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Abstract

We discuss the procedure for gauging on-site Z, global symmetries of three-dimensional
lattice Hamiltonians that permute quasi-particles and provide general arguments demon-
strating the non-Abelian character of the resultant gauged theories. We then apply this
general procedure to lattice models of several well known fracton phases: two copies of
the X-Cube model, two copies of Haah’s cubic code, and the checkerboard model. Where
the former two models possess an on-site Z, layer exchange symmetry, that of the latter
is generated by the Hadamard gate. For each of these models, upon gauging, we find
non-Abelian subdimensional excitations, including non-Abelian fractons, as well as non-
Abelian looplike excitations and Abelian fully mobile pointlike excitations. By showing
that the looplike excitations braid non-trivially with the subdimensional excitations, we
thus discover a novel gapped quantum order in 3D, which we term a “panoptic" fracton
order. This points to the existence of parent states in 3D from which both topologi-
cal quantum field theories and fracton states may descend via quasi-particle condensa-
tion. The gauged cubic code model represents the first example of a gapped 3D phase
supporting (inextricably) non-Abelian fractons that are created at the corners of fractal
operators.
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1 Introduction

A new chapter in the book of three-dimensional (3D) quantum phases of matter was opened
with the discovery of fracton models [ 1-8], characterized by the presence of topological excita-
tions with restricted mobility. These peculiar particles have attracted significant recent interest,
thereby revealing intriguing connections to quantum information processing [9-12], topologi-
cal order [13-22], sub-system symmetries [23-30], and slow quantum dynamics [1,3,31-33].
Much of the phenomenology of fractons can also be realized in tensor gauge theories [34—44]
with higher moment conservation laws, unveiling further connections of fractons with elastic-
ity [45-49] and even gravity [50-52]. For a recent review of fractonic physics, we refer the
reader to Ref. [53].

A large class of gapped fracton models are described by local commuting projector Hamil-
tonians, thereby enabling their exact, analytic study. Broadly, these are classified into type-I or
type-II models, with the latter distinguished by the lack of any string-operators and therefore
also any topologically non-trivial mobile quasi-particles. Similar to conventional topologically
ordered states, gapped fracton phases possess long-range entangled ground states [ 29,54-58],
the number of which grows sub-extensively with system size on topologically non-trivial man-
ifolds. The dependence of the ground state degeneracy (GSD) upon the system size is a man-
ifestation of the geometric sensitivity of fracton order [51,52,59-65], rendering these phases
“beyond" the familiar topological quantum field theory (TQFT) paradigm for liquid topological
orders. Thus, despite the rapid progress in characterizing fracton order, a unified mathematical
framework describing it has so far proved elusive.

This is in contrast with 2D topological orders, whose classification in terms of unitary
modular tensor categories [66] (see e.g., Ref. [67]) was facilitated by exactly solvable lattice
models, in both two and three spatial dimensions [68-72]. Two paradigmatic classes of such
exactly soluble models are Kitaev’s quantum double models [73] and the Levin-Wen string-
net models [74], which provided important insights about the nature of topological order.
Taken together, these models encapsulate the key features of 2D long-range entangled phases
(in the absence of global symmetries) and provide a general framework within which frac-
tionalized excitations, including those with non-Abelian character, are realized. A key step
towards categorizing fracton order is thus developing classes of exactly solvable models which
can capture a wide range of fracton phases, including those with non-Abelian excitations.
Such excitations are not precluded in fracton phases despite general arguments restricting
the statistics of pointlike excitations in 3D, since these arguments assume complete particle
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mobility. The subdimensional nature of excitations' in fracton phases thus opens the door to
non-Abelian pointlike particles with nontrivial braiding statistics in three dimensions; hence,
besides providing fundamental insights into the nature of 3D gapped quantum phases, finding
non-Abelian fracton orders could have potential implications for quantum information storage
and processing.

There has been recent progress on this front [62,75,76]: in Ref. [62], layers of 2D string-
nets were coupled to produce fracton phases with non-Abelian excitations mobile only along
lines, while non-Abelian fractons were found by twisting the layers of Abelian fracton models
in Ref. [76]. Although they provide a large class of novel non-Abelian fracton models, it does
not appear that the cage-net and twisted fracton models exhaust all possible fracton orders.
Ref. [63], for instance, coupled layers of 2D Abelian topological orders to a 3D Abelian topo-
logical phase to reproduce the X-Cube model [8] and generalizations thereof—we anticipate
that suitable non-Abelian generalizations of the “string-membrane-net" can produce fracton
orders distinct from those found in the cage-net or twisted fracton models. Moreover, all of
the aforementioned examples fall into the category of foliated type-I fracton phases, where the
presence of excitations mobile along lines or planes allows generalized notions of braiding and
statistics to be defined [19,21]. Unlike these examples, where notions of “non-Abelianness"?
have been extended to subdimensional excitations [62, 76], whether such notions extend to
type-II models, lacking any mobile excitations, remains unclear. An obvious obstruction to
studying this question is the lack of any non-Abelian type-II model in the literature.

In this paper, we add another wrinkle to the developing story of 3D gapped phases by find-
ing new exactly solvable models which simultaneously host non-Abelian subdimensional par-
ticles, including non-Abelian fractons, and non-Abelian looplike excitations, with non-trivial
braiding betwixt these distinct sectors. Our starting point is the observation that gauging an on-
site global symmetry that acts as layer swap®> on copies of (2D or 3D) topological orders leads
to a non-Abelian topological order*—such symmetries fall under the umbrella of more general
“anyonic" or “anyon permutation" symmetries, which, when gauged, can enlarge the topolog-
ical order of the underlying symmetry enriched phase [79-81]. In principle, gauging such
on-site global symmetries is a well defined procedure which can be carried out for any many-
body quantum state invariant under that symmetry. Gauging a global on-site symmetry which
exchanges subdimensional excitations in some fracton order thus proffers a natural route for
obtaining non-Abelian subdimensional particles, including fully immobile non-Abelian frac-
tons. Physically, the gauging procedure corresponds to condensing (or melting) symmetry
defects which occur at the boundaries of domain walls in the symmetry-enriched topological
order.

We discuss the general gauging procedure here, which when applied to copies of some
exactly solvable gapped Hamiltonian with a global SWAP (or Hadamard) symmetry, produces
another exactly solvable gapped Hamiltonian. Aside from providing a constructive framework
for producing solvable models describing the gauged phase, we are also able to obtain impor-
tant general results regarding the nature of the gauged Hamiltonian. In particular, we show
that gauging a Z, swap symmetry between layers of any 3D topological phase, including frac-
ton orders, with some pointlike particles results in non-Abelian deconfined excitations in the
gauged phase. Additionally, the symmetry defects (also called “genons" [82]) in the symmetry-
enriched phase proliferate upon gauging, so that the gauged phase hosts non-Abelian looplike

'Here, by subdimensional we refer to excitations that are fully immobile (fractons), mobile only along lines
(lineons), or mobile only along planes (planons) of the 3D lattice.

2Non-Abelian excitations are those which participate in multiple fusion channels and can thus encode quantum
information non-locally throughout the system. See e.g., Refs. [77,78].

3We interchangeably refer to this global symmetry as swap, layer-swap, or layer exchange symmetry.

“This gauging technique, when applied to two copies of a quantum double D(G), leads to a model in the same
phase as D(G), with G = (G x G) x Z, which is non-Abelian even when the underlying group G is Abelian.
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excitations, which are the gauge flux loops. We also provide a general argument that guaran-
tees the absence of stringlike operators creating pairs of fractons in the gauged theory as long
as such operators do not exist in the underlying symmetry-enriched phase. In other words,
gauging a fracton permuting symmetry necessarily produces deconfined non-Abelian fractons,
alongside other Abelian particles and non-Abelian loop excitations.

Our arguments further demonstrate that the gauged phase hosts an entirely new quantum
order, since the subdimensional excitations braid non-trivially with the gauge flux loops—this
statistical interaction ensures that the phase is not local unitary equivalent to some non-Abelian
fracton model decoupled from some non-Abelian 3D topological order. Instead, the phases
obtained by gauging Z, layer exchange symmetries support what we dub a panoptic fracton
order, wherein subdimensional excitations coexist with, and braid non-trivially with, looplike
excitations. As such, these phases present a hitherto undiscovered generalization of fracton
order, most models for which have heretofore consisted only of subdimensional particles—the
only exceptions are the type-I string-membrane-net models presented in Ref. [63], which also
contained fractons, loops, and fully mobile particles. However, the construction here presents
a larger class as it can account for non-Abelian fractons even in type-II models. We also stress
that while the gauged phases contain looplike excitations, suggestive of 3D topological order,
they retain the characteristic geometric sensitivity of fracton phases, thereby remaining outside
the usual TQFT paradigm.

