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Abstract

A common problem in a high energy physics experiment is extracting a signal from a much
larger background. Posed as a classification task, there is said to be an imbalance in the num-
ber of samples belonging to the signal class versus the number of samples from the background
class. In this work we provide a brief overview of class imbalance techniques in a high energy
physics setting. Two case studies are presented: (1) the measurement of the longitudinal
polarization fraction in same-sign W W scattering, and (2) the decay of the Higgs boson to
charm-quark pairs.
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1 Overview

The Large Hadron Collider (LHC) has been an incredibly successful experiment. To date it has
discovered the Higgs boson, and measured hundreds, if not thousands, of other processes to be
consistent with the predictions of the Standard Model (SM) [1]. A common problem in making these
measurements is extracting a signal from a much larger background. Occasionally in this situation
there is a single feature that is powerful enough to discriminate the signal from the large background.
An example of this the Higgs boson decaying to two photons where the invariant mass of the photon
pair is the discriminating observable [2, 3]. More often however a multi-variate analysis of many
features needs to be performed. Machine learning (ML) and deep learning (DL) are well suited for
such tasks. Therefore it is not surprising that ML and DL have become, and will likely continue to
be, an important part of the success of the LHC program. See Refs. [4–7] for some recent reviews.

If one treats the extraction of a signal from a much larger background as a classification problem
there is an imbalance in the number of sample belonging to the signal class versus the number of
events from the background class. In the machine learning community techniques for learning from
imbalanced data are well established. There is now even a software package, imbalanced− learn
[8], dedicated to this task. In high energy physics there do not appear to be many cases where imbal-
anced learning techniques were explicitly used. However the measurement of the time-integrated
C P asymmetry in D0→ K0

S K0
S decays by LHCb [9] is one such example. In particular LHCb classified

the D0 decay signal from its background using the analysis methods developed in Refs. [10, 11].
An alternative approach to classification with imbalance techniques is using an anomaly detection
framework. There are several examples of this in high energy physics [12–15].

Given the lack of examples where imbalanced learning techniques were used in high energy
physics, the purpose of this note is two-fold. Firstly, in Section 2, we aim to provide a brief overview of
modern class imbalance techniques in a high energy physics setting, introducing novel loss functions
and a data resampling technique. Secondly, we provide two case studies of how class imbalance
techniques can be used in high energy physics settings. The first case, presented in Sec. 3, is the
measurement of the longitudinal polarization fraction in same-sign WW scattering. We find a modest
improvement in the performance of both the classical machine learning models and the deep learning
models used in the longitudinal WW study. The second study is the decay of the Higgs boson to
charm-quark pairs, which follows in Sec. 4. Our Higgs-to-charm tagger gives a 14% improvement
in the background rejection rate. Another application of these techniques is training directly on
experimental data [16–18]. Conclusions are then given in Sec. 5. Much of the code for this project
is available at [19].

2 Class Imbalance Techniques

There is no definitive answer to the question: What should one do when dealing with imbalanced
data? The answer will depend on the data in question, see [20] for a study of benchmark datasets.
In this Section we present a few approaches one might try to improve performance on an unbalanced
dataset.

Using the accuracy of a classifier as a metric can be misleading. (See Table. 3 for a glossary of
model evaluation terms used in this work.) Consider a model that predicts that every sample to be
background. The accuracy of this model is A = 1− r, where r is the ratio of the number of signal
events to the total number of events. Although this model would be highly accurate if the data were
sufficiently imbalanced, it would not be useful as it says nothing about the signal, which is what
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we were interested in to begin with. For this reason accuracy is not a recommended metric in this
setting. The ROC curve is a good general purpose metric, providing information about the true and
false positive rates across a range of thresholds, and the area under the ROC curve (AUC) is a good
general purpose, single number metric. However, when dealing with imbalanced data, we argue in
what follows that the precision-recall curve is the preferred metric to use on imbalanced data. If
one instead prefers a single number metric, average precision is approximately the area under the
precision-recall curve in analogy with AUC for the ROC curve.

