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Conjectures about the structure of strong- and
weak-coupling expansions of a few ground-state observables

in the Lieb-Liniger and Yang-Gaudin models
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Abstract

In this paper, we apply experimental number theory to two integrable quantum models
in one dimension, the Lieb-Liniger Bose gas and the Yang-Gaudin Fermi gas with contact
interactions. We identify patterns in weak- and strong-coupling series expansions of the
ground-state energy, local correlation functions and pressure. Based on the most accu-
rate data available in the literature, we make a few conjectures about their mathematical
structure and extrapolate to higher orders.
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1 Introduction

The Lieb-Liniger model describes spinless bosons with contact interactions, whose motion is
confined to one dimension [1]. It is arguably the most conceptually simple, integrable model
in the continuum. Each of its observables is amenable to exact calculations using Bethe Ansatz
techniques [1, 2], providing valuable insights in the properties of strongly-correlated systems
in one dimension [3]. The accuracy of the ground-state solution can be used to benchmark
effective theories, such as the Luttinger liquid approximation [4–6] and its non-linear gener-
alization [7, 8], as well as numerical techniques [9–12]. Last, but not least, this model can
be experimentally realized in ultracold gases experiments, both in the repulsive [13–18] and
attractive regime [19].

Its fermionic, spin-1/2 counterpart, known as the Yang-Gaudin model [20, 21], and its
generalization to arbitrary spin [22], has attracted increasing attention [23–26] since it has
been experimentally realized up to κ= 6 spin components [27] in an harmonic trap. Inter-
estingly, the spin-1/2 model with repulsive interactions is related to the Lieb-Liniger model
with attractive interactions [28], known as the super-Tonks-Girardeau gas [29, 30], and the
large-spin limit coincides with the Lieb-Liniger model with repulsive interactions [31]. A vast
web of mappings, onto the Kardar-Parisi-Zhang (KPZ) model [32] or directed polymers [33]
for instance, and the universality of Lieb-Liniger-like models as non-relativistic limits in one
dimension [34, 35], make the open problem of their full explicit resolution even more com-
pelling.

A key observable is the ground-state energy, which is related to many other physical quan-
tities through theorems and thermodynamic relations. For instance, in the Lieb-Liniger model,
the local two-body correlation function can be extracted from the latter [36], as well as the Lut-
tinger coefficients [5] that govern the long-range behaviour of non-local correlation functions,
and Tan’s contact, that yields the high-momentum tail of the momentum distribution [37–39].
Most remarkably, even the excitation spectrum can be obtained [40], by calculating the ef-
fective mass [41] and higher-order coefficients of its low-momentum expansion [42]. This
spectrum, in turn, is related to the dynamical structure factor [43].

Although the exact ground-state energy can be obtained, in principle, from the exact Bethe
Ansatz equations, only weak- and strong-coupling expansions are accessible to date [1, 40,
44–51]. As far as the Lieb-Liniger model is concerned, recently-developed algorithms allow
to obtain these expansions to any order [40, 49, 50]. An important step forward would be to
understand them well enough to predict their coefficients at arbitrary order without evaluating
them algorithmically.

This paper is organized as follows. In section 2, we briefly describe the Lieb-Liniger and
Yang-Gaudin models, introduce a few notations and the Bethe Ansatz equations that give ac-
cess to the ground-state energy. In section 3, we sum up the main known results about their
strong- and weak-coupling expansions. We then propose new conjectures about the ground-
state energy of the Yang-Gaudin model, and discuss the radius of convergence of the partial
resummations we perform. In section 4, we sum up the main analytical developments related
to the local correlation functions of the Lieb-Liniger model and propose a conjecture about
their structure. Then, in section 5, we link together two independent descriptions of the local
two-body correlation function to evaluate an observable that we identify as the pressure of
the Bose gas. We provide conjectures about its strong-coupling expansion. In section 6, we
conclude and give a few outlooks.
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2 Models and equations

The one-dimensional quantum gas composed of N identical spinless point-like bosons of mass
m with contact interactions, is described by the Lieb-Liniger Hamiltonian H which reads [1]

H =
N
∑

i=1



−
~2

2m
∂ 2

∂ x2
i

+
g1D

2

∑

j 6=i

δ(x i − x j)



 , (1)

where {x i}i∈{1,...,N} label the positions of the bosons, ~ is the Planck constant divided by 2π,
g1D is an effective one-dimensional coupling constant and δ is the Dirac function.

