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Abstract

We illustrate how Bayesian reweighting can be used to incorporate the constraints pro-

vided by new measurements into a global Monte Carlo analysis of the Standard Model
Effective Field Theory (SMEFT). This method, extensively applied to study the impact of
new data on the parton distribution functions of the proton, is here validated by means
of our recent SMEFIT analysis of the top quark sector. We show how, under well-defined
conditions and for the SMEFT operators directly sensitive to the new data, the reweight-
ing procedure is equivalent to a corresponding new fit. We quantify the amount of in-
formation added to the SMEFT parameter space by means of the Shannon entropy and
of the Kolmogorov-Smirnov statistic. We investigate the dependence of our results upon
the choice of alternative expressions of the weights.
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1 Introduction

A powerful framework to parametrise and constrain potential deviations from Standard Model
(SM) predictions in a model-independent way is provided by the SM Effective Field Theory
(SMEFT) [1-3], see [4] for a recent review. In the SMEFT, effects of beyond the SM (BSM)
dynamics at high scales E ~ A are parametrised, for E < A, in terms of higher-dimensional
operators built up from the SM fields and symmetries. This approach is fully general, as one
can construct complete bases of independent operators, at any given mass dimension, that can
be systematically matched to ultraviolet-complete theories.

Analysing experimental data in the SMEFT framework, however, is far from straightfor-
ward because of the large dimensionality of the underlying parameter space. For instance,
without flavour assumptions, one needs to deal with N,, = 2499 independent operators
corresponding to three fermion generations. Because of this challenge, the complexity and
breadth of SMEFT analyses, in particular of LHC data, has been restricted to a subset of higher-
dimensional operators so far, typically clustered in sectors that are assumed to be independent
from each other [5-22].

More recently, some of us have developed a novel approach to efficiently explore the pa-
rameter space in a global analysis of the SMEFT: the SMEFiT framework [23]. This approach
is inspired by the NNPDF methodology [24-28] for the determination of the parton distribu-
tion functions (PDFs) of the proton [29-31]. The SMEFiT methodology realises a Monte Carlo
representation of the probability distribution in the space of the SMEFT parameters, whereby
each parameter is associated to a statistical ensemble of equally probable replicas. Two of the
main strengths of this framework are the ability to deal with arbitrarily large or complicated
parameter spaces, and to avoid any restriction on the theory calculations used, e.g. in rela-
tionship with the inclusion of higher-order EFT terms. As a proof of concept, SMEFiT was
used in [23] to analyse about a hundred top quark production measurements from the LHC.
In total, N,, = 34 independent degrees of freedom at mass-dimension six were constrained
simultaneously, including both linear, O (A_z), and quadratic, O (A_4), EFT effects as well as
NLO QCD corrections.

As more experimental data becomes available, the probability distribution in the space of
the SMEFT parameters should be correspondingly updated. This can naturally be achieved
by performing a new fit to the extended set of data, which will however require in general a
significant computational effort. In many situations, however, one would like to quantify the
impact of a new measurement on the SMEFT parameter space more efficiently, i.e. without
having to perform an actual fit. This may routinely happen whenever a new measurement
is presented by the LHC experimental collaborations. In order to do so, one may wonder
whether methods developed in order to quantify the PDF sensitivity to new data can help,
such as the profiling of Hessian PDF sets [32,33] or the Bayesian reweighting of Monte Carlo
PDF sets [34,35].

The aim of this work is to demonstrate that Bayesian reweighting, originally developed
for Monte Carlo PDF sets in [34,35], can be successfully extended to the SMEFiT framework.
We do this as a proof of concept: given a prior SMEFiT fit based on a variant of our previous
study [23], we show that single top-quark production measurements can be equivalently in-
cluded in the prior either by Bayesian reweighting or by a new fit. We quantify the amount
of new information that the measurements are bringing into the SMEFT parameter space by
means of appropriate estimators, such as the Shannon entropy and the Kolmogorov-Smirnov
statistic. We discuss the limitations of the method, explore the conditions under which it can
be safely applied, and study its dependence upon a different definition of the replica weights,
as proposed by Giele and Keller [36,37] (see also [38]).

The outline of this paper is as follows. In Sect. 2 we review the Bayesian reweighting
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method in the context of a SMEFiT analysis. In Sect. 3 we validate the method by reweighting
a SMEFiT prior with different single-top datasets and by comparing the results with the corre-
sponding fits. In Sect. 4 we study the sensitivity of the reweighting method upon alternative
definitions of the weights. We summarise our findings in Sect. 5. Our results are made publicly
available in the form of a stand-alone Python code, which we describe in the Appendix.

2 Bayesian reweighting revisited

Bayesian reweighting was originally developed in the case of PDFs in Refs [34, 35], inspired
by the earlier studies of [36,37]. It assumes that the probability density in the space of PDFs
is represented by an ensemble of N, equally probable Monte Carlo replicas

{fi(k)(xJQO)}J i=1)"‘ﬂnf) k=1;-“:Nrep7 (2'1)

where n¢ is the number of active partons at the initial parametrisation scale Q, and f is the
corresponding PDE The ensemble, Eq. (2.1), is obtained by sampling N, replicas from the
experimental data and then by performing a separate PDF fit to each of them.

Analogously, a SMEFiT analysis represents the probability density in the space of Wilson
coefficients (or SMEFT parameters) as an ensemble of N,., Monte Carlo replicas

k .
(W), i=1,...,Nyp, k=1,...,Npep, (2.2)

where N, is the number of independent dimension-6 operators {(’)l@} that define the fitting
basis of the analysis and c; are the corresponding Wilson coefficients that enter the SMEFT
Lagrangian,

NOp
Ci (6
Lowprr = Low + A—‘ZOE ), (2.3)
i

with A the characteristic energy scale where new physics sets in. Since we neglect operator
running effects [39], the coefficients {cl(k)} are scale independent. The ensemble, Eq (2.2),
can be obtained as a result of a fit in the SMEFiT framework.

