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Abstract

Event generation for the LHC can be supplemented by generative adversarial networks,
which generate physical events and avoid highly inefficient event unweighting. For top
pair production we show how such a network describes intermediate on-shell particles,
phase space boundaries, and tails of distributions. In particular, we introduce the maxi-
mum mean discrepancy to resolve sharp local features. It can be extended in a straight-
forward manner to include for instance off-shell contributions, higher orders, or approx-

imate detector effects.

Copyright A. Butter et al.

This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 23-07-2019 ,')
Accepted 13-11-2019 ekt
Published 04-12-2019 updates

doi:10.21468/SciPostPhys.7.6.075

Content
1 Introduction

2 Phase space generation
2.1 Standard Monte Carlos
2.2 Generative adversarial network
2.3 Loss functions for intermediate particles

3 Machine-learning top pairs
4 Outlook

References

N Pbh WD

N

13

14

1 Introduction

First-principle simulations are a key ingredient to the ongoing success of the LHC, and they
are crucial for further developing it into a precision experiment testing the structure of the
Standard Model and its quantum field theory underpinnings. Such simulations of the hard
scattering process, QCD activity, hadronization, and detector effects are universally based on
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Monte Carlo methods. These methods come with structural challenges, for example related to
an efficient coverage of the high-dimensional phase space, event unweighting, or complex and
hence slow detector simulations. Some of these problems might be alleviated when we add a
new direction, like machine learning techniques, to our tool box. While we should not expect
them to magically solve all problems, we have seen that modern machine learning can trigger
significant progress in LHC physics. The reason for our optimism related to event generation
are generative adversarial networks or GANs [1], which have shown impressive performance
in tasks like the generation of images, videos or music.

From the experimental side the detector simulation is the most time-consuming aspect of
LHC simulations, and promising attempts exist for describing the behavior of the calorimeter
with the help of generative networks [2-7]. On the theory side, we know that the parton
shower can be described by a neural network [8-11]. It has been shown that neural networks
can help with phase space integration [12,13] and with LHC event simulations [14-16]. One
open question is why the GAN setup of Ref. [14] does not properly work and is replaced by a
variational autoencoder with a density information buffer. Another challenge is how to replace
the ad-hoc Z-constraint in the loss function of Ref. [15] by a generalizable approach to on-shell
resonances. This problem of intermediate resonances is altogether avoided in Ref. [16]. It
remains to be shown how GANs can actually describe realistic multi-particle matrix elements
over a high-dimensional phase space in a flexible and generalizable manner.

In this paper we show how we can efficiently GAN* the simulation of the 2 — 6 particle
production process

pp — tt —> (bqq’) (bqq"), (1)

describing all intermediate on-shell states with Breit-Wigner propagators and typical width-
to-mass ratios of few per-cent. We will focus on a reliable coverage of the full phase space,
from simple momentum distributions to resonance peaks, strongly suppressed tails, and phase
space boundaries.

Given this new piece of the event simulation puzzle through fast neural networks it should
in principle be possible to add parton showers, possibly including hadronization, and detector
effects to a full machine learning description of LHC events. Including higher-order correc-
tions is obviously possible and should lead to ever higher gains in computing time, assuming
higher-orders are included in the training data. The interesting question then becomes where
established methods might benefit from the fast and efficient machine learning input. Alter-
natively, we can replace the Monte Carlo event input and instead generate reconstructed LHC
events and use them to enhance analyses or to study features of the hard process. Obviously,
the GAN approach also allows us to combine information from actual data with first-principles
simulations in a completely flexible manner.

Our paper consists of two parts. In Sec. 2 we start by reviewing some of the features
of phase space sampling with Monte Carlo methods and introducing GANs serving the same
purpose. We then add the MMD and describe how its been used to describe intermediate
resonances. In Sec. 3 we apply the combined GAN-MMD network to top pair production
with subsequent decays and show that it describes the full phase space behavior, including
intermediate on-shell particles.

