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Abstract

Ergodic quantum many-body systems satisfy the eigenstate thermalization hypothesis
(ETH). However, strong disorder can destroy ergodicity through many-body localization
(MBL) – at least in one dimensional systems – leading to a clear signal of the MBL tran-
sition in the probability distributions of energy eigenstate expectation values of local
operators. For a paradigmatic model of MBL, namely the random-field Heisenberg spin
chain, we consider the full probability distribution of eigenstate correlation functions
across the entire phase diagram. We find gaussian distributions at weak disorder, as
predicted by pure ETH. At intermediate disorder – in the thermal phase – we find further
evidence for anomalous thermalization in the form of heavy tails of the distributions.
In the MBL phase, we observe peculiar features of the correlator distributions: a strong
asymmetry in Sz

i
Sz

i+r
correlators skewed towards negative values; and a multimodal dis-

tribution for spin-flip correlators. A quantitative quasi-degenerate perturbation theory
calculation of these correlators yields a surprising agreement of the full distribution with
the exact results, revealing, in particular, the origin of the multiple peaks in the spin-flip
correlator distribution as arising from the resonant and off-resonant admixture of spin
configurations. The distribution of the Sz

i
Sz

i+r
correlator exhibits striking differences

between the MBL and Anderson insulator cases.
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1 Introduction

Over the last decade, the Eigenstate Thermalization Hypothesis (ETH) [1–7] has become the
essential framework for reconciling quantum dynamics with statistical mechanics. In its sim-
plest form, ETH posits that expectation values of local observables in energy eigenstates are
smooth functions of the energy eigenvalue in the thermodynamic limit. This provides a mech-
anism for thermalization in isolated quantum systems. ETH can be understood in terms of
random matrix theory: ergodic quantum systems are essentially well described by random
matrix ensembles at least where local observables are concerned. This leads to the above
smoothness condition, and also predicts the correct scaling of statistical deviations from it with
system size [6,8–10]. In particular, the expectation values of local observables have gaussian
distributions — the distribution shape is an important characteristic of ETH behavior [9].

It turns out that some disordered interacting systems can avoid thermalization if disorder
is strong enough. Such a nonequilibrium phase of matter is called the Many Body Localized
(MBL) phase [11–27]. In this phase, transport is completely halted and the system becomes a
perfect insulator. In particular ETH is not valid [19,21]. The current theoretical understanding
of the MBL phase relies on the emergence of integrability via a complete set of local integrals
of motion (LIOM) [24, 28–31]. For instance, this theory accounts for the failure of thermal-
ization, the area law of entanglement entropy in infinite temperature eigenstates [32] and the
logarithmic growth of entanglement entropy after a quench [17,33].

Even though the existence of the MBL phase is by now well established in one dimensional
systems, in both theory [14, 24, 31] and experiments [20, 34], the nature of the localization-
delocalization transition remains an active area of research. One outstanding question is the
universality of anomalous thermalization [35, 36], characterized by sub-diffusive transport,
close to the localization transition coming from the ergodic side [37–48]. Moreover, there
is evidence that distributions of diagonal matrix elements of the local (globally conserved)
density develop heavy tails in this anomalous thermal phase [49]. It has been suggested that
the latter is connected to the sub-diffusive transport and, in addition, could be described by
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a modified version of ETH [35, 36]. However it is not clear whether power law tails in the
distribution of local operators are a general feature of the sub-diffusive regime.

In this work, we consider the probability distributions of local correlation functions in mid-
spectrum energy eigenstates to determine their features in the ergodic as well as in the MBL
phase. While the gaussian shape of these distributions is a central property of pure ETH, their
behavior is equally important to characterize non-ergodic phases, in particular the MBL phase.
Considering the Heisenberg model with random on-site fields, we present and analyze the dis-
tributions for two-point operators: spin-flip and Sz

i Sz
i+r operators. Due to the U(1) symmetry

of the XXZ model, there are no other non-vanishing two-point correlators. Furthermore, we
carry out quantitative quasi-degenerate perturbation-theory calculations (around the limit of
infinite disorder) to explain various features of the distributions in the MBL phase.

The energy eigenstate distributions of spin-flip and Sz
i Sz

i+r correlators considered in this
paper are gaussian for small disorder strengths but acquire significant weight in the tails al-
ready for intermediate disorder W ≈ 2 <Wc ≈ 3.7, Wc being the critical disorder strength to
enter the MBL phase. Despite the heavy tails in the thermal regime, the variance of the distri-
bution falls off with increasing system size for fixed W up to the critical value Wc . Within the
MBL regime, W >Wc , the variation of the distribution with increasing system size is negligible
and the distribution has features not present in the thermal regime. In particular, the spin-flip
operator distribution exhibits a sharp peak at zero with smaller satellite peaks on each side
and further small peaks at the edge of the distribution, ±1/2. Perturbation theory captures
the form of the large disorder distribution quantitatively.

Perturbative methods to describe localization-delocalization phenomena in condensed mat-
ter physics have a long history dating back to Anderson’s seminal work and continuing today
to address questions relating to MBL [11,14,15,24,30,50]. In the context of MBL, two of the
main questions were to systematically construct the local integrals of motion that are thought
to characterize the MBL phase and to estimate the transition point between MBL and the
thermal phase. Both can be achieved by computing perturbative corrections to the mutually
commuting occupation numbers at infinite disorder under the constraint that the corrections
themselves continue to commute [30]. This has to be done to infinite order within some
suitable approximation to capture possible delocalization. To make sense of the perturba-
tion theory, as in the case of Anderson localization, there are resonances that lead to naive
divergences coming from states close in energy that are mixed by hopping in the latter case
and interactions in the former. In both cases, the divergences may be resolvable giving the
perturbation theory a finite radius of convergence. Resolving these divergences amounts to
diagonalizing the resonating configurations exactly.

The perturbation theory discussed in this paper is an expansion in the hopping part of
the Hamiltonian around the infinite disorder limit. We carry out the expansion to low orders
to be quantitative at large disorder for our finite system and to capture the main qualitative
features for smaller disorder within the MBL regime. In the spirit of earlier works, we deal
with resonances in the non-degenerate perturbation theory by diagonalizing exactly on the
resonant subspaces.

In Section 2 we present the model and the local operators whose correlation functions we
study. Section 3 focuses on the spin-flip operators across the whole phase diagram: first to
nearest neighbor, then the further neighbor spin-flip operator distributions. The form of the
spin-flip operator distributions in the MBL regime are rationalized within perturbation theory
in Section 3.3. We then turn to the 〈Sz

i Sz
i+r〉 correlators (Section 4) and the corresponding

connected correlators (Section 4.2), in both cases showing the development of heavy tails
at W ≈ 2.0 and the evolution of these distributions into the MBL regime. We highlight the
distinctive form of the distributions in the Anderson localized phase and the difference with
the corresponding MBL distributions (Section 4.3). Finally, we compute the distribution using
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quantitative perturbation theory showing, once again, that it captures well the form of the
distributions at strong disorder (Section 4.4).