The starting point of Bayesian reweighting is therefore a realisation of Eq. (2.2), which we
will henceforth call the prior. The next step is to quantify the impact of some new measurement
on the prior. Following Bayesian inference, this can be achieved by associating a weight w;, to
each Monte Carlo replica in the prior. The value of these weights depends on the agreement
(or lack thereof) between the theory predictions constructed from each replica in the prior and
the new dataset. Their analytic expression is [34,35]

Wy o< (){f)(nd‘“_l)/z exp (—x,f/2) , k=1,...,Nyp, (2.4)

where ny,, is the number of data points in the new dataset and x,f is the unnormalised y?2 of
the new dataset computed with the k-th replica in the prior. These weights are normalised in
such a way that their sum adds up to the total number of replicas, namely

N, rep

Dk =Ny (2.5)
k=1

We will discuss in Sect. 4 how results are affected if the Giele-Keller expression of the weights [ 36,
37], which differs from Eq. (2.4), is used instead. After the inclusion of the new data, replicas
are no longer equally probable. The statistical features of the ensemble should therefore be
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computed accordingly. For instance, the new expectation values are given by weighted means

Z wee®, (2.6)

and likewise for other estimators such as variances and correlations.
In the definition of the weights, Eq. (2.4), the unnormalised )(,f associated to the k-th
Monte Carlo replica is constructed as

Ndat

2= 2 (F® e = FP) cov D)y (FP Ueh - FP) @7

i,j=1

where F; (th) ({cx}) is the theoretical prediction for the i-th cross section F; evaluated using the

Wilson coefficients associated to the k-th replica, {c;}, and F; (e%P) is the central value of the

corresponding experimental measurement. Note that in Eq. (2 7) the sum runs over only the
data points of the new dataset that is being added by reweighting, while all the information
from the prior fit is encoded in the Wilson coefficients {c,} associated to the corresponding
Monte Carlo sample.

The total covariance matrix, cov;; in Eq. (2.7), should contain all the relevant sources of
experimental and theoretical uncertamtles Assuming that theoretical uncertainties follow an
underlying Gaussian distribution, and that they are uncorrelated to the experimental uncer-
tainties, it can be shown [40] that
(exp) (th) (28)

=cov;;  +cov;

CcoV;
ij ij ij

that is, the total covariance matrix is given by the sum of the experimental and theoretical
covariance matrices. The experimental covariance matrix is constructed using the ‘t,’ pre-
scription [41],

N
(COVtO )g;xp) = (O_(stat)) Z SSZS) (sys)]_—(exp)]_-(exp)

2/—\\

Z (norrn) (norm)J—_-(th O)f(th 0)) 2.9

where ‘sys’ (‘norm’) indicates the additive (multiplicative) relative experimental systematic er-
rors separately; .7-"l.(th’0) corresponds to a fixed set of theoretical predictions obtained from a
previous fit. All available sources of statistical and systematic uncertainties for a given dataset
are considered in Eq. (2.9), including bin-by-bin correlations whenever available. The the-
oretical covariance matrix includes only the contribution from the PDF uncertainties in this

analysis. It is given by

) _ {20 @\ A (th)(r)
covi? = (AR = (A7) (P ) (2.10)

where the theoretical predictions ]-"l.(th)(r) are computed using the SM theory and the r-th replica
from the NNPDF3.1NNLO no-top PDF set (which excludes all top quark measurements to avoid
double counting).

After reweighting, replicas with small weights become almost irrelevant. This implies that
the reweighted ensemble will be less efficient than the prior in representing the probability
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distribution in the space of SMEFT parameters. This loss of efficiency is quantified by the
Shannon entropy (or the effective number of replicas left after reweighting)

1 = Nrep
Negr = exp Z wiIn . (2.11)

This is the number of replicas needed in a hypothetical new fit to obtain an ensemble as ac-
curate as the reweighted ensemble. If Ny becomes too low, the reweighting procedure no
longer provides a reliable representation of the probability distribution in the space of SMEFT
parameters. As a rule of thumb, in this work we require N¢ 2 100. This value was determined
by studying the dependence of the SMEFiT results upon the number of Monte Carlo replicas
in our previous study [23]. If Nt < 100, either a prior set consisting of a larger number of
starting replicas Ny, or a new fit would be required to properly incorporate the information
contained in the new data.

Such a situation can happen in two cases. First, if the new data contains a lot of new
information, for example because it heavily constrains a new region of the parameter space
or because it has a large statistical power. Second, if the new data is inconsistent with the old
in the theoretical framework provided by the SMEFT. These two cases can be distinguished by
examining the y2 profile of the new data: if there are very few replicas with a 2 per data point
of order unity (or lower) in the reweighted ensemble, then the new data is inconsistent with
the old. The inconsistency can be quantified by computing the P(a) distribution (see [34] for
further details), defined as

Niep
P(a) o< 12 wi(a), (2.12)
%=
where a is the factor by which the uncertainty on the new data must be rescaled to make
them consistent with the old. If argmaxP(a) ~ 1, the new data is consistent with the old; if
argmax P(a) > 1, it is not.

A limitation of the effective number of replicas Ngg, Eq. (2.11), and of the P(a) distribu-
tion, Eq. (2.12), is that they provide only a global measure of the impact of the new data.
They do not allow one to determine which specific directions of the SMEFT operator space
are being constrained the most. Such an information can be instead accessed by means of the
Kolmogorov-Smirnov (KS) statistic. This estimator is defined as

KS = sup| Fyy, ({c;)) = Fre({ci))I (2.13)

{ci)

i.e. as the supremum of the set of distances between the reweighted and the refitted prob-
ability distributions for each SMEFT operator, F,({c;)) and Fz.({c;)), respectively. Clearly
0 < KS < 1: KS ~ 0 if the coefficients obtained either from reweighting or from a new fit
belong to ensembles that represent the same probability distribution; KS — 1 if they belong
to ensembles that represent different probability distributions.

The transition between the two regimes is smooth. As an example, in Fig. 2.1 we show the
value of the KS statistic, Eq. (2.13), between two Gaussian distributions sampled Ny, = 10*
times each. One distribution (grey histogram) has mean u, = 0 and standard deviation oy = 1,
while the other distribution (green histogram) has mean u; = Au and standard deviation
01 = 09— Ao. The values of Ay and of Ao are being increased from top to bottom and
from left to right, respectively. While the KS statistic does not provide a clear-cut threshold
to classify the two distributions as the same or not, it can be used as a guide to disentangle
genuine effects of new data in the SMEFT operator space from statistical fluctuations. We
should note that the examples shown in Fig. 2.1 are only valid for Gaussian distributions; in
general, the probability distributions of Wilson coefficients can be non-Gaussian.
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KS statistic for different means and std devs (N=10000, uy=0, gg=1)
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Figure 2.1: The value of the KS statistic, Eq. (2.13), between two Gaussian distributions
sampled N, = 10* times each. The grey distribution has mean , = 0 and standard devia-
tion oy = 1. The green distribution has mean u; = Ay and standard deviation o, = oy—Ao0C.

