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Abstract

ALP–mediated decays and other as-yet unobserved B decays to di-photon final states are
a challenge to select in hadron collider environments due to the large backgrounds that
come directly from the pp collision. We present the strategy implemented by the LHCb
experiment in 2018 to efficiently select such photon pairs. A fast neural network topol-
ogy, implemented in the LHCb real-time selection framework achieves high efficiency
across a mass range of 4–20 GeV/c2. We discuss implications and future prospects for
the LHCb experiment.
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1 Introduction

The γγ final state is interesting for a variety of reasons. On one hand, the decay of a B0
s or a B0

meson to two photons remains unobserved and is described by an annihilation topology. It is
sensitive to contributions from physics beyond the Standard Model of Particle Physics (SM) in-
cluding a fourth generation [1], an extended Higgs sector [2] and SUSY [3]. Previous measure-
ments by the Belle and BaBar collaborations have set limits of B(B0

s → γγ)< 3.1×10−6 at 90%
confidence level (CL) [4] and B(B0→ γγ)< 3.3×10−7 at 90 % CL [5], which are significantly
above the SM predictions ofB(B0

s → γγ)∼ (2−37)×10−7 andB(B0→ γγ)∼ (1−10)×10−8 [6].
Undiscovered particles known as Axion-Like Particles (ALPs) could also be accessed through

this final state. ALPs are pseudo Nambu-Goldstone bosons, associated to spontaneously bro-
ken approximate symmetries, which appear in several models and can solve many of the SM
problems [7]. Probing very small couplings of ALPs to the SM sets indirect constraints on the
New Physics (NP) scale. For the type of model addressed in Ref. [7], ALPs couple to gluons
(which allows their production at the LHC) or photons (which can be used for their detection)
in the SM sector. The mass of ALPs can be arbitrarily below the NP scale. In particular, for
ALPs with a mass in the range between 5 and 10 GeV/c2, the LHCb experiment, described in
Ref. [8], has unique sensitivity for their discovery provided they can be selected by its trigger
algorithms [7]. For masses below 5 GeV/c2, LHCb may have sensitivity through other decay
channels, as described in Ref. [9].

The maximum rate at which events can be read out of the LHCb detector is imposed by
the front-end electronics and corresponds to ∼ 1 MHz. In order to determine which events are
kept, hardware triggers based on field-programmable gate arrays are used with a fixed latency
of 4 µs. Information from the ECAL, HCAL, and muon stations is used in separate hardware-
level (L0) triggers. As explained in Ref. [10], the strategy at L0 for the photon pairs under
study here is similar to that of other radiative decays and relies on the Photon or Electron
channels, based on inputs from the ECAL. All events selected by L0 are transferred to the
High Level Trigger (HLT). The HLT is a software application, executed on an event filter farm,
that is implemented in the same Gaudi framework [11] as the software used for the offline
reconstruction. It consists of two levels: an initial selection of high energy and/or displaced
single- or double-particle signatures (HLT1) and a second level (HLT2), in which full offline
reconstruction is available, allowing for more complex searches to be performed [12].

The study of these purely neutral modes at LHCb is challenging, but the use of γ→ e+e−

conversions in the detector material, which happens for around 25 % of photons, provides
additional information to reduce the background levels. With offline selections already in
place since Run 1, this paper describes the trigger strategy adopted in Run 2, where a set of
trigger selections were introduced to select the γγ signature for the case of zero, one, and two
photon conversions, labelled as 0CV, 1CV and 2CV, respectively. An additional label LL and
DD is used to distinguish photon conversions reconstructed as:

• Long tracks (LL): when all possible tracking information from every tracking station
is available, implying that the parent particle decayed within about 1 metre of the pp
interaction point

• Downstream tracks (DD): using only information from tracking stations different to the
vertex locator, implying that the parent particle decayed after this.