The ROC curve describes the false positive (background rejection) rate as a function of the true
positive rate (signal efficiency), whereas the precision-recall curve, true to its name, gives precision
as a function of recall. Recall is equivalent to the true positive rate, but precision does not correspond
to the false positive rate. Recall or the true positive rate is a measure of how many true signal events
have actually been identified as signal. Similarly the false positive rate is a measure of how many
of the true background events have been identified as background. Precision, on the other hand,
quantifies how likely an event is to truly be signal when a classifier has predicted it to be signal.
A classifier’s prediction will vary as the baseline probability of the positive class varies. As such,
precision depends on how rare the signal is. This motivates using the precision-recall curve when
the positive class samples are rare compared to the negative class examples. When this is not an
issue the ROC curve is the metric to use as it does not care about the baseline probability of the
positive class.

One might also try to balance the training set either by under-sampling [21–25] the majority class,
oversampling the minority class [26, 27], or a combination of over- and under-sampling [28, 29].
Oversampling runs the risk of overfitting, and training with oversampling takes longer because of the
additional data. For these reasons we will focus on under-sampling in this work. In particular, we will
use random under-sampling to create a balanced random forest [30,31]. Analogous procedures exist
for creating a balanced boosted decision trees [32] and making balanced batches to feed into a neural
network. The algorithm for how the balanced random forest makes classifications is as follows:
(1) take bootstrap samples from the original dataset, (2) balance each sample by downsampling
randomly, (3) learn a decision tree from each sample, (4) make predictions based on a majority
vote. It is the second step of this process that is absent in a standard random forest. Even if this does
not lead to a gain in performance training is faster with this approach because less data is used.

Lastly, one might consider making changes to the algorithms being used [33–35]. A simple ex-
ample of this is if a metric such as precision, recall, or F1 score is being used, its decision threshold
can be optimized to maximize performance. One approach along these lines is to add hyperparam-
eters to the loss function, creating a relatively larger penalty for misclassifying an example. To start
consider the standard cross entropy loss function used for binary classification

BC E = −y log(p)− (1− y) log(1− p), (1)

where y is the ground-truth class with y = 1 for the signal class, and p is the model’s estimated prob-
ability that a given event belong to the signal class. Following Ref. [36] we introduce the following
compact notation1

pt =

¨

p if y = 1

1− p otherwise
. (2)

With this definition Eq. (1) becomes

BC E = − log(pt). (3)
1A model’s estimated probability of an event belong to a class, pt , is not to be confused with the transverse momentum

of a particle, pT .
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When there is class imbalance it is common to add a weighting hyperparameter, α, to loss func-
tion. Weighting the loss function can be implemented as follows

C E = −α y log(p)− (1−α)(1− y) log(1− p)≡ −αt log(pt), (4)

where αt is defined analogously to pt in Eq. (2). With this normalization α takes values between
0 and 1. Often α is taken to be proportional to the inverse class frequency, α∝ r−1. The weight-
ing hyperparameter balances the importance of signal and background events in the loss function.
However α does not do anything to differentiate between easy- and hard-to-classify examples. In par-
ticular, easy-to-classify background examples may come to overwhelm the loss function even though
they are individually negligible if the class imbalance is extreme enough.

This issue was rectified in Ref. [36], which introduced the focal loss function

F L = −(1− pt)
γ log(pt), (5)

where the modulating parameter, γ, puts the focus on hard-to-classify examples. In particular, when
a sample is misclassified and pt is small the modulating factor is approximately one, and the loss is
unaffected. However, as pt approaches one the modulating factor approaches zero, down-weighting
the loss function for well-classified examples. When γ = 0 focal loss is equivalent to cross entropy,
and as γ is increased the rate at which easy-to-classify samples are down weighted also increases.
Focal Loss is an optimal classifier just as cross entropy or mean square error are. One way to see this
is Focal Loss produces a concave ROC curve (given sufficiently large statistics), which is equivalent
to being optimized by the likelihood ratio [37].