It is customary to introduce a dimensionless coupling constant, known as Lieb’s parameter,
that reads

γ=
mg1D

n0~2
, (2)

where n0 is the average linear density.
The coordinate Bethe Ansatz procedure allowing to solve this model is well-known, see

e.g. [52] for details. It yields a set of three equations, namely

g(z;α)−
1

2π

∫ 1

−1

d y
2αg(y;α)
α2 + (y − z)2

=
1

2π
, (3)

where g(z;α) denotes the distribution of quasi-momenta in reduced units, z is the pseudo-
momentum in reduced units such that its maximal value is 1 and α is a real number in one-to-
one correspondence with the Lieb parameter γ introduced above through a second equation,

γ

∫ 1

−1

d y g(y;α) = α. (4)

A third equation yields the dimensionless average ground-state energy per particle, eB(γ),
linked to the total energy E0 by

eB(γ) =
2m
~2

E0(γ)
Nn2

0

, (5)

according to

eB(γ) =

∫ 1
−1 d y g(y;α(γ))y2

[
∫ 1
−1 d y g(y;α(γ))]3

. (6)

A similar procedure allows to obtain the ground-state energy of the Yang-Gaudin model
of spin-1/2 fermions with contact interactions, and even the κ-component model with an
arbitrary number of spin components, see e.g. [53,54] for details. The Hamiltonian stays the
same as in Eq. (1), but the statistics is modified to take into account the fermionic nature of
the particles. In the case of a κ-component Fermi gas divided into [m1, . . . , mκ] particles per
species, a set of κ rapidities, distributions and integrations bounds denoted respectively ki ,
ρi(ki) and Bi can be defined. Introducing the notation Mi =

∑κ
j=i m j for all i ∈ {1, . . . ,κ}, the

κ coupled integral Bethe Ansatz equations for the ground state in the thermodynamic limit
can be written as:

2πρ1 = 1+ 4g1D

∫ B2

−B2

ρ2(k2)dk2

g2
1D + 4(k1 − k2)2

, (7)
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4g1D

∫ Bi+1

−Bi+1

ρi+1(ki+1)dki+1

g2
1D + 4(ki − ki+1)2

+ 4g1D

∫ Bi−1

−Bi−1

ρi−1(ki−1)dki−1

g2
1D + 4(ki − ki−1)2

= 2πρi + 2g1D

∫ Bi

−Bi

ρi(k′i)dk′i
g2

1D + 4(ki − ki′)2

(8)

and

4g1D

∫ Bκ−1

−Bκ−1

ρκ−1(kκ−1)dkκ−1

g2
1D + 4(kκ − kκ−1)2

= 2πρκ + 2g1D

∫ Bκ

−Bκ

ρκ(k′κ)dk′κ
g2

1D + 4(kκ − kκ′)2
, (9)

together with the following normalization condition:

Mi

L
=

∫ Bi

−Bi

ρidki . (10)

The dimensionless average ground-state energy per particle reads:

eF (γ;κ) =

∫ B1

−B1

ρ1k2
1dk1. (11)

3 Ground-state energy

Although solving the Lieb equations yields, in principle, the exact ground-state energy, only
weak and strong-coupling expansions are known to date. In this section, we recap the most
accurate results available and take a close look at their patterns to try and identify their gen-
erating series.

3.1 Strong-coupling expansion

Neumann series expansion of the kernel is the standard mathematical tool to solve integral
equations like Eq. (3), see e.g. [46]. However, only the two first orders of this series expansion
have been derived analytically [40], due to the increasing complexity of higher-order terms.

An algorithm that yields systematic series expansions at large Lieb parameter γ has been
developed in [40]. It allows to evaluate analytically the ground-state energy of the Lieb-Liniger
model in the vicinity of the Tonks-Girardeau regime γ → +∞ as a truncated series in the
inverse Lieb parameter,

eB(γ) =
n
∑

k=0

ak

γk
+O

�

1
γn+1

�

. (12)

We have pushed this procedure up to order n= 20 in [55], the explicit result is given here
in appendix A. More generally, at order n the expression contains 1 + b(n + 1)/2cb1 + n/2c
different terms, where b. . . c is the floor function, such that bxc is the nearest lower integer to
x , or x if the latter is integer. For this reason, explicit expressions of ak are rather uncanny
for large n, all the more so as the coefficients become more and more complex. Moreover, the
convergence of the series to the exact value at given γ is quite slow at intermediate coupling,
and the procedure only applies when α > 2 in Eq. (3), corresponding to γ > 4.527.