While our general arguments are sufficient for conceptually establishing the existence of a
broader, more inclusive fracton order, we explicitly apply the gauging map to familiar fracton
models: the X-Cube model [8], the checkerboard model [7], and Haah’s cubic code [2]. For
each of these, we provide the explicit form of the gauged Hamiltonian as well as the relevant
Wilson string or membrane operators. We also discuss the effect of gauging in terms of the
quasi-particles of the type-I models and show the existence of inextricably non-Abelian frac-
tons [62, 76], which shows their fundamentally three-dimensional nature. When applied to
Haah’s cubic code, our general formalism produces, to the best of our knowledge, the first
model where inextricably non-Abelian fractons are created at the corners of a fractal operator.
Since the gauging map also produces non-Abelian gauge flux loops, there is a well-defined
statistical phase associated with braiding the loop around an isolated fracton, which allows
this model to evade the obstacle of defining non-Abelianness in models with only immobile
fractons. The gauged model is, strictly speaking, no longer of type-II as there appear additional
fully mobile Abelian pointlike particles, and instead falls into the broader category of panoptic
fracton phases.

The rest of the paper is organized as follows: we describe the general procedure for gauging
on-site local symmetries of many-body states in Sec. 2, providing both a lattice description
and a quasi-particle description. Focusing on global Z, symmetries that act as layer swap
on two copies of some topological (possibly fracton) order, we develop a general argument
in Sec. 2.3 demonstrating that the gauging procedure generates non-Abelian particles and
looplike excitations. We further show that the mobility restrictions in a symmetry-enriched
fracton phase are retained in the gauged phase, such that no string-like operators can move
the gauged fractons. We apply the general gauging procedure to well-known fracton models
in Sec. 3, focusing on the X-cube, the checkerboard, and the cubic code models. For each of
these, we provide the explicit gauged Hamiltonian alongside a description of the emergent
quasi-particles, of which several are non-Abelian. We conclude with a discussion of open
questions and future directions. For completeness and to illustrate the significant qualitative
differences between fracton and topological orders, the gauging procedure is applied to the
2D and 3D toric codes, as well as the 2D color code, in the Appendices.
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2 Gauging a Z, symmetry

2.1 Lattice description

We start with a brief discussion of gauging the on-site global symmetry of a many-body quan-
tum state. In the usual gauging procedure, which operates at the level of a Lagrangian or
Hamiltonian description of the matter fields, operators of the globally symmetric theory are
modified through the minimal coupling procedure into gauged operators. Here, however, we
describe how gauging proceeds at the level of many-body quantum states directly, independent
of any prescribed dynamics for the matter fields. For simplicity, we restrict our attention to Z,
global symmetries and refer the reader to Refs. [83, 84] for the general case, which includes
non-Abelian symmetries.

Consider a lattice (more generally, a graph) A with matter degrees of freedom living on
its vertices. Each vertex is thus endowed with a Hilbert space H,, such that the total matter
Hilbert space HY := ®,.,H,. The edges of the lattice are denoted e € A and can be left
unoriented when considering Abelian global symmetries.

Let U,(g) correspond to a unitary representation of the symmetry group G = Z, on H,,
the local Hilbert space of each vertex. Now suppose we are given a many-body quantum
state |y) € H such that U, |3p) = [¢), i.e., one which is invariant under the global action
Upr(g) = ®,c7U,(g) of elements g € Z,. In order to promote this state into one which is
invariant under the local action of the symmetry, we introduce new “gauge" degrees of freedom
on the edges e of A. For G = Z,, this corresponds to introducing gauge qubits on each edge,
such that the Hilbert space on each edge H, = C2, spanned by the basis {|0),|1)}. Group
multiplication is then given simply by the Pauli-X operator: X, |0), = |1),, X, |1), = |0),. The
Pauli-Z operator acts as the nontrivial character Z, |0), = |0),, Z, 1), =—|1),, and Y =iX Z.

The Hilbert space of the combined gauge-matter system is then H := HY ® H®, where
the gauge Hilbert space H® := ® ., H,. Physical states in the gauge theory must be invariant
under local gauge transformations at each vertex, which correspond to the unitary operator
U,(g) ®,5, X, (here e > v denotes all edges e connected to vertex v). We can construct a
projector onto states satisfying the Gauss’ law at a vertex v:

P, = %(11 +0,] [xo. e))
esv
where U, := U,(g = 1). Since [P,,P/]=0Vv,v' € A, the projector onto the gauge-invariant
subspace is defined as
p=[]>. 2)
4

Analogously, we must also define projectors for operators O; for any operator O with non-
trivial support on a compact region I' C A, we define the operator map

Pr[O] = 2|1r0| S Tvi] [xbo] [ur] [xv, 3)

{i,} vel’ e€rl’ ver e€l’
ver vEe vEe

which produces gauge-invariant operators. In the above, i, =0, 1.
The prescription for gauging many-body quantum states is then given by a linear map
G : HM — H defined as

Gly) =P [y)(X)|0),, 4)

eeA
which embeds states |v)) € HY into the total gauge-matter Hilbert space H. Similarly, we can
define an operator gauging map Gr : L(H}Y ) — L(Hy) by

GLO] = Pr)[0X)10) (0], ], (5)

eel’
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which maps a matter operator O supported on I' € A onto gauge-invariant operators supported
on the same region. The gauging maps satisfy the following useful identity

Glo0]G =GO 6)

for any symmetric operator O on the matter degrees of freedom.
Gauging a matter Hamiltonian Hy; = Y. - h results in a gauge and matter Hamiltonian

v,L v
(9]
H=H,;"+ AgHg+ ApHp, (7)
where
HE = 3 g ®
v,y

is the gauged matter Hamiltonian, the term
Hs=> (1-8,) )
P

consists of zero flux constraints

B,=|]z. (10)
ecdp
and the term
Hp= > (1-P,) (11)

v

penalizes gauge symmetry violations. The terms in the Hamiltonian satisfy
[Hy, Hg] = [H};, Hp] = [Hp, Hp] = 0. (12)

In the limit Ap — 00, the gauge symmetry is strictly enforced.

Due to Eq. (6), any symmetric ground state |v),) is mapped to a ground state of the gauged
Hamiltonian G |v). It was shown in Ref. [84] that the process of gauging a local Hamiltonian
with at least one symmetric ground state preserves the existence of a spectral gap. It was
also shown that the full ground space of the gauged Hamiltonian is spanned by the set of
gauged symmetric states from each of the distinct symmetry-twisted sectors. For layer swap
symmetry, there are 8 symmetry-twisted sectors on the 3D torus given by the choice of a layer
swap domain wall on each 2-cycle. For example, with a symmetry twist on the xy-plane 2-cycle
ofan L, x L, x L, torus, the symmetric subspace is given by the subspace of the L, x L, x 2L,
torus that is symmetric under swapping sites separated by L, sites in the z direction. It is
beyond the scope of the current paper to compute the full ground space degeneracy for the
fracton models considered in this paper, but the general principles mentioned here still apply.

2.1.1 Disentangling

For matter transforming under the left regular representation U, (1) = X it is possible to apply
a local unitary transformation to disentangle degrees of freedom that are fixed out due to
the gauge constraints, thus leaving an unconstrained Hilbert space. The unitary is given by
Cr=1]1],C, where

c, = [ex... (13)

edv
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and CX, , denotes a controlled-X operator, defined by

CX, . X,CX! =X ,X,, CX, X,CX! =X,,
CX,.Z,CX! =Z,Z,, CX,.Z,CX! =2Z,. (14)

The disentangling map satisfies C,P,C, = %(]l + X, ). Hence, the resulting constraints fix out
the HM qubits and leave an unconstrained Hilbert space isomorphic to HC.

In fact, the gauging and disentangling steps can be carried out in a single step by following
the simple recipe

x, - ]x. zz,~-]] z. (15)

esv e€(u,v)

where (u, v) is a path between vertices u and v. We remark that the above recipe is not unique
for pairs of Z operators as it requires a choice of path. However, for pairs of Z operators and
paths chosen within a ball, the choices only differ by B, operators. Hence all choices act the
same way within the ground space of Hy, which consists of flat gauge connections.

2.2 Emergent quasi-particle description

Gauging a global Z, symmetry that acts as layer swap on an emergent anyon theory M KM,
where M is a modular tensor category, leads to a new theory (M K M)/Z, in the terminology
of Ref. [79]. To understand the gauged theory, we first consider the symmetry-enriched theory
obtained by introducing twist defects (see Fig. 1) into the M ® M theory [82]. The Z,-
domain walls permute the layers, and hence the symmetry defects occurring at the ends of
a domain wall are labelled by a single copy of M corresponding to the possible eigenvalues
under braiding with each symmetric anyon aa, which can be thought of as taking a single
a € M around the defect through both layers in a single closed loop. For an on-site symmetry
it is simple to introduce these domain walls and defects on the lattice [84,85]. We also note
that gauging the layer exchange symmetry is equivalent to condensing (or proliferating) the
domain walls, thus deconfining the twist defects. In cases where the symmetry is implemented
by a translation, these topological defects correspond to familiar pointlike or looplike lattice
dislocations [86].