2 Background Material

2.1 Model

We study the canonical XXZ model with random fields hi along the z direction,

H =
L−1
∑

i=0

J
2

�

S+i S−i+1+ S−i S+i+1

�

+∆Sz
i Sz

i+1− hiS
z
i . (1)

This model – which is widely studied in the context of MBL [17–19, 21, 22, 26, 28, 32, 33, 38,
41,51–67] – can be mapped to a spinless fermion model with nearest neighbor hopping J/2,
interaction term ∆ and on-site potential hi . In this paper, periodic boundary conditions are
set, J = 1 is fixed throughout the paper and the fields hi are distributed uniformly in [−W, W ]
with disorder strength W . We focus mainly on the isotropic point ∆ = 1 (interacting spinless
fermions) of the parameter space. However in Section 4.3 we compare also to results for
various ∆, including the point ∆ = 0 (free spinless fermions). The operators Sαi = σ

α
i /2 are

spin 1/2 operators, with α= 0, x , y, z and i is the site index.
The total magnetization M =

∑L−1
i=0 Sz

i along the z direction is conserved. We therefore
focus on the largest magnetization sector M = 0 for even system sizes L, corresponding
to the Hilbert space dimension dim(H) = binom(L, bL/2c). For each disorder realization
{h0, . . . , hL−1}, we obtain ¦ 50 eigenstates closest to the energy target (Emax + Emin)/2 (Emin
being the ground state energy and Emax the highest energy of the sample) using a state-of-the-
art shift-invert code [21, 68]. We consider the probability distributions of various eigenstate
expectation values of local operators, i.e. the diagonal matrix elements of these operators
in the eigenbasis of the Hamiltonian. Our results are histograms over at least 103 disorder
realizations for each system size L and disorder strength W , we also calculate the correla-
tors for all sites i ∈ [0, L − 1] to improve the statistics, since the average over disorder is
translation invariant. The mid-spectrum states of this model are known to exhibit two dynam-
ical phases [19, 21]: at low disorder (W ® 3.7) they obey the ETH, while at strong disorder
(W ¦ 3.7) all eigenstates are many-body localized (MBL).

2.2 Operators

In previous works in the context of many-body localization and the MBL transition, the dis-
tributions of local operators were considered, mostly focussing on distributions of diagonal or
off-diagonal matrix elements of simple local observables such as the local magnetization (or
number density in the language of spinless fermions) 〈n|Sz

i |n〉, where |n〉 is a central eigen-
state of the Hamiltonian [35,49]. In this work, we consider more complicated operators given
by two point correlation functions. First, we consider the correlators

〈n|S+i S−i+r/2+ h.c. |n〉= 〈n| Fi,i+r |n〉 ,

i.e., the matrix elements of spin-flip operators Fi,i+r . We also consider diagonal two-point
correlators, namely 〈n|Sz

i Sz
i+r |n〉 and its ‘connected’ version

〈n|Sz
i Sz

i+r |n〉c = 〈n|S
z
i Sz

i+r |n〉 − 〈n|S
z
i |n〉 〈n|S

z
i+r |n〉 .

For r = 1, the first expression above corresponds to the kinetic energy density, while the
second expression is the interaction energy density in the language of spinless fermions. The
connected correlator 〈n|Sz

i Sz
i+r |n〉c was previously considered in Ref. [19].
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3 Eigenstate expectation values of S+i S−i+r + h.c.

In Fig. 1 we show the probability distribution of eigenstate expectation values of
Fi,i+r = S+i S−i+r/2+ h.c. for a system of size L = 20 and different disorder strengths W .

3.1 Nearest neighbor flip

We start by considering the special case r = 1, where the operator Fi,i+1 corresponds to the
kinetic energy per bond. In the thermal phase at weak disorder, we expect this operator to
follow ETH and be distributed according to a gaussian distribution, which is true to very good
precision.

We observe that at weak disorder (W ® 2) and r = 1, the mean of the distribution is
slightly negative, a result of the fact that the eigenstates of the Hamiltonian we consider
are in the center of the spectrum, and correspond to high but finite temperature due to the
asymmetry of the density of states (cf. Appendix B for an analysis of the energy depen-
dence). States corresponding to strictly infinite temperature correspond to energies given
by Tr(HM=0)/dim(HM=0) = −

L
4L−4 , where HM is the Hamiltonian matrix in the zero magne-

tization sector. Such states have a zero mean for traceless operators like Fi,i+r . Zero mean
distributions are recovered at intermediate disorder where the asymmetry of the spectrum is
less pronounced and the energy of the eigenstates we consider is indeed close to −1

4 for large
L.

At intermediate disorder W ≈ 2, we observe the development of heavy tails in the dis-
tribution, very similar to the situation for the distribution of 〈n|Sz

i |n〉 studied in Ref. [49],
confirming that the presence of such tails appears to be a generic feature at intermediate dis-
order in the thermal phase. We note that heavy tails are also observed in the Sz

i Sz
i+r correlation

function studied in Sec. 4.
At strong disorder W >Wc in the MBL phase, we find a strikingly different distribution of

the spin-flip operator expectation values Fi,i+1; it features a pronounced central peak at zero,
accompanied by two minima adjacent to it, which are framed by two satellite peaks, before
the probability density p(〈n| Fi,i+1 |n〉) decays towards the edges of its domain

�

−1
2 , 1

2

�

. We
have found that this intriguing shape persists at strong disorder and can be explained using
perturbation theory, a discussion of which we postpone to the end of this section.

In Fig. 2, we analyze the system size dependence of the probability density of the nearest
neighbor flip operator Fi,i+1 over the whole range of disorder strengths, comparing distribu-
tions for sizes L = 12,14, 16,18, 20. At the weakest disorder W = 0.4, we find gaussian
probability distributions, with the variance decreasing exponentially in system size L, as ex-
pected from ETH (cf. Fig. 3). At intermediate disorder W = 2.0, the distribution is no longer
gaussian, but the variance still decreases exponentially with size. It appears that the heavy
tails, deviating from the gaussian shape, persist even at large system size, following the same
phenomenology observed for the Sz

i operator in Ref. [35,36,49].
To quantify departures from gaussianity, we compute the excess kurtosis κ= (µ4/σ

4)−3,
(µ4 being the 4th central moment of the distribution) and the Kullback-Leibler divergence
defined by

DKL ≡ −
∫

dx P(x) log
�

Q(x)
P(x)

�

, (2)

where Q(x) is the reference gaussian distribution and P(x) is the computed distribution of the
correlator, where the gaussian is defined by the mean and variance of P(x). Results are shown
in Fig. 4. Both quantities indicate that the distribution is quantitatively gaussian for W ® 1.5
and that they become strikingly less gaussian with a peak at about W = 2 that increases with
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Figure 1: Probability density of eigenstate expectation values 〈n| Fi,i+r |n〉 for dis-
tances r = 1,2, 3,4. The histogram was taken over ¦ 50 eigenstates, > 1000
disorder realizations and all positions i in the chain of length L = 20. In
each panel the histograms for the same set of representative disorder strengths
W ∈ {0.4, 1.2,2.0, 2.8,3.6, 4.4} are shown with the same color code (legend in lower
right panel).

system size. Beyond the peak for larger disorder both measures increase smoothly with little
system size dependence, indicating strongly nongaussian distributions in the MBL phase.

In the MBL phase at strong disorder, there is no discernible system size dependence of the
distribution (Figs. 2, lower panels, and 3), showing a pronounced maximum at zero, framed
by two symmetric satellite peaks, which seem to get closer to each other at stronger disorder.