“From ‘to GAN’, in close analogy to the verbs taylor, google, and sommerfeld.
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2 Phase space generation

As a benchmark model throughout this paper we rely on top pair production with an interme-
diate decay of two W-bosons

pp — tt = (bW™) (bWH) = (bfif]) (bfafy), )

illustrated in Fig. 1. If we assume that the masses of all final-state particles are known, as
this can be extracted from the measurement, this leaves us with 18 degrees of freedom, which
energy-momentum conservation reduces to a 14-dimensional phase space. In addition, our
LHC simulation has to account for the 2-dimensional integration over the parton momentum
fractions.

In this section we will briefly review how standard methods describe such a phase space,
including the sharp features of the intermediate on-shell top quarks and W-boson. The relevant
area in phase space is determined by the small physical particle widths and extends through
a linearly dropping Breit-Wigner distribution, where it eventually needs to include off-shell
effects. We will then show how a generative adversarial network can be constructed such that
it can efficiently handle these features as well.

2.1 Standard Monte Carlos

For the hard partonic process we denote the incoming parton momenta as p, ; and the outgo-
ing fermion momenta as p;. The partonic cross section and the 14-dimensional phase-space
integration for six external particles can be parametrized as

M(Pa, Py P1s--->Pe)l?
JdO:Jd%%' (Pa i Po)”
S

. 4 <(4) ° d3pf —1
with  d®,_, = (21)"6""(p, +pp —P1 —"'—Ps)l | (2m)3 2p0
flpo
¥

(3
f=1

To cope with the high dimensionality of the integral we adopt advanced Monte Carlo tech-
niques. The integral of a function f(x) over a volume V in R?

I :f d?x f(x) 4
%

can be approximated with the help of N random numbers x; distributed according to a nor-
malized density function p(x)

f ddxp(x) =1, (5)
v

Figure 1: Sample Feynman diagram contributing to top pair production, with inter-
mediate on-shell particles labelled.
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such that

N
1 f(x;)
InSy=+ Z <. (6)
For sufficiently large N the variance of this integral scales like

N
2 o 1 l f(xi)z o2
TN (N Z/O(xi)2 ) 7

i=1

which means that it can be minimized by an appropriate choice of p(x). This requires p(x)
to be large in regions where the integrand is large, for instance

FE
[y d'x £

This method of choosing an adequate density is called importance sampling. There are several
implementations available, one of the most frequently used is Vegas [17,18].

A major challenge in particle physics applications is that multi-particle amplitudes in the
presence of kinematic cuts typically have dramatic features. Our phase space sampling not
only has to identify the regions of phase space with the leading contribution to the integral,
but also map its features with high precision. For instance, the process illustrated in Fig. 1
includes narrow intermediate on-shell particles. Around a mass peak with I' < m they lead
to a sharp Breit-Wigner shape of the transition amplitude. A standard way of improving the
integration is to identify the invariant mass variable s where the resonance occurs and switch
variables to

p(x)= (8)

2

F(s) 1 . s—m
st(s—m2)2+m2F2 :ﬁdeF(s) with g = arctan et 9

This example illustrates how phase space mappings, given some knowledge of the structure of
the integrand, allow us to evaluate high-multiplicity scattering processes.

Finally, in LHC applications we are typically not interested in an integral like the one shown
in Eq.(3). Instead, we want to simulate phase space configurations or events with a proba-
bility distribution corresponding to a given hard process, shower configuration, or detector
smearing. This means we have to transfer the information included in the weights at a given
phase space point to a phase space density of events with uniform weight. The correspond-
ing unweighting procedure computes the ratio of a given event weight to the maximum event
weights, probes this ratio with a random number, and in turn decides if a phase space point
or event remains in the sample, now with weight one. This procedure is highly inefficient.

Summarizing, the challenge for a machine learning approach to phase space sampling is:
mimic importance sampling, guarantee a precise mapping of narrow patterns, and avoid the
limited unweighting efficiency.