In this work we will use the weighted variation of focal loss

F L = −αt(1− pt)
γ log(pt), (6)

with default values for the hyperparameters, α= 0.25 and γ= 2.
Another generalization of focal loss is from binary classification to multi-class classification. Here

the compact pt notation does not work, so to set the stage we define the categorical cross entropy
loss for classification with K classes

CC E = −
K
∑

i=1

yi log(pi), (7)

where pi the probability that an example belongs to class i, and is given by the softmax function

pi =
esi

∑K
j=1 es j

, (8)

with si being the score for the ith class for an example. The vector y is a one-hot representation of
the classes with one component equal to one and the remain K−1 components equal to zero. When
K = 2 Eq. (8) reduces to Eq. (3). With all of the setup in place, we can now write the categorical
focal loss for multi-class classification

C F L = −
K
∑

i=1

yi(1− pi)
γ log(pi). (9)
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3 Longitudinal Polarization Fraction in Same-Sign WW Production

3.1 Introduction

Same-sign WW production at the LHC is the vector boson scattering (VBS) process with the largest
ratio of electroweak-to-QCD production. As such it provides a great opportunity to study whether
the discovered Higgs boson leads to unitary longitudinal VBS, and to search for physics beyond the
SM (BSM) [38, 39]. The ATLAS and CMS experiments have observed electroweak same-sign WW
production in the two jet, two same-sign lepton final state in 13 TeV pp collisions with significances of
6.9σ [40] and 5.5σ [41], respectively. Confirming or refuting the unitarity of VBS requires not just a
measurement of pp→ j jW±W±, but of the fraction of these events where both W s are longitudinally
polarized (LL fraction).

Prospects for the extraction of the longitudinal component of W±W± scattering during the High-
Luminosity phase of the LHC (HL-LHC) were studied in Refs. [42–44]. The fraction of longitudinally
polarized events is predicted to be only r ∼ 0.07 in the SM at large dijet invariant mass (m j j) [43]
making this a challenging measurement. Using the difference in the azimuthal angle of the two jets

∆φ j j =min(|φ j1 −φ j2 |, 2π− |φ j1 −φ j2 |), (10)

as a discriminant, the significance for the observation of the LL fraction is expected to be up to 2.7σ
with 3000 fb−1 of integrated luminosity [43].

The observation significance can be improved through the use of deep learning [45,46]. Ref. [45]
regressed on the angles between the charged leptons in their parent boson’s rest frame and the
W boson’s direction of motion, whereas Ref. [46] treated this as a binary classification problem
distinguishing between events where both W s were longitudinally polarized versus when one or
none of the W s were polarized. In the classification setting it is important to keep in mind that the
predicted LL fraction is small, and thus there is an imbalance in the number of events belonging to
the class N(WL) = 2 versus the class N(WL) < 2 (LL class vs. T L + T T class). We proceed treating
this as a classification problem with imbalanced classes.

3.2 Data

MadGraph5 v2.6.6 [47] is used to simulate events for the leading order electroweak, O(α4), contri-
bution to process pp→ j jW±W± at center of mass energy

p
s = 14 TeV. The fraction of events where

both W s are longitudinally polarization is r ≈ 7.5%. Additionally, MadSpin [48] is used to include
spin correlation effects in the decays of the W bosons such that the final process under consideration
is pp → j j`±ν`±ν with ` = {e, µ}. Representative Feynman diagrams are given in Figure 1. Note
that in this case study, unlike the one that follows it, the “jets” are partons from the hard scattering
process and are not showered or hadronized. We comment on the impact this choice has in the
results subsection of this case study. The cuts are chosen to match those of Ref. [46]. We require
two jets with transverse momentum, pT > 50 GeV, and pseudorapidity, |η| < 4.7. The jet pair must
also have an absolute difference in pseudorapidity ∆η j j > 2.5, consistent with VBS, and have an
invariant mass m j j > 850 GeV to suppress non-prompt and W Z backgrounds [41]. Additionally we
select for two same-sign charged leptons with pT > 20 GeV and |η| < 2.4. A total of approximately
1.7 · 105 events pass these cuts.

The feature engineering is also done to match that of Ref. [46] as much as possible. The pT , η,
and φ of the two jets and the two leptons are used as features. The subscripts 1 and 2 are used to
indicate the jet or lepton with the larger or smaller transverse momentum, e.g. p j1

T > p j2
T . This step
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Figure 1: Representative leading order Feynman diagrams for pp→ j j`±ν`±ν. Top
row: Diagrams contributing to the signal, pp→ j jW±W±→ j j`±ν`±νwithσ∝ α6.
Bottom row: Diagrams considered irreducible background in this work. The dia-
grams are drawn with MadGraph5 [47].

that improves the performance of classifiers, and is not done by default in MadGraph5. The mag-
nitude and azimuthal angle of the missing transverse energy are included as well. In addition, the
following high-level features are added. From the jet system we add the invariant mass, the differ-
ence in pseudorapidity, and the difference in the azimuthal angle. We also consider the Zeppenfeld
variable [49] for the two charged leptons,

z`i
=
η`i
− η̄ j j

∆η j j
, (11)

where η̄ j j is the mean pseudorapidity of the two leading jets. Finally we include the separation of
the di-jet and di-lepton systems in the pseudorapidity-azimuthal angle plane, ∆R j j,``, bringing the
total number of features to 20.