3.2 Long distance flip

The flip operator of distant spins Fi,i+r , with r > 1 is not a term of the Hamiltonian and
could therefore behave differently. We have verified that this is so by examining the energy
dependence of the mean of the distribution which is constant over a large range of energies
for r > 1, linear for r = 1, cf. Appendix B. For this reason, the mean of the r > 1 distribution
is close to zero at weak disorder. At intermediate disorder, the distribution again shows heavy
tails, and, in general, the variance decreases with longer distance between the operators, which
we attribute to decreasing long distance correlations. Most interestingly, at strong disorder in
the MBL phase and at long distance, the peculiar satellite peaks of the distribution at r = 1
disappear, leading to simple, yet heavy tails. Additionally, we see that the standard deviation
of both correlation functions at larger distances decreases as function of disorder (Fig. 3) and
stay constant at r = 1. In the limit W → ∞ the spins are uncorrelated so both standard
deviations will go to zero. In this range of disorder, the localization length is big enough for
allowing correlations at r = 1, hence we expect the standard deviation to start decreasing only
at large enough disorder.

The absence of satellite peaks for r > 1, as well as most of the other features in this and the
preceding subsection, can be understood through perturbation theory in 1/W , as we describe
in the next subsection.
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Figure 2: Finite size dependence of the probability density of eigenstate expectation
values of the nearest neighbor flip operator 〈n| Fi,i+1 |n〉. As in Fig. 1, the histogram
is taken over ¦ 50 eigenstates per disorder realization, > 1500 disorder realizations
and all positions i in the chain. The dashed blue line shows the gaussian distribution
computed with the mean and variance belonging to the data L = 12,20.

3.3 Perturbation theory analysis

We have postponed the discussion of the peculiar features of the distribution of the nearest
neighbor flip operator Fi,i+r in the MBL phase – a topic to which we now turn.

In Fig. 5 we have a closer look at its distribution for different (strong) disorder strengths.
While the qualitative features (central and satellite peaks) are independent of disorder and
apparently characteristic of MBL, there is a quantitative evolution: the satellite peaks become
sharper and move towards zero as the disorder W is increased (inset in Fig. 5). Furthermore,
at very strong disorder W > 10, additional peaks at −1

2 and 1
2 develop, which are not present

at weaker disorder W ® 6 (cf. Fig. 2).
As a first step towards a more quantitative analysis, we consider the drift of the position

of the satellite peaks as a function of disorder. The lower left panel of Fig. 5 shows the esti-
mated peak positions, which are consistent with a 1/W dependence, suggesting a perturbative
analysis.

At very strong disorder, it is natural to treat the kinetic term of the Hamiltonian as a per-
turbation of order 1/W . Noting that the eigenstates of H/W are equal to those of H, we cast
the Hamiltonian in the form

H/W =
1
W

∑

i

Sz
i Sz

i+1 + h̃iS
z
i +

1
W

∑

i

Fi,i+1 = H0 +
1
W

V. (3)

The scaled fields, h̃i , are now distributed uniformly in a fixed range [−1,1]. The eigenstates
of the unperturbed Hamiltonian H0 are product states and eigenstates of all Sz

i operators and
can therefore be enumerated by their eigenvalues. The eigenenergies of H0 for each eigenstate
can be easily calculated using these quantum numbers.

Naive perturbation theory produces divergences when the spacing between unperturbed
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W
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Figure 3: Standard deviation of the difference between adjacent eigenstates of spin-
flip operator (upper panels) F n

i,i+r = 〈n+ 1| Fi,i+r |n+ 1〉−〈n| Fi,i+r |n〉 and connected
z correlation (lower panels) Cn

i,i+r = 〈n+ 1|Sz
i Sz

i+r |n+ 1〉c−〈n|Sz
i Sz

i+r |n〉c , where we
have used the shorter notation 〈n|Sz

i Sz
i+r |n〉c = 〈n|S

z
i Sz

i+r |n〉 − 〈n|S
z
i |n〉 〈n|S

z
i+r |n〉.

Instead of the direct variance of the distributions, we consider differences in adjacent
eigenstates as in Ref. [49] to mitigate the slightly different means of distributions
at weak disorder due to energy targets depending on the disorder realization (cf.
Appendix B).

energy levels goes to zero. Such divergences – dubbed resonances – are unphysical and are
resolved by admixing clusters of nearly degenerate states. Resonances are of great importance
in disordered systems and become increasingly so as the system size increases. In order to
incorporate the effect of resonances from the large disorder limit, we carry out a mixed degen-
erate and non-degenerate perturbation theory for the operator Fi,i+r . Details of the perturbation
theory are given in Appendix A. In addition to the rather general discussion given in the ap-
pendix, we note here various peculiarities of the perturbative calculation of 〈ñ| Fi,i+r |ñ〉 which
simplify our task. In order to obtain a matrix element 〈ñ| Fi,i+r |ñ〉 of an eigenstate |ñ〉 of the
perturbed Hamiltonian in perturbation theory, we start with an eigenstate |n0〉 of H0. The
matrix element 〈n0| Fi,i+r |n0〉 is the zeroth order contribution and is identical to zero because
Fi,i+r is off-diagonal in the z basis. It therefore contributes to the prominent peak of the dis-
tribution of this matrix element at zero. More precisely, for r = 1, states with | . . . 00 . . . 〉 or
| . . . 11 . . . 〉 on the sites i and i + 1 yield a zero contribution at zeroth and first order in per-
turbation theory. This accounts for half of the states so we expect the fraction of such states
to tend to 1/2 as W increases and this is indeed what is found (Fig. 5 lower right panel). For
r > 1, one must go to higher order in perturbation to obtain any non-vanishing contribution
so the central peak is significantly higher. To understand the satellite peaks, we have to go to
first order in perturbation theory (cf. e.g. Fig. 5).

The eigenstate |n0〉 is connected to a set of other eigenstates {|k0〉} of H0 by the perturba-
tion V . By this, we mean that the 〈n0|V |k0〉 6= 0 for all |k0〉 in this set, while matrix elements
of V with all other states vanish. Let us first deal with the case in which all energies Ek0

are
sufficiently different from En0

, such that in nondegenerate perturbation theory the denomina-
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Figure 4: Upper panels: Excess kurtosis κ= (µ4/σ
4)−3 of the distribution of diago-

nal matrix elements of (left) 〈n| Fi,i+1 |n〉 and (right) connected correlation 〈Sz
i Sz

i+1〉c .
A vanishing excess kurtosis corresponds to a gaussian distribution. Lower panels:
Kullback-Leibler divergence of the matrix element distributions with respect to a
gaussian with same mean and variance.

tors 1/(Ek0
− En0

) do not diverge. In this case, we obtain for the matrix element 〈ñ| Fi,i+r |ñ〉
up to first order in 1/W :

〈ñ| Fi,i+r |ñ〉=
1
W

∑

k0

〈k0| Fi,i+r |n0〉
〈n0|V |k0〉
Ek0
− En0

+ (k0↔ n0). (4)

From this, we can now understand several features of the distribution: if |n0〉 does not have
eigenvalues of Sz

j with opposite sign on sites j = i and j = i+r, the matrix element 〈ñ| Fi,i+r |ñ〉
vanishes. This implies that due to the incompatibility of V and Fi,i+r for r > 1, to first or-
der in 1/W all matrix elements vanish, which explains the different behavior of Fi,i+1 and
Fi,i+r , r ≥ 2. If the spins on sites i, i + 1 have opposite Sz

j eigenvalues (i.e. they are “flip-
pable”), there is only one nonvanishing term in the sum, in Eq. (4). The matrix element
〈n0| Fi,i+1 |k0〉= 1/2 in this case giving

