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Abstract

The existence of higher-spin quantum conserved currents in two dimensions guarantees
quantum integrability. We revisit the question [1] of whether classically-conserved local
higher-spin currents in two-dimensional sigma models survive quantization. We define
an integrability index J(J) for each spin J, with the property that J(J) is a lower bound
on the number of quantum conserved currents of spin J. In particular, a positive value
for the index establishes the existence of quantum conserved currents. For a general
coset model, with or without extra discrete symmetries, we derive an explicit formula

for a generating function that encodes the indices for all spins. We apply our techniques
to the CPVY~! model, the O(N) model, and the flag sigma model % For the O(N)
model, we establish the existence of a spin-6 quantum conserved current, in addition
to the well-known spin-4 current. The indices for the CPY~! model for N > 2 are all
non-positive, consistent with the fact that these models are not integrable. The indices
for the flag sigma model % for N > 2 are all negative. Thus, it is unlikely that the flag
sigma models are integrable.
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1 Introduction

Starting with the seminal work of [2] and [3], it has been known that there exist integrable
quantum field theories in two dimensions whose S-matrices factorize. This property is tied to
the existence of higher-spin conserved currents [4]. More precisely, it was shown in [5] that
the existence of one local higher-spin current is sufficient for factorization of the S-matrix in
parity symmetric theories, while one needs two currents in theories without parity.

However, even for sigma models with a coset target space, a complete understanding and
classification of quantum conserved currents is still lacking. See, for example, [6,7] for reviews
on integrability in two-dimensional sigma models. At the classical level, it is known that sigma
models whose target space is a symmetric coset admit a so-called Lax operator formalism,
which allows one to systematically construct classically-conserved local higher-spin currents
[8]. However, the coset being symmetric is neither sufficient nor necessary to diagnose the
fate of classical integrability at the quantum level. It is insufficient because in some symmetric
coset sigma models, higher-spin currents fail to be conserved at the quantum level. A famous
example is the CPY ! sigma model [1]. It is not necessary either, since, even if the coset is
not symmetric, one can sometimes construct a Lax operator. Interesting examples are sigma
models on the Schrodinger spacetime [9-11].

An approach to directly address quantum integrability was presented by Goldschmidt and
Witten [1], where they provided a sufficient condition for the existence of quantum conserved
currents in two-dimensional sigma models.! Their analysis, which we review below, is based
on the fact that any sigma model, be it a symmetric coset or not, is conformal at the classical
level and has a current for every even integer spin 2n built from the stress tensor:

(3,3%) := ((T;4)",0). (1.1)
Owing to the fact that 0_T, , = 0, this current is conserved classically

0_(T..)"=0 (classical). (1.2)

!n this paper we will only consider quantum charges built from local conserved currents. For non-local quantum
charges, see, for example, [12-14]. In particular, it was shown that a sufficient (but not necessary) condition for
the conservation of the non-local charges in G/H coset sigma models is that H is simple [14]. Integrable examples
with H not simple include O(2N)/O(N) x O(N) [15,16] and Sp(2N)/Sp(N) x Sp(N) [17], where the quantum
conservation of the non-local charges is secured by a Z, discrete symmetry [18]. A similar analysis was performed
for the superstring sigma model on AdSs x S° in [19]. The relation between the local and non-local charges was
discussed in [20]. See also [21] for discussions on the relation between the non-local charges and the factorization
of the S-matrices.
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At the quantum level, the conservation law of this higher-spin current is generally broken and
the classical equation (1.2) is modified to

0_(T,,)"=A (quantum), (1.3)

where A is some local operator with classical dimension 2n 4+ 1 and spin 2n — 1. This is the

standard way in which classical integrability fails to generalize to quantum integrability.
However, if A can be written as a total derivative, i.e. if there exist operators B, and B_ so

that A= 0,B_ + 0_B,, one can redefine the current such that it is still conserved. Explicitly,

(Hiu:giu) = (T4 )" =By, —B_), 1.4
0_9% +0,3% =0. (1.5)

Thus, there is still a conserved current (Hqu, Hiu) at the quantum level. In a given theory, one
can in principle identify all possible A terms, and total derivative terms B, that have the right
quantum numbers to appear on the right hand side of (1.3). The message of [1] is that if the
number of A terms is less than or equal to the number of B terms, it is guaranteed that there
are conserved higher-spin currents at the quantum level, because any correction on the RHS of
(1.3) can be written as a total derivative, and thus absorbed into a redefinition of the current.

More generally, there might be more than one classically-conserved current of a given spin,
rather than just (T, , )" [22,23]. This motivates us to consider the combination

IWJ) =
(# of classically-conserved spin-J non-derivative currents) — [ (# of A’s) — (# of B’s) | .
(1.6)

From the first term on the right hand side, we have to omit currents that are derivatives (e.g.
0, T, ) because they do not give rise to a charge when integrated on a spatial slice. If J(J) > 0,
it is guaranteed that there are J(J) quantum conserved currents by the argument of [1] that
we reviewed above. Hence a positive J(J) for some J > 2 provides a sufficient condition for
quantum integrability. It is not a necessary condition because it is possible that even though
J(J) < 0 in some case, the model might be fine-tuned such that quantum conserved currents
still exist.