After reweighting, the prior is accompanied by a set of weights. For practical reasons, it is
convenient to replace both of them with a new set of replicas which reproduce the reweighted
probability distribution in the space of SMEFT parameters, but are again equally probable.
This can be achieved by means of unweighting [35]. For statistical purposes, e.g. for the
calculation of 95% confidence level (CL) intervals, the unweighted set can be treated in the
same way as the prior (and as all sets obtained in a new fit).

3 Reweighting the SMEFT parameter space

We now explicitly illustrate how Bayesian reweighting works with a SMEFT Monte Carlo fit.
We first describe our choice of prior for Eq. (2.2) and we reweight and unweight it with several
sets of single-top production data. We then monitor the efficiency loss of the reweighted set
and we verify under which conditions reweighting leads to results equivalent to those of a
new fit. We finally test such conditions upon variation of the process type used to reweight
the prior.
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Table 3.1: The measurements of single-top quark production at the LHC (both in the t-
channel and in the s-channel) used in this analysis to validate the results of Bayesian reweight-
ing. For each dataset, we indicate the dataset label, the center of mass energy /s, the produc-
tion mechanism, the type of observables, the number of data points ny,,, and the publication

reference.
ID Dataset Vs Info Observables  ng,, Ref.
1 CMS_t_tch_8TeV_dif  8TeV t-channel do/d|y**D)] 6 [42]
2  ATLAS_t_tch_8TeV 8 TeV  t-channel do(t)/dy, 4 [43]
3 ATLAS_t_tch_8TeV 8 TeV  t-channel do(t)/dy; 4 [43]
4 CMS_t_tch_13TeV_dif 13TeV t-channel do/d|y"*?) 4 [44]
5 CMS_t_tch_8TeV_inc 8 TeV  t-channel o (t),0(t) 2  [48]

6 CMS_t_tch_13TeV_inc 13 TeV t-channel O et + 1) 1 [49]
7 ATLAS_t_tch_8TeV 8 TeV t-channel o (t),0(£) 2  [43]

8 ATLAS_t_tch_13TeV 13 TeV t-channel o0 (t),0(t) 2  [45]

9 ATLAS_t_sch_8TeV 8 TeV  s-channel O et + 1) 1 [47]

10 CMS_t_sch_8TeV 8 TeV  s-channel Ot +1) 1 [46]

3.1 Choice of prior and of reweighting datasets

We choose the prior for Eq. (2.2) as a fit obtained in the SMEFiT framework from our previous
work [23]. Specifically we consider a variant of our baseline result, where measurements of
inclusive single-top quark production in the t-channel [42-45] and in the s-channel [46,47]
are removed from the default dataset: in total ng,, = 20 data points for single-top t-channel
production (total and differential cross sections) and ng, = 2 data points (total cross sections)
for single-top s-channel production. The prior is thus based on n4,. = 81 data points (the 103
used in the baseline fit of [23] minus the above 22).

To ensure a sufficiently accurate representation of the probability distribution in the SMEFT
parameter space, the prior is made of Ny, = 10* Monte Carlo replicas. Such a large sample
— one order of magnitude larger than the sample used in [23] - is required to mitigate the
efficiency loss upon reweighting. The effective number of replicas, Eq. (2.11), would otherwise
become too small and reweighted results will no longer be reliable.

The prior is then reweighted with the datasets of single-top production listed in Table 3.1.
These sets include all the sets originally removed from the default fit in [23] to generate the
prior. Each of them is labelled as in our previous work (see Table 3.3. in [23]). In addition,
we consider three extra datasets for the total cross sections from CMS at 8 and 13 TeV and
from ATLAS at 8 TeV (for a total of ng,, = 5 data points). This data was not taken into
account in the fit of Ref. [23] to avoid a double-counting issue, since we already included the
corresponding absolute differential distributions determined from the same data taking. We
believe that this is not an issue here, since our aim is to validate the reweighting procedure
rather than to extract accurate bounds on the SMEFT parameters. We therefore retain all the
datasets collected in Table 3.1.

We reweight the prior with the data in Table 3.1 either sequentially (by adding one dataset
after the other) or simultaneously (by adding all the datasets at once). In the first case, we


https://scipost.org
https://scipost.org/SciPostPhys.7.5.070

A

SCIl SciPost Phys. 7, 070 (2019)
New fit using |_
dataD U D
No

icti Determine
;r{egg)r? sbtjsjdp:)id;;t:zng Prepgre new {){ 2} between Calgur:?te Calculate
; ’ data D_g” D > LAk W > weights —> Shann})\?
withk =1, .., Niep D and T{c} {we} CR entropy Neg

Yes
Obtain u:v}/eighted set Calculate Ny, , Obtain reweighted set
T {c( ) } where new weights Choose riV"eP =| 1\15‘* for T {C(k)}, where
i ’ + unweighting calculation —
Tk = wLTk {wk} c Z@ 9 9 T = wTy

Figure 3.1: Overview of the reweighting/unweighting procedure. The procedure is suc-
cessful if the probability distribution associated to the unweighted set coincides with the one
from a new fit.

monitor the efficiency loss and quantify the constraining power of each dataset. In the second
case, we validate the goodness of reweighting against the results of a new fit to the extended
datasets, by checking that they lead to equivalent results (within statistical fluctuations). Our
strategy is schematically summarised in Fig. 3.1.

3.2 Monitoring the efficiency loss: the effective number of replicas

We first reweight our prior by including sequentially one dataset after the other, following the
order given in Table 3.1. In Fig. 3.2 we show the value of the effective number of replicas N,
Eq. (2.11), for each step: point “0” corresponds to the prior, which does not contain any of the
single-top production measurements listed in Table 3.1; points “1”-”8” correspond to the sets
reweighted with each of the single-top t-channel datasets; and point “9” corresponds to the
set further reweighted with the total single-top s-channel production cross section from ATLAS
at 8 TeV. Reweighting with the remaining total single-top s-channel production cross section
from CMS at 8 TeV would in principle correspond to an extra point on the right of Fig. 3.2.
However it is not displayed because the efficiency loss of the reweighted ensemble is already
significant (Ng S 100) for point “9”. Therefore the corresponding results cannot be trusted.