2.2 Generative adversarial network

The defining structural elements of generative adversarial networks or GANs are two com-
peting neural networks, where the generator network G tries to mimic the data while the
discriminator network D is trained to distinguish between generated and real data. The two
networks play against each other, dynamically improving the generator by searching for pa-
rameter regions where the generator fails and adjusting its parameters there.

To start with, both networks are initialized with random values so that the generator net-
work induces a underlying random distribution Pg;(x) of an event or phase space configuration

4


https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SCIl SciPost Phys. 7, 075 (2019)

5 5 T
i
|
44| true DS generated DS 44\ improved standard 1
/
1
1
1
31 31 Ill
S < !
~ ~ /
2 21
11 1 e
0 : : : : 0 k=== v v v v
0=gen 0.2 0.4 0.6 0.8 1=true O=gen 0.2 0.4 0.6 0.8 1 =true

Figure 2: Discriminator and generator losses as a function of the value assigned by
the discriminator. The red line indicates batches from the true distribution, the blue
lines batches from a generated distribution. The arrows indicate the direction of the

training.

X, typically organized with the same dimensionality as the (phase) space we want to generate.
Now the discriminator network compares two distributions, the true distribution Pr(x) and
the generated distribution P;(x). From each of the two distributions we provide batches of
phase space configurations {x;} and {x;} sampled from P; or P;, respectively. Here the sets
{xr} are batches of events sampled from the training or generated data.

The discriminator output D(x) € (0, 1) is trained to give D = 1 for each point in a true
batch and D = 0 for the each point in the generated and hence not true batch. We can enhance
the sensitivity for D — 0 by evaluating the variable —log D(x) € (00, 0) instead of D(x) in the

expectation value

(—logD(x)>x=—Ni Z logD(x), (10)

X xebatch

where N, is the batch size. For a correctly labelled true sample this expectation value gives
zero. The loss function is defined such that it becomes minimal when the discriminator cor-

rectly predicts the true and generated batches

Lp= ( — logD(x)>x~PT + ( —log(1 —D(x)))xNPG . (1)

The symbol x ~ P indicates phase space configurations sampled from P. In the GAN ap-
plication this discriminator network gets successively re-trained for a fixed truth P;(x) but
evolving P;(x), as illustrated in the left panel of Fig. 2. We can compute the discriminator
loss in the limit where the generator has produced a perfect image of the true distribution. In
this case the discriminator network will give D = 0.5 for each point x and the result becomes
Lp=-—2log0.5~1.4.

The generator network starts from random noise and transforms it into a distribution
P;(x). For this it relies on the function D(x), which encodes the truth information. Following
Eq.(11) this means we can maximize its second term in the training of the generator network.
It turns out that it is numerically more efficient to instead minimize the generator loss

Lg= < —logD(;c))xNPG . (12)
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In the right panel of Fig. 2 we see how this assignment leads to larger gradients away from
the true configurations.

The key to the GAN training is the alternating training of the generator and discriminator
networks with their respective loss functions given in Eq.(11) and Eq.(12). Here, the balance
between generator and discriminator is crucial. On the one hand, the generator can only be
as good as the discriminator which defines the level of similarity between true and generated
data. On the other hand, a perfect discriminator leads to a vanishing loss function, which
reduces the gradient and slows down the training. This interplay of the two networks often
leads to stability issues in the training [19]. A common way to stabilize networks are noise-
induced regularization methods, or equivalently including a penalty on the gradient for the
discriminator variable D(x) [20]. Specifically, we apply the gradient to the monotonous logit
function

D(x) o 1 1 8D

P)=log =15 2 Gy T D 1-Dk) ax’

(13)

enhancing its sensitivity in the regions D — 0 or D — 1. The penalty applies to regions where
the discriminator loss leads to a wrong prediction, D ~ 0 for a true batch or D ~ 1 away
from the truth. This means we add a term to the discriminator loss and obtain the regularized
Jensen-Shannon GAN objective [20]:

Lp = Lp +Ap((1=D(x))*|Vo[*)

+2p(D(x)* |V |?) (14)

x~Pr x~Pg "’

with a properly chosen variable Ap. The pre-factors (1 —D)? and D? indeed ensure that for a
properly trained discriminator this additional contribution vanishes. Another method to avoid
instabilities in the training of the GAN is to use the Wasserstein distance [21,22] but our tests
have shown that Eq.(14) works better in our case.