〈ñ| Fi,i+1 |ñ〉=
1

2W
�

En0
− Ek0

� =
1

2W
�

h̃i − h̃i+1

� . (5)

Since the on-site fields have a uniform distribution bounded by h̃i ∈ [−1, 1], the expression in
Eq. 5 can be computed. We first note that the lower bound on the matrix element is 1/4W
as the maximum difference in the fields is ±2. Now, rewriting x = 〈ñ| Fi,i+1 |ñ〉 as a random
variable that takes values in the range [−∞,−1/4W ]∩[1/4W,∞], its probability distribution
is:

P(x) =
4W |x | − 1
16W 2|x |3

, |x | ≥ 1/4W. (6)

The maxima of P(x) are located at x = ±3/8W To summarize, first order nondegenerate
perturbation theory explains the presence and weight of the central peak at zero, the presence
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Figure 5: Upper panel: distribution of matrix element 〈S+i S−i+1/2+h.c.〉 at large disor-
der strength W ≥ 10, in the upper right corner the local maximum of the distributions
is highlighted. Lower left panel: position of the local maximum as function of the
disorder strength. The red dashed line is the exact maximum location extracted from
first order perturbation theory and given in Eq. 6. Lower right panel: weight of the
distribution at central peak

∫ ε

−ε dx p(x) and weight of the right tail
∫ 0.5
ε

dx p(x) as
function of disorder strength and ε = 0.01. The weight of the peak at zero tends to
1
2 for strong disorder as predicted by perturbation theory.

and location of the satellite peaks at O(1/W ), as well as the local minima separating these
peaks. The satellite peak stems therefore from the admixture of states which change their
energy maximally upon flipping of two neighboring spins. Fig. 6 shows plots of the exact
result (black) together with the distribution Eq. (6) (red dashed) showing that the formula
captures the exact distribution very well (the delta peak at zero with weight 1

2 is not shown
in Fig. 6). To examine the agreement in more detail, Fig. 5 shows the close correspondence
between the analytical calculation of the satellite peak location and the exact result at least
for larger values of disorder. We notice that the perturbation theory produces a higher central
peak. This is caused by the missing weight around the central maximum (see inset Fig. 5) due
to the lower bound in magnitude of the matrix elements 〈ñ| Fi,i+1 |ñ〉 up to first order (Eq. 5).

The distribution, Eq. (6), does not reproduce the small peaks at the edge of the domain
of the distribution, close to ±1

2 . To understand the origin of these peaks, we come back to
the consideration of the case that the eigenenergy of the state with flipped spins Ek0

is close
to the energy of En0

, in which case we have a “resonance” and nondegenerate perturbation
theory breaks down. In this case, we have to use quasi degenerate perturbation theory and
include |n0〉 and its flipped partner |k0〉 in the model space of quasi-degenerate states. Due to
the constraint by the matrix elements of Fi,i+1 in the model space, this is the only state which
contributes to the model space. The mixing of these two states leads to the emergence of the
peaks at ±1

2 of the distribution. To see this, we consider the zeroth order mixing of quasi-
degenerate states through a single spin flip term in the Hamiltonian. This generates pairs of
admixed states of the form α| . . . 10 . . .〉+β | . . . 01 . . .〉. The flip-flop operator expectation value
is Re(αβ?).Since the perturbation maximally mixes these quasidegenerate states α = ±β and
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Figure 6: Perturbation theory computation of 〈S+i S−i+1/2 + h.c.〉 compared the ex-
act result (black). Upper and lower left panels display the results for L = 20 and
W = 10,12, 16. In the inset we can see that perturbation theory distribution is dis-
connected (see main text). The red dashed line is the analytical form of the proba-
bility distribution shown in Eq. (6). Lower right panel: Perturbation theory results
for L = 30,40, 50,60, 70.

this accounts for the ±1/2 peaks.
Our numerical treatment of the exact mixing by quasi-degenerate perturbation theory up to

second order in 1/W captures also corrections to these features quantitatively and we show the
full distributions obtained from it as colored solid histograms in Fig. 6. The perturbation theory
can be carried out for much larger system sizes than treatable in shift-invert diagonalization
and show no visible system size dependence at strong disorder as shown in Fig. 6. We conclude
that the parts of the distribution of 〈n| Fi,i+1 |n〉 close to zero are due to off-resonant mixing
of flippable and not flippable states, while the edges of the distribution close to ±1

2 reveal the
effect of resonances. It should be noted that we do not compute 〈ñ| Fi,i+r |ñ〉 at distances r > 1
because low order contributions are trivial and higher orders in perturbation theory make the
numerical implementation hard to deal with. Considering this, we restrict our perturbation
theory computations to operators with r = 1.

4 Eigenstate Expectation Values of Sz
i Sz

i+r

4.1



Sz
i Sz

i+r

�

Correlators

We now turn to the Sz
i correlation function. Fig. 7 shows the probability distribution of energy

eigenstate expectation values of Sz
i Sz

i+r for a system of size L = 20, r = 1,2, 3,4 and for
different disorder strengths W . For weak disorder W ® 1.2, the distributions are gaussian in
accordance with ETH and the variance of the distribution increases with disorder strength. As
remarked in Section 3.1 and, similarly to the spin-flip correlators studied there, heavy tails are
apparent for disorder strength W = 2 in the thermal regime. Again, similarly to the spin-flip
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Figure 7: Probability density of eigenstate expectation values 〈n|Sz
i Sz

i+r |n〉 for dis-
tances r = 1, 2,3, 4. The histogram was taken over¦ 50 eigenstates,> 1500 disorder
realizations and all positions i in the chain of length L = 20. In each panel the color
corresponds to the disorder strengths as indicated in the legend.

correlators, the gaussian mean is displaced from zero and the reason for this displacement is
the same as in that case (cf. Appendix B). As one expects in the ETH regime, the variance of
the distribution falls off inversely in the Hilbert space dimension (exponential in L), which
is visible for the case of the connected correlator in Fig. 3 by the equidistant spacing of the
standard deviations for different system sizes on the semilogarithmic scale.

For strong disorder, deep in the MBL regime, the distribution is qualitatively different. The
central peak is still present but is obscured by a very broad distribution that extends out to the
tails where there are more pronounced peaks. There are again negligible differences between
the distributions for different L within the MBL regime. The presence of the outer peaks is
simply explained from the strong disorder limit where eigenstates of the Hamiltonian are also
eigenstates of the local Sz

i Sz
i+r operators with eigenvalue ±1/4. The fact that the main new

feature of the distribution appears in the large W limit suggests that perturbation theory might
be as successful as it was for the spin-flip correlators. We address this question in Section 4.4.

In order to remove the trivial contribution to the correlation function coming from 〈n|Sz
i |n〉

expectation values, we discuss, in the following section, the connected correlation function.

4.2 Connected Correlators

Fig. 8 shows probability distributions of the connected correlation function for L = 20 and for
different values of W and Fig. 9 shows distributions for different system sizes. For small W ,
the expectation is that ETH is obeyed and the figures demonstrate that, at least for W ® 1.2,
the distributions are gaussian (Fig. 8) while the finite size scaling is consistent with random
matrix theory (cf. Fig 3). In the ETH regime, there is little variation in the distributions for
different r for a given system size – one merely observes that the mean of the distribution shifts
towards zero from r = 1 to r > 1 as discussed above due to the different energy dependence
of different r operators (cf. Appendix B).
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Figure 8: Comparison of the distribution of connected correlators 〈Sz
i Sz

i+r〉c in en-
ergy eigenstates for different disorder strengths W . The histograms include data for
different disorder realizations and all lattice sites i. For weak disorder (W ® 1.2)
they display a gaussian distribution. For strong disorder (W > 3.6) the distribution
exhibits a sharp peak at zero and and heavy tails, biased towards the negative side
for short distances r.