Under the symmetry action, anyons of the form aa are fixed while ab «<— ba form orbits of
length two. Therefore, upon gauging the symmetry the anyons split and coalesce respectively:

aa — [aa,x], {ab,ba}— [ab]=[ba]. (16)

Ga *EEEEEEEEEEEEEE¥ Ga

Figure 1: A G = Z, twist defect switches the layer index, which can no longer be
assigned globally due to the topological obstruction, but can still be assigned locally.
Operators which pass through the defect cannot pass through an odd number of times
and form closed loops without incurring an energy penalty. Closed loop operators
stabilizing the ground space are hence required to wind around the defect line an
even number of times.
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SET Gauged model Quant. dim.
Symmetric q.p. aa laa,+] 1
Permuted q.p. 1a,al [1d] 2
Global Z, charge Gauge charge [11,—] 1
Z, Defect line Gauge flux Shape dependent

Table 1: The effect of gauging a Z, symmetry that acts via swapping layers in 3D on
a generating set of particles. The pointlike quasi-particles (q.p.) in the first two rows
may include fractons, lineons, planons, or have no mobility restrictions.

Prior to gauging, the domain walls are given by a line where layers are interchanged, so the
twist defects at the ends of these lines are in one-to-one correspondence with anyons in a single
layer g, and are swap symmetric. The symmetric anyons aa can condense on the symmetry
defects at the endpoints of the layer swap domain walls. Upon gauging, each defect splits

8o [8s %], (17)

into a version with =1 gauge charge. The gauged bare defect obeys non-Abelian fusion rules
[g1,+] % [g1,+]= D [aa,+]. (18)
a

We remark that one could similarly consider gauging other Z, anyon permutation symme-
tries which swap e.g., e with m in a single toric code layer [86]. As a step in this direction for
fracton models, Ref. [87] considered a kind of pointlike twist defect appearing at the end of a
defect line in the 3D checkerboard model corresponding to its electromagnetic duality—while
condensing these point defects (equivalently, gauging the symmetry) would not introduce any
looplike excitations, it does offer a route to realizing subdimensional excitations (which would
necessarily be lineons) with non-integer quantum dimension. Here, however, we restrict our-
selves to gauging global layer swap/hadamard symmetry as described above. So as to keep
our discussion self-contained, and as a review, in the appendices we discuss the effects of gaug-
ing on three familiar models: the 2D and 3D toric codes (Appendix A), and the 2D color code
(Appendix B), which is equivalent via a local unitary to two copies of the 2D toric code [88-90].

2.3 Generating non-Abelian particles by gauging layer swap symmetry in 3D

The result of gauging layer swap symmetries upon pointlike particles in 3D follows the gauging
of layer swap on anyons in 2D closely. In particular, for pointlike superselection sectors in a
bilayer system, gauging is still described by Eq. (16), with non-Abelian gauged particles [ab].
Unlike in 2D, the behavior of the defect sector after gauging can be separated from that of the
pointlike particles, since the defects all result in looplike excitations after gauging. The rest of
this section contains the central ideas of this paper, as we obtain general results regarding the
nature of excitations and their associated Wilson operators within the framework developed
thus far. The results of this analysis are summarized in Table 1, where the possible excitations
in the gauged theory, alongside their precursors in the symmetry enriched phase and their
quantum dimensions, are tabulated.

Our arguments are based on fractal operators that create the pointlike excitations at their
corners. Such operators have been shown to exist for all translation invariant Pauli models
in 3D [91], and include the special cases of string and planar subsystem operators. For the
remainder of this section we focus on gauging layer swap symmetry on theories with Abelian
particles that have Z, fusion rules, such as those occuring in topological stabilizer models.
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The results should easily generalize to gauging symmetries that act as swap on more gen-
eral Abelian theories, while the ideas are relevant for totally general quasi-particle permuting
symmetry-enriched phases.

Let O, denote a fractal operator that creates a cluster of well separated topologically non-
trivial point excitations, which include an excitation a at the origin. Since the symmetrized
version of the above operator is given by O, ® 1 + 1 ® O, the gauged version of this operator
creates a pattern of excitations located identically to those created by the original operator
O,. On the other hand, we can consider the antisymmetrization O, ® 1 —1 ® O,. While this
operator becomes 0 after gauging, as it is odd under the global symmetry, we can consider the
product:

(0, 1-100,)T;[0,1—-1®0,],

where T; denotes translation by a lattice vector ¥ large compared to the support of O,. Gaug-
ing this operator produces a pair of operators in the gauged theory with support near that of
the ungauged operators, that are additionally joined by a string of Z operators on the gauge
degrees of freedom. This gauged operator again creates a charge pattern at the same loca-
tion as that created by the ungauged theory. Intuitively, this argument shows that each of the
charge cluster operators carries a gauge charge.

To make the above more precise, let us now consider how one locally measures gauge
charge, as well as the related concept of locally measuring Z, symmetry charges before gaug-
ing. Gauge charge in a region R containing the origin is measured by braiding a looplike
gauge flux excitation over d R, with the operator implementing this process given by gauging
a restriction of the global symmetry transformation applied to R. Such a restriction is obtained
by applying the global symmetry to R, followed by the application of an operator V % that
removes the domain wall thus created at the boundary by braiding a defect line over R,

U’R :vaRl_[Uv, (19)
veER

with this process illustrated in Fig. 2. Gauging the above operator results in an operator sup-
ported only near ' R. We remark that the restriction of the symmetry satisfies Uz, [¢o) = d |¢¢)
on the symmetric ground state, for some positive d, by construction.

If we now consider a nonzero ground state of the gauged system, given by G |v),), we may
create an excitation and braid a flux loop around it as follows:

GlURIGIO, @ L +1® Oy]G 1)) = GUR(O, ® L +1© Of) ) (20)

which follows from Eq. (6). Assuming that O, is a tensor product of local operators, which
holds for stabilizer models, we then have that

Ur 18 O, o) =Vor O @ ORI | U, lpo)
vVER

=Var 0, @ ORIV, ), (21)

where V5 creates a domain wall by braiding a defect over dR. However, this process must
leave an excitation on R, since O, @ (’)((IRC) creates a pair of excitations over both layers,
in the same superselection sector as aa and with support on dR N supp O; this is depicted
schematically in Fig. 2 (b). This configuration cannot be deleted by the combined action of
Vayg, V- Therefore, this braiding process in the gauged theory cannot result in fusion of the
flux loop to the vacuum or, in other words, the matrix element of the braiding is zero. Hence,
there is no well defined Z, charge on the gauged [ab] excitation when a # b. We remark
that for a gauged aa particle there is no such obstruction, and so assigning a Z, charge to the
gauged particle [aa, ] is well-defined.
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x

(a) (b)

Figure 2: The process of (a) applying the symmetry locally to permute a charge and
then removing the domain wall thus created by dragging a twist loop over it cannot
result in the twist loop fusing to vacuum, since it results in the configuration shown in
(b). Operators acting on the first (second) layer are represented by the green (blue)
region.

Combined with the above observation regarding gauging a pair of charge clusters created
by (0, ®1-100,)T;[0,®1—-18®0,], we see that each cluster of charges can fuse to either
+ gauge charge, which cannot be detected locally on a single excitation a. For a line of N
such charge clusters with a vacuum total charge, there are thus 2V~! possible internal charge
configurations.

In fact, we can show that the quantum dimension of an individual gauged excitation [1a] is
2, provided that a obeys Z, fusion with itself. Since the Z, charge of individual [1a] particles
is not well defined, the operator

N
G0, 81+100)[ [(1+e)], (22)

i=0

should create the same pattern of local excitations in the vicinity of O, as that created by
GO, ®1+1®0,]. Here, i = 1,...,N label the locations of the N well separated charges
created by O,, i = 0 labels some other point far from the support of O,, and ¢; are some local
operators with negative charge under the global Z, symmetry.

To finish this argument, notice that since

(0,81+100,)°=2(1+0,80,), (23)

fusing the same local pattern of [ 1a] charges created in the two distinct ways described above
results in a superposition of vacuum and N [aa, +] charges, together with 2V configurations
of gauge charges. Since all the aformentioned particles are Abelian, we have that

N _ 9N+1
2dfy,=2""", (24)

i.e. dj1q] = 2. Technically, this argument required that the superselection sectors of each of
the N particles created by O, are related by translation (or are isomorphic in a more general
sense) which holds for all examples considered below. This completes our proof that pointlike
particles obeying Z, fusion in the symmetry enriched phase lead to non-Abelian particles [1a]
in the gauged phase. We remark that nowhere in the preceding argument have we made
any assumptions about the mobility of the a particles. Thus, we have shown that gauging a
symmetry which permutes subdimensional excitations will result in non-Abelian excitations in
the gauged phase.
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However, to show that gauging a fracton permuting symmetry results in non-Abelian sub-
dimensional excitations, we need to show that the gauged phase remains fractonic i.e., that
the gauging procedure does not produce any stringlike operators at the ends of which fractons
may be isolated. We now show that subdimensional excitations indeed retain their mobility
restrictions upon gauging.