3.3 Models and Training

In addition to using ∆φ j j and p`1
T as discriminating observables, we use the following models. For

classical machine learning we use a random forest (RF) as a baseline, and look to use a change in
performance from weighting or balancing. We use the imbalanced− learn [8] implementation of
balanced random forest, and use scikit− learn [50] for the other random forests. The balanced
random forest has no maximum depth, while the other random forests have a maximum depth of
10. Additionally we consider a LightGBM [51] (LGBM), which is a gradient boosted decision tree
where the trees are grown in a depth first rather than breadth first fashion. The name Light comes
from the fact that the training time is often greatly reduced with this construction of the trees. In
particular, our LGBM has 103 estimators and a learning rate of 0.01. The deep learning models are
fully-connected neural networks (DNNs) implemented using the Keras API [52] for TensorFlow
v2.0.0 [53]. Our baseline DNN has a cross entropy loss function, Eq. (3), and the variation we test is
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Table 1: Results of the five-fold cross validation for classifying LL events from
T L + T T events in pp → j jW±W± → j j`±ν`±ν. Performance is reported as (the
mean ± the standard deviation) of the five folds. tfit is the time it takes to fit the
model to a training fold of data. The models utilizing class imbalance techniques
show modest improvements in performance with respect to their baselines. See the
text more for details.

Model tfit [s] Average Precision AUC

∆φ j j - 0.120± 0.003 0.662± 0.006
p`1

T - 0.112± 0.003 0.663± 0.006
Random Forest 84± 24 0.223± 0.006 0.766± 0.006
Weighted RF 30± 15 0.227± 0.006 0.768± 0.006
Balanced RF 63± 19 0.228± 0.007 0.776± 0.005
LightGBM 9.7± 0.7 0.241± 0.005 0.782± 0.005

Deep Neural Network (2.8± 0.3) · 102 0.244± 0.008 0.789± 0.004
DNN w/ Focal Loss (3.3± 1.1) · 102 0.246± 0.004 0.791± 0.005

a DNN with a focal loss function, Eq. (6). The features are scaled to have zero mean and unit variance
before being fed into the neural networks. All of our neural networks have 2 hidden layers each with
150 neurons, He initialization, and ReLU activation functions. Batch normalization is performed to
speed up the learning process, dropout is applied at a 50% rate for regularization, and the Adam
algorithm is used to optimize the parameters of the DNN.

A five-fold cross validation is performed for each for model. The folds are stratified based on the
size of the class imbalance. For the DNNs, a batch size of 50 is used in training. Early stopping is
implemented for the DNNs where training runs until there is no decrease in the training loss function
for 5 consecutive epochs. Similarly, we grow the Random Forests 10 trees at a time until there is no
improvement in the training loss function.

3.4 Results

Table 1 shows the results of the cross validation with performance being reported as the mean ±
the standard deviation of the five folds. Both the weighted random forest and the balanced random
forest modestly outperform the baseline random forest. Similarly, the DNN with focal loss modestly
outperforms its baseline neural network. The uncertainty on the machine learning metrics is statis-
tical in nature; one over the square root of the sample size of a test fold in the cross validation is
approximately 5.4 · 10−3. On the other hand, the uncertainty on the time it takes to fit the models,
tfit, does not follow this statistical pattern due to the stochastic nature of the optimization process
and the early stopping criteria imposed on training.

The improvement in performance of the balanced RF can be seen visually in Figure 2 where the
green curves of the standard random forest are below the red curves of the balanced random forest
both precision versus recall (left panel) and the ROC curve (right panel). More strikingly, all of
the machine learning models significantly outperform the kinematic variable p`1

T . Note that recall is
equivalent to signal efficiency, but precision is not related to background rejection.

