
eigenstates of the form |±〉= a±(B)|1, ~0〉+ b±(B)|0, ~ν〉 with energies

E±(B) =ω
0
p +λ(B − B0)±

Æ

λ2(B − B0)2 + zζ2 , (30)

where ζ = |〈~0|Γ†[V †H ′BdG(0)V ]Γ|~ν〉|. The brightness of the spectral line corresponding to the
transition |0〉 → |±〉, where |0〉 denotes the ground state, is proportional to |〈±|N |0〉|2. This
matrix element is just |a±(B)|

2 /z:

|〈±|N |0〉|2 =
1
2z

�

1∓
λ(B − B0)

p

λ2(B − B0)2 + zζ2

�

. (31)

The intensity of the two spectral lines is thus identical at the degeneracy point, B = B0, and
becomes more and more asymmetrical away from the degeneracy point.

At the same time, since Fig. 6 was obtained for E0
J /Ec = 5, i.e. not very deep in the

harmonic limit, some features are not captured correctly. First, in Fig. 7 the plasma frequency
is higher than Fig. 6. This discrepancy, which also shifts the exact positions of some of the
avoided crossings, can be explained by the anharmonic correction to the plasma frequency
that is brought by the fourth-order expansion of −E0

J cosφ, δω0
p ≈ −Ec [4], and which is

automatically included in the MPS simulations of Sec. 4. Second, we note the level crossing
at B/∆ ≈ 2.7 and ω/∆ ≈ 0.6 in Fig. 7, which is avoided in Fig. 6 (near B/∆ ≈ 2.3 and
ω/∆ ≈ 0.5). The fact that this crossing is not avoided within the harmonic expansion can
be understood as follows. Since φ appears in HBdG(φ) only in the phases of the terms that
hop fermions between the left and right parts of the wire, the perturbative couplings in δH
only involve fermion quasiparticle levels with support at the junction and are thus local. On
the other hand, we find that the two states involved in the crossing differ in the occupation
of fermion modes far away from the junction and thus cannot be coupled in the harmonic
expansion. In Sec. 5.2, we will discuss how the avoided crossing can be understood in terms
of non-perturbative effects. To show that both discrepancies are due to the relatively low
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value of E0
J /Ec , in Appendix C we compare the spectral function obtained using the exact MPS

simulation and the one obtained using the harmonic expansion for a higher value E0
J /Ec = 20,

and show that there is an excellent agreement between the two.
Finally, we note that in principle it should be possible to systematically improve the per-

turbative expansion in z by including the higher-order terms which were so far neglected in
Eq. (26) as well as in the expansion of the cosine potential. In general, the n-th order term
introduces a coupling between the states |m, ~ν〉 and |m′, ~ν′〉 with |m′ −m| ≤ n. In addition, it
can cause a shift in the eigenvalues, even away from level crossings. However, in order to be
consistent, the expansion would have to take into account the contribution of the low-energy
fermionic degrees of freedom to the plasma frequency as well as the coupling between the
low- and high-energy degrees of freedom which were separated in Eq. (7); thus, it appears to
be a challenging approach.

5.2 Non-perturbative couplings

We now address the non-perturbative couplings that are not captured within the harmonic
expansion. As mentioned in passing in Sec. 3, non-perturbative corrections arise due to quan-
tum phase slips between the minima of the potential energy at φ = 0 and φ = 2π. In the case
of the standard qubit Hamiltonian Ec(N − Ng)2 − EJ cosφ, it is well-known that, in the limit
EJ � Ec , quantum phase slips give rise to the charge dispersion of the energy levels with mag-

nitude∝ e−
p

8EJ/Ec [4]. This effect is, for instance, visible in the energy spectra of Fig. 3(b).
These corrections are non-perturbative, as manifested by their singular dependence∝ e−c/z

on the expansion parameter z of the previous Section.
In this Section, we examine in detail an example for how these non-perturbative correc-

tions can prominently affect the microwave response in the topological phase. In particular,
we show that non-perturbative effects can resolve level crossings that are not resolved pertur-
batively, leading to the appearance of avoided crossings in the spectral response. The basic
physics of this phenomenon is as follows: consider a level crossing between two given states
|e+〉 and | f+〉, as in Fig. 8(a), which are not coupled by perturbative terms local at the junc-
tion. If non-perturbative effects cause |e+〉 to hybridize with a third state |e−〉 that does couple
perturbatively to | f+〉, this will lead to a non-perturbative avoided crossing, as seen in Fig. 8(b).