In [1], Goldschmidt and Witten considered the classically-conserved current (T, . ), and
enlisted the possible A and B operators by brute force in some specific examples. However, the
complexity of this brute-force method quickly goes out of control for larger spin, as well as for a
more general target space. In this paper we systematize the computation of [ 1] to general coset
models G/H. Our analysis is based on a simple observation: The difference J(J) is invariant
under conformal perturbation theory around the UV fixed point, while individual numbers in
(1.6) are not.?> This allows us to compute J(J) at the UV fixed point where the equation of
motion simplifies and the theory enjoys conformal symmetry. Because of this property, we
call J(J) the integrability index. A similar quantity been studied by Zamolodchikov [24] in the
context of integrable perturbation of conformal field theory.

We derive a compact expression for a generating function that allows us to compute the
indices J(J) for all spins. Our technique is largely inspired by [25] which classified higher-
dimension operators in effective field theory, and also by the computation of supersymmetric
indices [26]. As one important application, we compute the indices for the O(N) model and
establish the existence of a spin-6 quantum conserved current in addition to a spin-4 current
predicted in [1].

2See however the discussion at the end of subsection 3.4 for potential subtleties due to nonperturbative correc-
tions.
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The coset model G/H typically has some tunable parameters. Over certain loci in this pa-
rameter space, there could be extra discrete global symmetries, and these can affect quantum
integrability. The importance of the discrete symmetries for quantum conservation of non-local
and local charges was emphasized in [18]. The classic example is the CP' sigma model, which
has a 27-periodic 6 angle. The model is integrable at 6 = 0 [2] and at 6 = 7 [27] where
there is an extra Z, charge conjugation symmetry. At other values of 0, there is no extra sym-
metry and the model is not expected to be integrable. Thus, we will also present a generating
function and compute J(J) in the presence of discrete global symmetries. For example in the
CP! model, we find that J(4) < 0 and J(6) < 0 without imposing the Z, charge conjugation
symmetry, while J(4) = J(6) = +1 when the Z, symmetry imposed. This is consistent with
quantum integrability at @ = 0 and @ = . For the CPN~! models with N > 2, the indices are
all negative even after including the discrete symmetry, consistent with the standard lore that
the CPY~! model for N > 2 is not integrable. w

U(N

Finally, we apply our formalism to the flag sigma models OLE which reduces to the CP*

model when N = 2.3 Aspects of flag sigma models, including their global symmetries, *t Hooft
anomalies and phase diagrams have recently received some attention [28-34]. In particular, it
was argued that over certain loci in parameter space with enhanced discrete global symmetry,
the IR phase is gapless and is described by the SU(N); WZW model [30-32]. We compute the
indices J(J) for these models, and we find that they are all negative. Thus, it is unlikely that
these models are integrable.

The organization of the paper is as follows. In Section 2 we review the Lagrangian de-
scription of coset sigma models and present a complete set of “letters" for constructing local
operators. In Section 3 we construct the partition function using a plethystic exponential, de-
fine the integrability index and discuss the invariance of the index in conformal perturbation
theory. In Section 4, we work out the partition function and the index for the CP¥ 1, O(N)
and the flag sigma models. We conclude in Section 5 and discuss directions for future work.

2 Coset sigma models

2.1 Lagrangian description of coset models

Let us first review the basic properties of sigma models with a coset target space G/H. We do
not require the coset to be symmetric. Let g and h be the Lie algebras of G and H, respectively.
Using the quadratic form ¢, ) on g, we can make an orthogonal decomposition of g as

g=hodt. 2.1

The elements in ¢ represent the physical degrees of freedom of the coset. To keep a concrete
example in mind, consider the coset SUU(—(lz)), which is nothing but the O(3) or the S2 or the CP!
model. In this case, the full Lie algebra g = su(2) is spanned by the three Pauli matrices, b is
the span of the Pauli-Z matrix, and ¢ is the span of the Pauli-X and Pauli-Y matrices.

We will work on two-dimensional Minkowski space R%! throughout. The target space of
the sigma model is the space G/H of all left cosets of H. To write the action, we first consider

all maps g : R — G and then proceed to impose the following local symmetry:

g(x) — g(x)h(x)"!, h(x)eH. (2.2)

3The CP! model has another generalization SU(N)/SO(N) with global symmetry PSU(N). This model has a
Z,-valued 0-angle for N > 2. For both values of 6, the model is integrable. At 8 = 0, the IR phase is gapped,
while at 6 = 7 the IR is described by the SU(N ), WZW model [15,16].
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In other words, we have to make the identification of maps g(x) ~ g(x)h(x)™! for any
h : RYY — H. This restricts us to maps from the spacetime into the space G/H of left-cosets
of H. This model admits a global G-symmetry* which acts from the left (contrasted with the
local H symmetry which acts from the right):

g(x)—g's(x), g'eG. (2.3)
To write down the action of the sigma model, we introduce the left-invariant one-form j
Ju(x) = gil(x)aug(x). (2.4)
Since j is valued in the Lie algebra, one can decompose it using (2.1) as
Ju(x) = a,(x) +kyu(x), a,(x)ebh, ky(x)et. (2.5)

The currents j,(x), a,(x) and k,(x) are invariant under the global G transformations (2.3),
while they transform under the local H transformations (2.2) as

j—hjh ! —dhh7?, (2.6)
a—>hah '—dhh?, 2.7)
k—hkh!. (2.8)

In particular, a,(x) transforms as a gauge field under the local action of H from the right. The
covariant derivative built out of a,

D,:=0,+a, (2.9

transforms via conjugation under the H gauge transformations, D,e — h (D,e) h—t.