The balanced and weighted random forests also take less time to train. In the case of the balanced
RF, tfit does not tell the whole story as it has no maximum depth whereas the standard random forest
can only be 10 levels deep. Not to be outdone, the LGBM fits more than an order of magnitude faster
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Figure 2: Multiple parameter performance measures. The precision-recall curve is
given in 2a, and the ROC curve is shown in 2b. Visually it is clear that the balanced
random forest (red) outperforms its unbalanced counterpart (green). More strikingly,
all of the machine learning models significantly outperform the kinematic variable
p`1

T . Note that recall is equivalent to signal efficiency, but precision is not related to
background rejection.

than the neural networks and almost an order of magnitude faster than the standard random forest.
Its performance is intermediate between the balanced random forest and the baseline the neural
network.

Histograms for the probability the event will be predicted to be an LL event are shown in Figure 3
when it is in truth an LL event (red distributions) or when it is actually an T L + T T event (blue
distributions). The top row shows the random forest models, and the bottom row shows the DNN
models.

The mean predicted probability for a classifier with an unweighted loss function trained on an
imbalanced dataset is r, the imbalance ratio. Complete signal-background separation in the training
dataset is a sign of overfitting if such behavior is not also observed in the validation dataset, which
it’s not in this case. Balancing the training set moves the mean value from r to 0.5. This can be seen
in the upper right panel of 3 from the balanced random forest. Weighting the loss function with the
inverse of the class frequencies also moves the mean value to 0.5. Focal loss is intermediate between
these two scenarios, r and 0.5, as can be seen in the bottom right panel of 3.

Finally, this case study would not be complete without a comparison with to Ref. [46]. The most
obvious difference between our work and that of [46] is the better performance we find from the
kinematic variable ∆φ j j . However we did not pass our simulated events through a parton shower
or hadronize them, which likely would have spoiled some of the correlation between ∆φ j j and the
polarizations of the W bosons. Beyond that, our results are consistent with those found in Ref. [46].
Specifically, as measured by the AUC , our fully-connected neural network with two hidden layers
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Figure 3: Histograms for the probability the event will be predicted to be an LL event
when it is in truth an LL event (red distributions) or when it is actually an T L + T T
event (blue distributions). The top row shows the random forest models, and the
bottom row shows the DNN models.

matches the performance of the neural network with “particle-based” architecture and 10 hidden
layers in [46]. Additionally, our balanced random forest matches the performance of the AdaBoost
classifier of Ref. [46], where again performance is measured by the AUC . We do not estimate the
statistical significance of a non-zero LL fraction from our classifiers for two reasons. Firstly the
imbalance ratio r is higher in our simulated dataset than that of Ref. [46], which would make our
models appear to significantly outperform those of [46] when based on the comparison of machine
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learning metrics given above the differences are not so great. Secondly all the machine learning
models significantly outperform the kinematic variable p`1

T , as can be seen in Fig. 2, so it’s safe to
assume all of the models tested here would produce a significance similar to 5σ given that the neural
network in [46] was able to do so.

4 Higgs Boson Decays to Charm-Quark Pairs

4.1 Introduction

The second application of class imbalance techniques we explore in this note is to the measurement
of Higgs boson decays to charm-quark pairs. Searches for the decay of the Higgs boson to charm-
quarks have produced only weak limits to date. ATLAS reported an upper limit of 110 times the SM
rate for the process pp→ Zh→ `−`+cc̄ [54]. LHCb instead considered the associated production of
both W s and Zs in range 2< η < 5, and set a limit of 6,400 times the SM rate [55]. A result of these
weak limits is that direct limits on the charm Yukawa coupling are correspondingly weak. Stronger
bounds can be obtained indirectly, e.g. through global fits [56–64], among other methods.2 However
there are assumptions build into any indirect analysis. The limit on the charm Yukawa coupling at
HL-LHC is projected to get down to about 2.2 times the SM rate [63] (see also [66]). Based on
this projection an observation of h→ cc̄ is not expected at HL-LHC motivating ways to improve the
analysis, although this projected limit should still be useful in constraining certain BSM physics.

One reason for the weak limits on h→ cc̄ is in the SM the rate for h→ bb̄ is about 20 times larger
(r ≈ 0.05) than the rate for h → cc̄ [67]. In contrast with h → cc̄, the decay of the Higgs boson
to bottom-quarks has been observed by both ATLAS [68] and CMS [69] The analyses of Refs. [54,
55, 68, 69] rely on tagging the flavor of the jets, which involves discriminating charm initiated jets
from bottom jets, or vice versa, and discriminating heavy from light flavored jets.3 The use of flavor
tagging explicitly links the measurements of h→ bb̄ and h→ cc̄ [71,72].