A gauge invariant operator that commutes with the flux constraints and is supported within
a ball can be written as

0=> 0Me0f, (25)

where

of=[1]1]x. (26)

i i
J eeaBj

is the product of X matrices on edges through the boundary on the dual lattice of some collec-
tion of balls B]l.. On the gauged subspace this satisfies

0G =P,0(X)|0),
e

=Gzr[ [[uv. | oM. 27)
i

veB!
J

Assuming that O only created a pair of pointlike excitations on the groundstate G |), then
away from those excitations Of” must contain domain wall operators along 8 B! so as to avoid a
growing energy penalty. These Z, domain walls can then be dragged into a small neighborhood
of the excitations, thereby removing the U, terms they are dragged over. This process results in
a new operator OM that creates a pair of pointlike excitations on the ungauged layers, which
map onto the original pair of excitations after gauging. Since the operator gauging map is
invertible on the subspace of symmetric operators, this implies a pair creation operator for any
particles that are mapped to the aformentioned pair after gauging. In other words, fractons
are mapped to fractons after gauging—more precisely, fractons created at the corners of fractal
(planar) operators map onto fractons created at the corners of fractal (planar) operators after
gauging, as the operator gauging map preserves support.

Combined with our discussion showing that pointlike excitations of the form [1a] have
quantum dimension df;,) = 2, the above argument clearly establishes the presence of non-
Abelian fractons in the phase obtained by gauging a fracton permuting symmetry. The same
argument applies to other subdimensional excitations permuted by the symmetry as well. Fur-
thermore, these fractons are inextricably non-Abelian, i.e., they are not the composite of an
Abelian fracton with a non-Abelian particle that is not a fracton, as long as the ungauged par-
ticle 1a is a true non-composite fracton. This is due to the fact that the only Abelian fractons
in the gauged theory are of the form [bb,=+]; for b = a, this fracton can be absorbed by the
[1a] fracton, since otherwise it leads to a distinct non-Abelian fracton [b (ab)]. For theories
also containing subdimensional excitations that are not fractons, so long as a fracton la in
the ungauged theory is not a composite, the gauged particle is also not a composite. Since all
models we consider host non-composite fractons, the above argument ensures the presence of
inextricably non-Abelian fractons in the gauged theory.

Finally, to exhaust the set of deconfined excitations in the gauged phase, we discuss the
gauge fluxes. Similarly to the 2D case discussed in Sec. 2.2, the line defects occurring at the
boundary of layer swap surfaces can absorb symmetric point particles aa incident on them.
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l€de
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AI = ZiZnZkZm
Aty = ZjZnZlZm
i Az = ZiZjZkZl

Figure 3: The X-Cube model [8] is defined on a cubic lattice with a qubit on each
link. The Hamiltonian is a sum of commuting terms, with B, and Aﬁ the cube and
vertex stabilizers respectively.

For fracton orders, the existence of a subextensive number of superselection sectors leads to a
large and shape dependent quantum dimension depending upon the number of independent
topological sectors of aa particles supported along the loop. A similar effect persists after
gauging, with the addition of a possible gauge charge on the loop excitation and each [aa, %]
particle. This completes our general discussion of gauging Z, permutation symmetries in 3D
topological or fractonic lattice models, with the results summarized in Table 1.

3 Examples

3.1 Two Copies of the X-Cube Model with Layer Exchange Symmetry

Here, we consider the X-Cube model introduced in Ref. [8], starting with a brief review of its
properties so as to keep our discussion self-contained. The X-Cube model is defined on a cubic
lattice with a single qubit living on each link. The Hamitlonian is a sum of commuting terms

Hyc=— Y A= >"B, (28)
v,k c

where k = x, y,z. The first term A’; is a product of four Pauli-Z operators acting on the links in
the plane perpendicular to direction k, while the second term is a product over twelve Pauli-
X operators acting on the links forming an elementary cube of the lattice (see Fig. 3). The
Hamiltonian Hy is exactly solvable, with any ground state |®) satisfying

Akle)=1®), B.|®)=18), VYvkec. (29)

Onan L, x L, x L, three-torus, the models has 22(:x*£5+£:)=3 Jocally indistinguishable ground
states, with the sub-extensive ground state degeneracy a characteristic feature of 3D gapped
fracton models.

Excitations are created by flipping the eigenvalue of at least one of the terms in the Hamil-
tonian, with no local operator present which creates only a single excitation. Fractons, in
particular, are created from the ground state by flipping the eigenvalue of a cubic interac-
tion term from +1 to —1; unlike anyons in ordinary topological orders, created at the ends of
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Figure 4: A layer swap domain wall (in yellow) swaps a lineon from the first X-cube
layer (green) to the second layer (blue). Clearly operators which pass through the
domain wall an odd number of times cannot form closed cages and so incur an energy
penalty. Cage operators that stabilize the ground space are hence required to wind
around the defect surface an even number of times.

Wilson strings, fractons are created at the corners of Wilson membranes, leading to the im-
mobility of isolated fractons. Nevertheless, bound states of adjacent fractons are planons as
they can be separated at the ends of Wilson strings and are hence mobile along planes of the
3D system. Excitations can also be created by changing the eigenvalue of the A’E terms in the
Hamiltonian—these are mobile only along one-dimensional lines of the lattice.

Given that each fracton constitutes its own superselections sector [8], a particularly con-
venient way of characterizing excitations in the X-Cube model is through its quotient supers-
election sectors (QSS)°. Specifically, a QSS is defined as the class of topologically non-trivial
excitations that are equivalent to each other through local unitary operations and attaching
planons. In other words, the QSS is effectively the number of superselection sectors modulo
planons.

Considering two copies of the X-Cube model, we can label the generators of the QSS by
the ordered pair ab, where a(b) = f,l,,l, labels fractons, lineons mobile along x, and lineons
mobile along y in the first (second) X-Cube copy. Other QSS can be generated through e.g.,
the fusion rule [, 1 x 1,1 =1,1 (and similarly for the other layer), such that the six elementary
QSS generators give rise to total 26 = 64 QSS.

Before we gauge the layer exchange symmetry, let us consider the effect of introducing a
symmetry defect into the system. As discussed in the previous section, in 3D we can introduce
layer swap surfaces which provide a topological obstruction to the global definition of layer
index. To see this, imagine passing an [, 1 lineon through the layer swap domain wall, as
shown in Fig. 4, which causes the layer index of the lineon to change. Unlike fully mobile
excitations, the lineon cannot simply loop around the symmetry defect to return to its starting
position; instead, the 11, loop splits into 11, and 1/, lineons and returns to its initial position
by forming the depicted cage configuration. As should be evident, for the cage to close, the

>The notion of quotient super-selection sectors was introduced in Ref. [92] to characterize excitations in “foli-
ated" fracton phases, which provide a coarse-grained notion of equivalence classes of fracton orders: Two fracton
phases A and B are considered equivalent as foliated fracton phases if A stacked with decoupled layers of 2D topo-
logically ordered states is adiabatically connected to B, stacked with a possibly different set of 2D topologically
ordered layers. It remains unclear whether this notion extends to non-Abelian fracton orders [62,75,76].
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lineon needs to pass through the domain wall an even number of times so as to not incur an
energy penalty.

Similar arguments apply to the other QSS generators as well, illustrating that the domain
wall can absorb the generating particles of the form cc. However, recall that the QSS are
defined only modulo planons and that, strictly speaking, the fractons and lineons constitute
sub-extensively many superselection sectors labelled by their positions. Therefore, unlike the
usual case of defect loops in 3D topological orders, where the loop can absorb a finite number
of topological excitations [93], the looplike defects in fracton orders are qualitatively distinct.
Specifically, we expect that the topological degeneracy associated with genon loops in fracton
orders will grow with the number of linearly independent cc sectors supported along the loop.
While the precise degeneracy will depend on the specific fracton model being considered, its
extensive nature is a generic feature of fracton orders with an on-site Z, global symmetry.

Now, before we gauge the layer exchange symmetry between the two copies of the X-Cube
model, we regroup the qubits from the edges of the cubic lattice to the vertices, as shown in
Fig. 5. After regrouping, there are six qubits per site, with the Hamiltonian given by

Hyyxc :—ZXC—ZZCX—ZZCy—ZZf
(o (o C C
> R-D BN By (30)
C C C C

with the usual cube and vertex terms of the X-Cube model® now given by:

/XXI ——XII /Zu
IX] — / Z17 — /
X = , B = ,
XXX ool XIX PR
IXX ——IIX nz——
/:—/ IZ1 —1ZZ
z7= , ZX= ,
................. 711 oo [TZ

sz/— ZZI/ _ /

which all act on the first X-Cube layer. The terms acting on the second layer are obtained by
taking (X —X, 77 ) in the above.