As a concrete example, we extend the minimal model presented in Sec. 3 to include an
additional fermionic mode localized (for simplicity) on the right island. We assume that this
mode couples to the Majorana mode on the left island via single-particle tunneling across the
junction. The Hamiltonian is then given by

H = HJ +HM +Hε +Hζ , (32)

where

HJ = EcN
2 − EJ cosφ , (33a)

HM = iγ2γ3 EM cos(φ/2) , (33b)

Hε = ε c†c , (33c)

Hζ = iζγ2

�

c eiφ/2 + h.c.
�

, (33d)

and we have implicitly set Ng = 0. Here, c† (c) is the creation (annihilation) operator for
the extra fermionic mode, ε is its energy, and ζ is its coupling strength to the Majorana mode
on the left island. We assume that the energy ε is comparable to the plasma frequency ωp,
and that it can be tuned by an external parameter (such as the Zeeman energy B, as in the
previous section). Writing the additional fermion operator in terms of Majorana operators,
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Figure 8: Spectrum of the Hamiltonian (32) projected onto the low-energy subspace,
for EJ/Ec = 5, EM/Ec = 1. We take ε(B) = ω̄+ λ(B/B0 − 1) with λ/Ec = 3 and the
coupling ζ = 0.1. Black dashed lines correspond to the spectrum of H̃, while the
blue solid lines correspond to the spectrum of H̃ + H̃ζ. In (a) we artificially set the
magnitude of the charge dispersion δ1 to zero, thus neglecting all non-perturbative
corrections, while in (b) the spectrum with finite δ1 is plotted. Once non-perturbative
corrections are taken into account, hybridization between |e+〉 and |e−〉 (due to finite
charge dispersion) results in the avoided crossing between the hybridized states |ẽ±〉
and | f±〉.

c = (γ5 + iγ6)/2, we rewrite Hζ as

Hζ = iζγ2

�

γ5 cos(φ/2)− γ6 sin(φ/2)
�

. (34)

Analogously to the basis defined in Eq. (21) that was used to study the four-Majorana
model in Sec. 3, we can define a basis for the full Hilbert space of this model that satisfies the
parity constraint (16) and diagonalizes HJ +Hε:

|m; n12, n34, nc〉= |m, (−1)n12〉b ⊗ |n12, n34, nc〉 . (35)

Here, |m,±〉b are the bosonic states defined in Sec. 3 and correspond to the m-th energy
eigenstate of HJ with even/odd bosonic parity and energy Em,±; n12 and n34 are the occupation
numbers encoded in the MZMs of the left and right island, ni j = (1+ iγiγ j)/2; and nc is the
occupation number of the extra fermionic mode.

In the harmonic limit EJ/Ec →∞, δm ≡ Em,+ − Em,−→ 0 and thus, for each m, the states
with different n12 but equal nc become degenerate eigenstates of HJ+Hε. Furthermore, in this
limit, HM has non-vanishing matrix elements only between states with the same m. Restricting
our discussion to low energies (namely, to states with energies up to orderωp), in the harmonic
limit the eigenstates of HJ +Hε +HM are given by:

|g±〉 ≡
|0;000〉 ± |0;110〉

p
2

, (36a)

|e±〉 ≡
|1;000〉 ± |1;110〉

p
2

, (36b)

| f±〉 ≡
|0;011〉 ± |0;101〉

p
2

. (36c)

At a large but finite EJ/Ec , the energy levels of HJ acquire a finite charge dispersion,

|δm| ∼ Ec (EJ/Ec)
m
2 +

3
4 e−
p

8EJ/Ec . (37)
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This non-perturbative energy splitting grows with m, allowing us to consider for simplicity the
regime |δ0| � |δ1| ≈ EM , and to neglect δ0. Projecting the first three terms of the Hamilto-
nian (32) onto the basis (36), we obtain (up to a constant shift)

H̃ = Hg +He +H f , (38)

with

Hg =−η0,0EM

�

|g+〉〈g+| − |g−〉〈g−|
�

, (39a)

He = ω̄
�

|e+〉〈e+|+ |e−〉〈e−|
�

−η1,1EM

�

|e+〉〈e+| − |e−〉〈e−|
�

+δ1

�

|e+〉〈e−|+ |e−〉〈e+|
�

, (39b)

H f = ε(B)
�

| f+〉〈 f+|+ | f−〉〈 f−|
�

−η0,0EM

�

| f+〉〈 f+| − | f−〉〈 f−|
�

. (39c)

Here, ηm,m are the overlap integrals defined in Eq. (23) and ω̄ is the average energy differ-
ence between the m = 0 and m = 1 bosonic states,