To perform the flavor tagging LHCb used their standard, state-of-the-art heavy flavor tagger [73],
while ATLAS trained boosted decision trees to separate charm from light jets and charm from bottom
jets with a procedure analogous to how they train their standard bottom tagger [74, 75]. The use
of general purpose flavor tagging algorithms is less then ideal for the specific task of identifying
Higgs decays to charms. This was recognized in Ref. [76], which made a dedicated double-charm
tagger for h → cc̄. We also advocate making a dedicated h → cc̄ tagger for the following reason.
The standard heavy flavor tagging algorithms are not optimized for the imbalance in the expected
number of h → cc̄ versus h → bb̄ events. For example, QCD produces roughly equal numbers of
bottoms and charms at invariant masses relevant for Higgs physics. Given the statistical nature of
heavy flavor tagging, an imbalance in the number of bb̄ and cc̄ decays will lead to worse performance
in identifying the Higgs to charm events. As such this is a well motivated arena for applying class
imbalance techniques. Here we are assuming a SM-like rate for h→ cc̄. If some BSM physics makes
the experimental rate for h → cc̄ much larger than expected this would invalidate our argument
(which would be a small price to pay for the discovery of the breakdown of the SM). The rest of this
case study delivers proof of principle that it is possible to improve tagging efficiency of h→ cc̄ events
through the use of the class imbalance techniques.

Looking beyond the proof of principle, a few additional steps to be taken in future work are
described in what follows. We are treating this as a binary classification problem of distinguishing

2The special role in global fits of the Higgs boson coupling to charm-quarks has been known for a long time [65].
3A complementary approach is to exclusively search for charmed-hadrons [70].

10

https://scipost.org
https://scipost.org/SciPostPhys.7.6.076


SciPost Phys. 7, 076 (2019)

Higgs boson decays to charm-quark pairs from bottom-quark pairs. Firstly, extending our approach
to also discriminate heavy flavor jets from light flavor jets will make our tagger more like what the
experiments are currently doing. A second opportunity area stems from our study of charm-tagging
at a lepton collider where experimental tagging might not be based on jets, while it’s clear that at
hadron colliders jet based analyses are and will continue to be used. Lastly, a direct comparison with
the results Ref. [76] is not currently possible given the different background considered in the two
works. It would be useful to do a proper comparison of the two tagging methods.

4.2 Data

We consider associated Higgs production at an e+e− collider as an observation of h → cc̄ is not
expected at HL-LHC. Specifically, the process under consideration is e+e− → Zh → `+`−QQ̄ with
` = e and µ, and Q = b or c. A total of 2 · 105 events are simulated with MadGraph5 [47] with
Pythia6 [77] used for parton showering and hadronization. Half the simulated events are h→ bb̄
and the other half are h → cc̄. We focus on the binary classification problem of h → cc̄ versus
h → bb̄ as existing tagging algorithms perform well at distinguishing heavy from light flavors, see
e.g. [73]. The center-of-mass energy of the collisions is

p
s = 250 GeV. Jets are clustered using

the FastJet [78] implementation of the anti-kt clustering algorithm [79] with radius parameter
R = 0.4. We require at least two jets each with pT > 10 GeV. Similarly, we require the leptons to be
oppositely charged, and to each have pT > 10 GeV.

The four-vector of each lepton and the two leading jets are used as features. In particular we use
the mass, m, of the jet or lepton as a feature. It is unlikely that the mass of a jet could be measured
with enough precision in an actual experiment to distinguish a charm initiated jet from a bottom jet.
However the mass of the jet is a proxy for the lifetime of the initiating particle of the jet, which is
a feature flavor tagging algorithms exploit, see e.g. [54]. The four-vectors of the dilepton and dijet
systems, which reconstruct the Z and Higgs bosons, respectively, are also included in our feature set.
A cut on the invariant mass of the jets is imposed, 95< m j j/GeV< 155, to concentrate on resonant
Higgs production. All of the above cuts and requirements reduce the number of simulated events to
approximately 8.9 · 104. We include