The action for the sigma model with target space G (without topological terms) is
§d2xtr JjuJ*. Now we have to gauge the H symmetry. For that purpose, we introduce a gauge
field A, € b and the covariant derivative acting on g(x) as g_l]Dug = g_lﬁug —A,. Now we
can manipulate the action

tr(g_ll]])ug)2 = tr(g_lé’ug)2 + trAi - 2trAM(g_18Mg)
=tr (ki + aﬁ) + trAi —2trA,a,

= trki +tr(a, —Ay)°.

In going to the second line, we split g_laug = ju = a, + k, and used the orthogonality of h
and ¢. Integrating out A, we see that the action of the sigma model can be expressed as

S[g] = R;szx tr [k, (x) k*(x)] , (2.10)

where the positive real number R characterizes the size of the coset. As desired, the action is
invariant under the local H transformation of k (2.8). We have used the notation S[g]| on the
left hand side to emphasize the fact that we start with maps g : R — G and then view a,(x)
and k,(x) as being determined by g(x). Even though it might seem that there is no a,(x)
dependence on the right hand side, this is not the case, as will become explicit in the equation
of motion (2.13) below.

“To be precise, the global symmetry may not be G, but a discrete quotient thereof. For example, the global
symmetry of CPV ! = Us (Lllv(ﬁq) is PSU(N) and not SU(N). This does not affect our arguments in this section, but

the role of discrete symmetry will become important later.
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Let us now derive the equation of motion starting from the action (2.10). We make the first
order variation g — (1 + €)g, and write the variation of the Lagrangian from (2.10) as being
proportional to k*ok,,. Under g — (1+¢€)g, the variation of the current ji, is 6j,, = g ! (Ou€)g.
Now we use 6k, = 6j, — 6a,, = gil(éue)g — a,, and the orthogonality of h and ¢ to get

oS =R2Jd2xtr [%e(gkM g M. (2.11)

Therefore, the equation of motion reads
0, (gktg™1) =0. (2.12)

This is equivalent to d, k" + [j,, k"] = 0. We now make the decomposition j,, = a, + k,, as in
(2.5) and since [k, k"] = 0, we get an equivalent form of the equation of motion

D, kM (x) = 8, kM (x) + [a, (x), kK (x)] = 0, (2.13)

where the covariant derivative D, acting on adjoint fields was defined in (2.9). The equation
of motion (2.12) also shows that the current

JH(x) 1= g (x) k*(x) g7 (x) (2.14)

is conserved d,,J*(x) = 0. From the variation of the action (2.11), we see that J*(x) is nothing
but the Noether current of the global G symmetry. Let us also comment that J,,(x) is invariant
under the local H transformations (2.2) and (2.8).

We end this section with a result that we shall use Ilater. The identity
d(g~'dg)+g 'dg A g 'dg = 0 implies that d,,j,, — 0,jy, + [Ju» jy] = 0. Writing j = a + k and
decomposing this identity into § and ¢ sectors, we get

[Dy, D, = —[ky, k] . (2.15)

D,ukv - ka[.l, = _[ky,z kv] e’ (216)

where the right-hand-sides designate the restriction of [k, k, ] to h or £. For a symmetric coset,
[kw kv] |E =0

2.2 Description of local operators

We are interested in classifying the possible A terms that appear in the conservation law of
a conserved current of spin J. For concreteness, we only consider the case when the current
is a singlet under the global G symmetry, as this is relevant for operators like (T, )". Our
methods can be adapted to the case when the current transforms nontrivially under the global
G symmetry.

We need a way to count local operators that are invariant both under the global G symme-
try and the H gauge transformations. Such analysis was performed in [25] for effective field
theories in higher dimensions, and we apply their techniques to coset models in two dimen-
sions. Local operators can be built from g(x), k,(x), and their covariant derivatives. Let us
recall the transformation properties of these fields

1

g(x) —> g g(x)h " (x), (2.17)
ky(x) = h(x) K, (x)h ™ (x), (2.18)
D,e — h(x)(D,e)h ™' (x). (2.19)
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First, we show that the fields g(x) and g~ !(x) can be omitted from this list. To see this,
note that the covariant derivatives acting on g(x) or g ~!(x) can be written as

'=0,8  ta,g = —k,g " (2.20)

D,ug:aug_gau:gku: Dugi
Therefore, for the purpose of enumerating a complete set of operators, one can assume that
the covariant derivatives never act on g or g~ *. Then, g and g ~! must appear only in the com-
bination g ~!g = 1, since the other fields are already invariant under the global G symmetry.
This completes the proof.
Now our task boils down to classifying local operators that consist only of the following
symbols:

D,, kZ’ ae{l,...,dim¢}, (2.21)

where we have now made the Lie algebra index of k explicit. Acting with the covariant deriva-
tives on k, one obtains the basic building blocks, which we shall call “letters". Note that acting
with D, on k, via (2.9) keeps us within ¢ because [b, £] — ¢. Examples of such letters are

(D.k,)%, (D,D_k,)*, (D,D D,k )® etc. (2.22)

We should however keep in mind that not all the letters are independent. Firstly, owing to
the relation (2.15), one can effectively treat the covariant derivatives as mutually commuting
objects; the non-commuting parts of the covariant derivatives can be expressed in terms of
two k%s using (2.15). Thus we can reduce the set of letters to

(DD )"k, (D)D)K (2.23)

Secondly, one can replace the operators of the form D_k, or D, k_ with operators without
covariant derivatives using the equation of motion (2.13) and the relation (2.16), which we
display here again in lightcone coordinates,

D,k_+D_k, =0,

(2.24)
D .k —D_ ki, =—[k, k]|,

Using these two relations, we get explicit expressions for D_k, and D, k_ in terms of products
of k%s. Using these expressions in (2.23), we conclude that the complete set of letters is given
by

K= (D), k™= (D)K. (2.25)

In other words, we only need to consider letters with all plus or all minus indices.