®We are mapping the terms of the original X-Cube model, defined in Fig. 3 as B, — X, and A’; - ch for

k=x,y,2
Figure 5: Qubit degrees of freedom originally living on the edges of the cubic lattice

are regrouped onto the vertices, such that three qubits are grouped onto each vertex
for a single X-Cube layer.
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The on-site Z, symmetry under which the above Hamiltonian is invariant is generated by

U, = SWAP ® SWAP ® SWAP, (31)
which acts as follows on each site r = (x, y, ) of the cubic lattice:

X)lc,yzHX)lcyz’ Zalgyz(_)z)lcyz’ (32)
where superscritpt i = %, 7, % labels the edge from whence the qubit was displaced on to the
vertex v at position x, y,z. We can now follow the general procedure for gauging global on-site
Z, symmetries, as described in Sec. 2. We introduce an additional gauge qubit on each link
(x+1/2,y,2),(x,y +1/2,2),(x,y,z+ 1/2) of the cubic lattice and gauge the Hamiltonian to
obtain

=— > g[x+X]-> g[zr+2x]-> g[zy+ 2¥]-> g[z + Z]
+Hg+ ApHp, (33)

where the first term acts on gauge qubits on all twelve links forming a cube, which we list for
completeness: (x+1/2,y,2),(x,y+1/2,2),(x+1/2,y+1,2),(x+1,y+1/2,2),(x,y,2+1/2),
(x+1,y,2+1/2),(x,y+1,24+1/2),(x+1,y+1,2+1/2),(x+1/2,y,2+1),(x,y+1/2,2+1),
(x+1,y+1/2,2),(x+1/2,y + 1,2+ 1). Meanwhile, the second term acts on qubits at edges
(x,y —1/2,2),(x,y,2 —1/2), the third on (x —1/2,y,2),(x,y,z —1/2), and the fourth on
(x—1/2,y,2),(x,y—1/2,2).

The term Hy is given by

Hp=— Z Zx+%,y,zzx,y+%,zzx+%,y+1,sz+1,y+%,z

X,Y,%

- Z Zx y+ 2 xyz+%Zx y+3 z+1Zx,y+1,z+%

X,Y,2
- Z Zx+ Y27 x yz+£Zx+ yz+1Zx+1,y,z+% 4 (34)
X,Y,3
and the term Hj is given by
Hp =— Z Ury Xt dy Koo y+1o%ny ot 1Ky oK y— 1 oKy o1 (35)

XY

up to an overall shift in energy.

With the gauging map as specified in Sec. 2, the above Hamiltonian in principle constitutes
an explicit exactly solvable Hamitlonian whose properties, such as the ground state degeneracy
and statistical properties of excitations, can be analytically derived. While appropriate for
deriving quantitative features such as the ground state degeneracy, this algebraically tedious
procedure sheds no further light on the qualitative features of the gauged model than those
derived from the general arguments presented in Secs. 2.2 and 2.3.

To begin with, let us consider the effect of the layer exchange symmetry on the QSS of the
two copies. The SWAP symmetry acts as follows on the generators of the QSS:

fFles1f, Llesll, 111l (36)

Thus, particles of the form cc are fixed by the symmetry while the 1c, c1 particles form length-
2 orbits, for ¢ = f, [, Zy (the same will also be true for the bare superselection sectors). The
symmetry defects are the looplike genons appearing at boundaries of layer swap domain walls,
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such as the one depicted in Fig. 4. These defects can carry a charge under each string or
membrane operator associated with the symmetric subdimensional excitations.

Our discussion of the genon loops so far parallels our discussion regarding the 3D toric
code, discussed in Appendix A.2. However, there is a crucial qualitative distinction between
these two cases, stemming from the presence of an extensive number of superselection sectors
in fracton models. In particular, each lineon [, 1 carries a position index labelling the line along
which it is mobile; due to this, the number of lineons of the form [, [, which can be absorbed
by a genon loop is determined by the geometry of the loop—this is in stark contrast to genon
loops in the 3D toric code [93] and provides yet another indication of the geometric nature
of fracton order. In general, the genons will be labelled by their eigenvalues under braiding
with excitations of the form p;p;, where we have restored the appropriate position indices i
associated with the fracton, lineon, and planon particles p. Distinct genons will then be related
by fusion with the Abelian particles of the form p;1 and can absorb p;p;. While a quantitative
analysis of the degeneracy associated with genon loops is beyond the scope of this work, the
above arguments suffice to demonstrate the non-Abelian, as well as geometric, nature of the
symmetry defects in fracton phases.

Once we gauge the layer exchange symmetry, the vacuum, along with the QSS generators
of the form cc split into disctint Abelian excitations labelled by [cc,+] for ¢ = f,1,,[,. Si-
multaneously, generators of the form c1 and 1c coalesce into single non-Abelian particles [c1]
with quantum dimension d = 2. Given the presence of Abelian fractons in the gauged theory,
in order to show that the non-Abelian fractons are inextricably non-Abelian [62,76], we need
to exclude the possibility that the [f 1] excitations are bound states of Abelian fractons with
some non-Abelian planons. If this were the case, then fusing an [ f f, +] excitation with [f1]
should produce a non-Abelian planon. However, since in the gauged model [f 1] can absorb
the Abelian fractons, this possibility is precluded. At the level of operators, we can restate
the above as the statement that the membrane operator O] creating non-Abelian fractons
at its corners cannot be local unitary equivalent to an operator creating Abelian fractons at
identical locations as O[] times some stringlike operator. Similarly, one can show that the
non-Abelian lineons in the gauged phase are not bound states of some Abelian lineon and some
non-Abelian planon. This clarifies that the non-Abelian character of fractons and lineons is a
fundamentally 3D feature, since the possibility that their topological degeneracy stems from
non-Abelian planons has been excluded.

Gauging also introduces Z, gauge charges [11, ], which are fully mobile Abelian particles.
The presence of these 3D pointlike particles already indicates the qualitatively distinct nature
of the gauged phase from the underlying fracton order, which lacks any fully mobile particles.
Finally, upon gauging, the genon loops lead to gauge flux loops, which remain non-Abelian
since they can (at the very least) absorb [cc,+] and [cc,—], for ¢ = f,l,,l,. However, the
gauge flux loops can also absorb Abelian planons [p;p;, ], which although trivial at the level
of QSS, will contribute to the quantum dimension of the gauge fluxes. Thus, the number of
excitations these loops can absorb will again depend on their geometry, such that these loops
will induce a ground state degeneracy which depends on their shape. While an exact analysis of
this degeneracy is beyond the scope of this paper, we stress the qualitative distinction between
the loop excitations generated by gauging in the X-Cube and in the toric code model.

Also important is the fact that the loop excitations in the gauged model braid non-trivially
with the subdimensional excitations, which demonstrates that the gauged Hamiltonian cannot
be equivalent via finite-depth-local-unitaries to a some non-Abelian fracton order decoupled
from some non-Abelian TQFT. Thus, the general gauging procedure described in Sec. 2, when
applied to two copies of an Abelian fracton order, naturally leads to an entirely novel quantum
order, distinct from both non-Abelian TQFTs and non-Abelian fracton orders’. Since the model

7While this is a question of semantics, fracton order as currently defined refers to systems with only subdimen-
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Figure 6: A 2 x 2 x 2 cell of the checkerboard cubic lattice. Shaded (empty) cubes
belong to the A (B3) sublattice of the checkerboard bipartition. The A is further par-
titioned by a four-coloring into {r,g,b,y} sublattices.

we have found encompasses aspects of both fracton order (subdimensional excitations) and
3D topological order (looplike excitations), we introduce the term panoptic fracton order for
describing such hybrid gapped 3D quantum phases.

3.2 Checkerboard model with on-site Hadamard symmetry

The checkerboard model, introduced in Ref. [8], is a foliated type-I fracton model defined on
the 3D cubic lattice, with one qubit living on each vertex. The Hamiltonian is given by

HCB :_ZXC_ZZC? (37)

ceA ceA

where we have bipartitioned the cubic lattice into .A and B checkerboard sub-lattices and
where the sum in both terms of the Hamiltonian indexes cubes in the A sub-lattice. The term
X. (Z.) is given by the product of eight Pauli-X (Pauli-Z) operators acting on the vertices of
the cube c:

X- X Z-
This model belongs to the class of CSS-type stabilizer code Hamiltonians and is exactly solvable
since it is a sum of commuting projectors, each of which is a product of Pauli operators. As
can be explicitly checked, on an L x L x L three-torus the ground state degeneracy is 2617°.
Note that this is precisely the ground state degeneracy of two copies of the X-Cube model on
a three-torus of length L /2—we will return to this point in Sec. 3.2.1.