The will to bypass these shortcomings led us to look at the problem from the perspec-
tive of experimental number theory, trying to identify patterns in the expansion to express it
with more compact notations. This heuristic point of view turned out to be rather fruitful.
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We guessed a structure, seemingly valid at all orders, whose partial resummation led to the
following pattern:

eB(γ) =
+∞
∑

n=0

eB,n(γ), (13)

where

eB,0(γ) =
π2

3
γ2

(2+ γ)2
(14)

and for n≥1,

eB,n(γ) =
γ2

(2+ γ)3n+2
π2n+2En(γ), (15)

where En(γ) =
∑n−1

k=0 ak;nγ
k is a polynomial of degree n−1 with rational coefficients. We also

guessed a few properties of the latter. In particular, we identified the coefficient of the the
highest-degree monomial of En [55]. This conjecture generalizes a result of [56] to arbitrary
order, and is in agreement with the exact series expansion to order 20. The role of the factor
1+ 2

γ that appears at the denominator when factorizing by γ is discussed in an appendix of [57].
Other lines could be followed to seek structures, see Appendix B for an example.

The validity of these assumptions has been checked at higher orders by independent nu-
merical calculations [58]. Identifying the structure of coefficients in the polynomials En allows
to make more accurate calculations [55], compared to the mere series expansion in 1/γ. In-
deed, a major advantage of this partially resummed expansion is that its radius of convergence
is infinite. A closed-form formula for the coefficients that would lead to a full resummation
would solve the ground-state energy problem explicitly.

In comparison, relatively few results have been obtained concerning the Yang-Gaudin and
general κ-component model, due to the much more complex structure of the equations in-
volved. In the balanced gas where all spin sectors contain the same number of fermions,
the most accurate strong-coupling expansion of the average ground-state energy per particle
available to date reads [60]

eF (γ;κ)
π2/3

= 1−
4Z1(κ)
γ

+
12Z1(κ)2

γ2
−

32
γ3

�

Z1(κ)
3 −

Z3(κ)π2

15

�

+O
�

1
γ4

�

, (16)

where Z1(κ)=−
1
κ

�

ψ
� 1
κ

�

+ C
�

and Z3(κ)=
1
κ3

�

ζ
�

3, 1
κ

�

− ζ(3)
�

, with ψ the Euler psi function,
C the Euler constant and ζ the Riemann zeta function.

This result generalizes the one obtained previously for the Yang-Gaudin model in [61],
since Z1(κ = 2) = ln(2) and Z3(κ = 2) = 3

4ζ(3). It also agrees with its well-kwown Lieb-
Liniger counterpart through Yang and You’s generalized Lieb-Mattis theorem for κ→∞ [31]
that states the equivalence between spinless bosons and balanced infinite-spin fermions in the
thermodynamic limit, as Z1(κ)→κ→∞ 1 and Z3(κ)→κ→∞ 1.

Inspired by the results presented in this subsection, we state a conjecture about the struc-
ture of the series expansion of the κ-component fermi gas.

Conjecture I: The resummation above, Eq. (13), suggests a similar structure for eB(γ) and
eF (γ;κ) through the Yang-You theorem as:

eF (γ;κ) =
+∞
∑

n=0

eF,n(γ;κ), (17)
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where

eF,0(γ;κ) =
π2

3
γ2

(2Z1(κ) + γ)2
(18)

is inferred from the third-order strong-coupling expansion above.
It might be that 2Z1(κ)+γ plays the role of 2+γ at the denominator to all orders, and that

linear combinations of 1 and terms of the form Z2 j+1(κ) appear as prefactors at the numerator,
but too few orders are available to date to make reliable conjectures about the higher-order
structures eF,n when n≥ 1.

3.2 Weak-coupling expansion

In the weakly-interacting regime, expansions of the ground-state energy of the Lieb-Liniger
model have the following structure [46]:

eB(γ) = γ

� n
∑

k=0

cB
k γ

k/2 +O(γ(n+1)/2)

�

. (19)

The zeroth- and first-order coefficients have been obtained in [1]. The second-order term
was inferred in [44] and checked wih more rigor in [45,46]. Coefficients of order 3 to 5 were
inferred from a very accurate numerical study [47,48], and involve the zeta function evaluated
at odd arguments, ζ(3) and ζ(5).