As the final step, we need to impose invariance under the H gauge transformations. (Re-
call that all the letters are already invariant under the global G-symmetry.) For this purpose,
we note that because [h, €] c &, the vector space ¢ forms a representation r of h. The repre-
sentation r is, in general, not an irrep and we can decompose r = @®; r;, where r;’s are irreps
of H. For instance, in the case of O(N)/O(N — 1) coset, the index a in kj (x) can take N — 1
possible values, and k transforms in the vector representation of O(N — 1). In the case of
SU(N +1)/U(N) coset, the index a in ki (x) can take 2N possible values, and k transforms in

the N@N of U(N). Thus, in general we can write
ky = > [kulr, - (2.26)
i

The covariant derivatives do not change the representations, and so the letters

L L L e 2.27)

also transform in the representation r;. Finally, we need to solve the group-theoretic problem of
constructing H-invariant objects out of products of the letters in (2.27). We do this in the next
section by constructing a generating function for H-invariant operators via Haar integration
over the group H.
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3 An index for quantum integrability

In this section we introduce an algorithmic approach to diagnose the fate of classically-conserved
currents at the quantum level [ 1]. Our computational techniques are inspired by [25] and [26].
We will first work in the UV (which enjoys conformal invariance) to construct a generating
function and to define the index. At the end, we will explain why the index is invariant in the
regime of conformal perturbation theory around the UV fixed point.

3.1 Generating function for local operators

At the UV fixed point, the equations of motion (2.13) become linear and we have conformal
symmetry. This allows us to organize operators by their conformal dimension and spin,

= Z quxJo , (3.1
invO
where we only include operators that are H-invariant. As usual, Ay and Jy denote the dimen-
sion and the spin of the operator O, respectively.
As discussed in Section 2.2, the complete set of single-letter operators is given by (D )"k
and (D_)"k_ (see (2.25)). This leads to the following generating function for single-letter
operators:

= i q"tt (x’“rl +x_(”+1)> S x"q : (3.2)
o 1-xq 1-—x"1q

In f , we only kept track of the scaling dimension and spin, but we also need to keep track of the
quantum numbers under H transformations. For this purpose, we introduce the fugacities y,
which is a vector of length equal to the number of Cartan generators of H. We decompose the
current k¢ into irreducible representations of H as in (2.26), and multiply by the character for
each representation y,. (y). This leads to the following formula for the single-letter generating
function f (q,x,y):

flax,y) = (@) 2:(y) = f(a,%) (Zxri <y>> : (3.3)

The next step is to express the multi-letter generating function in terms of the single-
letter generating function. To see how the computation goes, let us consider one particular
single-letter operator with definite dimension A, spin J and charge vector R under the Cartan
generators. Such an operator contributes a monomial to the generating function

FAIR (g, x,y) = ¢®x! yR. (3.4)

Here, yR is a shorthand for ]—[rankb Ri If we construct multi-letter operators using only this
operator, the partition function Would read

ZBIR) (q,x,y) =1+ q%x R+ (g% yR)* +

= exp[—log(1 — q¢®x’yR)]

—eXP[Z —f&IR (g, x™, y )] (3.5)

m=1

In reality, there are infinitely many single-letter operators and the multi-letter partition func-
tion would be given by a product of the factor (3.5) corresponding to each single-letter oper-
ator. This leads to the following expression for the multi-letter partition function:

|
Z(q,x,y) =exp [Z ;f(xm,q’",y’“)] , (3.6)
m=1

8
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with f(x,q,y) given in (3.3). The expression on the right hand side is also known as the
plethystic exponential [26]. To obtain the generating function for gauge-invariant operators,
we simply need to integrate over the fugacities with the Haar measure on H:

Z(q,x) = JduH(y)Z(q,x,y)- (3.7)

Below we will also encounter cases where we cannot restrict Haar integrals to the Cartan.
In such cases, we cannot introduce the fugacities y, so we need a general element h € H in
our formulas. In particular, the equations (3.3) and (3.6) are replaced by

flax,h) = f(x,q) z:(h) = f (x,q) (Zxrl. <h>> : (3.8)
Z(q,x,h) = exp [Z — f(x™,q", hm)] (3.9)
m 1

The projection to the gauge-invariant operators can be achieved by integrating Z (q, x, h) against
the Haar measure duy, generalizing (3.7):

Z(q,x) = Jd,uH(h)Z(q,x,h). (3.10)

Equations (3.2), (3.8), (3.9) and (3.10) are our main results that make the computations of [1]
algorithmic.

3.2 Discrete symmetries

Now we extend these formulas to include discrete symmetries which are crucial for quantum
integrability of certain models. To be concrete, let us consider a sigma model with an internal
Z, symmetry, whose group elements are given by 1 and o, with o2 = 1.

One can take the Z, symmetry into account by considering the modified partition function

~ 1
Z(q,x) = 5 12(g,%) + Z5 (g, )], (3.11)
with Z(q, x) as before (3.1) and
Z,(q,x) := 2 [oqAOxJO] . (3.12)
invO

In other words, we insert HTG in the partition function, which projects to the Z,-invariant
sector. Again, we restrict ourselves to analyze operators that are invariant under the global
discrete symmetries, but it is straightforward to generalize to operators in nontrivial repre-
sentations of the symmetry. The formula for Z, is a straightforward generalization of (3.9).