In analogy with our treatment of the 2D color code (see Appendix B), to describe excitations
of the checkerboard model we further partition the a sublattice by introducing a four-coloring
{r,g,b,y}, as shown in Fig. 6. As discussed in Ref. [94], excitations of this model can also be
characterized through their QSS, as was the case with the X-Cube model. A convenient choice
for the generating set for the QSS sectors is given by fracton excitations labelled by the ordered
pair cxc,, indicating the violated X, (Z,) stabilizer in the cx(c;) = r, g, b sublattice. For
example. r1 denotes a fracton excitation of a red A, stabilizer. There are thus six elementary
generators for the QSS, leading to a total 26 = 64 QSS sectors. As discussed in Ref. [94],
a pair of neighboring fractons belonging to the same sublattice constitute a planon while a

sional excitations and no fully mobile 3D pointlike or looplike excitations.
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pair of neighboring fractons belonging to distinct sublattices constitute a lineon, as depicted
in Figs. 7(b) and (c).
The elementary QSS generators are fractons, which are created at the ends of membrane

operators given by
xX0=11x. 249=]]2. (38)
veM veM

where M is a flat, rectangular region connecting four cubes of the same color ¢ = r, g, b;
Fig. 7(a) depicts the operator Xf\r/l) which creates four 1r excitations. String operators for the
lineons can also be defined analogously:

x" =] 1%, 7z =]]z2,

vel, vel,

S ) ERCE P
vel, vel,

x"=T1x, 7" =[]z, (39)
vel, vel,

where [; denotes a straight line along the j axis connecting pairs of adjacent fractons with

distinct colors ¢y, c,. The operator X l(r’b)

example.
We now proceed to gauge the on-site Z, symmetry of the checkerboard model Eq. (37),
which is generated by h®N, with N the number of sites of the lattice and h the Hadamard

matrix
1 1
(1 1) o

This symmetry acts on the QSS sectors as follows

, creating a 1r x 1b lineon is shown in Fig. 7(b) as an

ab < ba, 41)

mapping e.g., 1r «— 1r. As we will discuss shortly, this symmetry action is equivalent to layer
exchange on the QSS of two copies of the X-Cube model, but not on the bare superselection
sectors themselves. Proceeding as in the case of the 2D color code (Appendix B), we find it

z
I'e !
X
X X X X
o
X X XM X

(a) (b) (c)

Figure 7: Hierarchy of excitations in the checkerboard model. (a) Fractons in a given
sublattice are created at the corners of a membrane operator M as depicted. (b)
Adjacent fractons belonging to distinct sublattices are lineons. (c) A pair of neigh-
boring fractons belonging to the same sublattice is mobile along a plane and is hence
a planon.
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convenient to change basis: h — X such that the checkerboard Hamiltonian, up to an irrelevant
normalization factor, becomes

4
H=—2>[Je+2)-5 3> [T -2)=-> 8%, 42)

ceAvedc ceAvedc ceAi=0

where .
B = > [ [xbezy. (43)
seZ%, wt(s)=j v=1

Here, v = 1,...8, label the vertices of a cube ¢ in the A sublattice, and wt(s) is the weight
function equal to the number of nonzero entries in the vector s. Schematically, we can expand
the above formal expression out as follows:

X X Z z Z z
A A I i
X —X Z : Z X —X
H=- - - + permutations
) ) G X ) /A R 7 ) D G X
X X Z Z X X
z z z z
S S S S
X——X X——X
— + permutations - + permutations
) /A R VA ) /AR R 7
X X Z Z
(44)

The symmetrized membrane operators creating the QSS generating fractons cc and c1+1c

are given by
() _
rid=11%,

veM
1 1
85\225 l_[(Xv+Zv)+§ l_[(Xv_Zv) (45)
veM veM

respectively, for c = r, g, b. The operator Sfa is given by a sum over all products of either X, or
Z, on each vertex along the membrane M, with the constraint that the number of Z, operators
in the membrane must be even. Similarly, we can defined symmetrized string operators for

the lineons, e.g.,
(rnb) _
v =11,

vel,
b 1 1
s =gl & +z)+ [ & -2, (46)
vEl, veM

which creates rr x bb and 1r x 1b + r1 x b1 lineons respectively. Again, the operator
is given by a sum over all products of either X,, or Z, on each vertex along the line [,. subject
to the constraint that only an even number of Z, operators are allowed. The (r, g) and (r,y)
symmetrized operators follow similarly.

Sl(r,b)
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Since we have chosen a basis where the symmetry is acting via the left regular represen-
tation we can gauge the symmetry and disentangle the gauge constraints following Eq. (15).
This results in the Hamiltonian

4
—> > B®) +Hy, (47)

ceA i=0
for Hy given in Eq. (34) and
. 8
- 3w Jar a0
s€Z8, wi(s)=j v=1

where v =1,..., 8, label the vertices of the cube along a loop y, within the edges of the cube,
that passes through each vertex once, and

A =[x, (49)

esv

8 ~

FI()S) — l_[Zze 5 (50)

e=1

fore=1,...,8, the edges of vy and
e

§e=Zsl~ mod 2. (5D

Eq. (15) can also be applied to gauge the string and membrane operators for symmetric
fractons, lineons and planons. In particular we have

ni= 11 z]11]x. (52)

el@ e M veM esv

where e(&Y) denotes an edge shared by a green and yellow cube, see Fig. 7 (a), and similarly
for other colors. One can also gauge 85\2 which results in a sum of operators each given by a
product of Z strings on edges connecting pairs of Z, terms in the ungauged operator times a
product of [ | .5y X Operators on the remaining vertices in M.

The lineon string operators can be gauged in a similar fashion following Eq. (15)

=171 z] 1] [* (53)

e@)el, veEl, eV

and Sl(r’b) results in a sum of operators which can be found by following the same logic for

gauging SE\C/?.

3.2.1 Relation between Checkerboard and X-Cube models

To understand the effect of gauging the Hadamard symmetry on the QSS sectors of the checker-
board model, we invoke a mapping between this model and two copies of the X-Cube model,
as discussed in Ref. [94]. Specifically, it was shown that the checkerboard model is equivalent,
up to finite depth local unitaries, to two copies of the X-Cube model:

UHegU'=HY. +H}.+Hz., (54)
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where H gm is a Hamiltonian in the trivial phase acting on some ancilliary degrees of freedom.
The explicit form for the unitary U can be found in Ref. [94].

The map between the two models changes the excitation basis as follows:

rl—1,f 1r—fl,
g1~ Ty (L) g fl,
b1.—>T;+1y(le) 1b— fI,
yl1e ToL(1f) ly—f1 (55)

where T; is the translation operator along lattice direction i=%,79,2%.
From this, we can see that the Hadamard symmetry of the checkerboard acts on the basis
for two copies of the X-Cube as follows:

fle Tip(11),
Ll e Ty(1l,) x Ty(1f) x Ty (1f),
1 Ty(1L) x T (1f) x Ty(1f), (56)

where we have used that T; leaves an [; lineon sector invariant. While the Hadamard symmetry
exchanges a fracton in the first X-Cube layer f 1 with one in the second X-Cube layer 1f, it
does not act simply as layer exchange on the lineons. However, since T;(1f) x T;(1f) and
T;(1f) x Ty(1f) are both products of planons, the Hadamard symmetry indeed acts as layer
exchange symmetry on the QSS sectors of the two X-Cube copies.

Thus, as far as the QSS sectors are concerned, through the explicit mapping given above
we see that gauging the Hadamard symmetry of the checkerboard is equivalent to gauging the
SWAP symmetry between two copies of the X-Cube model. Following our discussion of the
latter, the excitation spectrum of the gauged Checkerboard model will also consist of fractons,
lineons, and gauged flux loops, all of which are non-Abelian, as well as fully mobile Abelian
particles. By analogy with the previous section, we can also establish the presence of inextrica-
bly non-Abelian fractons and lineons in the gauged model, as well as non-Abelian gauge flux
loops.

We end our discussion of type-I models with an important open question: since the
Hadamard symmetry acts as layer swap on the QSS sectors the X-Cube layers, it is natural to
expect that the gauged checkerboard and gauged X-Cube layers will continue to be equivalent
as foliated fracton phases [92]. However, demonstrating this first requires an extension of the
notion of QSS sectors to non-Abelian fracton orders and then to panoptic fracton orders, since
the presence of the genon loop excitations in the latter must also be accounted for. Moreover,
since the additional degeneracy induced by the genon loops will also depend on the number
of planons they can absorb, due to the non-trivial action of the Hadamard symmetry on the
bare superselection sectors, it is conceivable that the gauged models are in distinct phases. We
leave a detailed investigation of this question to future work.

3.3 Copies of Cubic Code with Layer Swap Symmetry

The Hamiltonian for two copies of the cubic code [2] is

Hywce=— D (X +Z+X+Z,), (57)
Cc
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where the Hamiltonian terms on the first layer are

IX XI 1Z Z1
e / /o /
XI II Zl ——7Z
Xc: P Zc:
,XX ............... IX ‘411 ................ 17
/ /
IX XI I1Z Z1

Similarly the terms acting on the second layer 5(;, gc are given by making the replacement
(X —-X,Z—>7 ) in the above. The Hamiltonian respects the Z, symmetry generated by swap-
ping the qubits in each layer, with the following four qubit on-site action:

U, = SWAP ® SWAP, (58)
which acts as follows

XI —XI, IX—IX,
Zle— 71, 1Z—1Z. (59)

Excitations of Z. in the first cubic code layer can be created in the following local clusters,
shown on the dual cubic lattice,

A | ] x|

and similarly for excitations in the second layer by replacing X — X. The behavior of the
X, excitations can again be similarly obtained due to a combined spatial-parity + Hadamard
+ left-right qubit swap symmetry of the cubic code Hamiltonian. It was shown in Ref. [2]
that there exist no string operators capable of moving topologically nontrivial excitations in
the cubic code, hence making it a type-II model in the taxonomy of Ref. [8]. Single fracton
excitations can be isolated by applying XI or IX to the sites in a discrete Sierpinski prism with
the same orientation as the local charge clusters respectively [91,95]. We denote the fractons
in the bilayer system by fx1, f,1,1fx, 1f,, suppressing their location on the dual lattice. The
swap symmetry acts on the fractons in the obvious way.

