Scil SciPost Phys. 7, 080 (2019)

Krotov: A Python implementation of
Krotov’s method for quantum optimal control

Michael H. Goerz!*, Daniel Basilewitsch?, Fernando Gago-Encinas?,

Matthias G. Krauss?, Karl P Horn?, Daniel M. Reich?, Christiane P Koch?3

1 U.S. Army Research Lab, Computational
and Information Science Directorate, Adelphi, MD 20783, USA
2 Theoretische Physik, Universitiat Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
3 Dahlem Center for Complex Quantum Systems and Fachbereich Physik,
Freie Universitit Berlin, Arnimallee 14, 14195 Berlin, Germany

* mail@michaelgoerz.net

Abstract

We present a new open-source Python package, krotov, implementing the quantum opti-
mal control method of that name. It allows to determine time-dependent external fields
for a wide range of quantum control problems, including state-to-state transfer, quan-
tum gate implementation and optimization towards an arbitrary perfect entangler. Kro-
tov’s method compares to other gradient-based optimization methods such as gradient-
ascent and guarantees monotonic convergence for approximately time-continuous con-
trol fields. The user-friendly interface allows for combination with other Python pack-
ages, and thus high-level customization.

Copyright M. H. Goerz et al. Received 18-04-2019)
This work is licensed under the Creative Commons Accepted 04-12-2019 T
Check for
Attribution 4.0 International License. Published 12-12-2019 updates
Published by the SciPost Foundation. doi:10.21468/SciPostPhys.7.6.080
Contents
1 Introduction 1
2 Overview of Krotov’s method and the krotov package 3
2.1 The quantum control problem 3
2.2 Optimization functional 4
2.3 TIterative control update 5
2.4 Example: state-to-state transition in a two-level system 6
3 Common optimization tasks 12
3.1 Complex-valued controls 12
3.2 Optimization towards a quantum gate 12
3.3 Ensemble optimization as a way to ensure robust controls 13
3.4 Optimization of non-linear problems or non-convex functionals 14
4 Comparison of Krotov’s method and other optimization
methods 15

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
mailto:mail@michaelgoerz.net
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.7.6.080&domain=pdf&date_stamp=2019-12-12
http://dx.doi.org/10.21468/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

4.1 TIterative schemes from variational calculus 15
4.2 Krotov’s method 16
4.3 GRadient Ascent Pulse Engineering (GRAPE) 17
4.4 Gradient-free optimization 19
4.5 Choosing an optimization method 20
5 Future perspectives 21
6 Conclusions 22
A The Krotov update equation 23
A.1 First order update 23
A.2 Second order update 24
A.3 Time discretization 24
B Pseudocode for Krotov’s method 27
C Installation instructions 29
D Package documentation 30
References 30

1 Introduction

Quantum information science has changed our perception of quantum physics from passive
understanding to a source of technological advances [1]. By way of actively exploiting the
two essential elements of quantum physics, coherence and entanglement, technologies such
as quantum computing [2] or quantum sensing [3] hold the promise for solving computa-
tionally hard problems or reaching unprecedented sensitivity. These technologies rely on the
ability to accurately perform quantum operations for increasingly complex quantum systems.
Quantum optimal control allows to address this challenge by providing a set of tools to devise
and implement shapes of external fields that accomplish a given task in the best way possi-
ble [4]. Originally developed in the context of molecular physics [5, 6] and nuclear magnetic
resonance [7, 8], quantum optimal control theory has been adapted to the specific needs of
quantum information science in recent years [4,9]. Calculation of optimized external field
shapes for tasks such as state preparation or quantum gate implementation have thus be-
come standard [4], even for large Hilbert space dimensions as encountered in e.g. Rydberg
atoms [10, 11]. Experimental implementation of the calculated field shapes, using arbitrary
waveform generators, has been eased by the latter becoming available commercially. Success-
ful demonstration of quantum operations in various experiments [4,12-20] attests to the level
of maturity that quantum optimal control in quantum technologies has reached.