©¢]

1

Z5(q,x,h) =exp Zz ; qm)tr, ((ch)™) | . (3.13)

In general, o maps the representation r to itself, but it can take us between the representations

r;. For example, in the case of O(N)/O(N — 1), there is only one representation, and o keeps

us within this representation. In the case of SU(N + 1)/U(N), the fundamental and the anti-
fundamental representations get exchanged by o.
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3.3 Index for quantum integrability

The partition function (3.9) is defined at the UV free CFT point of the sigma model, restricted
to the H-invariant sector. Thus, we can expand the partition function of the UV theory into a
sum of characters of the two-dimensional global conformal group,

Z(q,x) = > c(AT) xay(@,%), (3.14)
AJ

where the non-negative integer c(A,J) counts the number of global primaries with dimension
A and spin J. As reviewed in appendix A, we have two types of characters: short characters
for conserved currents and the more typical long characters for everything else.

In terms of ¢c(A,J), the index (1.6) for the UV CFT can be expressed simply as

IJ) =c(J,J)—c(J +1,J —1). (3.15)

The first term denotes the number of primary conserved currents of spin J in the UV CFT.” The
second term counts the number of primary operators with dimension J + 1 and spin J — 1.
This is precisely the type of operators that can appear as A terms in 0_0; ;, and cannot be
absorbed into a redefinition of the current. Thus, there exists a quantum conserved current if
this number is strictly positive. Indeed, this is just the criterion of [1]. The novelty in our work
is that we are choosing to work at the UV fixed point which allows us to exploit conformal
symmetry.

To summarize, we can diagnose quantum integrability of a coset model by computing the
generating function using the formulas (3.2), (3.8)-(3.10), reading off the expansion coeffi-
cients (3.14) to construct the index (3.15), and checking

J(J) >0 == There exists a quantum conserved current of spin J . (3.16)

Further, if J(J) > 0, the number of quantum conserved currents is at least J(J). In appendix
A, we discuss an “inversion formula" which allows us to compute J(J) as an integral transform
of Z(q,x). In practice, for low spin operators, it is often easier to explicitly series expand the
partition function Z(q, x) and read off the coefficients c(A,J).°

3.4 Invariance of the index under conformal perturbation theory

We now comment on an important feature of the index, which is its invariance under conformal
perturbation theory around the UV fixed point. When we move away from the UV fixed point,
some spin-J conserved current O ; can cease to be conserved. This is because the conformal
multiplet of O; ; can combine with a multiplet whose primary O;, ;_; has dimension J + 1
and spin J — 1. In the process, the conformal multiplet of O, ; becomes a long multiplet that
satisfies the relation 0_0; ; = O;,; ;_,. When this happens, the first term in (1.6) reduces by
one. At the same time, the third term in (1.6) also increases by one since now the operator
Oj11,-1 is a total divergence. As a result, the difference J(J) remains invariant.

To see this in a concrete example, let us consider the case of the CPY~! model, which will
be discussed in more detail in Section 4.2 below. In computing J(4) for this case, we will find
that c(4,4) = ¢(5,3) = 2, and so J(4) = 2 — 2 = 0. Let us compare this to [1]. They find that

>Note that descendants can also satisfy a conservation law, but being total derivatives they do not give rise to a
charge when integrated on a spatial slice.

®For practical computations it is also useful to note that J(J) = a(J,J)—a(J—1,J—1)—a(J+1,J—1)+a(J,J —2)
where a(A,J) is the coefficient of ¢*x”’ in the expansion of Z(q, x). Note also that a(A,J) would be the total
number of operators taking into account the full non-linear equations of motion, because (2.25) is the complete
set of letters. In particular, a(J 4+ 1,J — 1) would be the number of A terms in [1].
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there is just one candidate conserved operator with A = J = 4, namely the operator (T, ).
They also find four A operators and three B operators, and thus one primary with A =5 and
J = 3. Thus, with their way of counting, the index would be J(4) = 1 —1 = 0. The reason
for the discrepancy is the following. In the free limit, one operator with A =J = 41s (T, )?,
and let us call the other one O, 4. The free equations of motion imply that 0_04, = 0. What
happens as we flow away from the UV is that we get a modified relation 0_04 4 = Os 35, where
Os 5 is one of the primary operators contributing to ¢(5,3) = 2. Thus, we lose one conserved
operator because O, 4 is no longer conserved, and we lose one A term because Os 3 is now a
total divergence. As a result, the index remains invariant.

The above argument is valid in the regime of conformal perturbation theory, where we
can grade the local operators by their scaling dimensions at the UV fixed point. There is a
potential subtlety related to nonperturbative corrections. The coset sigma models discussed in
this paper are asymptotically free, but acquire a mass gap nonperturbatively in the infrared.
In the presence of such a mass gap, one can write A terms for ¢_g, _, with dimension less
than J + 1. The sufficiency condition of [1] can in principle be violated by this nonperturbative
effect, but we are not aware of any example where this happens.

4 Examples

4.1 CP! model

We now apply the strategy above to the CP! model with a general 6 angle. The coset for the

SZEJ((12)). The CP*! sigma model is integrable at & = 0 [2] and at 8 = 7 [27],
and the global symmetry at these two points is O(3) = SO(3) x Z,. The CP! model is not
expected to be integrable for other values of the 6, where the global symmetry is simply SO(3).

Let us first compute the index without imposing the charge conjugation symmetry, corre-
sponding to the CPP! sigma model with a generic 6 angle. The coset degrees of freedom consist
of the charge +1 representation and the charge —1 representation of the U(1) quotient group.