As a side remark, another common type of neural network used for generative problems
are variational autoencoders (VAE). They perform a dimensional reduction of the input data
— often an image — to create a latent representation. The autoencoder is trained to minimize
the difference between input and inferred image, where a variational autoencoder requires the
components of the latent representation to follow a Gaussian. If we then insert Gaussian ran-
dom numbers for the latent representation, the decoder generates new images with the same
characteristics as the training data. While VAEs can be used to generate new data samples,
a key component is the latent modelling and the marginalization of unnecessary variables,
which is not a problem in generating LHC events.

2.3 Loss functions for intermediate particles

A particular challenge for our phase space GAN will be the reconstruction of the W and top
masses from the final-state momenta. For instance, for the top mass the discriminator and
generator have to probe a 9-dimensional part of the phase space, where each direction covers
several 100 GeV to reproduce a top mass peak with a width of I, = 1.5 GeV. Following the dis-
cussion of the Monte Carlo methods in Sec. 2.1 the question is how we can build an analogue
to the phase space mappings for Monte Carlos. Assuming that we know which external mo-
menta can form a resonance we explicitly construct the corresponding invariant masses and
give them to the neural network to streamline the comparison between true and generated
data. We emphasize that this is significantly less information than we use in Eq.(9), because
the network still has to learn the intermediate particle mass, width, and shape of the resonance
curve.

A suitable tool to focus on a low-dimensional part of the full phase space is the maximum
mean discrepancy (MMD) [23]. The MMD is a kernel-based method to compare two samples

6
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Figure 3: Schematic diagram for our GAN. The input {r} and {m} describe a batch of
random numbers and the masses of the external particles, and {x} denotes a batch
of phase space points sampled either from the generator or the true data. The blue
(red) and arrows indicate which connections are used in the training of the generator
(discriminator).

drawn from different distributions. Using one batch of true data points and one batch of
generated data points, it computes a distance between the distributions as

MMD?*(Py, Pg) = (k(x, X)), v p + (k. ¥)), op =2k D) o s (15)

where k(x,y) can be any positive definite kernel function. Obviously, two identical distri-
butions lead to MMD(P, P) = 0 in the limit of high statistics. Inversely, if MMD(P;, P;) = 0
for randomly sampled batches the two distributions have to be identical P;(x) = Pg(x). The
shape of the kernels determines how local the comparison between the two distributions is
evaluated. Two examples are Gaussian or Breit-Wigner kernels

(x—y)? o?

kGauss(X,y) = exp————"— or kpw(x,y) = m , (16)

202

where the hyperparameter o determines the resolution. For an optimal performance it should
be of the same order of magnitude as the width of the feature we are trying to learn. If the
resonance and the kernel width become too narrow, we can improve convergence by including
several kernels with increasing widths to the loss function. The shape of the kernel has nothing
to do with the shape of the distributions we are comparing. Instead, the choice between the
exponentially suppressed Gaussian and the quadratically suppressed Breit-Wigner determines
how well the MMD accounts for the tails around the main feature. As a machine learning
version of phase space mapping we add this MMD to the generator loss

Lg — Lg + Ag MMD? , a7

with another properly chosen variable A.

Similar efforts in using the MMD to generate events have already been done in [24-26]
and has also been extended to a adversarial MMD version or MMD-GAN [27-29], in which
the MMD kernel is learned by another network.