In order to calculate optimized external field shapes, two choices need to be made — about
the optimization functional and about the optimization method. The functional consists of
the desired figure of merit, such as a gate or state preparation error, as well as additional
constraints, such as amplitude or bandwidth restrictions [4,9]. Optimal control methods in
general can be classified into gradient-free and gradient-based algorithms that either evaluate
the optimization functional alone or together with its gradient [4]. Gradient-based methods

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

typically converge faster, unless the number of optimization parameters can be kept small.
Most gradient-based methods rely on the iterative solution of a set of coupled equations that
include forward propagation of initial states, backward propagation of adjoint states, and the
control update [4]. A popular representative of concurrent update methods is GRadient Ascent
Pulse Engineering (GRAPE) [21]. Krotov’s method, in contrast, requires sequential updates [5,
22]. This comes with the advantage of guaranteed monotonic convergence and obviates the
need for a line search in the direction of the gradient [23]. While GRAPE is found in various
software packages, there has not been an open source implementation of Krotov’s method to
date. Our package provides that missing implementation.

The choice of Python as an implementation language is due to Python’s easy-to-learn syn-
tax, expressiveness, and immense popularity in the scientific community. Moreover, the QuTiP
library [24, 25] exists, providing a general purpose tool to numerically describe quantum sys-
tems and their dynamics. QuTiP already includes basic versions of other popular quantum
control algorithms such as GRAPE and the gradient-free CRAB [26]. The Jupyter notebook
framework [27] is available to provide an ideal platform for the interactive exploration of the
krotov package’s capabilities, and to facilitate reproducible research workflows.

The krotov package presented herein targets both students wishing to enter the field of
quantum optimal control, and researchers in the field. By providing a comprehensive set of
examples, we enable users of our package to explore the formulation of typical control prob-
lems, and to understand how Krotov’s method can solve them. These examples are inspired
by recent publications [28-33], and thus show the use of the method in the purview of current
research. In particular, the package is not restricted to closed quantum systems, but can fully
address open system dynamics, and thus aide in the development of Noisy Intermediate-Scale
Quantum (NISQ) technology [34]. Optimal control is also increasingly important in the design
of experiments [4,12-20], and we hope that the availability of an easy-to-use implementation
of Krotov’s method will facilitate this further.

Large Hilbert space dimensions [10,11,35,36] and open quantum systems [30] in particu-
lar require considerable numerical effort to optimize. Compared to the Fortran and C/C++ lan-
guages traditionally used for scientific computing, and more recently Julia [37], pure Python
code usually performs slower by two to three orders of magnitude [38,39]. Thus, for hard
optimization problems that require several thousand iterations to converge, the Python imple-
mentation provided by the krotov package may not be sufficiently fast. In this case, it may
be desirable to implement the entire optimization and time propagation in a single, more effi-
cient (compiled) language. Our Python implementation of Krotov’s method puts an emphasis
on clarity, and the documentation provides detailed explanations of all necessary concepts,
especially the correct time discretization, see Appendix A.3, and the possibility to parallelize
the optimization. Thus, the krotov package can serve as a reference implementation, lever-
aging Python’s reputation as “executable pseudocode”, and as a foundation against which to
test other implementations.

This paper is structured as follows: In Sec. 2, we give a brief overview of Krotov’s method
as it is implemented in the package. Based on a simple example, the optimization of a state-to-
state transition in a two-level system, we describe the interface of the krotov package and its
capabilities. Section 3 goes beyond that simple example to discuss how the krotov package
can be used to solve some common, more advanced problems in quantum optimal control,
involving complex-valued control fields, optimization of quantum gates in Hilbert or Liouville
space, optimization over an ensemble of noise realizations, and use of non-convex function-
als which occur e.g. in the optimization towards an arbitrary perfect entangler. Section 4
compares Krotov’s method to other methods commonly used in quantum optimal control, in
order to provide guidance on when use of the krotov package is most appropriate. Section 5
presents future perspectives, and Section 6 concludes. Appendix A defines and explains the

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

time-discretized update equation that underlies the implementation of Krotov’s method. Ap-
pendix B gives a detailed technical specification of the optimization algorithm in pseudocode
format, and analyzes the required numerical resources with respect to CPU time and memory.
Appendices C and D contain installation instructions for the krotov package and link to its
online documentation.