The U(1) character is simply tr(h) = y + y !, where y = e!% is the U(1) fugacity. Hence,

CP! sigma model is

tr(h™)=yMm+y ™. “4.1)

The multi-letter partition function Z(q,x,y) is constructed following (3.2), (3.3) and (3.6).
We project to U(1) invariant operators using (3.7), which in this case becomes

dy
Z(q,x) = —Z7(q,x,y). 4.2
(g,x) j£2my (¢, x,y) (4.2)
We get the following result for the indices:
J(4)=0, J(6)=-1, I(8)=-5, IJ(10)=-15, IJ(12)=-33,--- (4.3)

Recall that J(J) > 0 is a sufficient condition for the existence of quantum conserved spin J
currents. Hence without imposing charge conjugation symmetry, our analysis does not predict
quantum conserved currents for the CP! model, consistent with the expectation that the CP*
model is not integrable at a generic 6 angle.

Next, we compute the index for the CP! sigma model at & = 0, r, where there is a Z,
charge conjugation symmetry and the model is known to be integrable. The Z, charge conju-
gation symmetry maps a charge +1 state to a charge —1 state, and extends the quotient group
from U(1) to O(2). The k;; form a two-dimensional representation of the O(2) group in which
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the group element can be expressed as

_ [ cos¢ sing (1 0
h_<—sin¢ cosd))’ a_<0 —1)’ 44)

with ¢ € [0,27). Using this matrix representation, the trace tr((ch)™) can be computed
straightforwardly and we get

tr((oh)™) = 1+ (~1)™. (4.5)

Now we can compute the full partition function for the CP! sigma model with charge conju-
gation symmetry

~ dy 1
2(@.0) = § 33 [20.505) + 2o 0.5.7)], +6)

with Z, computed via (3.13) using (4.5).
Using this new partition function, we get the following indices:

J(4)=1, 9(6)=1, I(8)=0, I(10)=-4, I(12)=-11-: (4.7)

Thus, there exist quantum conserved currents of spin-4 and spin-6, making the model inte-
grable after incorporating discrete symmetry. The existence of the spin-4 current was shown
in the original work of [1], and we further established that there is a spin-6 current. Our anal-
ysis does not predict conserved currents of even higher spin.” We will see in Section 4.3 that
this spin-6 quantum conserved current also exists in all the O(N) models.

4.2 CP"~! model

SU(N)
UN-1)"
in a direct sum of the fundamental and the anti-fundamental representations of U(N —1). The
characters for these representations are given by

The CPY ~! model is the sigma model with target space The index a in kz transforms

o) =D Yk KoV Yne1) = D e (4.8)
k k

The integration measure is given by

dyk -1 -1
fdu ! <H3€2my >l<] — )0 =y (4.9)

Computing the index using these formulae we obtain

J(4) = -2, I(6)=—6, (4.10)

independent of N. Since all these numbers are negative, it is unlikely that there are conserved
higher-spin currents at the quantum level. Let us see if imposing charge conjugation symmetry
can help.

The U(N —1) group element and charge conjugation matrix o in the representation r = [ &[]

are given by
h O 0 Iy_
r(h) = <O h*> , o= <IN1 % 1) : 4.11)

’Incidentally, the indices for the charge conjugation odd currents are all negative.
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where h € U(N — 1). The traces tr[(ch)™] needed in (3.13) vanish for odd m and for even m
reduce to 2tr[(hh*)2]. We now compute Haar integrals analytically over h using the so-called
Weingarten functions for the unitary group. The first two examples are

1
JdUUUUl*] déii/6~~,, (4.12)
dU U, ; U, US, U, = Ouut Ouiy O Ot + Oty 01t Ot O
i1j1 7 l2J2 11]1 inJ5 d2 —1
0; 16; :40: 416 i1 +0; 16; 40: 46

lll 1212 ]1]2 ]2] 1112 1211 ]1]1 J2]2 (4 13)
d(d2-1) ' '

Here dU is the Haar measure on U(d) normalized such that {dU = 1.8 The result of the index
computation is that

J(4)=0, I(6)=—1, (4.14)

independent of N. The discrete symmetry increases the indices, but they are still not posi-
tive, and so the classically-conserved currents may not survive quantum-mechanically. This
is consistent with the fact that the CP¥~! models with N > 2 are not expected to be inte-
grable [36,37].

4.3 O(N) model

SO(N)
SO(N-1)
the target space is the sphere SN ~1. For simplicity, we assume that N — 1 is even. The index a
in the current kz transforms under the vector representation of SO(N — 1), and its character
is given by

In other words

The O(N) model can be viewed as the sigma model with target space

(N-1)/2

1) = D, it+yh. (4.15)
i=1

The measure factor for integrating over the Cartan is given by

d i i
any) =I5 Tla-vpa -5, (4.16)

i<j J

Using these formulas, together with (3.2), (3.3), (3.6) and (3.7), one can compute J(J).
The results for small N are summarized in Table 1, and for the spin-4 case agree with the find-
ings in [1]. Since J(4) > O for all values of N except N = 3, this shows quantum integrability
for N > 3. For N = 3, which is the same as the CP! model, we need to take into account
discrete symmetries, as we also saw in Section 4.1.