Very recently, further coefficients have been explicitly obtained using two independent
methods. On the one hand, an efficient algorithmic expansion at low γ, combined to an integer
coefficients algorithm to find the explicit form of the latter has been used in [49] and allowed
to identify coefficients up to order 8. On the other hand, a systematic algorithmic procedure
that yields directly the exact coefficients has been developed in [50], and has yielded their
value up to order 34, though they have been published up to eighth order only due to their
lengthy expressions. These studies revealed that from a certain order on, cB

k involves products
of the zeta function evaluated at odd arguments. The asymptotic expression of cB

k for k � 1
has even been inferred from numerical data [50].

As far as the Yang-Gaudin model is concerned, the weak-coupling expansion of the ground-
state energy reads

eF (γ;κ=2) =
n
∑

k=0

cF
k (κ=2)γk +O(γn+1). (20)

For a long time, only the first three coefficients were known [62]. A few more have been
obtained numerically in [47,48], and the fourth has been computed explicitly [51]. A system-
atic procedure that yields the exact coefficients has been developed [50,51], and has given the
explicit form of the coefficients up to order 34. They are given explicitly up to order 10 in [51].

We have carefully studied these new available data and found out structures that may be
valid at arbitrary order. We thus make a few conjectures about subseries in the weak-coupling
expansion of the Yang-Gaudin model.
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Conjecture II: We guess that ζ(3) appears as a global factor in a peculiar subsequence of
the weak-coupling expansion of the ground-state energy of the Yang-Gaudin model, as:

eF ;ζ(3)(γ;κ=2) = −ζ(3)
∑

n≥0

1
2n+1

(n+ 2)
�

2n
n

�

γn+3

π2(n+2)

= −
ζ(3)
π4
γ3 −

3ζ(3)
2π6

γ4 −
3ζ(3)
π8

γ5 −
25ζ(3)
4π10

γ6 −
105ζ(3)

8π12
γ7 . . . (21)

This result is in full agreement with [51] to all published orders. It has been confirmed up to
order 50 by the authors of the aforementioned article [59]. This subseries converges provided
that γ≤ π2/2, and sums up to

eF ;ζ(3)(γ;κ=2) = −
ζ(3)γ3

π4

1− 3
2
γ
π2

�

1− 2 γ
π2

�3/2
. (22)

Conjecture III: We also point out that ζ(5) appears as a global factor in a peculiar subse-
quence of the weak-coupling expansion of the ground-state energy of the Yang-Gaudin model,
that should read:

eF ;ζ(5)(γ;κ=2) = −ζ(5)
∑

n≥0

1
2n+1

n+ 2
2n− 1

�

2n
n

��

�n
2

�

2

�

γn+3

π2(n+2)

= −
15ζ(5)
4π10

γ6 −
225ζ(5)

8π12
γ7 −

2205ζ(5)
16π14

γ8 − (23)

2205ζ(5)
4π16

γ9 −
31185ζ(5)

16π18
γ10 . . .

This result is in full agreement with [51] to all published orders. As well as the former con-
jecture, this one has been confirmed up to order 50 by the authors of the aforementioned
article [59]. The series converge provided that γ≤ π2/2, and sums up to

eF ;ζ(5)(γ;κ=2) = −
15
4
ζ(5)γ6

π10

1− 3
2
γ
π2 +

3
4
γ2

π4

�

1− 2 γ
π2

�9/2
. (24)

The limited radius of convergence of the series expansion in this conjecture and the previ-
ous one is due to the pole of the denominator in the functions involved in their resummation.
At least one of the other subseries, most liketly the one that does not have any odd zeta pref-
actor, must have a radius of convergence equal to zero according to [51], where it was shown
that the series on its whole has a null radius of convergence.

Conjecture IV: We noticed that the weak-coupling expansions of the ground-state energy
in the case of the Yang-Gaudin and Lieb-Liniger model, along with the Yang-You theorem,
suggest a general structure for the weak-coupling expansion of the ground-state energy of the
κ-component model that reads:

eF (γ;κ) =
∑

k≥0

c̃F
k (κ)π

2−kγk/2, (25)

where c̃F
k is a linear, rational combination of 1, and products of zeta function evaluated at

odd arguments, except for c̃F
2 which also contains ζ(2). The fact that ζ(2) and more generally
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ζ(2m) is specific to c̃F
2 has been checked to low orders, and implemented by T. Reis and M.