∆R=
q

(η j1 −η j2)2 + (φ j1 −φ j2)2 (12)

between the two jets as a feature as well as the rescaled mass drop observable, ISY , and the radius
of the dijet system, R j j ,

ISY =
max(m j1, m j2)∆R

m j j
, R j j =

m j j(pT, j1 + pT, j2)

pT, j j
p

pT, j1pT, j2
. (13)

Lastly, as bottom- and charm-quarks are oppositely charged, we look at the charge of the jets as
defined in [80]

Q j
κ =

1
(pT, j)κ
∑

p∈ j

Qp(pT,p)
κ, (14)

where the charge, Q, of a jet, j is the pT weighted sum of the charges, Q, of all the partons, p, in
the jet. We use κ = 0.4 in this work. Of course only the overall magnitude of the jet charges differ
between bottom and charm Higgs decays. Therefore, in addition to the charge of each jet, we include
the product of the jet charges, the absolute value of the difference of the jet charges, and the charge
of the dijet system, bringing our total number of features to 30.
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4.3 Models and Training

Our heavy flavor tagging model is a LightGBM [51]. In particular, our model combines a mere
50 trees in series, and each tree is allowed to have a maximum depth of 10 with all other hyper-
parameters fixed to their default values. We take as our baseline heavy flavor tagger a LightGBM
with an unweighted loss function, and compare its performance against a LightGBM with weighting
α= 1− r.

For model evaluation we again perform a stratified five-fold cross validation. We test three sce-
narios. In the first test we assume the rate for h → cc̄ is equivalent to the rate for h → bb̄. Here
we use the baseline LGBM with unweighted loss function. In this case there is no class imbalance
implying there must be some BSM physics in this scenario. We randomly select 4.0 · 104 bottom
and 4.0 · 104 charm events from our full simulated dataset, and perform the cross validation on
this sample. For the second test we again use the unweighted, baseline model, but perform the
cross validation on dataset with SM-like class imbalance. In particular we randomly select 4.0 · 104

bottom and 2.0 · 103 charm events from our full simulated dataset. For the third and final test we
reuse the dataset from the second test, but use our class imbalance optimized LGBM with weighting
hyperparameter α= 1− r ≈ 0.95.

4.4 Results

The results of our three h→ cc̄ tagging tests are given in Table 2 with the rows from top to bottom
corresponding to the 1st, 2nd, and 3rd scenarios described in previous subsection. For each scenario
we consider two signal efficiency working points, a looser selection of εh→cc̄ = T PR = 0.2 and a
tighter selection of εh→cc̄ = 0.8. We report the background rejection rate, εh→bb̄ = F PR, for each
of these working points. The inverse of the background rejection rate is largest in the scenario
without class imbalance. The performance of both tagging models is worse in the presence of class
imbalance. However the weighted LGBM outperforms the baseline tagging model in the presence
of class imbalance, demonstrating proof of principle that class imbalance techniques can be used to
improve the performance of algorithms used to identify h→ cc̄ events. In particular, there is a 14%
increase in 1/εh→bb̄ with loose selection criteria when the class imbalance optimized model is used.

We also report the average precision, and average precision normalized by the imbalance ratio.
The average precision is significantly higher in the scenario without class imbalance. However when
the average precision is normalized by the imbalance ratio, which constitutes the naïve expectation
for the AP score, higher values are found when the data is imbalanced.

Additionally, Fig. 4 shows the precision-recall curves for our three h → cc̄ tagging tests. The
blue, orange, and green curves correspond to the test results in the top, middle, and bottom rows of
Table 2, respectively. These curves provide another way of demonstrating that the weighted LGBM
outperforms (green) outperforms its unweighted counterpart (orange). Specifically, at lower recall,
weighting the loss function to remove class imbalance leads to a gain in performance. Recall is
equivalent to true position rate or signal efficiency, εh→cc̄ .