From Fig. 3.2 one observes that the original number of replicas in the prior, Ny, = 10%, are
reduced to Ng¢ =~ 550 effective replicas once the first single-top t-channel production dataset is
added. The subsequent addition of the remaining t-channel measurements leads to a further,
but mild, decrease of the value of N s down to around N ~ 300. This behaviour can be
understood if we consider that, the first time one adds a single-top t-channel dataset, one is
constraining several directions in the parameter space that had large uncertainties or were
degenerate in the prior. Adding subsequent measurements of the same type only refines the
constraints provided by this first dataset.

One may wonder whether the initial abrupt decrease in the effective number of replicas is
just a consequence of the fact that the specific dataset is inconsistent with the prior. Comput-
ing the P(a) distribution rules out this possibility as expected: we know from our previous
work [23] that all the datasets in Table 3.1 are consistent with the prior. For this reason we
will refrain from showing the P(a) distribution in the sequel.

Our understanding is further confirmed by observing that once the s-channel measure-
ments are subsequently added, then N falls from =~ 300 to below 50. Again, there is a large
amount of information being added into the probability distribution once a completely new
type of process is added, since now one becomes sensitive to new combinations of SMEFT
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Figure 3.2: The value of the effective number of replicas N, Eq. (2.11), in the prior, which
does not contain any of the single-top production measurements listed in Table 3.1, and
once the various single-top datasets are sequentially added by reweighting. As indicated in
the plot, first we add the t-channel datasets and then the s-channel datasets following the
order given in Table 3.1.

parameters that are unconstrained by the measurements previously considered. Given that
Ngg =~ 50, the reliability of the reweighting method in this case would be questionable. In-
cluding both the t- and the s-channel measurements by reweighting would require a prior
based on a much larger number of replicas, e.g. Ny, = 0(10°).

Finally we have also verified that the order in which specific datasets are being added
via reweighting does not modify the pattern observed in Fig. 3.2 nor the final result of the
procedure. This behaviour is consistent with what was found in the PDF case [34,35].

3.3 Validation of reweighting: single-top t-channel data

We now reweight our prior by including simultaneously all the single-top t-channel datasets
at once. For the time being, we do not consider single-top s-channel datasets, because this
will result in a too large efficiency loss (see above). Our aim is to validate the reweighting
procedure by comparing the resulting probability distribution with that obtained from a new
fit to the same datasets.

In the upper panel of Fig. 3.3 we compare the results obtained from reweighting and from
the new fit. Specifically we show the 95% CL bounds for the N,, = 34 Wilson coefficients
considered in our previous SMEFT analysis of the top quark sector [23]. Note that we are
assuming that A = 1 TeV. For completeness, we also show the corresponding unweighted
results: in all cases we find excellent agreement with the reweighted results. We will thus
treat them as equivalent in the following.

From this comparison one finds that the results obtained from reweighting or from a new fit
are reasonably similar in most cases. To facilitate their interpretation, we compare the relative
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Figure 3.3: Upper panel: the 95% CL bounds for the N, = 34 Wilson coefficients consid-
ered in this SMEFT analysis of the top quark sector. We compare the prior results (without
any t- or s-channel single-top production data included) with those after the t-channel mea-
surements have been added either by reweighting or by performing a new fit. Central panel:
the relative 68% CL uncertainty reduction compared to the prior, both for the reweighted and
for the new fit cases. Lower panel: the associated value of the KS statistic computed between
the unweighted and the prior results. In both the central and lower panels, the horizontal
dotted lines indicate the thresholds to select the operators for which Bayesian reweighting is
meaningful.

68% CL uncertainty reduction between the reweighted and the prior cases, 1—a N 2" /O prior,
and between the new fit and the prior cases, 1—0 e/ O prior- We observe that for three degrees
of freedom the reweighting of the prior with the t-channel single-top cross section data leads to
areduction of the uncertainties larger than a factor of two, consistently with the new fit. These
are the Wilson coefficients associated to the 013qq, OpQM and 0tZ SMEFT operators (we will
henceforth use the notation of [23]). Not surprisingly these are the three operators for which
adding t-channel single-top data to the prior has the largest effect. In particular, 013qq and
OpQM are either directly (or indirectly, via correlations with other coefficients) constrained
by t-channel single-top data. The reason 0tZ is also more constrained is because the data
either provides access to a previously unconstrained direction in the SMEFT parameter space,
see Table 3.5 in [23], or because it breaks degeneracies between directions. We therefore
conclude that reweighting leads to results equivalent to those of a new fit for the operators
that are being more directly constrained by the new data.

If we now look at other operators, we still clearly find that reweighting leads to a reduction
of the 95% CL bounds in comparison to the prior. However such a reduction seems sometimes
over-optimistic, especially if it is compared to the new fit results (see for example the Otp or
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01qd operators). In this case, reweighting seemingly fails. Nevertheless the 95% CL bounds
are only a rough measure of the actual change in the probability distributions from the prior to
the reweighted ensemble. Their interpretation is particularly unclear when statistical fluctua-
tions (including from finite-size effects intrinsic to a Monte Carlo analysis such as the current
one) become large. This mostly happens for poorly-constrained operators.

To discriminate whether the discrepancies observed in Fig. 3.3 are induced by a genuine
change in the probability distributions of the various operators or by a statistical fluctuation,
we look at the corresponding KS statistic, Eq. (2.13). Only when the value of the KS statistic
is sufficiently large, can one claim that the differences between the prior and the reweighted
distributions are statistically significant. With this motivation in mind, in the lower panel of
Fig. 3.3 we display, for each Wilson coefficient, the values of the KS statistic computed between
the unweighted and the prior distributions. The largest values of the KS statistic are associated
to the 013qqg, OpQM and 0tZ operators. These are precisely the operators for which we know
that the data has the largest effect and for which reweighting is equivalent to a new fit. Low
values of the KS statistic are associated to most of the other operators, including those for
which the reduction of the 95% CL bounds induced by reweighting is seemingly large (and
even much larger than the reduction induced by a new fit). This is the case, e.g., for the 01qd
and Otp operators.

The results of Fig. 3.3 show that, in a global SMEFT analysis, reweighting successfully
reproduces the results of a new fit when the two following conditions are satisfied:

e the size of 95% CL intervals of a specific operator after reweighting is reduced by an
amount higher than a given threshold;

e the value of the KS statistic is sufficiently high to ensure that the modification in the
probability distributions is not induced by a statistical fluctuation.