Marino in their calculations at very high orders to achieve workable computation times [59].
Equation (25) is a common generalization of Eqs. (19, 20).

In the balanced case, i.e. when the number of particles in each component is linked to the
total number of particles by Ni = N/κ, it is known that [60]

eF (γ;κ) =
π2

3κ2
+
κ− 1
κ
γ+ . . . (26)

implying that c̃F
0 (κ) =

1
3κ2 →κ→+∞ 0, in agreement with the Lieb-Liniger result. It also means

that for any spin, c̃F
1 (κ)=0 and c̃F

2 (κ)=
κ−1
κ . Furthermore, for odd orders, c̃F

2 j+1(κ=2)=0.

4 Local correlation functions of the Lieb-Liniger Bose gas

In the Lieb-Liniger model, the M-body local correlation functions are usually defined as

gM =
〈(ψ†(0))M (ψ(0))M 〉

nM
0

, (27)

where ψ(x) is the annihilation operator of the bosons. These observables indicate the proba-
bility of observing M particles at the same location at the same time. In a standard framework,
their computation involves moments of the density of pseudo-momenta [36,63],

e2k(γ) =

∫ 1
−1 d y g(y,α(γ))y2k

[
∫ 1
−1 d y g(y,α(γ))]2k+1

,

through the concept of connection, defined as a relationship between a local correlation func-
tion and coefficients of the short-distance expansion of the one-body correlation function [64].
This approach leads to rather complicated expressions for gM in terms of e2k and their deriva-
tives, already at order M =3 [65]. A few properies of the moments are given in appendix C.
Based on strong-coupling expansions of g2 and g3 to order 20 in the inverse coupling constant,
and inspired by the resummation of e(γ) as in Eq. (13), we propose a conjecture about the
general structure of the M -body correlation function.

Conjecture V: We guess that the structure of the strong-coupling expansion of gM (γ) takes
the form:

gM (γ) = γ
M−1

+∞
∑

n=0

Gn;M (γ)π2n+M(M−1)

(2+ γ)(M+1)(n+M−1)
,

where Gn;M is a polynomial of degree (M − 1)n, and G0;M =
1

(2M−1)!!

� ∏M
j=1 j!

∏M−1
j=1 (2 j−1)!!

�2

. It is in

agreement with our expansions of g2 and g3 to order 20, and with the most accurate explicit
result to date [66] up to order M2 − M + 1 in 1/γ for all values of M , in particular through
the known expression of G0,M . It also agrees with the exact result g1(γ) = 1, on the condition
that Gn;0 = 0 for n≥ 1.

Moreover, we have spotted out that Gn;2 =
∑n

k=0 bk;nγ
k with b0;n = 4a0;n and

bn;n = −(2n+ 1)an−1;n with the notations involved in Eq. (13) and below.
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5 Pressure of the Lieb-Liniger Bose gas

Using an other formalism, the local correlation functions of the Lieb-Liniger model can be
expressed in terms of solutions of other integral equations than the Lieb equation Eq. (3). For
instance, the two-body local correlation function g2 can be written as [67]

g2(γ) =
2
γ
[e(γ)− p(γ)],

where by definition

p(γ) =
1

2π

∫ 1
−1 dz f (z;α(γ))z

[
∫ 1
−1 dzg(z;α(γ))]3

.

The function g(z;α) has been defined above in Eq. (3), and f (z;α) is solution to the integral
equation

f (z;α)−
1
π

∫ 1

−1

d y
α

α2 + (z − y)2
f (y;α) = z. (28)

We combine several approaches to identify the physical meaning of p(γ). It is a well-known
fact that the Hellmann-Feynman theorem yields e′(γ) = g2, where ′ denotes the derivation with
respect to γ [36], thus

p = e−
γ

2
e′. (29)

On the other hand, the pressure P satisfies the thermodynamics relation [68]

P =
2E0

L
−
~2n3

0

m
γe′

2
.

Therefore, we find out that

p = e−
γ

2
e′ =

P
~2n2

0/m

is actually the dimensionless pressure of the Bose gas, an observable not quite studied so far
in the case of the Lieb-Liniger model. More thermodynamic relations are derived in Appendix
D. Our calculations of the strong-coupling expansion of the ground-state energy allowed us to
obtain an expression for the pressure at the same order in 1/γ, whose more general structure
can be identified as in the case of the ground-state energy.