So we now proceed to impose the Z, charge conjugation symmetry which extends the quo-
tient group from SO(N —1) to O(N —1). Since the charge conjugation o = diag(1,1,...,1,—1)
maps the vector representation of SO(N —1) to itself, the computation of the modified partition
function (3.13) boils down to computing tr[(ch)™] in the vector representation and integrat-
ing the plethystic exponential over SO(N — 1). This integral cannot be reduced to an integral
over the Cartan since charge conjugation does not commute with generic group elements of
SO(N — 1).° Nevertheless, as shown in Appendix C of [25], one can still simplify the integral

8See [35] for a Mathematica package that computes Weingarten integrals symbolically.
Recall that O(N — 1) = SO(N — 1) x Z,.
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Table 1: The first few indices for the O(N) sigma model %. On the left are

indices without imposing any discrete symmetry, and on the right are indices when
we impose the charge conjugation symmetry. We take N to be odd for simplicity.
The case with N = 3 is the same as the CP! case considered in Section 4.1. Thus our
analysis confirms the presence of a spin-4 conserved current and we predicts a new
spin-6 conserved current at the quantum level.

J(4) | 9(6) | I(8) J(4) | 3(6) | I(8)
N=3] 0 | -1 -5 N=3| 1|10
N=5| 1|0 | -1 N=5| 1| 1|0
N=7] 1| 1] o0 N=7| 1] 1|0
N=9| 1 | 1] 0 N=9| 1 | 1|0

into multiple abelian integrals. Their analysis is based on the fact that, for any h € SO(N — 1),
oh can be brought to the following block-diagonal matrix by conjugation,

R, - 0 0
oh : , (4.17)

0 Rv—s O

2
0 0 J
with
B cos B, sinf; (1 0

Rk_( —sinf, cos 6y >’ J_<0 -1 > (4.18)

We just state the outcome, referring to [25] for details: The modified partition function Z,
can be computed by replacing the character and the measure with

(N=3)/2
FO) =3 +5-+ >, i+yh, (4.19)
i=1
¥, dy_ dyi(1—-y?) Vi
dii(y) = 1—yy)a-= 20
iy) 2ni(5/+—1)277:i(5/,+1)1_[ 2y, [ =y S @2

i i<j j

where the integration contours for y, are around +1 respectively. Using these expressions,
we computed J(J) for small odd N (including N = 3) and found that

J(4)=1, J6)=1, I@B8)=0, (4.21)

independent of N. Thus our analysis is consistent with quantum integrability of the O(N)
model with Z, symmetry. In addition to the spin-4 conserved current established in [1], we
have predicted a spin-6 conserved current at the quantum level.'°

4.4 Flag sigma models %

As one last example, we compute the index for the flag sigma model %, which has been
studied recently in [30-32]. This is also an example where the coset is not symmetric (for

1°Qur index analysis does not predict the existence of the conserved currents with spin > 8 although it is likely
that there exist infinitely many higher-spin conserved currents given that the model is integrable. Note also that
in [38] it was claimed that there exists a quantum conserved current for each even spin. This is incorrect as [38]
overcounts operators that are total derivatives, because they include operators which vanish owing to the equation
of motion.
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Table 2: The first few indices for the flag sigma model 5 ((1),2, On the left are indices

without imposing any discrete symmetry, and on the right are indices while imposing
the Sy x Z, symmetry. The indices are all negative, which means that our counting
analysis does not predict higher-spin quantum conserved currents.

J4) | ) J(8) J(4) | 36) | I®)
N=3| —47 | —262 | -1263 N=3] -4 | —20 | -105
N=4| -371 | —3834 | —32235 N=4| -7 | -79 | —682
N =5 | -1605 | —27794 | —379760 N=5|-10 | 139 | —1722

N > 2). Note that the N = 2 flag sigma model is the O(3) or the CP! model. The flag sigma
model has a N(N — 1)-dimensional parameter space preserving the PSU(N) global symmetry.
Over special loci on the parameter space, the model has enhanced discrete symmetries and
't Hooft anomalies. It has been argued that over certain special loci on the moduli space the
model is gapless in the IR and is described by the SU(N); WZW model [30-32].

The index a in kj, takes (N~ — 2 _N) possible values corresponding to the roots of SU(N). The
charge of (k )’] (w1th1 j=1,...,N, i # j) under the n-th U(1) factor in U(1) is §; , — &, .
The requ1red Uy character is

N
)= >, yiy ' (4.22)
i,j=1
1#]

We first computed the indices J(J ) without imposing any discrete symmetry, and the results
are given on the left in Table 2. All the indices are negative. Hence our analysis does not
predict higher-spin quantum conserved currents in the flag sigma model at a generic point in
the parameter space.

Next, we compute the index at the “origin" of the parameter space, where the enhanced
discrete symmetry is Sy X Z,, with Sy the permutation group on N elements. A permutation
o € Sy acts on the current (k,,)" via (k,)" — (ku)"(i)a(j), while the Z, acts as (k,,)"7 — (k,)’".
We define a N(N — 1) x N(N — 1) diagonal matrix

n

h=diag(y1y, W ¥1Ys YNy YL Yoo Y Y YN YN ) s (4.23)

whose trace is given in (4.22). For each element o of Sy x Z,, we write down its matrix
representation acting on ¢, and compute tr[(ch)™].!! The partition function for the Sy x Z,
invariant operators is then

d 1
2N|1_[3E = Z5(q,%,Yi) (4.24)

2n1~yl creS X Zy

where Z; is as in (3.13). We find that all the indices are negative. See Table 2. If we impose a
smaller subgroup of Sy x Z,, the indices are even more negative. Thus, we conclude that our
analysis does not predict higher-spin quantum conserved currents for the flag sigma model
anywhere on the parameter space. This in particular suggests that the classical integrability

of the flag sigma model on 5 ((f))s found in [39] is likely to be broken at the quantum level.