Of course there will always be some ambiguity when setting the thresholds for the 95%
CL bound reductions and for the KS statistic. In Fig. 3.3 we indicate two possible values of these
thresholds in the central and lower panels with dotted horizontal lines:
1— OFVEIPDF/ Oprior = 1 — Opew/Oprior = 0.3 and KS = 0.3. These values will select 013qq,
OpQM and 0tZ as the only three out of the N,,, = 34 operators for which the reweighted results
are reliable. For the remaining operators, the two conditions above will not be satisfied and the
corresponding reweighting results could not be trusted. While the selection criteria adopted
here are mostly based on phenomenological evidence, it would be advantageous to derive
more formal criteria that could be used in general situations. We defer such an investigation
to future work.

As a final cross-check, the probability distributions of the three operators associated to the
Wilson coefficients for which reweighting is applicable, 013qq, OpQM and 0tZ, are displayed
in Fig. 3.4. The prior results are compared to the results obtained by reweighting and un-
weighting the prior with the t-channel single-top production cross section data and the results
obtained from a new fit to the same set of data. The prior and the new fit sets are made of
Niep = 10* replicas; the unweighted set is made from N, = 300 effective replicas. First, we
observe how the prior distribution is significantly narrowed once the new data is added, either
by reweighting or by a new fit, consistently with the results displayed in the central panel of
Fig. 3.3. Second, we observe good agreement between the reweighted and the new fit shapes
of the probability distributions, despite the former being based on a much smaller number of
replicas than the latter. All this is consistent with the high value of the KS statistic associated
to the three operators under examination.

In this work we have so far validated the reweighting approach using theory calculations
that included O (A_‘") corrections in the prior fit, in the reweighted results and in the new fit.
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Figure 3.4: The probability distribution associated to the Wilson coefficients cg, Cpom> and
¢;z- The prior results are compared to the results obtained by reweighting and unweighting
the prior with the t-channel single-top production cross sections and from a new fit to the
extended datasets.

However, the validity of Bayesian reweighting should be independent of the specific theory as-
sumptions used. In this respect, we have verified that an agreement between reweighting and
the new fit similar to that reported in Fig. 3.3 is obtained when only O (A‘z) corrections are
included in the SMEFT theory calculation. This exercise demonstrates that Bayesian reweight-
ing can be applied in the same way in both cases. It is up to the users to decide on their
preferred theory settings — our SMEFiT results are available both at O (A‘z) and at O (A_4).

Note that, in general, the subset of operators which are more affected by the new data differ
between the O (A_Z) and the O (A_4) fits. In the case of the t-channel single top production
measurements, the three operators for which the impact of the new data is more marked are:
013qq, 0pQM, and OtZ at O (A_4); 013qq, 0pQM, OtW and Opt at O (A_Z). The fact that
the specific operators which are more constrained by a new piece of experimental information
depend on whether the calculation is performed at O (A_z) or the O (A_‘") is expected since in
general each calculation probes different regions of the parameter space, as discussed in [23].

A final remark concerns the interpretation of the results presented in Fig. 3.3. Within a
SMEFT analysis one is only sensitive to the ratio c; /A2 rather than to the absolute New Physics
scale A. While here we assume A = 1 TeV for illustrative purposes, it is possible to interpret
our results for any other value of A. In particular, the upper (lower) bounds on the k-th Wilson
coefficient, & cl‘f (6¢;), should be rescaled as

~N2
5¢; =6cp X (%) (3.1)
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Figure 3.5: Same as Fig. 3.3, but in the case of single-top s-channel production total cross
sections at 8 TeV. The selection threshold for the KS statistic is set to 0.2 in this case.

in comparison to the results shown here for the case A # A = 1 TeV. This said, the validity
of Bayesian reweighting is independent from the interpretation of the results in terms of a
specific value of A. The important discussion about which values of A can be probed when
interpreting the results to ensure the validity of the EFT regime, see for instance [23] and
references therein, should thus be separated from the validation of Bayesian reweighting.

3.4 Independence from the process type: single-top s-channel data

We now repeat the exercise carried out in the previous subsection by simultaneously reweight-
ing our prior with all the single-top s-channel data listed in Table 3.1, i.e. the two cross sections
from ATLAS and CMS at 8 TeV. Despite having only ng,; = 2 additional data points, one can in
principle expect to improve the prior by a significant amount because the new process probes
different top quark couplings with respect to those already included in the prior. By doing so,
our purpose is to check whether the conclusions reached in the case of single-top t-channel
datasets can be extended to datasets for processes of a different type.

In Fig. 3.5 we display the same results as in Fig. 3.3, but for the case of s-channel single-
top production total cross sections. The impact of the ng, = 2 s-channel data points is rather
smaller than the impact of the ng, = 25 t-channel ones, though still appreciable. The values
of the KS statistic are consequently small for all the N, = 34 operators but one: 013qq. In this
case, this operator is the only one that satisfies the selection criteria defined above, whereby
KS > 0.2 and 1 —0py 2" /O prior = 1 — Opew/ T prior = 0.3. As expected, good agreement is
found between the reweighted and the new fit results for the 013qq operator.

As discussed above there is an irreducible ambiguity in the choice of the threshold values for
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Figure 3.6: Same as Fig. 3.4 but for the Wilson coefficients mostly constrained by single-top
s-channel production cross sections.

the relative reduction of the 95% CL bounds and of the KS statistic. For instance, if we look at
the 0tZ operator, the inclusion of the single-top s-channel cross sections leads to an uncertainty
reduction of around 40% and to a KS statistic of KS ~ 0.18; reasonable agreement between
reweighted and new fit results is also observed for 0tZ. However, this operator does not pass
validation if we require KS > 0.3. Therefore it is up to the user to decide how conservative he
wants to be: the higher the selection thresholds, the more reliable the reweighting results will
be.

Finally in Fig. 3.6 we repeat the comparison shown in Fig. 3.4, but for the probability
distributions of the Wilson coefficients associated to the 013qq and 0tZ SMEFT operators.
We show the results obtained from the prior, from reweighting and unweighting it with the
single-top s-channel production cross sections and from a new fit to the same dataset. We
find good agreement between the unweighted and the new fit results and observe how the
relative narrowing of the distribution is less marked than in the case of single-top t-channel
cross sections. This is understood as single-top s-channel measurements have less constraining
power than single-top t-channel measurements once included in the prior.