Gauging the layer swap symmetry of Hy, ¢, we find

(60)

H=—Z(Q[XC+5€C]+Q[ZC+§C])+HB+APHP, (61)

C

for Hg and Hp given in Egs. (34) and (35).

As discussed in section 2.3, the gauged model supports non-Abelian fractons [1f 7],
which are created at the corner of fractal operators since the gauging map preserves operator
support. The gauged theory also contains Abelian fractons [ fx 7 fx,z, %], which originate from
a pair of fractons from both layers at a common coordinate. More generally, any [ fx,/, f}g /Z]
particle with fractons fx,, and f)g /z appearing at distinct coordinates becomes non-Abelian.
Interestingly, gauging the global swap symmetry results in a loss of the type-II no strings prop-
erty as Z, gauge charges [11, £] with three dimensional mobility are introduced in the gauged
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theory. Following our general discussion in Sec. 2, gauging also introduces non-Abelian gauge
flux loops, whose quantum dimension depends on their size and shape as they can absorb any
Abelian fracton [fx,zfx/z,+] that is incident on the loop. The number of such particles in
distinct superselection sectors determines the quantum dimension, and is inherited from the
properties of the superselection sectors in the cubic code. We leave a detailed quantitative
analysis to future work.

The phase of matter obtained by gauging copies of the cubic code clearly lies beyond phases
described by some decoupled conventional gauge theory and type-II fracton model, since the
non-Abelian fractons in our model can absorb the gauge charges and have braid non-trivially
with the gauge flux loops. Unlike the gauged foliated type-I models explained in the previous
sections, where there is some precedent for a gapped order with fractons, mobile excitations,
and loop excitations [63], to the best of our knowledge no model with similar properties to a
gauged type-II model has appeared previously. In particular, the gauged cubic code represents
the first example of a gapped phase hosting non-Abelian fractons at the corners of fractal
operators. Note that the general arguments presented in Sec. 2.3 imply that the non-Abelian
fractons are inextricable.

Similarly to more familiar non-Abelian anyons, e.g. the Ising o particle, a pair of defects
with vacuum total charge can be used to encode a qubit in the gauge charge of an individual
cluster. A logical operator pair is then given by a string operator moving a charge from one
defect cluster to the other and a membrane braiding a loop excitation around a cluster. Unlike
conventional non-Abelian anyons, if the defect clusters are sufficiently large their inherently
slow dynamics [1, 3,31, 32] should serve to keep them in place for long times without the
need for pinning fields. It would be interesting to find other possible encodings with no string
logical operators and hence larger code distances and energy barriers, and more favorable
thermalization behavior for the encoded quantum information.

4 Discussion and conclusion

We have studied the effects of gauging a global symmetry that exchanges anyons between lay-
ers of fracton orders of type-I and type-II. Surprisingly, we find that this constructive approach
leads to a new class of models with qualitatively novel behavior, since the resulting theories
all host non-Abelian fractons alongside non-Abelian loop excitations and Abelian 3D particles.
Besides unveiling a novel and distinct possiblity for gapped quantum phases in 3D, our work
has potential implications for quantum computation, since the degenerate subspaces based on
configurations of non-Abelian fractons could be useful for topological encoding of quantum
information.

In essence, the panoptic fracton order we have found constitutes a hybrid order in which
properties of fracton order and 3D TQFTs are non-trivially enmeshed: while retaining the geo-
metric sensitivity and restricted mobility excitations of fracton phases, there appear additional
excitations reminiscent of 3D TQFTs. This is similar in spirit to the string-membrane-net mod-
els introduced in Ref. [63]; since the construction here encompasses both non-Abelian fractons
as well as gauged type-II models, we posit that the class of possible 3D phases is broader than
that covered by the string-membrane-nets.

As the gauging map is invertible, fracton orders can clearly be derived from panoptic
fracton states by “ungauging" the symmetry or condensing the gauge charges. Establishing
whether there exists an analogous procedure through which the panoptic fracton state can be
reduced to a pure TQFT® constitutes an important question going forwards, as an affirmative

8For conventional fracton orders, one can ungauge e.g., the planar sub-system symmetries of the X-Cube model,
which reduces it to decoupled layers of 2D toric codes. A subsequent gauging procedure [14] then results in the
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answer would show that panoptic fracton phases constitute a “parent" order, from which both
TQFTs and fracton orders can descend. A natural candidate is a generalized condensation of
some Abelian fracton particles to “ungauge" the fractal symmetry present in a type-II fracton
order [13].

A similar line of inquiry is to better understand the generalized gauge theory that under-
lies the phases we have found. A straightforward first step in this direction would be find-
ing Abelian panoptic orders, where Abelian subdimensional excitations co-exist with Abelian
flux loops and fully mobile 3D particles. Considering such models could provide insights into
whether they can be alternatively generated by gauging “hybrid" fractal/sub-system and n-
form symmetries. Recall that gauging the swap symmetry of two copies of the quantum double
D(G) leads to a model in the same phase as D((G x G) X Z,); here, in some sense we have
replaced the global G symmetries with sub-system symmetries. Further analysis of our mod-
els could hence shed light on the nature of these new gauge theories and their appropriate
algebraic structure, thereby providing a route to study generalizations of the quantum double
description of ordinary discrete gauge theories. This would be of particular interest given that
there currently exists no such general algebraic description even for usual fracton orders.

We have restricted our focus to gauging Z, global symmetries here as this simple class al-
ready captures the conceptually novel features of interest. Our approach generalizes straight-
forwardly to any on-site, unitary representation of a finite group by following the lattice gaug-
ing procedure described in Sec. 2. Considering more general non-Abelian groups would lead
to non-Abelian 3D particles, which are not of particular interest in the study of fractons as
these are already captured within the familiar TQFT framework. For example, one could take
N > 2 copies of a fractonic lattice model and gauge any subgroup of the Sy global permu-
tation symmetry group of such a model. Alternatively, we could also consider gauging the
swap symmetry between copies of the X-cube model based on an arbitrary Abelian group G.
More generally, understanding whether two foliated-equivalent phases remain equivalent as
foliated fracton phases after gauging their appropriate on-site symmetries remains an impor-
tant direction for future research, one which we believe can be understood within the general
framework described here.

Our study of global symmetry actions on fracton orders also points to many interesting fu-
ture directions on the way to a comprehensive theory of symmetry-enriched fracton order. One
interesting aspect we plan to study in a forthcoming work is the fractionalization of a global
symmetry on fractonic particles. The study of global symmetries is also interesting from a
quantum codes perspective, specifically the question of what transversal or locality preserving
gates are possible in codes based on fracton lattice models. Also, since gauging has been stud-
ied numerically and analytically within the Projective Entangled Pair States (PEPS) [84,85,96]
formalism in terms of an internal /virtual gauge symmetry group, it would be interesting to fur-
ther our understanding of such a symmetry group for fractonic tensor networks [54]. As a final
remark, we note that while the gauging procedure has also been carried out for topological
orders at the level of their low-energy effective field theories [97,98], whether it extends to
the tensor gauge theory formalism remains an open question. Ideas in this direction may offer
a route towards realizing non-Abelian symmetric tensor gauge theories, which have thus far
proven elusive.
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versity.

Note: During the course of this project we became aware of similar results, obtained inde-
pendently in Ref. [99] by D. Bulmash and M. Barkeshli, which appeared in the same arXiv
posting.

A Gauging layer swap symmetry of two copies of toric code

A.1 2D toric code

We consider two copies of the toric code [73] on the square lattice to illustrate the gauging
procedure on a familiar lattice model. We place two qubits on each link of the lattice, with
Pauli operators X, Z corresponding to the first qubit and X, Z to the second. In order to make
the gauging procedure transparent, we first shift the qubits from the links to the sites of the
lattice, as depicted in Fig. 8 for a single toric code copy. Upon regrouping, there are four qubits
on each site, with Hamiltonian

HZXZDTC :—Z(Xp'i'zp'i'fp'i‘jp) N (62)
p

where the plaquette (p) terms X}, and Z, are given by

XI-XX ZI—11I

X= | 1, Z= | |, (63)

IT—-IX Z7Z-17

respectively, which act on the first toric code layer. The terms acting on the second layer fp, Zp
are given by making the replacement (X —X,Z—-Z )

The above Hamiltonian respects the on-site Z, symmetry generated by exchanging the lay-
ersi.e., swapping the qubits in each layer, with the four qubit on-site action: U, , = SWAP®SWAP,
which acts as follows on the four qubits residing on site (x, y):

X;,y <—>X;,y , Z;,y — Z;,y ) (64)
Following the general gauging procedure delineated in Sec. 2, we introduce an additional
qubit on each edge (x +1/2,y),(x,y + 1/2) and modify the Hamiltonian accordingly:

H=—Zg[xp+fp]—2g[zp+§p]+HgD+H§D, (65)
__,1+_,_ . — %
l+ ¢
44— [

Figure 8: Qubits originally living on the links of a square lattice are regrouped on to
vertices as shown here.
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where the first term in the above Hamiltonian acts on gauge qubits (x —1/2,y),(x,y —1/2),
while the next acts on (x +1/2,y),(x,y +1/2), and

Hy = sz+ s ZyiiZestyirZastyed (66)
H2D - _Z Ury X x+3,y xy+1Xx—%,yXx,y—% . (67)

The swap symmetry acts as follows on the generating anyons:
ele—1le, mle 1m. (68)

Hence anyons of the form aa are fixed by the symmetry, while anyons of the form ab, with
a # b, form cycles of length two.