The work presented in this paper builds on the strategy first introduced in 2015 to select
only the B0

(s) decay [10], in which a selection was put in place for 0CV, 1CV LL, 1CV DD, and
2CV (which includes both LL and DD combinations). The new approaches to select candidates
in a wider mass range are described for the 0CV, 1CV LL, and 1CV DD topologies. The 2CV
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selection remains as is described in Ref. [10]. Section 2 describes the method by which our
signal decays are simulated, Section 3 describes the HLT1 strategy. Section 4 describes the
HLT2 strategy, performance, and corresponding implementation. The prospects for the current
dataset collected by LHCb in addition to that expected to be collected by the upgraded LHCb
detector (during Run 3 of the LHC and beyond) are discussed in Section 5.

2 Simulating the signal B0
s and ALP decays

In order to simulate B0
s → γγ decays, pp collisions are generated using PYTHIA [13] with a

specific LHCb configuration [15]. Decays of hadronic particles are described by EVTGEN [16],
in which final-state radiation is generated using PHOTOS [17]. The interaction of the generated
particles with the detector, and its response, are implemented using the GEANT4 toolkit [18] as
described in Ref. [20]. This allows accurate simulation of the different topologies of the decay,
as photons may interact with the detector itself and subsequently decay to electron-positron
pairs.

For the ALP signal, samples are generated using MadGraph v2.6 [21], with parameters
taken from the ALP model described in Ref. [22]. The hadronization is performed by PYTHIA,
and the rest of the simulation steps are identical to simulating the B0

s → γγ decay. Three ALP
masses are simulated: 5 GeV/c2, 10 GeV/c2, and 15 GeV/c2.

After the detector response has been simulated, the trigger reconstruction and associated
selection requirements are simulated using data taking conditions similar to those of the 2017
LHCb running period, with mean interactions per bunch crossing of 1.3 and center-of-mass-
energy of 13 TeV.

3 HLT1 strategy

The first trigger software level is required to reduce the input rate by a factor 10 from the
output of the hardware trigger level. In order to achieve this, a search is made primarily
for high transverse momentum tracks or tracks with a high impact parameter with respect to
the primary vertex. A detailed description of the HLT1 selections for 2018 can be found in
Ref. [10]: in the case of photon conversions with at least one electron reconstructed as a long
track, a generic inclusive single-track, MVA-based trigger selection is used [12]; in all other
cases, the HLT1 strategy relies on a custom reconstruction approach using information from
the calorimeter collected in the hardware trigger stage. This latter reconstruction technique,
imposed by the limited time available for decisions in HLT1, applies simple approximations
to calculate the mass of the photon pair with a minimum ET requirement in a negligible time
using only their energies as calculated in L0.

Two selections with a different set of requirements are used: a first one, referred to as
HLT1(B), focused on the selection of B decays, and a second one, not included in Ref. [10],
with stricter ET requirements and with a wider mass range, which extends the reach to ALP
masses above the B mass window (HLT1(ALP)). Their requirements are given in Table 1; it is
worth noting that the ET requirements of the HLT1(ALP) are very close to the saturation of
the LHCb ECAL when using L0 energy clusters,1 and therefore the true mass reach is higher
than the requirement given in the table. The efficiency of the two selections relative to all
candidates passed by the L0 hardware trigger is given in Table 2.

1Calorimeter clusters in L0 are made up of 2 × 2 calorimeter cells. As a consequence, the mass that can be
reconstructed at L0 level is limited by the saturation of these 4 cells of the cluster. This limitation will not be
present in the final analysis, as the offline reconstruction allows to build larger clusters.
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Table 1: Selection applied in the HLT1(B) and HLT1(ALP) triggers. Energies and
masses given here are computed with 2× 2 cell clusters.

Requirement HLT1(B) HLT1(ALP)

ET(γ) [GeV] > 3.5 > 5
ET(γ1) + ET(γ2) [GeV] > 8 > 11
M(γ1γ2) [GeV/c2] [3.5,6.0] [6.0,11.0]
pT(γ1γ2) [GeV/c] > 2 > 5

Table 2: Percentage efficiency relative to all candidates accepted by the Photon and
Electron channels of the L0 hardware trigger for the B0

s and ALP samples, combining
all the γ reconstruction modes.