0 Inw—1
"For example, the charge conjugation Z, is realized as o = ( I 5 > .
N(N—1)
N
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5 Conclusions and future directions

In this paper, we systematized the analysis of Goldschmidt and Witten [1] by exploiting the
conformal symmetry of coset models in the UV, We introduced the index J(J), eqns. (1.6) and
(3.15), whose positivity for spin J > 2 gives a sufficient condition for quantum integrability.
We also discussed the invariance of the index under conformal perturbation theory around the
UV fixed point. We applied our formalism in several examples and found the following results:

1. The CP! model (Section 4.1) is integrable at 6 = 0 and 6 = 7, where there is a Z, charge
conjugation symmetry, since J(4) and J(6) are positive. On the other hand, without
imposing the extra Z, symmetry, the indices are all non-positive, consistent with the
standard lore that the CP! model is not integrable away from 6 = 0, .

2. The indices for the CPY ~! model (Section 4.2) with N > 3 are all non-positive, consis-
tent with the fact that they are not quantum integrable [36,37].

3. For the O(N) model (Section 4.3 and Table 1), we found that J(4) = J(6) = 1 (with a Z,
symmetry), thereby establishing the existence of a spin-6 conserved current in addition
to the well-known spin-4 conserved current.

The examples above are symmetric cosets which are known to be classically integrable, but

our analysis is also applicable to more general cosets. As an example, we studied the g((g,)v

flag sigma models and found that

4. The indices for the flag sigma models (Section 4.4 and Table 2) are all negative even
after imposing the maximum amount of discrete symmetry. Thus it is unlikely that these
models are integrable.

We now remark on some avenues for future work.

As demonstrated in the example of the CPP! model, discrete symmetry plays an important
role for quantum integrability. However, our analysis is not sensitive to potential 't Hooft
anomalies, which can have consequences for integrable flows. For example, while the CP!
model has O(3) = SO(3) xZ, global symmetry both at & = 0 and 6 = m, the 't Hooft anomalies
are different at these two points. At 8 = 0, there is no anomaly, while at 8 = 7, there is a mixed
anomaly between SO(3) and the Z, charge conjugation symmetry [32,40,41]. Relatedly, the
IR phases at 6 = 0 and at 0 = 7 are different. At 8 = 0, the IR is trivially gapped, while at
0 = m, the IR phase is gapless and is described by the SU(2); WZW model which captures the
mixed anomaly. One potential avenue to incorporate the information from ’t Hooft anomalies
into our index would be to interpret it as a torus partition function (possibly with symmetry
lines inserted), whose modular transformation generally depends on the 't Hooft anomaly (see,
for example, [42-44]).

Our analysis can be extended to supersymmetric theories and theories with fermions. For
instance, it is known that the CPY~! models can be made quantum integrable by coupling
them to fermions [37,45], and it would be interesting to see if the same is true for the flag
sigma models.

Using the idea developed in this paper, one can also analyze “fine-tuned” quantum inte-
grability: Some theories [45] can be made quantum integrable after tuning the coefficients for
marginal operators. This can be diagnosed by computing a “refined” index

9,(J) :==I(J) +¢(2,0). (5.1)

Here c(2,0) is the number of marginal primary operators in the UV. Unlike J(J) discussed in the
paper, J,.(J) > 0 is not a sufficient condition for quantum integrability, but having J,(J) > 0
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will make it more likely for quantum integrability to be achieved at some point in parameter
space.

It should also be possible to extend our analysis to deformations of sigma models which
partially break the global G symmetry. One famous example is the sausage model [46] (see
[47] for a recent discussion), which is an integrable deformation of the O(3) model. The
integrability of such models can be analyzed by generalizing our computation to operators
which are not invariant under G.

Finally, it would be interesting if one can generalize our analysis to superstring sigma
models and find new integrable backgrounds.'?
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A Inversion formula for J(J)

Let us first discuss the characters for the global conformal group SL(2,C). For long represen-
tations, the characters can be computed easily by summing over all possible operators in the
module, namely all operators of the form (0, )"(0_)™Op ;. This leads to

26, (@x)=q xJZq”““ n-m a°x . A1)
AT (1—gx)(1—gx1)

On the other hand, the characters for the short representations are given by linear combina-
tions of (A.1). For instance, the conserved current with spin J (and dimension J) has the
following character

25.5(0:%) = 25 5(4,%) = 254151 (4:%) (A2)

where the subtraction —y } 41,71 amounts to eliminating the null state 0_0y,.

If the characters formed an orthogonal basis, one would be able to extract the coefficients
c(A,J) in (3.14) by writing an “inversion formula”. The problem is that, typically, such an
inversion formula exists only for the principal series representations, but not for physical rep-
resentations. Fortunately, all the representations relevant for us have integer conformal di-
mensions and there exists an orthogonality relation which works for such operators:

Jd.ufx,q XZA,J (q_l,x_l) XZA/,JI (q’ X) = 5A,A’5J,J’ P (A.3)

12The classification of classically integrable backgrounds was performed in [48]. See also [49-51] for discussions
on quantum integrability of string backgrounds based on factorized scattering.
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where the measure is given by

o dq dx B -1 [ B R |
Jtia=f 2 o2 g -a 0 -a e

One can easily verify that the characters (A.1) are orthogonal under this measure. Therefore,
we can give a formula for the index (3.15)

10) = [ it 20020 2(0,%)

dq dx B -
:iznqu Ty L_x) (@ t=—x"12Z(gx).

(A.5)
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