4 Dependence on the choice of weights

The results presented in the previous section are based on the expression for the weights given
by Eq. (2.4). This formula was originally derived in [34,35] and has been routinely used to
quantify the impact of new data in studies of PDFs since then. Results obtained with Eq. (2.4)
were found to be equivalent to the results obtained with a new fit of the data in all cases,
and were even benchmarked in a closure test [27]. In this work, we showed that Eq. (2.4)
works also in the case of a global SMEFT analysis, provided specific selection criteria for the
individual operators are satisfied. In this section, we study the dependence of our results upon
the choice of weights.

4.1 Giele-Keller weights

An expression for the weights different from the one in Eq. (2.4) has been suggested in the
past. Specifically, in a formulation which pre-dates the one in [34,35], Giele and Keller advo-
cated [36,37] that the weights should read instead

wpo<exp(—x2/2), k=1,...,Nyp, (4.1)
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Figure 4.1: Same as Fig. 3.3, but for reweighted results obtained either with the NNPDF or
the GK weights.

where, in comparison to Eq. (2.4), the prefactor ( x,f)(”dat_l)/ 2 is dropped. We will refer to
Eq. (2.4) and to Eq. (4.1) as NNPDF and GK weights, respectively, in the remainder of this
section. The main difference between NNPDF and GK weights is that, for consistent data, the
largest weights are assigned respectively to replicas either with )(f & Ng,e OF With )(,f — 0. If
Eq. (4.1) is used instead of Eq. (2.4), a replica associated to ;(lf — 0 is not treated as an outlier
and discarded, as it should, but it is assigned a large weight.

In order to explore the dependence of the reweighted results on the choice of the weight
formula, we repeat the exercise presented in the previous section by using the GK weights in-
stead of the NNPDF weights. By comparison with our previous results, we expect to determine
whether the GK formula reproduces the results of a new fit as well as the NNPDF formula, and
if it does so more efficiently. In principle, for N;., — 09, it is conceivable that the NNPDF and
the GK formula lead to indistinguishable results, which then become different only because
of finite-size effects.

In Fig. 4.1 we compare the results obtained by reweighting the prior with all the single-top
t-channel data in Table 3.1 either with the NNPDF or the GK weight formula. The format of
the results is the same as in Fig. 3.3, i.e. each panel displays, from top to bottom, the 95% CL
bounds, the corresponding relative reduction with respect to the prior and the KS statistic.

We recall that the reweighted results obtained with the NNPDF weights reproduce the
results obtained with a new fit only for the three operators that are more directly constrained
by the new data: 013qq, OpQM and OtZ. A meaningful comparison with the results obtained
with GK weights should therefore first focus on these three operators. By inspection of Fig. 4.1
such a comparison reveals that NNPDF and GK results can be rather different. In particular,
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Figure 4.2: Same as Fig. 3.2, now comparing the effective number of replicas N ¢ upon the
addition of new data using either the NNPDF or the GK weights. In both cases, the prior is

the same and it is made of N, = 10* replicas.

the GK results can either overestimate (for 013qq and OpQM) or underestimate (for 0tZ) the
uncertainty reduction.

Marked differences between NNPDF and GK results persist across all the operators. The
values of the KS statistic is consistently larger in the GK case than in the NNPDF case. We
therefore investigate the behaviour of the efficiency in the GK case. In Fig. 4.2 we show the
dependence of the effective number of replicas N,¢ upon the addition of new data both in the
NNPDF and in the GK cases. Given that the same amount of new information is added, it is
apparent that the effective number of replicas decreases much faster for GK weights than for
NNPDF weights. This downwards trend persists even when more datasets of the same type are
added to the prior. Such a behaviour is not as marked in the NNPDF case, where instead the
reduction of the effective number of replicas after the inclusion of the first dataset of a given
type is only mild.!

Moreover, from Fig. 4.2 one finds that, after the prior is reweighted with all the t-channel
single-top cross sections in Table 3.1, N ~ 300 and N.g ~ 20, respectively, in the NNPDF
and GK cases. In the latter case the effective number of replicas is simply too low for us to
trust the reweighted results. The results of Fig. 4.1 should therefore be interpreted with care.
Discrepancies between the NNPDF and GK cases could be explained as genuine differences
between the corresponding weights, or else as large statistical fluctuations due to finite-size
effects. This ambiguity is further illustrated in Fig. 4.3, where we compare the probability
distribution of the 013qq and 0tZ operators in the prior and in the reweighted sets obtained
both in the NNPDF and in the GK cases. Differences between the reweighted NNPDF and GK
distributions are apparent, as is the fact that the GK distribution lacks sufficient statistics to be
reliable.

In Fig. 4.2 the value of N, increases slightly between datasets 6 and 7 for the GK case. When adding new
measurements, the value of N should always decrease (or remain constant) up to statistical fluctuations. These
fluctuations are negligible when the number of starting replicas is large enough, but not when one has only N ¢ ~ 20
replicas as in this specific case.
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Figure 4.3: Same as Fig. 3.4 for the distributions of the 013qq and 0tZ operators obtained
from the prior and the reweighted sets with either the NNPDF or the GK weights. The number
of effective replicas in the two cases is N ~ 300 and N.¢ =~ 20, respectively.

In order to understand whether the differences between the results obtained with NNPDF
and GK weights can be explained as finite-size effects, we need to compare results with a
sufficiently large effective number of replicas. A quick inspection of Fig. 4.2 reveals that this
can be achieved for both NNPDF and GK when only the first dataset is added. In such a case,
one would end up with N ~ 600 and N.¢ =~ 250 effective replicas, respectively.

In Fig. 4.4 we repeat the comparison shown in Fig. 4.1, now obtained with the inclusion of
the first single-top t-channel data point only. Good agreement between the NNPDF and the GK
reweighting results are now found for the three usual operators 013qq, OpQM, and OtZ. For
other operators, residual differences are significantly reduced in comparison to Fig. 4.1; most
notably, the NNPDF and GK values of the KS statistic are now much more consistent between
each other.

Finally, in Fig. 4.5 we repeat the comparison between the prior, NNPDF and GK probability
distributions of the Wilson coefficients associated to the 013qq and 0tZ operators when only
the first single-top t-channel data point is included. Now that finite-size effects are under
control, good agreement is found between the NNPDF and GK reweighted distributions. Such
an agreement is consistent with Fig. 4.4.