Conjecture VI: Based on our strong-coupling expansion of p(γ) at order 20 in the inverse
coupling constant, we conjecture that it can be partially resummed as:

p(γ)
π2/3

= γ3
+∞
∑

n=0

π2n

(γ+ 2)3n+3
Pn(γ), (30)
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where Pn are polynomials of degree max(n−1,0), with rational coefficients of alternating
signs. We have identified the first few polynomials as:

P0(γ) = 1,

P1(γ) =
16
3

,

P2(γ) = −
48
5
γ+

608
45

,

P3(γ) =
768
35
γ2 −

256
5
γ+

22336
945

,

P4(γ) = −
512

9
γ3 +

88064
525

γ2 −
822272
5775

γ+
182784
4725

,

P5(γ) =
12288

77
γ4 −

27877376
51975

γ3 +
429056

693
γ2 −

1200128
3465

γ+
4698112
93555

. (31)

We found this structure using the property:

+∞
∑

n=0

�

−
2
γ

�n�n+ 3k+ 2
3k+ 2

�

=
γ3(1−k)

(2+ γ)3(k+1)
, (32)

and in analogy with the structure of the ground-state energy, Eq. (15). Moreover, the highest-
degree monomial of Pk, where k ≥ 1, seems to be affected of a coefficient

pk;n = 3×
(−4)k+1

(2k+ 1)(k+ 2)
. (33)

According to Eq. (29), the ground-state energy e(γ) can be obtained from a differential
equation knowing the pressure p(γ), and the coefficients of their series expansion at weak
and strong coupling are linked together. At weak coupling, the coefficient of γ2 in the series
expansion of the pressure is null, so the corresponding coefficient in the series expansion of
eB(γ), that involves ζ(2), is actually an integration constant. This might explain why ζ(2) is
specific to this order and does not appear at higher orders anymore. The differential equation
also gives an explanation to the fact that products of zeta functions, such as ζ(3)2, appear in
the expansion.

6 Conclusion and outlook

In conclusion, in this article we used the most accurate available data to guess patterns in
the weak-coupling series expansion of the ground-state energy of the Yang-Gaudin model. We
proposed two conjectures about the mathematical structure of subseries whose terms share
a common prefactor that involves ζ(3) and ζ(5) respectively. Although they encapsulate an
infinite number of terms, they do not encompass multiples of zeta functions evaluated at odd
arguments, that appear at higher orders. Lack of data did not allow us to generalize our
conjectures to all odd arguments of the zeta function, but the expressions already obtained
may serve as a guideline to identify more coefficients in the future. The subseries we have
resummed have a finite radius of convergence, and are not responsible for the null radius of
convergence of the full series, which should be understood from the subseries devoid of odd
zeta terms.

All the results obtained for the ground-state energy of the Yang-Gaudin model, eF (γ;κ= 2),
readily yield their equivalent in the super-Tonks-Girardeau regime of the Lieb-Liniger model,
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through the relation eST G
B (γ) = 16eF

�

|γ|
4

�

. Surprisingly, the coefficients of the standard Lieb-
Liniger model with repulsive interactions seem more difficult to guess than those of the Yang-
Gaudin model.

We also made conjectures about the structures of the weak-coupling and strong-coupling
series expansion of the ground-state energy of κ-component fermions. The fact that almost all
weak-coupling coefficients are rational linear combinations of 1 and zeta function evaluated
at odd arguments should be related to the model’s integrability [59]. The only exception here
concerns the coefficient of γ2, which might be a special feature of the κ-component model in
general. Its role of an integration constant may be a clue to this special behavior. We note
that a similar structure has been observed in the emptiness formation probability of the XXX
spin chain [69], where the link between the appearance of the zeta function at odd arguments
and integrability has been investigated and a similar conjecture has been stated. In this case,
however, factors of ln(2) also appear, that are absent in the weak-coupling expansions of the
ground-state energy of the Lieb-Liniger and Yang-Gaudin models. However, both factors ln(2)
and ζ(2 j + 1) can be encompassed in the more general framework of polylogarithms. Un-
derstanding at a deeper level the link between number theory and integrability is a thrilling
problem in mathematical physics.