For larger values of W , a sharp peak forms at zero and persists deep into the MBL phase
while the distributions further depart from gaussianity by acquiring a distinctive asymmetry
with higher weight for negative values of the correlator. For r = 1, the left-hand-side of the
distribution acquires a shoulder down to −1/4 while the positive side tapers off towards +1/4.
For larger r the shoulder is rounded on the left side, so that the asymmetry is less pronounced.
Our analysis in Appendix C confirms heavy tails on either side at strong disorder.

In common with other distributions of matrix elements of local operators there is little
apparent variation between different system sizes in the MBL regime. In contrast, within the
ETH regime for significant values of disorder as exemplified by the W = 2 data, the central
width of the distribution narrows for larger system sizes while weight at the tails remains.

4.3 Anderson Insulator vs MBL

To understand the asymmetry of the distribution of the connected correlator 〈Sz
i Sz

i+r〉c for small
distances r, it is useful to compare to the noninteracting limit. In Eq. 1, ∆ = 0 corresponds
to the case of an Anderson insulator of noninteracting spinless fermions. Fig. 10 shows the
connected Sz

i Sz
i+r correlator for ∆= 0.0, 0.1,0.2, 0.5,1.0 and for W = 6 and r = 1, 2,3, 4. We

see that for distance r = 1 the distribution of negative correlations has little sensitivity to the
value of ∆ while the weight of positive correlations is exactly zero for the Anderson insulator,
giving a clear signature where MBL differs from the non-interacting case albeit one where the
asymmetry between positive and negative weights persists to ∆= 1.

We can understand the vanishing positive weight for the Anderson insulating case for arbi-
trary r through a straightforward application of Wick’s theorem since the Anderson case∆= 0
is a free spinless fermion model with a gaussian action. In fermionic language, the Ŝz

i Ŝz
i+r op-
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Figure 9: Comparison of the distribution of nearest neighbor connected correlators
〈Sz

i Sz
i+1〉c in energy eigenstates for different system sizes. The histograms include

data for different disorder realizations and all lattice sites i. In the ETH (upper pan-
els) phase the width of the distributions decreases with system size L while in the
MBL phase (lower panels) there is no discernible dependence on the system size.
The dashed orange lines show gaussian distributions computed with the mean and
variance calculated from the data for L = 12,20.

erator takes the form
�

c†
i ci −

1
2

� �

c†
i+r ci+r −

1
2

�

. Using Wick’s theorem for ∆ = 0, we obtain in
any eigenstate of the Hamiltonian: 〈c†

i cic
†
j c j〉 = 〈c

†
i ci〉〈c

†
i ci〉 − 〈c

†
i c j〉〈c

†
j ci〉. It follows that the

connected correlator is 〈n|Ŝz
i Ŝz

i+r |n〉c = −
�

�〈n|c†
i ci+r |n〉

�

�

2
, which is necessarily ≤ 0. This leads

to the extreme asymmetry of the connected correlator distribution at ∆= 0.
We see in Fig. 10 that the asymmetry decreases as r increases. This can be understood

perturbatively, as discussed in the next section.

4.4 Perturbation Theory

As in the case of the spin-flip correlator, the distributions of the Sz correlator are well repro-
duced at large W by the perturbation theory discussed in Sec. 3.3 and Appendix A. This is
demonstrated in Fig. 11 for the distributions of connected correlators with r = 1. Perturbation
theory also provides qualitative physical explanations for the features reported in the last three
subsections, as we elaborate below.

In the infinite disorder limit W →∞, the correlators 〈Sz
i Sz

i+r〉 and 〈Sz
i 〉 are respectively

±1/4 and ±1/2 and the connected correlator simply vanishes, contributing to the sharp peak
of the distribution at zero. Indeed, the numerical data in Fig. 7, for large values of W , shows
peaks at the extreme values of the matrix elements. Similarly the connected correlator distri-
bution in Fig. 8 exhibits a smooth decay of the central peak at zero towards finite values of
the connected correlator.

Inspecting the general expressions for matrix elements in mixed degenerate and nonde-
generate perturbation theory presented in appendix A, we observe that the zeroth order term
coming from mixing within the model space should account for some degree of broadening of
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Figure 10: Distribution of the connected correlator 〈Sz
i Sz

i+r〉c for the disordered field
Heisenberg chain with interaction (∆ 6= 0, MBL) and without (∆ = 0, Anderson
insulator) at distances r = 1,2, 3,4 and strong disorder W = 6.0. Remarkably, in the
Anderson insulating phase there is no positive weight on the distributions.

the peaks. The first order terms in 1/W trivially vanish, because the Sz
i Sz

i+r operator does not
connect states in the model space to those outside it, and this is why we proceed to compute
the second order contribution. Fig. 11 shows that perturbation theory to second order (yellow)
compares very well to the exact finite size results for L = 18 and large disorder W = 12, . . . 16
whereas the zeroth order results (orange) fail to capture the smooth falloff of the distribution
to the left of the central peak. We also show results for larger system sizes in Fig. 11, which
are not reachable otherwise and show that at large disorder the distributions are essentially
converged.

We show below that, while zeroth order (i.e., quasi-degenerate) perturbation theory does
not fully account for the distribution shape of the connected correlators, it does capture the
asymmetry.

Zeroth order perturbation theory mixes quasi-degenerate eigenstates of H0 connected by
V =

∑

i Fi,i+1 – in other words states connected by flippable spins | . . . 01 . . .〉 or | . . . 10 . . .〉
where the ellipses denote some spin configurations. This means, starting from an eigenstate
|n0〉 of H0, we can expect mixing with the states {Fi,i+1 |n0〉}, which are quasi-degenerate 1

with |n0〉. This means that the model space is then spanned by

D= span
�

|n0〉 , {|i0〉 : |i0〉= Fi,i+1 |n0〉and Ei0 ≈ En0
}
�

. (7)

Let us now try to understand why the distribution of the connected correlator is asymmet-
ric, starting from the case r = 1. For simplicity, we consider the case of a two dimensional
model space, yielding a state (with |b|2 = 1− |a|2) of the form:

|ψ〉= a |. . .σi−1σiσi+1σi+2 . . .〉+ b |. . .τi−1τiτi+1τi+2 . . .〉 . (8)

1In practice, we set a cutoff value for the energy difference which we still treat as quasi degenerate of the order
of 1/W . We checked that choosing 2/W or larger values does not significantly change the results
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Figure 11: Comparison of the exact L = 18 distribution (ED) of the connected Sz
i Sz

i+1
correlator at strong disorder to the results from quasi-degenerate perturbation the-
ory up to second order in 1/W . All panels show the results in perturbation the-
ory up to second order, except for the yellow curve in the lower left panel, which
shows also only zeroth order degenerate perturbation theory results (mixing within
the model space), which appears insufficient to reproduce the full form of the dis-
tribution. Lower right: Perturbation theory distributions of the connected correlator
for larger system sizes.