We find a very similar pattern of results if we repeat the above exercises with the single-top
s-channel datasets. We can therefore conclude that, based on the phenomenological explo-
ration presented in this study, for those SMEFT operators that satisfy our selection require-
ments, and provided that the efficiency loss is not too severe (that is, the effective number of
replicas is large enough), using either the NNPDF or the GK weights leads to equivalent re-
sults. Under the above conditions, these results agree with a corresponding new fit. In general,
however, GK weights appear to be rather less efficient than NNPDF weights. This behaviour
could easily lead to misleading results, unless one is careful in monitoring their dependence
on the effective number of replicas. In particular using the GK weights without ensuring that
N is sufficiently large might result in an overestimate of the impact that new measurements
have on the SMEFT parameter space.

4.2 Hybrid weights

The rationale for comparing the results of the NNPDF and GK weights arises because in both
cases there are studies that claim that one of the two is the correct expression based on for-
mal arguments. In principle it might be possible that there exists an intermediate expression
for the weights w; that interpolates between the NNPDF and GK weights while exhibiting a
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4.3 now for the case in which only one t-channel single-top dataset

added via reweighting as opposed to the complete set of t-channel measurements, see also
the results of Fig. 4.4. The NNPDF results correspond to N ~ 600 while the GK ones to

Neff ~ 250.

superior performance, although we are not aware of any theoretical work supporting such a
choice. For completeness, here we investigate the performance of such hybrid weights from

the phenomenological poin

t of view.

Specifically, we repeat the reweighting exercise that led to Fig. 3.3, namely including all

the t-channel single top pr

oduction measurements. Now, we use a one-parameter family of

18


https://scipost.org
https://scipost.org/SciPostPhys.7.5.070

SC|| SciPost Phys. 7, 070 (2019)

Il prior I reweighted
B new fit unweighted

101_
H||||‘|H IIH ‘HHHHH

1.0
0.8' . 1_Unew 1_arw

Oprior Oprior
0.6 A

0.4 -
A TR |
0.0 il .
0.5
0.4 -
03 T —
0.2

0.1 A
0.0 -

102 4

20 [TeV~2]

Reduction in o

e
f— :
—
—
= .
e | 1
i .
— .
—
——
p—
.
f—
e
o .
= .
.
—:
——:
—
—

——————
————
-

KS-stat

OtG { ~----=
081lqq 4 ----e
Ollqq H{ ~--—=
083qq { ~--+--+e
013qq { ~--------

08qt { ~--+e
Olgt 4 ~--~--»
Oo8ut { ~-----=
Olut { ~--e
O8qu H ~----e
Olqu H -----e
08dt { ~----
Oldt {~-----o
08qd { ~----—e
Olqd 4 ~---

OtW H ~--&
0QQl { -
0QQ8 H -=

OQtl { -~
OQtQbl { ~----e
OQt8 { ~---»

0OQbl { -

OQb8 { --e
Ottl 4 ~--e
Otbl { ~--e
Oth8 { ~--e

Otp 4 ~--e
OpQM == —m -

ofg3 4 ~----e

Opt{~----=

Off { ~--—»

OtZ 4 mmmbmmee e

ObW 1 -

OQtQb8 o ~-----&

Figure 4.6: Same as Fig. 3.3 but now using the hybrid weights defined in Eq. (4.2) with
p=2.

weights
— 1/
Cin) o [(xlg)(ndat 1)/2] p exp (—X;f/z) , k=1,.. Ny, (4.2)

where p is a parameter that interpolates between the NNPDF weights (p = 1), Eq. (2.4), and
the GK weights (p — 00), Eq. (4.1). We have re-evaluated Figure 3.3 for different choices of
p, and we have estimated the corresponding effective number of replicas. This is what one
finds for two intermediate values, p =2 and p = 3:

p 1 (NNPDF) 2 3 00 (GK)

N 306 115 68 22

Therefore there is no benefit in using the intermediate weights option: all values of p decrease
the efficiency of the reweighting procedure in comparison to the NNPDF case.

Furthermore, we have verified that, provided the effective number of replicas N is large
enough (Ngg ~ 100), the results obtained with Eq. (2) still reproduce the corresponding results
of a new fit. This is shown explicitly in Fig. 4.6 below, the counterpart of Figure 3.3 but now
using the hybrid weights in Eq. (4.2) with p = 2. As can be seen, for those operators for which
the KS-statistic and the reduction of uncertainties lie above the given threshold, the fit results
are well reproduced by the reweighting with these hybrid weights. However, for p = 2, we
end up with N = 115 effective replicas, a value significantly smaller than the one obtained
in the case of NNPDF weights (N = 306).
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To summarise, we find that the hybrid weights of Eq. (4.2) are equivalent to the NNPDF

ones provided that the resulting N, is large enough, but also that they are less efficient since
(r>1)
N
eff

< Ng}:l). Their use is therefore not advisable.

S5 Summary

The lack of direct evidence for new physics at the LHC so far makes it crucial to develop indi-
rect pathways to identify possible signatures of BSM dynamics from precision measurements.
One of the most powerful frameworks to achieve this goal is provided by the SMEFT, which
allows for a theoretically robust interpretation of LHC measurements. Ensuring the model
independence of this approach, however, requires us to efficiently explore the large parame-
ter space of Wilson coefficients related to the SMEFT operators. This can be both technically
challenging and computationally expensive.

In this work we showed how Bayesian reweighting, an inference method widely used to
assess the impact of new data in global determinations of PDFs, can be extended to constrain a
Monte Carlo representation of the SMEFT parameter space upon the inclusion of new experi-
mental input. Reweighting consists of assigning a weight to each of the replicas that define the
prior probability distribution. These weights are computed as a function of the agreement (or
lack thereof) between the prior and the new experimental measurements not included in it.
The method has two advantages in comparison to a new fit to an extended set of data: first, it is
essentially instantaneous, and second, it can be carried out without needing access to the orig-
inal SMEFT fitting code. Using single-top production measurements from the LHC, we showed
that, under well-defined conditions, the results obtained with reweighting are equivalent to
those obtained with a new fit to the extended set of data.

Nevertheless, the results obtained with the reweighting method need to be considered with
some care. First, it is necessary to verify that the efficiency loss of the reweighted sample is
not so severe as to make the procedure unreliable. In practice, this requires that the effective
number of replicas remains sufficiently large. Second, it is necessary to identify those operators
for which the results of reweighting are driven by a genuine physical effect, and ignore those
affected by large statistical fluctuations or other spurious effects. In practice, this requires
that the value of the KS statistic is sufficiently high. We therefore proposed a possible set of
selection criteria to identify for which operators the outcome of the reweighting method is
expected to coincide with that of a new fit. We quantitatively based our criteria on the values
of the KS statistic and of the relative reduction factor for the uncertainties with respect to some
threshold.