�

(E1,+ − E0,+) + (E1,− − E0,−)
�

/2. In the
harmonic limit ω̄ → ωp. We see that |g±〉 and | f±〉 are still eigenstates of H̃, but He mixes
|e±〉; its eigenstates, to lowest order in q ≡ δ1/(2η1,1EM ), are given by

|ẽ+〉 ≈ |e+〉 − q|e−〉 , (40a)

|ẽ−〉 ≈ |e−〉+ q|e+〉 . (40b)

At this point, we can understand why, as pointed out in Sec. 3, the two spectral lines in
the topological phase are only visible away from the harmonic limit. To this end, note that the
charge operator N couples |g+〉 to |e+〉 but not to |e−〉; on the other hand, it couples |g+〉 to
both |ẽ+〉 and |ẽ−〉.

Finally, we consider a finite coupling ζ. Projecting Hζ onto the basis (36), we obtain

H̃ζ = iζχ0,1

�

| f+〉〈e−| − | f−〉〈e+|
�

+ h.c. , (41)

where, similarly to Eq. (23), χm,m′ is the overlap integral

χm,m′ =

∫ 4π

0

dφψ∗m,+(φ) sin(φ/2)ψm′,−(φ) , (42)

with ψm,±(φ) ≡ 〈φ|m,±〉b. Note that H̃ζ only couples |e+〉 to | f−〉 and |e−〉 to | f+〉. Thus, in
the harmonic limit, or more specifically for vanishing δ1, there is no avoided crossing between
|e+〉 and | f+〉, as can be seen in Fig. 8(a). Away from the harmonic limit, the magnitude of the
avoided crossing between |ẽ+〉 and | f+〉 is

|〈ẽ+|H̃ζ| f+〉| ≈
ζχ0,1δ1

2η1,1EM
. (43)

This avoided crossing is clearly visible in Fig. 8(b). It is manifestly non-perturbative, and
vanishes in the harmonic limit.

6 Conclusions and Outlook

We have carefully studied the response of a capacitively shunted topological Josephson junc-
tion, using a combination of accurate numerical techniques and theoretical approaches that
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allow us to incorporate a microscopic description of the topological phase. Our results indi-
cate that detecting the signatures of the topological phase in the transmon-like setup of Fig. 1,
as proposed for instance in Ref. [60] and also as described in Sec. 3, can be complicated by
two factors. First, we do not find strong signatures of the topological transition itself on the
simulated frequency spectra of the junction. Second, the presence of non-topological Andreev
bound states can hinder the signatures of coupled Majorana zero-modes at the Josephson
junction in the measurable low-frequency spectrum. Our simulations show that this second
problem becomes particularly relevant in parameter regimes that tend to have a higher density
of sub-gap states that couple to the phase degree of freedom.

For a quantitative understanding of experiments performed on nanowire Josephson junc-
tions, including the electrostatic environment and the presence of multiple sub-bands can be
very important. While the numerical calculations presented here are based on an effective
one-band model of a Majorana nanowire, the methods themselves can in principle be applied
to more realistic models. This is particularly true for the perturbative approach described in
Sec. 5, which can take as input low-energy BdG spectra obtained from large-scale microscopic
simulations of realistic devices. For future research, it would also be valuable to find a way
to systematically include the contribution of quantum phase slips without resorting to an in-
tensive MPS calculation, and to consider the case in which the nanowire Josephson junction
hosts a quantum dot with finite charging energy.
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A Tight-binding model

The tight-binding Hamiltonian describing the spin-orbit coupled nanowire forming the Joseph-
son junction used in the simulations is given by

HBdG(φ) = HSC,L +HJ(φ) +HSC,R , (44)

where HSC,L(R) describe the left (right) regions of the wire that are proximity coupled to a
superconductor, and HJ describes the junction.

For concreteness, we write down the Hamiltonian after the gauge transformation defined
in Eq. (9). The Hamiltonian in the superconducting regions is given by

HSC,L(R) =−
i0+Nx−2
∑

i=i0,s,s′

�

c†
i,s(tδs,s′ + ivσ y

s,s′)ci+1,s′ + h.c.
�

+
i0+Nx−1
∑

i=i0,s,s′
c†

i,s

�

− (µ− 2t)δs,s′ + Bσx
s,s′
�

ci,s′

+
i0+Nx−1
∑

i=i0

�

∆ci,↑ci,↓ + h.c.
�

, (45)

where i0 = 1 (i0 = Nx +W + 1) for the Hamiltonian describing the left (right) region, and W
denotes the number of the sites in the junction. The hopping amplitude, t, and the spin-orbit
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coupling, v, are related to the continuum parameters by t = 1/(2ma2) and v = α/a, where a
is the lattice constant. Here σx ,y are the respective Pauli matrices.