In Fig. 3 we show the whole setup of our network. It works on batches of simulated
parton-level events, or unweighted event configurations {x}. The input for the generator are
batches of random numbers {r} and the masses {m} of the final state particles. Because of the
random input a properly trained GAN will generate statistically independent events reflecting
the learned patterns of the training data. For both the generator and the discriminator we use a
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Table 1: Details for our GAN setup.

Parameter Value
Input dimension G 18+6
Layers 10
Units per layer 512

Trainable weights G 2382866
Trainable weights D 2377217

Ap 1073
Ag 1
Batch size 1024
Epochs 1000
Iterations per epoch 1000
Training time 26h
Size of trainings data 10°

10-layer MLP with 512 units each, the remaining network parameters are given in Tab. 1. The
main structural feature of the competing networks is that the output of the discriminator, D, is
computed from the combination of true and generated events and is needed by the generator
network. The generator network combines the information from the discriminator and the
MMD in its loss function, Eq.(17). The learning is done when the distribution of generated
unweighted events {x;} and true Monte-Carlo events {x} are essentially identical. We again
emphasize that this construction does not involve weighted events.

3 Machine-learning top pairs

A sample Feynman diagram for our benchmark process
pp — tt — (bqq") (b3q"), (18)

is shown in Fig. 1. For our analysis we generate 1 million samples of the full 2 — 6 events as
training data sample with MG5aMCNLO [30]. The intermediate tops and W-bosons allow us to
reduce the number of Feynman diagrams by neglecting proper off-shell contributions and only
including the approximate Breit-Wigner propagators. Our results can be directly extended to
a proper off-shell description [31-33], which only changes the details of the subtle balance
in probing small but sharp on-shell contributions and wide but flat off-shell contributions.
Similarly, we do not employ any detector simulation, because this would just wash out the
intermediate resonances and diminish our achievement unnecessarily.

Because we do not explicitly exploit momentum conservation our final state momenta
are described by 24 degrees of freedom. Assuming full momentum conservation would for
instance make it harder to include approximate detector effects. These 24 degrees of freedom
can be reduced to 18 when we require the final-state particles to be on-shell. While it might
be possible for a network to learn the on-shell conditions for external particles, we have found
that learning constants like external masses is problematic for the GAN setup. Instead, we use
on-shell relations for all final-state momenta in the generator network.

Combining the GAN with the MMD loss function of Eq.(17) requires us to organize the
generator input in terms of momenta of final-state particles. With the help of a second input
to the generator, namely a 6-dimensional vector of constant final-state masses, we enhance the

8
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Figure 4: Energy (top) and transverse momentum (bottom) distributions of the final-
state b-quark (left) and the decaying top quark (right) for MC truth (blue) and the
GAN (red). The lower panels give the bin-wise ratio of MC truth to GAN distribution.
For the p; distributions we show the relative statistic uncertainty on the cumulative
number of events in the tail of the distribution for our training batch size.

18-dimensional input to six 4-vectors. This way we describe all final-state particles, denoted
as {x;} in Fig. 3, through an array

x ={p1,P2,P3,P4>Ps5,P6} 5 (19)

where we fix the order of the particles within the events. This format corresponds to the
generated unweighted truth events {x;} from standard LHC event simulators. In particular,
we choose the momenta such that

pw-=P1+DP2, Pw+=Ps4+Ps, Pi=pP1+P2+DP3, Pr=Ps+tPs+pes.- (20)

For the on-shell states we extract the resonances from the full phase space and use those to
calculate the MMD between the true and the generated mass distributions. This additional
loss is crucial to enhance the sensitivity in certain phase space regions allowing the GAN to
learn even sharp feature structures.

Flat distributions

To begin with, relatively flat distributions like energies, transverse momenta, or angular cor-
relations should not be hard to GAN [14-16]. As examples, we show transverse momentum
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and energy distributions of the final-state b-quarks and the intermediate top quarks in Fig. 4.
The GAN reproduces the true distributions nicely even for the top quark, where the generator
needs to correlate the four-vectors of three final-state particles.