Efficiency (%) HLT1(B) HLT1(ALP)

B0
s → γγ 3.3± 0.2 -

ALP 5 GeV 6.2± 0.5 0.6± 0.2
ALP 10 GeV 5.3± 0.3 6.7± 0.4
ALP 15 GeV 3.8± 0.3 10.5± 0.5

4 HLT2 strategy

The second trigger software level performs a more complete event reconstruction. In HLT2,
over 400 multibody decay signatures are searched for in parallel, with candidate selection
information equivalent in quality to that used by analysts offline.

4.1 Training sample preparation

The first step in designing an HLT2 strategy is to collect representative samples of signal and
background in order to train neural network (NN) classifiers. For the case of the signal, i.e. B0

s
and ALP decays, simulated data is used, which is generated as described in Sec. 2. In order to
describe the background, proton-proton collisions collected by the LHCb collaboration during
2017 are used, in which the high level trigger selected candidates randomly.

Since the intention is to implement a NN inside the trigger software, and in order to gen-
erate the largest possible NN training sample, a set of loose requirements are applied to the
samples mentioned above. These are inspired by those applied in the analysis of other radiative
decays (e.g. those in Refs. [23–25]). In summary,

• photons reconstructed as calorimeter energy clusters are required to have an energy
above 6 GeV and a transverse energy with respect of the beam direction above 3 GeV;

• photons reconstructed as electron pairs are required to have a transverse momentum in
excess of 2 GeV/c, have a mass below 60 MeV/c2 and be displaced with respect to the
pp collision;

• the sum of transverse momentum of the two photons must be in excess of 6.5, 5.5 and
5 GeV/c for the 0CV, 1CV and 2CV cases, respectively; and

• diphoton candidates are required to have a combined transverse momentum above 3 GeV/c
and, in the case of 2CV, to form a good vertex.
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Table 3: Sample sizes for the signal decays and background after reconstruction and
trigger requirements.

Sample 1CV LL 1CV DD 0CV

B0
s γγ 9940 17368 36844

ALPs 229 420 233
Background 228 393 457

In the training of the NN, a random subset of the B0
s → γγ sample is taken, such that

efficiencies of the ALP signal (for the 3 different masses under consideration) and B0
s decay

remain similar. The yields of the samples are provided in Table 3.

4.2 Multi-layer perceptron training and implementation

A multilayer perceptron (MLP) was chosen for the NN updates. A Scikit-learn [26] imple-
mentation was preferred due to the relative simplicity of the topology that allows for quick
evaluation in real-time environments in association with the NNDrone package [27]. Due to
the small training dataset, a LBFGS solver method [28], which shows better results under these
conditions, was used. To avoid overtraining a small (O(10−5)) regularization parameter was
chosen. A simple hidden layer structure was implemented: three neurons in the first and two
in the latter. The small dimension was primarily set to avoid large time complexity. Finally, for
simplicity, the logistic activation function, which is also used in the output layers, was chosen
for the hidden layers.

The model is created as

1 from sklearn.neural_network import MLPClassifier
2 classifier = MLPClassifier(activation=’logistic’
3 , alpha=1e-05, batch_size=’auto’,
4 beta_1=0.9, beta_2=0.999, early_stopping=False,
5 epsilon=1e-08, hidden_layer_sizes=(3, 2),
6 learning_rate=’constant’, learning_rate_init=0.001,
7 max_iter=200, momentum=0.9,
8 nesterovs_momentum=True, power_t=0.5, random_state=1,
9 shuffle=True, solver=’lbfgs’, tol=0.0001,

10 validation_fraction=0.1, verbose=False, warm_start=False)

In order to train the MLP for each topology, different variables are found to have different
separation powers. We select those providing significant discrimination between signal and
background. The following variables are used as a feature for one or more of the NN models:

• The transverse momentum of the parent B0
s or ALP candidate (X pT).

• The impact parameter significance of the B0
s or ALP candidate with respect to the best

primary vertex (X IP χ2), defined as the difference in χ2 of a given PV reconstructed
with and without the considered particle.