As a byproduct of this analysis, we also assessed the dependence of our results upon the
specific choice of weights, a topic which has been the cause of some discussions within the
PDF community in recent years. Specifically, we compared the performance of the NNPDF
and GK weights, proposed respectively in [34,35] and in [36,37]. We found that, while the
two methods lead to comparable results if the new data is not too constraining, the latter is
far less efficient than the former, in the sense that the effective number of replicas decreases
much faster. Our results provide further evidence in support of the use of the NNPDF rather
than the GK expression for applications of Bayesian reweighting to Monte Carlo fits, either in
the PDF or in the SMEFT contexts.

The main limitation of the reweighting method is that it requires a large number of start-
ing replicas to be used reliably. The problem is here somewhat more serious than in the PDF
case, where an initial sample of N, = 10 replicas is usually sufficient for most practical
applications. For instance, a prior of at least O (105 ) replicas would be required for a simul-
taneous reweighting with all the t- and s-channel single-top data. This happens because, in
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the SMEFT case, one is trying to simultaneously constrain a large number of independent di-
rections in the SMEFT parameter space, each corresponding to a different (combination of)
operator(s). However the efficiency loss should not represent a limitation to the applicability
of the reweighting method, as in practice one usually wants to assess the impact of a single
new measurement. Of course, the reweighting method can only be applied to explore direc-
tions in the parameter space that are already accessed in the prior set. If new directions are
expected to be opened by new data, for example when measurements sensitive to different
sectors of the SMEFT are included, reweighting is not applicable and a new fit would need to
be carried out.

A Python code that implements the reweighting formalism presented in this work and
applies it to our SMEFIT analysis of the top quark sector is publicly available from

https://github.com/juanrojochacon/SMEFiT

together with the corresponding user documentation (briefly summarised in the Appendix).
In addition to the analysis code, we also make available three prior fits, each of them made of
Niep = 10* Monte Carlo replicas. The first fit does not include any t- and s-channel single-top
quark production measurement, otherwise it is equivalent to the baseline fit of Ref. [23]. It can
be used to reproduce the results presented here. The second fit is equivalent to the baseline
fit presented in [23], but has N, = 10* Monte Carlo replicas instead of Niep = 103. It can be
used to assess how the probability distribution of the top quark sector of the SMEFT is modified
by the addition of new measurements via reweighting. The final set is based only on inclusive
top-quark pair production measurements.
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A Code documentation

The reweighting code in the publicly available GitHub repository consists of a single Python
script. It can be used straightforwardly by executing SMEFiT_rw_unw.py with Python3. In
order to run the code, the following Python packages need to be installed beforehand:

e numpy
e tabulate

e scipy
matplotlib

® OS
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# Set Nrep, KS criterium and required error reduction
n_reps = 10000

ks_Tlevel = 0.3

reduction_Tlevel 0.3

produce_plots = 'on' # 'on' to produce plots

Figure A.1: A snapshot of the python script code_input.py. The input settings of the
reweighting procedure can be defined here.

Code input

Besides the reweighting code file, there is also a second Python file called code_input.py
that defines the input settings to be used for the reweighting procedure. In this file, the user is
able to select the prior SMEFT Monte Carlo analysis, the datasets that he wants to include in
it by reweighting, and the number of replicas that should be used from it to this purpose. By
modifying this file, the user can also specify the threshold values for the KS statistic and the
error reduction factor that determine for which degrees of freedom the reweighted results are
reliable. In Fig. A.1, a code snapshot of code_input . py is shown.
The following inputs will be required for the reweighting code to be executed:

e The Wilson coefficients that define the prior fit.

Together with the code, we also release in the rw_input_data/Wilson_coeffs/
folder the results of three different priors: all_datasets, based on the full dataset
of [23], no_single_top, with single top-quark production data excluded, and
only_ttbar, based exclusively on top-quark pair-production measurements.

e The replica-by-replica y? computed for the new data using the corresponding theory
predictions based on a given prior SMEFT analysis.

For illustration purposes, here we make available in the rw_input_data/chi2_data/
folder the files t_channel, 1st_t_channel, and s_channel, which are obtained from
the prior set no_single_top and correspond respectively to all t-channel single top-
quark data, all s-channel single top-quark data, and only the first t-channel single top-
quark measurement in Table 3.1.

e The Wilson coefficients determined from a new fit to the extended set of data (if avail-
able, required only for validation).

Here, also in the folder rw_input_data/Wilson_coeffs/, we provide the results
of the t_channel, 1st_t_channel, and s_channel fits, which can then be directly
compared to the corresponding reweighted results.

Code work-flow

The code executes the reweighting and unweighting procedure through the following steps:

22


https://scipost.org
https://scipost.org/SciPostPhys.7.5.070

SCIl SciPost Phys. 7, 070 (2019)

| operator prior st dev

Figure A.2: A partial snapshot of the code output. The constrained SMEFT operators that
satisfy the reweighting selection criteria of Sect. 3 are listed in a table with the value of their
corresponding standard deviation and KS statistic.

Load in the prior set.

Load in the replica-by-replica { X;%} values for the prior predictions.
Compute the weights ;. for each replica.

Determine the Shannon entropy.

Obtain the reweighted set and construct the unweighted set.
Determine the KS statistic.

Load in the new fit for validation (if available).

Determine the reduction of the uncertainty for the SMEFT degrees of freedom.

O ® N o R W N

Obtain the operators that satisfy the selection criteria defined in Sect. 3.

—_
e

Save results to file and produce validation plots.

Code output

When the code is executed from a terminal, its output will be displayed as in Fig. A.2. The
following results will be saved in a new folder called rw_output:

e The plots of the 20 bounds on the reweighted and unweighted Wilson coefficients com-
pared to the prior (and, if available, to the new fit for validation), together with the
associated uncertainty reduction factor and the value of the KS statistic.

e The histograms for the distributions of the Wilson coefficients for those operators that
satisfy the selection criteria defined in Sect. 3.

o Atextfile unw_coeffs.txt with the results of the unweighted set of Wilson coefficients.
In this file, the rows correspond to the replica number in the unweighted set, and the
coefficients are separated in columns for each operator.

Recall that the number of SMEFT operators in this unweighted set will be identical to
that of the adopted prior.

Using this code, the results presented in this paper can be easily reproduced by selecting
the same input settings as those adopted in the validation exercises presented in Sect. 3.
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