The symmetry defects are genons which appear at the end of layer swap domain walls (see
Fig. 1). These defects can carry a charge under each string operator associated to a symmetric
anyon. Hence, there are four genons g.., labelled by their eigenvalues under braiding with
ee, mm, respectively. As these genons are all related by fusion with Abelian anyons of the form
al, they consequently all have the same quantum dimension. The genons are non-Abelian
since they can absorb anyons of the form aa, which can be split into al ® 1a and moved
around the genon to annihilate. The total quantum dimension of the defects matches that of
the anyons, hence the quantum dimension of each genon is d,,, = 2.

Upon gauging the layer swap symmetry, the anyons of the form aa split into 8 different
Abelian anyons labelled by [aa,+]. Pairs of anyons of the form ab, ba, a # b, coalesce into
single non-Abelian anyons [ab] with quantum dimension d = 2. There are 6 such anyons in
total. Finally, the genons split into 8 anyons with quantum dimension 2 labelled by [g..,£],
so that the total number of superselection sectors in the gauged theory is 22. The resulting
topological order is equivalent to the discrete gauge theory based on (Zy X Z,) X Zy = Dy,
which we denote by D(D,).

A.2 3D toric code

Similarly to the previous section, we consider two copies of the 3D toric code on the cubic
lattice, where we group three qubits (per layer) onto each site. Upon regrouping, the Hamil-
tonian is given by

Hszc:_Z(Xc+Zf+ch+Zcz)
C

—Z(/’?C+ZNC"+ZNCY+ZS), (69)
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where the usual vertex and plaquette terms of the 3D toric code are now represented as the
following cube terms:

XII ZI11

4 / Y%
IZZ ............. IIZ ZZI ............. ZII

which all act on the first toric code layer. The terms acting on the second layer are obtained
by taking (X —-X,Z—>Z ) in the above.
The Hamiltonian written above respects the on-site Z, symmetry generated by

U, = SWAP ® SWAP ® SWAP, (70)

which acts as follows on the qubits located at each vertex v = (x, y, )

Xf <—>)?f Zlo <—>Z€ (71)

X,Y,% Xx,y,%° X,Y,% X,y,% "

To gauge the symmetry we again introduce a qubit on each edge
(x+1/2,y,2),(x,y +1/2,2),(x,y,2+ 1/2) so that the Hamiltonian becomes

H==Yg[X.+X]-Y g[zx+ 2 ]- > g[z + 2/ ]- D o[ 2 + Z]
+HB+APHP5 (72)

where the first term acts on gauge qubits (x—1/2, y,2), (x, y—1/2,2),(x, y,z—1/2), the second
term acts on (x+1/2,y,2),(x,y+1/2,2), and the third and fourth terms act analogously. The
term Hy is defined in Eq. (34), and H} is defined in Eq. (35).

The swap symmetry acts as follows on the generating point and looplike excitations

elele, m'le 1m’. (73)

Hence ee is fixed under the symmetry, and 1e, el form a cycle of length 2. The looplike exci-
tations behave similarly.

The symmetry defects are looplike genons appearing at the boundary of layer swap domain
walls. These defects come in two types: g\, distinguished by their eigenvalue under a linking
string operator generated by ee. The two defects are related by fusion with m"1. The genon
loops are non-Abelian, and carry a cheshire charge, as they can absorb ee particles.

Gauging the layer swap symmetry causes the vacuum and ee particle to split into pairs of
Abelian charges [11,£] and [ee, £], respectively. Meanwhile el and 1e coalesce into a single
non-Abelian particle [e1] with quantum dimension 2. Similarly, m"1 and 1m" coalesce into a
single loop excitation [m1]" which is non-Abelian, and carries cheshire charge as it can absorb
[11,—] particles. On the other hand m”"m" also leads to a single loop excitation [mm]" which
is Abelian. The genon loops again lead to single loop excitations [ g, ]" which remain non-
Abelian, and can absorb [ee,+] and [ee,—], respectively. The resulting topological order is
described by D, gauge theory.
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Figure 9: The 2D color code is defined on the honeycomb lattice with one physical
qubit per vertex. For each plaquette, there are two stabilizers given by the product
of either X or Z operators on the vertices forming the plaquette.

B Gauging the Hadamard symmetry of the 2D color code

The 2D color code [100] is defined on the honeycomb lattice, with one qubit per vertex, with

the Hamiltonian given by
H=->T1]x->1]2. (74)

p vedp p vedp

It is convenient to pick a three coloring r, g, b of the honeycomb lattice, as shown in Fig. 9, to
describe the excitations of this model. Correspondingly, we label excitations according to the
color of the plaquette stabilizer they violate and by the stabilizer type—X or Z—they violate.
Specifically, we label excitations by the ordered pair cyc; where cx(c;) =r, g, b indicates the
color of the X-type (Z-type) stabilizer violated. For example, rb denotes an excitation of a red
X stabilizer and blue Z stabilizer.

An (over-complete) generating set of string operators for the sixteen anyonic excitations
of the color code is given by

X(C) ]_[ X,, Z(C) l_[ Z,, (75)

Vqu vepq

where (p, q) is a path between plaquettes p, q of the same color ¢ =r, g, b, along disjoint edges
connecting pairs of c-plaquettes. As can be checked explicitly, excitations obey the fusion rules

CX]'XCX]-:]-J 1CZX1CZ:19 (VCXJCZ:rang): (76)

X]_]_ X le = X31, 121 X 122 = 12;3, (77)

for pair-wise distinct color labels x;, x5, X3 and 2;,24,23. Thus, {r1, g1, 1r, 1g} is a minimal
generating set for the color code anyons.

Note that the total number of excitations of the color code is equivalent to that of two
copies of the 2D toric code, as is the number of minimal generating anyons. The 2D color
code is in fact exactly equivalent, under a finite-depth local unitary circuit, to two copies of
the 2D toric code [88-90]. In terms of anyonic excitations, the mapping to copies of toric code
is given through the correspondence:

rl—el, gl—1m, bl—em,
1r—1le, 1g —»ml, 1b — me. (78)
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Now, the on-site Z, symmetry of the color code is generated by h®N where h is the Hadamard
matrix defined previously in Eq. (40). The symmetry acts on the excitations in either basis as
follows

ab < ba, (79)

clearly acting as layer swap on the copies of toric code. Therefore, the emergent symmetry-
enriched topological order, as well as the outcome of gauging, is identical to that of the pre-
vious section A.1. The only distinction is the precise Hamiltonian, and representation, being
considered.

To gauge the symmetry it is convenient to change basis: h — X, so that, up to an overall
normalization factor, the Hamiltonian (74) becomes

3
1 1 :
_ = = _ _ (21)
TR DY | LRSI 3] ) [CAESE 3) 3 N
P vedp p vedp p i=0
where
. 6
B = > [ xbezy. 81)
seZS,wt(s)=j v=1

In the above equation v = 1,...6, label the vertices of plaquette p, and wt(s) is the weight
function equal to the number of nonzero entries in the vector s.
The symmetric string operators are given by

() _
Y<p,q>_ l_[ Y,
ve(p,q)
(c) _1 1 _
S =5 11 &®+2)+5 ] & -2, (82)
ve(p,q) ve(p,q)

for the cc and c1 + 1c¢ anyons, respectively, where ¢ =r, g, b. The operator Sg?@ is given by a
sum over all products of either X, or Z, on each vertex in (p, q), with the constraint that the
number of Z, operators in the string must be even.

Since the symmetry acts on-site as the regular representation, it is simple to carry through
the gauging and disentangling steps in one go following the recipe in Eq. (15). This switches
the variables to qubits on the edges of the honeycomb lattice, with Hamiltonian

H:—Zi§§2i)+l_lze. (83)

p i=0 e€dp
In the above equation
_ 6
= Y o] e ©
SEZg,wt(s)=j v=1
where
A, =] ]x.. (85)
esv
6 ~
Fl()S) — l_lzze s (86)
e=1
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fore=1,...,6, the edges of plaquette p and

e
5, = Zsi mod 2. (87)
i=1

We can also gauge the string operators for symmetric anyons following Eq. (15)

7)) _
Y(p,q) - < )Z‘f l_[ X, (88)

e€(p,q e’eN,

where N, denotes edges sharing a vertex with e. Gauging the string operator S g;)q) can be done
similarly, leading to a sum of operators with Z strings along edges between pairs of Z, in the

ungauged operator, and replacing each X, with a star term.
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