To better judge the quality of the generator output we show the ratio of the true and
generated distributions in the lower panels of each plot, for instance EI()G) / EIST) where EIEG’T) is
computed from the generated and true events, respectively. The bin-wise difference of the two
distributions increases to around 20% only in the high-p; range where the GAN suffers from
low statistics in the training sample. To understand this effect we also quantify the impact
of the training statistics per batch for the two py-distributions. In the set of third panels we
show the relative statistical uncertainty on the number of events N,,;(pr) in the tail above
the quoted p; value. The relative statistical uncertainty on this number of events is generally
given by 1/4/Ny,;. For the pr,-distribution the GAN starts deviating at the 10% level around
150 GeV. Above this value we expect around 25 events per batch, leading to a relative statistical
uncertainty of 20%. The top kinematics is harder to reconstruct, leading to a stronger impact
from low statistics. Indeed, we find that the generated distribution deviates by 10% around
Pr: R 250 GeV where the relative statistic uncertainty reaches 15%.

We emphasize that this limitation through training statistics is expected and can be easily
corrected for instance by slicing the parameter in py and train the different phase space regions
separately. Alternatively, we can train the GAN on events with a simple re-weighting, for
example in pr, but at the expense of requiring a final unweighting step.

Phase space coverage

To illustrate that the GAN populates the full phase space we can for instance look at the az-
imuthal coordinates of two final-state jets in Fig. 5. Indeed, the generated events follow the
expected flat distribution and correctly match the true events.

Furthermore, we can use these otherwise not very interesting angular correlations to illus-
trate how the GAN interpolates and generates events beyond the statistics of the training data.
In Fig. 6 we show the 2-dimensional correlation between the azimuthal jet angles ¢; and ¢, .
The upper-left panel includes 1 million training events, while the following three panels show
an increasing number of GANed events, starting from 1 million events up to 50 million events.
As expected, the GAN generates statistically independent events beyond the sample size of the
training data and of course covers the entire phase space.

Resonance poles

From Ref. [12] we know that exactly mapping on-shell poles and tails of distributions is a
challenge even for simple decay processes. Similar problems can be expected to arise for phase
space boundaries, when they are not directly encoded as boundaries of the random number
input to the generator. Specifically for our tt process, Ref. [ 14] finds that their GAN setup does
not reproduce the phase space structure. The crucial task of this paper is to show how well our
network reproduces the resonance structures of the intermediate narrow resonances. In Fig. 7
we show the effect of the additional MMD loss on learning the invariant mass distributions
of the intermediate W and top states. Without the MMD, the GAN barely learns the correct
mass value, in complete agreement with the findings of Ref. [15]. Adding the MMD loss with
default kernel widths of the Standard Model decay widths drastically improves the results,
and the mass distribution almost perfectly matches the true distribution in the W-case. For
the top mass and width the results are slightly worse, because its invariant mass needs to
be reconstructed from three external particles and thus requires the generator to correlate
more variables. This gets particularly tricky in our scenario, where the W-peak reconstruction
directly affects the top peak. We can further improve the results by choosing a bigger batch

10
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Figure 5: ¢ distributions of j; and j,. The lower panels give the bin-wise ratio of MC
truth to GAN distribution.
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Figure 6: Correlation between ¢; and ¢;, for 1 million true events (upper left) and
for 1 million, 10 million, and 50 million GAN events.

size as this naturally enhances the power of the MMD loss. However, bigger batch sizes leads
to longer training times and bigger memory consumption. In order to keep the training time
on responsible level, we limited our batch size to 1024 events per batch. As already pointed
out, the results are not perfect in this scenario, especially for the top invariant mass, however,
we can clearly see the advantages of adding the MMD loss.

To check the sensitivity of the kernel width on the results, we vary it by factors of {1/4,4}.

11
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Figure 7: Comparison of different kernel functions (left) and varying widths (right)
and their impact on the invariant mass of W boson (top) and top quark (bottom).