Then, we devoted our attention to the local correlation functions of the Lieb-Liniger model.
Inspired by a conjecture about the strong-coupling expansion of the ground-state energy of
the Lieb-Liniger model, and using series expansions of the two- and three-body correlation
functions, we proposed yet another conjecture about the structure of general local correlation
functions, that encompasses the most accurate analytical results available in the literature as
special cases.

Finally, we combined two approaches to evaluate the two-body correlation function, to
identify another ground-state observable as the pressure of the Lieb-Liniger Bose gas. We
proposed a conjecture about the structure of its strong-coupling expansion.

As an outlook, it would be interesting to systematically compare several approaches to
the local correlation functions. In [64], we pointed out the existence of a general framework
through the notion of connection, that would deserve more investigations. In parallel, an other
very interesting formalism exists, whose solution requires to solve several integral equations.
It is thus more demanding in terms of computations, but better adapted to numerical studies
as it does not involve derivatives. Its structure is simpler, and explicitly known at all orders
M [70], it is valid at finite temperature and can be adapted to out-of-equilibrium situations,
yet actual calculations of series expansions in terms of the coupling constant are still lacking.

As far as non-local correlation functions of the Lieb-Liniger model are concerned, they
have been studied extensively in the classical textbook [71]. Working out explicitly their de-
pendence on the coupling constant and temperature is still a partially-open problem.
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A Strong-coupling expansion of the ground-state energy of the
Lieb-Liniger model

In this Appendix, we give the explicit expansion of the dimensionless ground-state energy in
the inverse coupling constant in the vicinity of the Tonks-Girardeau regime γ→ +∞:

e(γ)
π2/3

= 1−
4
γ
+

12
γ2
−

32
γ3
+

80
γ4
−

192
γ5
+

448
γ6
−

1024
γ7

+
2304
γ8
−

5120
γ9

+
11264
γ10

−
24576
γ11

+
53248
γ12

−
114688
γ13

+
245760
γ14

−
524288
γ15

+
1114112
γ16

−
2359296
γ17

+
4980736
γ18

−
10485760
γ19

+
22020096
γ20

+
π2

γ3

�

32
15
−

64
3γ
+

128
γ2
−

1792
3γ3

+
7168
3γ4

−
43008

5γ5
+

28672
γ6

−
90112
γ7

+
270336
γ8

�

+
π2

γ3

�

−
2342912

3γ9
+

32800768
15γ10

−
5963776
γ11

+
47710208

3γ12
−

124780544
3γ13

�

+
π2

γ3

�

106954752
γ14

−
1354760192

5γ15
+

677380096
γ16

−
1673527296

γ17

�

+
π4

γ5

�

−
96
35
+

2096
45γ

−
19712
45γ2

+
15104

5γ3
−

51200
3γ4

+
1255936

15γ5
−

1847296
5γ6

�

+
π4

γ5

�

157560832
105γ7

−
85516288

15γ8
+

20500480
γ9

−
3167617024

45γ10
+

10457055232
45γ11

�

+
π4

γ5

�

−
3707764736

5γ12
+

34461712384
15γ13

−
145636720640

21γ14
+

102284394496
5γ15

�

+
π6

γ7

�

512
105
−

20224
175γ

+
198784
135γ2

−
12669184

945γ3
+

6161408
63γ4

−
574306304

945γ5

�

+
π6

γ7

�

2254759936
675γ6

−
5246365696

315γ7
+

72470953984
945γ8

−
8921808896

27γ9

�

+
π6

γ7

�

141315080192
105γ10

−
24676999233536

4725γ11
+

18362588987392
945γ12
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3135253774336

45γ13

�

+
π8

γ9

�

−
1024
99

+
492032
1575γ

−
124928

25γ2
+

9857536
175γ3

−
7534592

15γ4
+

11315200
3γ5

�

+
π8

γ9

�

−
5577834496

225γ6
+

32942620672
225γ7

−
138548740096

175γ8
+

35774136320
9γ10

�

+
π8

γ9

�

−
1179996127232

63γ10
+

22973599973376
275γ11

�

+
π10

γ11

�

24576
1001

−
29679616
33075γ

+
4472756224

259875γ2
−

3995396096
17325γ3

+
226836987904

93555γ4

�

+
π10

γ11

�

226836987904
93555γ5

−
1993002090496

93555γ6
+

8455393705984
51975γ7

�

+
π10

γ11

�
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−
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�
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+
π12