The connected correlator is then given by

4〈Sz
i Sz

i+1〉c =|a|
2σiσi+1 −

�

|a|2 − 1
�

τiτi+1

−
�

|a|2σi −
�

|a|2 − 1
�

τi

� �

|a|2σi+1 −
�

|a|2 − 1
�

τi+1

�

. (9)

Inspecting this expression shows that most combinations of spin configurationsσi ,σi+1,τi ,τi+1
yield vanishing connected correlators and these contribute to the central peak. The spin con-
figurations on i, i + 1 that yield non-vanishing contributions are:

σiσi+1τiτi+1 ∈ {0011,1100} :

4〈Sz
i Sz

i+1〉c = 1− (2|a|2 − 1)2 > 0.

σiσi+1τiτi+1 ∈ {0110,1001} :

4〈Sz
i Sz

i+1〉c = (2|a|
2 − 1)2 − 1< 0.

This means we obtain two cases for positive correlators and two for negative correlators. Ev-
idently the case with a flippable pair σi 6= σi+1 (yielding a negative correlator) appears at
first order in V , since the two states are directly connected through V and are included in the
model space if they are quasi-degenerate, independent of the state of the neighboring spins σi−1
and σi+2. The case of an aligned pair σi = σi+1 (yielding a positive correlator) is connected
to its flipped partner state τi = −σi and τi+1 = −σi+1 only in second order of V , including a
constraint on the neighboring spins σi−1 = −σi and σi+2 = −σi+1. We note that in addition,
an intermediate state with one spin flip has to be quasi-degenerate, which is an additional
constraint. For simplicity we have left this state out of the discussion.
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From these arguments, we conclude that the case of admixed states which yield negative
correlations is much more probable than the case yielding positive correlations due to their
appearance at different orders in V and, additionally, owing to constraints which reduce the
number of possibilities giving obtaining positive correlations.

We now understand that for the case r = 1, negative correlations are more probable than
positive ones to zeroth order in degenerate perturbation theory for two reasons: negative
correlations need only one order in V , while the appearance of positive weight requires two
applications of V and only a specific set of spin configurations can lead to positive correlations,
thus reducing their likelihood.

The same set of arguments can now be generalized to the case r = 2. We see that in this
case, we always need to apply V twice to get nonzero (both positive and negative) correlations,
however there are more possibilities of having a flippable pair i, i + 2 (necessary for negative
correlations), compared to the possibilities of getting a mixture of |. . . 0x0 . . .〉 and |. . . 1x1 . . .〉
(necessary for positive correlations), since in this case the flippability depends on the state x
of the middle spin i + 1. Therefore, also in the case r = 2, the distribution of the connected
correlator is skewed towards negative correlations. In the case of longer distances r > 2,
these constraints become increasingly weak (while requiring an order of V r to get nonzero
correlators), leading to more and more symmetric distributions.

5 Conclusions

We have presented the exact energy eigenstate distributions of spin-flip and Sz
i Sz

i+r correlators
in the disordered XXZ chain across the many-body localization transition. While – at very weak
disorder – we find gaussian distributions to very high precision, the distributions depart from
gaussianity at intermediate disorder – still well inside the thermal regime – through the ap-
pearance of heavy tails that persist into the MBL regime. The presence of these tails correlates
to the appearance of sub-diffusive behavior in transport properties observed in previous stud-
ies [35,36,49]. In the entire thermal regime, the variance of the correlator distributions falls
off with increasing Hilbert space dimension as one should expect for operators obeying ETH
but significant weight remains in the tails of the distribution and measures of departures from
gaussianity including the Kullback-Leibler divergence and the kurtosis show a peak for W <Wc
that sharpens with system size. The system size dependence of local operator distributions is
negligible inside the MBL regime where ETH fails.

For large disorder, we have carefully investigated the distinctive forms of the correlator
distributions, unraveling various features of the distributions. We find that strong disorder
perturbation theory can reproduce the full distributions in the MBL phase. We note that our
semianalytical perturbation theory scheme should be applicable to other models and could
provide information about the effect of resonances in different systems.

For the spin-flip correlator, the distributions are highly structured with a central peak
at zero, a pair of neighboring satellite peaks with disorder strength dependent positions at
±3/8W and further maxima at the edge of the distribution at ±1/2. All these features are
perfectly captured by a quantitative strong disorder perturbation theory that also gives insight
into their origins. In particular, (i) the central peak comes from eigenstates where the eigen-
state carries no pairs of spins that are flippable by the spin-flip operator, this accounts for 1/2
of all states at strong disorder (ii) the satellite peaks at ±3/8W arise from flipped pairs of
spins that are maximally pinned by the random field and therefore maximally off resonant
(iii) the ±1/2 peaks arise from resonances - strongly admixed quasi-degenerate states. These
extremal peaks can only be captured by quasi-degenerate perturbation theory. Overall, mixed
quasi-degenerate and degenerate perturbation theory unifies all contributions and yields an
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unbiased result, matching the full exact distribution almost perfectly.
The Sz

i Sz
j correlator distribution is more complicated to analyze since we have to go to

second order in 1/W in our perturbative treatment. Our analysis reveals that for short dis-
tances r = |i− j|, the correlator is predominantly negative in the MBL phase, since eigenstates
are biased to contain mixtures of flippable neighboring pairs. This leads to distributions skewed
towards negative weights, most strongly so for noninteracting Anderson Insulators, where no
weight for positive correlators is present due to Wick’s theorem. Therefore, the Sz

i Sz
j correlator

distribution reveals a strikingly different behavior generated by interactions in the MBL case
compared to the noninteracting model.
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A Perturbation Theory

In this section, we give details of the Rayleigh-Schrödinger perturbation theory that is used to
obtain the leading contributions in 1/W from the transverse exchange term V of the Hamilto-
nian to the energy eigenstate expectation values of Sz

i Sz
i+r and spin-flip correlators (see main

text). We intend for this appendix and the accompanying part of the main text to be self-
contained on the method but we refer the interested reader to Lindgren [75] for further de-
tails.

The Hamiltonian from Eq. (1) is rewritten H/W = H0 + (1/W )V where

H0 =
L−1
∑

i=0

(1/W )Sz
i Sz

i+1 − h̃iS
z
i , (10)

V =
1
2

L−1
∑

i=0

�

S+i S−i+1 + h.c.
�

(11)

and h̃i ∈ [−1,1] are normalized normal fields.
We wish to compute matrix elements of operator O in the eigenstate basis where the eigen-

states are computed to some order in perturbation theory in 1/W . The eigenstates of interest
here are taken to be highly excited states from the middle of the spectrum. We start from the
eigenstates |n〉 of H0, which are product states in the Sz basis, their eigenenergies En

0 is triv-
ially obtained from H0. To compute the corrections to the eigenvectors |n〉 perturbatively in
1/W we should bear in mind that the energies of the product states are essentially randomly
distributed and will mix strongly under the perturbation V if the states are quasidegenerate.
Loosely speaking, we would like to organize the perturbation theory so that states coupled by
the pairwise spinflips in the perturbation V that are separated by an energy ∆E > 1/W are
treated via non-degenerate perturbation theory while clusters of quasi-degenerate states (with
mutual energy differences ® 1/W ) are treated via degenerate perturbation theory. We there-
fore use the formalism of a mixed quasi-degenerate and nondegenerate perturbation theory
as described in Ref. [75].