In the main text, we consider two different models for the junction. For the short junction
(weak link) model studied in 4.2, W = 0 and the Hamiltonian for the junction is given by,

HJ = −κeiφ/2
∑

s,s′
c†

Nx ,s(tδs,s′ + ivσ y
s,s′)cNx+1,s′ + h.c. , (46)

where Nx is the rightmost site of the left superconducting region, and Nx + 1 is the leftmost
site of the right superconducting region.

For the finite-length junction model studied in 4.3, the Hamiltonian for the junction is

HJ =− κL

∑

s,s′

�

eiφ/2c†
Nx ,s(tδs,s′ + ivσ y

s,s′)cNx+1,s′ + h.c.
�

−
Nx+W−1
∑

i=Nx+1,s,s′

�

c†
i,s(tδs,s′ + ivσ y

s,s′)ci+1,s′ + h.c.
�

+
Nx+W
∑

i=Nx+1,s,s′
c†

i,s(−(µ− 2t)δs,s′ + Bσx
s,s′)ci,s′

− κR

∑

s,s′

�

c†
Nx+W,s(tδs,s′ + ivσ y

s,s′)cNx+W+1,s′ + h.c.
�

. (47)

B Extracting EM

In order to extract an effective EM from the tight binding model of the junction, we diagonalize
the BdG Hamiltonian and calculate the energies of the ground state and first excited state as
functions of the phaseφ defined on a 4π-periodic domain (see Fig. 9). In a Josephson junction
geometry and for an infinite wire, the model of Eq. (24) would give an Andreev level crossing
of at φ = π+2πn (where n ∈ Z), leading to the 4π-periodicity of the ground state. For a finite
system, the crossings will be avoided, with the splitting determined by the coupling between
the Majorana modes at the junction and those at the far ends of the wire. Nevertheless, If the
system is deep in the topological phase (in practice we consider a Zeeman energy of magnitude
B = 2Bc), the avoided crossings at φ = π, 3π will be small enough to allow us to define a 4π-
periodic ground state energy, E4π(φ). An effective EM is then defined as

EM ≡
1

2π

∫ 4π

0

E4π(φ) cos(φ/2) . (48)

C Numerical results in the harmonic limit

In Fig. 10 we plot the spectral function obtained from the MPS simulations in the harmonic
limit, E0

J /Ec = 20, and the spectral function obtained using the harmonic expansion for the
same parameters. To highlight the agreement between the two for the strength of the cou-
plings between the plasma mode and the fermionic quasiparticle excitations, we take into
account the anharmonic corrections that shift the energy of the first excited state with re-
spect to the plasma frequency in the harmonic limit ωp =

p

8EJ Ec , by δωp ≈ −Ec . This is
achieved by including the next order term in the expansion of the cosine potential, namely
−EJφ

4/24= −EJz2
�

a+ a†
�

/24, as part of the bosonic Hamiltonian H0,b, given in Eq. (25).
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Figure 9: Energies of the ground state (E0; blue dashed line), and the first excited
state (E1; green dashed line), obtained using the BdG spectrum, calculated for the
weak-link tight binding model (see Appendix A). Tight binding parameters used are
the same as in Fig. 4, with a Zeeman energy B = 2Bc = 2. The approximate crossings
in the spectrum at φ = π, 3π allow us to define a 4π-periodic ground state energy
E4π, plotted as the solid red line.
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Figure 10: Spectral functions obtained using (a) MPS simulations and (b) the har-
monic expansion (taking into account the anharmonic corrections to the plasma fre-
quency), for a finite-length junction model, as a function of the Zeeman energy B for
Ng = 0. Junction parameters in units of ∆ are Ec = 0.05, E0

J = 1, and wire tight-
binding parameters are t = 1.5, v = 2,µ = 0,κL = κR = 0.3. The length of each
part of the wire that is coupled to a superconductor is Nx = 20, and the length of
the junction is W = 6. (a) Red dashed lines, plotted on top of the spectral function
for B < Bc (B > Bc), are the spectral lines expected deep in the trivial (topological)
phase. White solid lines are the energies of 2-quasiparticle excitations obtained from
the BdG Hamiltonian for a phase difference of φ = 0 between the superconduct-
ing islands. (b) Dashed lines correspond to the excitation spectrum obtained within
the perturbative approach. For presentation purposes a convolution with a Gaussian
with σ = 5 · 10−3 is performed.
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