Lastly, we investigate which features are important for the classification. Using the feature im-
portance of the LGBM the charges of the heavy flavor jets and the associated engineered features do
not play a significant role in discriminating charm initiated jets from bottom jets. This is in contrast
with studies of light flavored jets [81]. A possible explanation for this is the heavy flavored hadrons
have more possible decay chains.4 In particular, a neutral meson may oscillate or there might be a
cascade decay that spoils the correlation between the charges of the partons in the jet and the charge

4This is one of the main systematic uncertainties in measuring asymmetric heavy quark hadroproduction [82–85].
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Table 2: The results of our three h → cc̄ tagging tests. We report the back-
ground rejection rate, εh→bb̄ = F PR, for two signal efficiency working points,
εh→cc̄ = T PR = 0.2(loose), 0.8(tight). There is a 14% increase in 1/εh→bb̄ with
loose selection criteria when the class imbalance optimized model is used, 3rd ver-
sus 2nd row, demonstrating proof of principle that class imbalance techniques can be
used to improve the performance of algorithms used to identify h→ cc̄ events. We
also report the AP, and AP/r, with the latter given to one decimal place for better
readability.

Model α r εh→cc̄ 1/εh→bb̄ Average Precision AP/r

LightGBM 1
2 1

0.2 38.8± 2.6
0.719± 0.004 0.7± 0.0

0.8 1.7± 0.0

LightGBM 1
2 0.05

0.2 30.9± 5.2
0.166± 0.008 3.3± 0.2

0.8 1.6± 0.1

Weighted LGBM 1− r 0.05
0.2 35.1± 8.9

0.161± 0.011 3.2± 0.2
0.8 1.5± 0.1

0.0 0.2 0.4 0.6 0.8 1.0
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0.0
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Figure 4: The precision-recall curves for our three h→ cc̄ tagging tests. The blue, or-
ange, and green curves correspond to the test results in the top, middle, and bottom
rows of Table 2, respectively. These curves provide another way of demonstrating
that the weighted LGBM outperforms (green) outperforms it unweighted counter-
part (orange). Specifically, at lower recall, weight the loss function to remove class
imbalance leads to a gain in performance. Recall is equivalent to true position rate
or signal efficiency, εh→cc̄ .

of the particle that initiated the jet. Again using the feature importance of the LGBM, we find the
the four-vectors of the leptons and the four-vector of the reconstructed Z boson also do not play a
major role in discriminating charm initiated jets from bottom jets.
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5 Discussion

Extracting a signal from a much larger background is a common problem in high energy physics.
Posed as a classification task, there is said to be an imbalance in the number of samples belonging
to the signal class versus the number of samples from the background class. Imbalanced learning
techniques are not commonly used, explicitly anyways, in high energy physics. Given this lack of use
we first provided a brief overview of modern class imbalance techniques in a high energy physics
setting, introducing novel loss functions and a data resampling technique. We then presented two
case studies illustrating these techniques. The first study is the measurement of the longitudinal
polarization fraction in same-sign WW scattering. We found a modest improvement in the perfor-
mance of both the classic ML models and in the deep learning models tested in the longitudinal WW
study. Our neural networks achieves comparable performance to that of Ref. [46] despite having
only two hidden layers instead of 10. Given that there are only O(10) features in this dataset it is
not surprising that a very deep network did not continue to improve performance. Having fewer
hidden layers with all else being equal results in a reduction in training time. The second case is the
decay of the Higgs boson to charm-quark pairs. We delivered proof of principle that it is possible to
improve tagging efficiency of h → cc̄ events through the use of the class imbalance techniques. In
particular, our Higgs-to-charm tagger with loose selection criteria gave a 14% improvement in the
background rejection rate.
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A Glossary

See Table 3 for a glossary of model evaluation terms used in this work.

Table 3: Glossary of model evaluation terms used in this work.

Metric Symbol Definition
Accuracy A A= (T P + T N)/(FN + F P + T N + T P)
Area Under the ROC Curve AUC AUC =

∫ 1
0 d(T PR) [1− F PR(T PR)]

Average Precision AP AP =
∑

n(Rn − Rn−1)Pn
Decision Threshold n if p > n for a given event, then that event is predicted to

be signal
F1 score F1 F1 = 2P · R/(P + R)
False Negative FN a signal event that is predicted to be background
False Positive F P a background event that is predicted to be signal
False Positive Rate F PR F PR= F P/(F P + T N)
Ground Truth Class y y = 1 if the event is truly a signal event, and y = 0 if it

is background
Precision P P = T P/(F P + T P)
Probability Estimate p a model’s estimated probability that a given event be-

longs to the signal class
Recall R R= T P/(FN + T P)
True Negative T N a background event that is predicted to be background
True Positive T P a signal event that is predicted to be signal
True Positive Rate T PR T PR= R
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