We discuss how to organize this calculation up to order 1/W 2, keeping in mind our main
goal: the computation of energy eigenstate expectation values of local operators.
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Let us focus on a single H0 eigenstate |n〉 in one disorder realization that has eigenvalue
En

0 . We compute all other states {|m〉} connected to it by V and V 2, i.e. 〈n|V |m〉 6= 0 or
〈n|V 2 |m〉 6= 0. Now, we define the model space, D, to consist of all states in this set |m〉
(including the “parent state” |n〉), and with |Ek − En| < α/W . We have experimented with
the threshold α to include states in the model space and the results presented in the paper are
essentially identical for α ∈ [1,3]. Let P be the projector onto the model space D andQ= 1−P
the projector on its complement D.

Suppose |Ψn〉 is an exact eigenstate of the full Hamiltonian that has a nonvanishing
projector into the model space |ΨD

λ
〉 = P |Ψλ〉. We introduce the inverse wave operator

Ω = Ω(0) + Ω(1) + Ω(2) + . . . that is expanded in powers of V . The action of Ω is to rotate
a state in the model space into the full space eigenfunction |Ψλ〉 = Ω |Ψ0

λ
〉. So now if we

compute an eigenstate |vD
λ
〉 of the effective Hamiltonian

Heff ≡ PHΩ= H(0)eff +H(1)eff +H(2)eff + . . . , (12)

this is nothing but the projection of the exact wavefunction onto the model space. The eigen-
functions of Heff are generally non-orthogonal and the effective Hamiltonian non-Hermitian
(albeit with real eigenvalues). To obtain the eigenstates of H we lift them out of the model
space by acting with Ω: |Ψλ〉 = Ω |vD

λ
〉. Note that |vD

λ
〉 ∈ D is a vector of dimension

dim(D)� dim(H), whereas |Ψλ〉 ∈H is a vector in the entire Hilbert space H.
The problem is now to compute Ω(n). One may show that [75]

Ω(0) = P, (13)

Ω(1) = S (VP) , (14)

Ω(2) = S
�

VΩ(1)
�

− S
�

Ω(1)VP
�

, (15)

where S is defined by

〈k|SA |m〉 ≡
〈k|A |m〉
Em

0 − Ek
0

. (16)

We now spell out the procedure for computing eigenstate matrix elements of local opera-
tors to first and second order in perturbation theory for mid-spectrum states deep in the MBL
phase.

The required steps are the following:

1. Select a random “parent state” |n〉, which is an eigenstate of the unperturbed Hamilto-
nian H0. Its energy En

0 will typically lie in the middle of the spectrum of H0.

2. Generate the “family” of states |m〉 connected to |n〉 by the perturbation V (i.e. by neigh-
boring pairwise spin flips).

3. Compare the energies of all states |m〉 with the parent state |n〉, include |n〉 and all states
|m〉 which are quasidegenerate (energy difference < α/W ) with |n〉 in the model space
D.

4. For each state |m〉which is added to D, its family has to be created and energy differences
have to be checked again, possibly including more states in the model space D. States
which are well separated from the model space states are included in the complement
D.

5. Once this iterative process stops (for the spin-flip operator expectation values further
constraints can be used, which simplify this), the effective Hamiltonian
Heff ∈ Cdim(D)×dim(D) is calculated (see below).
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6. Next the eigenstates of Heff are computed and we pick one eigenstate |vD
λ
〉 at random.

7. In the next step, the eigenstate of Heff is promoted to the full Hilbert space, using the
perturbation expansion of the wave operatorΩ up to the required order. This step can be
skipped using the expressions derived below to directly obtain the eigenstate expectation
values of the operators we are after.

We note that since we are dealing with central eigenstates of a quantum spin chain with a
dense spectrum, there is no separation of clusters of eigenvalues of H0 from other parts of
the spectrum. Therefore in principle the procedure above is not guaranteed to yield a model
space which is of smaller dimension than the full Hilbert space. It turns out, however, that
for the spin-flip correlator, additional selection rules (i.e. the removal of terms yielding zero
contributions) guarantee a small model space. For the Sz

i Sz
i+r correlators this is not true, and

we typically find much larger model spaces, which are however still significantly smaller than
the full Hilbert space.

Our procedure is designed to yield the minimal set of states necessary to get the non-
vanishing contributions to matrix elements to a given order in perturbation theory.

A.1 Zeroth Order Perturbation Theory

The zeroth order effective Hamiltonian is nothing but the projection H(0)eff = PHP into the
model space. Its matrix elements are therefore |m〉 , |m′〉 ∈ D:

〈m|H(0)eff |m
′〉= 〈m|H |m′〉 . (17)

An eigenstate |vD
λ
〉 of H(0)eff with eigenvalue λ then yields the corresponding eigenstate in the

full Hilbert space
|Ψλ〉=

∑

|m〉∈D

〈m|vD
λ 〉 |m〉=

∑

m∈D

vλm |m〉 . (18)

From this, we may now calculate the zeroth order contribution to the expectation value of an
operator O:

〈Ψλ|O |Ψλ〉=
∑

m,m′∈D

vλ,∗
m′ vλm 〈m

′|O |m〉 . (19)

A.2 First Order Perturbation Theory

The first order effective Hamiltonian is constructed as follows

〈m|H(1)eff |m
′〉=

∑

k∈D

〈m|H|k〉〈k|V |m′〉
Em′

0 − Ek
0

+ . . . , (20)

where |k〉 lives in the complement space D and |m〉, |m′〉 live in the model space D.
To first order, the total effective Hamiltonian is then given by

Heff = H(0)eff +H(1)eff ∈ Cdim(D)×dim(D). (21)

The eigenstates |vλ〉 =
∑

D vλm |m〉 of Heff with eigenvalue λ can now be lifted into the full
space by acting with Ω to first order: (Ω(0) +Ω(1)) |vλ〉. Thus:

|Ψλ〉= |vλ〉+
∑

k ∈ D
m ∈ D

vλm
〈k|V |m〉
Em

0 − Ek
0

|k〉 . (22)
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Then the diagonal matrix elements of operator O are

〈Ψλ|O |Ψλ〉=
∑

m,m′∈D

vλmvλ ∗m′ 〈m
′|O|m〉

+
∑

k ∈ D
m, m′ ∈ D

vλmvλ ∗m′ 〈m
′|O|k〉

〈k|V |m〉
Em

0 − Ek
0

+
∑

k ∈ D
m, m′ ∈ D

vλmvλ ∗m′ 〈k|O|m〉
〈m′|V |k〉
Em′

0 − Ek
0

(23)

and we have omitted the one term that appears to order 1/W 2.
How do we decide which states should go into the model space? In order to keep the

perturbation consistently of order 1/W we should, in principle, keep all states with nonzero
amplitude onto V |n〉 in the model space where |n〉 is the state chosen initially. However, the
expression for the matrix element simplifies matters. We consider operators O that are either
diagonal in the configuration basis or which flip a pair of spins amounting to a single term in
V . Then we are justified in restricting the model space to |n〉 and O |n〉 if the latter lies within
an energy window of 1/W from |n〉.

A.3 Second Order Perturbation Theory

We now discuss the perturbative corrections to eigenstates to second order in V . The first step
in constructing the eigenstates is to include terms to second order in the effective Hamiltonian.