γ13

�

−
4096
65

+
94450688
35035γ

−
1422291795968

23648625γ2
+

22033051721728
23648625γ3

�

+
π12

γ13

�

−
17753139208192

1576575γ4
+

4815327978459136
42567525γ5

−
643580495888384

654885γ6
+

76876913487282176
10135125γ7

�

+
π14

γ15

�

131072
765

−
1132822528

135135γ
+

18440364032
86625γ2

−
3976857599787008

1064188125γ3

�

+
π14

γ15

�

433893767446528
8513505γ4

−
1166349005750272

2027025γ5

�

+
π16

γ17

�

−
786432
1615

+
717866991616

26801775γ
−

32984804753408
43295175γ2

+
1765201175773184

118243125γ3

�

+
π18

γ19

�

2097152
1463

−
23334092275712

266741475γ

�

+O
�

1
γ21

�

. (34)

B The even-odd trick

To seek the structure of the ground-state energy, in this appendix we rely on the fact that any
function can be decomposed in a unique way as a sum of an even and an odd function. The
dimensionless ground-state energy is thus split into

eB(γ) = eeven(γ) + eodd(γ). (35)

We try and identify patterns of increasing complexity in eeven and eodd , writing

eeven/odd(γ) =
+∞
∑

n=0

eeven/odd,n(γ). (36)

In doing so, we found

eeven,0(γ) =
π2

3

+∞
∑

n=0

�

2n+ 1
1

��

2
γ

�2n

, (37)

eeven,1(γ) = −
4
45
π4
+∞
∑

n=0

�

2n+ 5
4

��

2
γ

�2n+4

, (38)

and for the odd function:

eodd,0(γ) = −
π2

3

+∞
∑

n=0

�

2n+ 2
1

��

2
γ

�2n+1

, (39)

and

eodd,1(γ) =
4
45
π4
+∞
∑

n=0

�

2n+ 4
4

��

2
γ

�2n+3

, (40)

yet at higher orders the structures suddenly complexify.
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C Moments of the density of pseudo-momenta

This appendix is devoted to the asymptotic properties of the integral

I2k(γ) =

∫ 1

−1

d y g(y;α(γ))y2k, (41)

involved in the calculation of the moments of the density of pseudo-momenta, Eq. (28).
Using a strong-coupling expansion, we found out that for k = 0, I0 involves the series

expansion of
1
π

�

γ

2+ γ

�−1

(42)

and

−
4π
3γ3

+∞
∑

n=0

(n+ 1)
�

−
2
γ

�n

= −
4π
3γ3

�

γ

2+ γ

�2

. (43)

For k=1, I2 involves
1

3π

�

γ

2+ γ

�−1

(44)

and

−
28π
45γ3

+∞
∑

n=0

(n+ 1)
�

−
2
γ

�n

= −
28π
45γ3

�

γ

2+ γ

�2

. (45)

We thus guessed that I2k contains the following structures:

1
π

1
(2k+ 1)

�

γ

2+ γ

�−1

(46)

and

−
4π
3γ3

�

4(k+ 1)− 1
4(k+ 1)2 − 1

��

γ

2+ γ

�2

. (47)

At higher orders the structures suddenly become more complex, for instance we identified

16π3

5γ6

4k2 + 11k+ 5
8k3 + 36k2 + 46k+ 15

�

γ

2+ γ

�5

(2γ+ a(k)), (48)

where a(k) is a polynomial function of the variable k.
We also noticed that

1
2k+ 1

=
1

1(k+ 1) + k
(49)

and

4(k+ 1)− 1
4(k+ 1)2 − 1

=
4k+ 3

(4k+ 3)(k+ 1) + k
, (50)

which might be the correct way to write prefactors to identify a general structure.
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D More relationships for the pressure

The dimensionless pressure p satisfies

p = e−
γ

2
e′. (51)

It is known that the dimensionless chemical potential satisfies [1]

µ= 3e− γe′. (52)

Combining these expressions yields, in real units,

p =
1
2
(µ− e) =

1

2n2
0

�

∂ E0

∂ N
−

E0

N

�

=
N

2n2
0

∂

∂ N

�

E0

N

�

. (53)

Also, introducing the operators

F : f → 3 f − γ f ′ (54)

and

G : g → g −
γ

2
g ′, (55)

we notice that

p = G(e) (56)

and

µ= F(e). (57)

Since F and G commute,

GoF(e) = FoG(e), F(p) = G(µ),

and thus

3p− γp′ = µ−
γ

2
µ′. (58)
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