• The invariant mass of the electron-positron combination in a photon conversion.

• The probability that the photon candidate is not a π0 meson based on a combination of
calorimeter information [29] (γ prob).
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Table 4: Kolmogorov-Smirnov p-values for the comparison of the classifier’s distribu-
tion between the test and training samples for the different topologies

Topology Signal p-value Background p-value
0CV 0.25 0.63
1CV DD 0.99 0.99
1CV LL 0.48 0.37

• Asymmetry of the pT of the two photon candidates (pT asym).

• The ratio of the candidate ECAL energy deposit between the 2× 2 and 3× 3 clusters (γ
Calo E49).

• The output of a multi-variate classifier [29] trained using various inputs corresponding
to calorimeter shape variables (γ shower shape).

The signal and background distributions for each topology are given in Appendix A. It should
be remarked that, as mentioned above, our classifiers use as inputs the outputs of two other
different classifiers, one designed generically to identify calorimeter photons (γ shower shape)
and one to differentiate photons and π0 mesons (γ prob). While, ideally, one could integrate
the features used in these classifiers into our own one, making use of the ability of algorithms
such as Deep Neural Networks as feature extractors, it was decided against this given the high
level of complexity in the training of both γ shower shape and γ prob. The first accounts for
the expected deposit shapes in different regions of the calorimeter and excludes the possibility
that these are originated by a charged track. The second also relies on the energy value and
the calorimeter zone comparing the expected energy deposit of a photon with respect to that
of a π0. Although both classifiers were trained to maximize its sensitivity for B meson decays,
potential extensions of this work could involve integrating all the features into a single classifier
to be trained specifically with our signal samples.

The samples are split into training and test data, where half of the data are used for training
and the other half used for testing. Optimizations of this splitting, such as the use of techniques
like k-folding [30], will be explored in future versions of this algorithm to maximize the size of
the training and test samples. The output distributions of the trained models for both the test
and training samples are given in Fig. 1. Good agreement can be seen in all training and test
comparisons, meaning the models show few signs of overtraining. To quantify this, p-values
obtained with the Kolmogorv-Smirnov test [31] can be found in Table 4.

4.3 Performance

The performance of each of the models shown in terms of ROC curves is provided in Ap-
pendix B. Ultimately, the efficiency of the models depends on the chosen working point. This
is driven by resource requirements. The chosen working point of each of the models is shown
in Table 5, along with the rejections and efficiencies per sample, per decay topology.

4.4 Implementation in the real-time software stack

In order to apply the neural networks in the C++ software stack used to perform event se-
lection in real time, a conversion must take place so that the models trained in the Python
implementation are reproduced.

In order to do this, the NNDrone framework [27] is used to convert the network weights
and bias parameters to JSON format. This allows reducing the processing time by an order
of magnitude while keeping the same classifier performance. The weights and parameters
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Figure 1: Output probability of the classifier for the different topologies. Upper left:
0CV, upper right: 1CV DD, lower 1CV LL

are then read in by a dedicated tool which uses the JSON parameters to initialise a LWTNN
network [32] that reproduces the original model exactly. The reconstructed LWTNN model has
been validated to produce identical outputs from the same input values.

5 Prospects

As explained in Section 1, the trigger strategy described in this paper is essential to improve
the sensitivity of LHCb to γγ final states, especially after 2018. In this section, we describe
briefly the prospects for the two benchmark analyses studied: the search for the rare decay

Table 5: Percentage efficiency for the B0
s and ALP samples relative to the recon-

structed and loosely selected samples.

1CV LL 1CV DD 0CV

Ef
fic

ie
nc

y
(%

)
pe

r
ch

an
ne

l

B0
s → γγ 67 31 68

ALP 5 GeV 52 67 71

ALP 10 GeV 55 50 50

ALP 15 GeV 62 64 46

Rejection (%) 85 90 85
MLP requirement > 0.70 > 0.85 > 0.80
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B0
(s)→ γγ and that of an ALP decaying to a pair of photons. It should be noted that the same

final state could also be sensitive to other models, such as those including a composite Higgs
together with light scalars [33].