As can be seen in the lower panels of both distributions, increasing the resolution of the kernel
or decreasing the kernel width hardly affects the network performance. On the other hand,
increasing the width decreases the resolution and leads to too broad mass peaks. Similarly, if
we switch from the default Breit-Wigner kernel to a Gaussian kernel with the same width we
find identical results. This means that the only thing we need to ensure is that the kernel can
resolve the widths of the analyzed features.

We emphasize again that we do not give the GAN the masses or even widths of the interme-
diate particles. This is different from Ref. [15], which tackles a similar problem for the Z — (¢
resonance structure and uses an explicit mass-related term in the loss function. We only spec-
ify the two final-state momenta for which the invariant mass can lead to a sharp phase space
structure like a mass peak, define a kernel like those given in Eq.(16) with sufficient resolution
and let the GAN do the rest. This approach is even more hands-off than typical phase space
mappings employed by standard Monte Carlos.

Correlations

Now that we can individually GAN all relevant phase space structures in top pair production, it
remains to be shown that the network also covers all correlations. A simple test is 4-momentum
conservation, which is not guaranteed by the network setup. In Fig. 8, we show the sums of the
transverse components of the final-state particle momenta divided by the sum of their absolute
values. As we can see, momentum conservation at the GAN level is satisfied at the order of
2%.
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Figure 8: Sum of all p, (p,) momenta divided by the sum of the absolute values in
the left (right) panel, testing how well the GAN learns momentum conservation.

Finally, in Fig. 9 we show 2-dimensional correlations between the transverse momenta
of the outgoing b-quark and the intermediate top for the true (left) and GAN events (right).
The phase space structure encoded in these two observables is clearly visible, and the GAN
reproduces the peak in the low-p range, the plateau in the intermediate range, and the sharp
boundary from momentum conservation in the high-p; range. To allow for a quantitative
comparison of true and generated events we show the bin-wise asymmetry in the lower left
panel. Except for the phase space boundary the agreement is essentially perfect. The asymme-
try we observe along the edge is a result from very small statistics. For an arbitrarily chosen
pr value of 100 GeV the deviations occur for pr;, € [130, 140] GeV. We compare this region of
statistical fluctuations in the asymmetry plot with a 1-dimensional slice of the correlation plot
(lower right) for pr, =100+ 1 GeV. The 1-dimensional distributions shows that in this range
the normalized differential cross section has dropped below the visible range.

4 Outlook

We have shown that it is possible to GAN the full phase space structure of a realistic LHC
process, namely top pair production all the way down to the kinematics of the six top decay jets.
Trained on a simulated set of unweighted events this allows us to generate any number of new
events representing the same phase space information. With the help of an additional MMD
kernel we described on-shell resonances as well as tails of distributions. The only additional
input was the final-state momenta related to on-shell resonances, and the rough phase space
resolution of the on-shell pattern.

Our detailed comparison showed that relatively flat distributions can be reproduced at ar-
bitrary precision, limited only by the statistics of the training sample. The mass values defining
intermediate resonance poles were also easily extracted from the dynamic GAN setup. Learn-
ing the widths of the Breit-Wigner propagator requires an MMD Kkernel with sufficient reso-
lution and is in our case only limited by the training time. The main limitation of the GAN
approach is that statistical uncertainties in poorly populated tails of distributions in the train-
ing data appear as systematic uncertainties in the same phase space regions for the generated
high-statistics samples. We have studied this effect in detail.

Because such a GAN does not require any event unweighting we expect it to be a useful
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Figure 9: Correlation between pr, and pr, for the true data (upper left), GAN data
(upper right) and the asymmetry between both (lower left). In addition, we show
prp sliced at pr, = 100+ 1 GeV (lower right).

and fast’ addition to the LHC event generation tool box. In case we want to improve the
phase space coverage or include subtraction methods through a pre-defined event weight this
is obviously possible. The same setup will also allow us to generate events from an actual LHC
event sample or to combine actual data with Monte Carlo events for training, wherever such
a thing might come in handy for an analysis or a fundamental physics question.
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