〈m|H(2)eff |m
′〉=

∑

k,k′∈D

〈m|H|k〉
〈k|V |k′〉〈k′|V |m′〉
(Em′

0 − Ek
0)(E

m′
0 − Ek′

0 )

−
∑

k ∈ D
l ∈ D

〈m|H|k〉
〈k|V |l〉〈l|V |m′〉

(E l
0 − Ek

0)(E
m′
0 − Ek

0)
. (24)

As above, the total effective Hamiltonian up to second order is given by the sum of all
lower order contributions as

Heff = H(0)eff +H(1)eff +H(2)eff . (25)

Once we have computed the eigenstates of the effective Hamiltonian to this order, we again
lift them into the full Hilbert space by operating on them with Ω(0)+Ω(1)+Ω(2). The first two
terms are reported above, the second order contribution is:

Ω(2) |vλ〉=
∑

k, k′ ∈ D
m ∈ D

|k〉
〈k|V |k′〉〈k′|V |m〉
(Em

0 − Ek
0)(E

m
0 − Ek′

0 )
vλm

−
∑

k ∈ D
l, m ∈ D

|k〉
〈k|V |l〉〈l|V |m〉

(E l
0 − Ek

0)(E
m
0 − Ek

0)
vλm.

Diagonal matrix elements may now be computed. In full,
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〈Ψλ|O |Ψλ〉=
∑

m,m′∈D

vλmvλ ∗m′ 〈m
′|O|m〉

+
∑

k ∈ D
m, m′ ∈ D

vλmvλ ∗m′ 〈m
′|O|k〉

〈k|V |m〉
Em

0 − Ek
0

+
∑

k ∈ D
m, m′ ∈ D

vλmvλ ∗m′ 〈k|O|m〉
〈m′|V |k〉
Em′

0 − Ek
0

+
∑

k, k′ ∈ D
m, m′ ∈ D

vλmvλ ∗m′ 〈k
′|O|k〉

〈k|V |m〉〈m′|V |k′〉
(Em

0 − Ek
0)(E

m′
0 − Ek′

0 )

+
∑

k, k′ ∈ D
m, m′ ∈ D

vλmvλ ∗m′ 〈m
′|O|k〉

〈k|V |k′〉〈k′|V |m〉
(Em

0 − Ek
0)(E

m
0 − Ek′

0 )

−
∑

k ∈ D
l, m, m′ ∈ D

vλmvλ ∗m′ 〈m
′|O|k〉

〈k|V |l〉〈l|V |m〉
(E l

0 − Ek
0)(E

m
0 − Ek

0)

+
∑

k, k′ ∈ D
m, m′ ∈ D

vλm′ v
λ ∗
m 〈k|O|m

′〉
〈k′|V |k〉〈m|V |k′〉
(Em

0 − Ek
0)(E

m
0 − Ek′

0 )

−
∑

k ∈ D
m, m′ , l ∈ D

vλm′ v
λ ∗
m 〈k|O|m

′〉
〈l|V |k〉〈m|V |l〉

(E l
0 − Ek

0)(E
m
0 − Ek

0)
.

(26)

B Energy dependence of local operators

In the ergodic regime, the validity of the ETH implies that energy eigenstate expectation values
of local operators are equivalent to the thermal average at the temperature corresponding to
the energy eigenvalue:

〈n|O |n〉 ≈ Tr

�

e−β(En)H

Z
O

�

, (27)

where En is the energy density of the state |n〉 and β(En) is the temperature chosen such that

Tr

�

e−β(En)H

Z
H

�

= En. (28)

In Fig. 12 the expectation value of the spin-flip correlator and the connected z correlation at
distance r = 1,2, 3,4 are plotted as function of energy. The corresponding thermal average
matches the mean value of 〈n|O |n〉 .

We note that the thermal expectation values correspond to the mean of the distributions
we consider in the main text. Since the correlators for r = 1 are terms of the Hamiltonian, they
exhibit a significant slope in the middle of the spectrum, leading to the observed sensitivity to
the energy target. In the M = 0 sector Tr(HM=0)/dim(HM=0) = −L/(4L − 4) which sets the
infinite temperature limit.
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Figure 12: Spin-flip correlator and connected z correlation as function of energy
at distance r = 1,2, 3,4 in the ETH phase. Both correlations increase linearly
with energy at distance r = 1. The spin-flip correlator is constant at larger dis-
tances r > 1 whereas the z correlation goes down slightly. The dashed lines are
the thermal expectation values in the canonical M = 0 ensemble of the corre-
lators 〈Oi,i+r〉β = Tr

�

e−βH

Z Oi,i+r

�

plotted vs. the expectation value of the energy

〈E〉β = Tr
�

e−βH

Z H
�

for β ∈ [−1000,1000].

C Heavy tails in the MBL phase

Some common features of the matrix elements distributions of correlation functions in the
MBL phase are the sharp peaks at zero and the presence of tails. In Fig. 13 and 14 such tails
are highlighted for different distances using a doubly logarithmic scale. They both show heavy
tails, which seem consistent with a power law behavior. Since the connected Sz

i Sz
i+r correlator

is asymmetric, we show the positive part of the distribution separately from the negative part
in Fig. 14 (the sign of the negative part is flipped to show them on the same plot).

Remarkably, the right and left hand tails of the connected z correlation seem to follow the
same power law dependence despite their asymmetry, which is clearly visible in this represen-
tation.
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Figure 13: Probability distribution of the spin-flip correlator 〈n|S+i S−i+r/2 + h.c. |n〉
at distance r = 1,2, 3,4 for system size L = 20 in the MBL phase. Putting aside
the special features at short distance r = 1, sharp peaks at zero and power law tails
elsewhere are the common feature. The disorder strength dependence seems to be
stronger at large distances.
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Figure 14: Probability distribution of correlation function
〈n|Sz

i Sz
i+r |n〉 − 〈n|S

z
i |n〉 〈n|S

z
i+r |n〉 at distances r = 1, 2,3, 4 for system size

L = 20 in the MBL phase. The green and yellow-red curves correspond to negative
and positive values of the correlation respectively. As seen in the main text, these
distributions are asymmetric around zero, though they seems to have the same
power law behavior on both sides.
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[17] M. Žnidarič, T. Prosen and P. Prelovšek, Many-body localization in the Heisen-
berg X X Z magnet in a random field, Phys. Rev. B 77, 064426 (2008),
doi:10.1103/PhysRevB.77.064426.

[18] T. C. Berkelbach and D. R. Reichman, Conductivity of disordered quantum lattice mod-
els at infinite temperature: Many-body localization, Phys. Rev. B 81, 224429 (2010),
doi:10.1103/PhysRevB.81.224429.

[19] A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82, 174411
(2010), doi:10.1103/PhysRevB.82.174411.

[20] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman,
U. Schneider and I. Bloch, Observation of many-body localization of interacting fermions
in a quasirandom optical lattice, Science 349, 842 (2015), doi:10.1126/science.aaa7432.

[21] D. J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in the random-field
Heisenberg chain, Phys. Rev. B 91, 081103 (2015), doi:10.1103/PhysRevB.91.081103.

[22] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in
quantum statistical mechanics Annu. Rev. Condens. Matter Phys. 6, 15 (2015),
doi:10.1146/annurev-conmatphys-031214-014726.

[23] E. Altman and R. Vosk, Universal dynamics and renormalization in many-body-localized
systems, Annu. Rev. Condens. Matter Phys. 6, 383 (2015), doi:10.1146/annurev-
conmatphys-031214-014701.

[24] J. Z. Imbrie, On many-body localization for quantum spin chains, J. Stat. Phys. 163, 998
(2016), doi:10.1007/s10955-016-1508-x.
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