During the full LHCb Run 2 data-taking, selections providing high efficiencies for the re-
construction of B0

(s) → γγ decays were included (see Tab. 2 and Tab. 5). In the same regard,
the efficiencies for an ALP with a mass close to that of the B(s) meson is also very high for that
period. For the case of an ALP with a mass between ∼ 6 GeV/c2 and ∼ 12 GeV/c2, only data
collected in 2018 with the strategy described in this document provides significant sensitivity.
A similar strategy to that used in 2018 is expected to be used during Run 3 of the LHC, in which
LHCb will have been upgraded [34]. Concerning the trigger, the new design [35] including
the removal of the first hardware level, should provide similar or higher efficiencies.

The efficiencies reported in this document, together with the fraction of triggered data
provided in Ref. [10], are used to roughly estimate the expected sensitivity in both analyses.
A γγ invariant mass resolution of ∼ 2.5% is assumed for these studies. Additional offline
discrimination against the background can be achieved by using similar but more powerful
classifiers than those available in HLT2. This additional discrimination is based on the use of
larger training samples and variables whose reconstruction is too slow to be performed in real
time. Additional background rejections of ∼ 90% can then be achieved with associated signal
efficiencies of ∼ 60 % for all the photon reconstruction categories included in this document.

For the B0
s → γγ decay an upper limit B(B0

s → γγ) ® 10−5 at 90 % CL could be achieved
using the Run 2 LHCb dataset. This is around two times the Belle limit, currently the most
stringent. Assuming similar efficiencies and backgrounds in Run 3 of the LHC, a simple projec-
tion yields B(B0

s → γγ) ® 4× 10−6. This assumption might not hold if the ECAL performance
is affected by the larger occupancy expected in Run 3. If a more optimistic background dis-
crimination is assumed (95% background rejection for the same signal efficiency) upper limits
of B(B0

s → γγ)® 6× 10−6 and B(B0
s → γγ)® 2× 10−6 could be achieved using the Run 2 and

Run 3 LHCb datasets, respectively. A discovery, should the SM prediction hold, would probably
need to wait until Run 4 or a potential Phase-II LHCb upgrade [36].

Concerning a search for ALPs, our estimations agree with those of Ref. [7]. For the reasons
explained previously, the sensitivity with the current dataset is more limited for an ALP with
a mass in the ∼ 6 − 12 GeV/c2 range. In the most sensitive region, decay constants below
∼ 0.3 TeV could be excluded using the LHCb Run 2 dataset. Keeping the same efficiency as in
2018 for Run 3 would provide an increase to ∼ 0.4 TeV for the ∼ 4− 12 GeV/c2 mass range.
No other experiment is expected to contribute to the measurement in this mass range in near
future.

6 Summary

Di-photon selections were first implemented in the LHCb trigger in 2015 focusing on the B0
s

decay. In this paper, we have detailed the selection modifications required to expand the
search region to allow sensitivity to undiscovered ALPs in the 2018 trigger. In order to do this
and remain within resource budgets, neural network models have been introduced using the
NNDrone framework to ensure fast evaluation. This is the first time such models have been
used to directly select multibody candidates in real time.
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A Neural network feature distributions

The signal and background distributions for each topology are shown in Figs. 2, 3, and 4,
respectively, where “signal” refers to the combination of all signal modes (i.e., B0

s → γγ and
the ALP at the three mass points of reference).

Figure 2: Signal and background distributions of information used to train the 1CV
LL classifier. Variables are explained in the text.
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Figure 3: Signal and background distributions of information used to train the 1CV
DD classifier. Variables are explained in the text.
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Figure 4: Signal and background distributions of information used to train the 0CV
classifier. Variables are explained in the text.
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B ROC curve performances of the NN models

The performance of each of the models is shown in terms of ROC curves in Fig. 5, which display
the signal efficiency versus background rejection power.
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Figure 5: ROC curves for the test data using the different topologies. 0CV NN (left),
1CV DD NN (center),1CV LL NN (right) .
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