2 Overview of Krotov’s method and the krotov package

2.1 The quantum control problem

Quantum optimal control methods formalize the problem of finding “control fields” that steer
the time evolution of a quantum system in some desired way. For closed systems, described
by a Hilbert space state |¥(t)), this time evolution is given by the Schrédinger equation,

i i
T [w(t)) = _EH“) (1)), 1)

where the Hamiltonian H(t) depends on one or more control fields {¢;(t)}. We often assume
the Hamiltonian to be linear in the controls,

I-AI(t)=ﬁ0+€1(t)ﬁ1+62(t)ﬁz+... , (2)

but non-linear couplings may also occur, for example when considering non-resonant multi-
photon transitions. For open quantum systems described by a density matrix 5 (t), the Liouville-
von-Neumann equation

o . . 1.
ap(t) = hﬁ(t)p(t) 3

replaces the Schrodinger equation, with the (non-Hermitian) Liouvillian £(t). The most di-
rect example of a control problem is a state-to-state transition. The objective is for a known
quantum state |¢) at time zero to evolve to a specific target state |¢'8") at final time T, control-
ling, e.g. a chemical reaction [40]. Another example is the realization of quantum gates, the
building blocks of a quantum computer. In this case, the states forming a computational basis
must transform according to a unitary transformation [2], see Section 3.2. Thus, the control
problem involves not just the time evolution of a single state, but a set of states {|¢p(t))}. Gen-
eralizing even further, each state |¢,(t)) in the control problem may evolve under a different
Hamiltonian H({¢;(t)}), see Section 3.3.

Physically, the control fields {€;(t)} might be the amplitudes of a laser pulse for the control
of molecular systems or trapped atom/ion quantum computers, radio-frequency fields for nu-
clear magnetic resonance, or microwave fields for superconducting circuits. When there are
multiple independent controls {€;(t)} involved in the dynamics, these may correspond e.g.,
to different color lasers used in the excitation of a Rydberg atom, or different polarization
components of an electric field.

The quantum control methods build on a rich field of classical control theory [41, 42].
This includes Krotov’s method [43-46], which was originally formulated to optimize the soft
landing of a spacecraft from orbit to the surface of a planet, before being applied to quantum
mechanical problems [5,22,47-49]. Fundamentally, they rely on the variational principle,
that is, the minimization of a functional J [{|¢I(<i)(t))}, {egi)(t)}] that includes any required
constraints via Lagrange multipliers. The condition for minimizing J is then V4 .J = 0.
In rare cases, the variational calculus can be solved in closed form, based on Pontryagin’s
maximum principle [42]. Numerical methods are required in any other case. These start from
an initial guess control (or set of guess controls, if there are multiple controls), and calculate

4

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

an update to these controls that will decrease the value of the functional. The updated controls
then become the guess for the next iteration of the algorithm, until the value of the functional
is sufficiently small, or convergence is reached.

2.2 Optimization functional

Mathematically, Krotov’s method, when applied to quantum systems [5,22], minimizes a func-
tional of the most general form

T T

J{p () e (0} =JT({|¢,E”(T)>})+ZJ ga(eD(e))de + f g({eP(ONdt, (@)

7 Jo 0
where the {|¢,(<l)(T))} are the time-evolved initial states {|¢,)} under the controls {egl)(t)} of
the i’th iteration. In the simplest case of a single state-to-state transition, the index k vanishes.
For the example of a two-qubit quantum gate, {|¢;)} would be the logical basis states |00),
|01), |10), and |11), all evolving under the same Hamiltonian H, = H. The sum over [vanishes
if there is only a single control. For open system dynamics, the states {|¢;)} may be density
matrices.
The functional consists of three parts:

o A final time functional J;. This is the “main” part of the functional, and we can usually
think of J as being an auxiliary functional in the optimization of J;. The most straight-
forward final time functional for a simple state-to-state transition |¢) — |¢'8") is [50]

Jrss=1= (6% (D), (5)

where |¢(T)) is the time evolution of |¢) to final time T. For a quantum gate O, a typical
functional is [50]

N

JT,re=1—%Re[Zrk], with 7. =(5 (7)), 16F)=01dr), (©

k=1

and N being the dimension of the logical subspace, e.g. N =4 and {|¢,)} = {|00),]01),
|10),]11)} for a two-qubit gate. The use of the real part in the functional implies that
we care about the global phase of the achieved gate.

e A running cost on the control fields, g,. The most commonly used expression (and the
only one currently supported by the krotov package) is [50]

gule ()= gl)(() (1) 5 e ()=o)

Rt g
=5 (tl)()

with the inverse “step width” A,; > 0, the “update shape” function S;(t) € [0,1], and
the control update

(7)

AP =P - (), (8)

where e)(t) is the optimized control of the previous iteration — that is, the guess
control of the current iteration (7).

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

e An optional state-dependent running cost, g;. This may be used to encode time-dependent
control targets [51,52], or to penalize population in a subspace [53]. The presence of a
state-dependent constraint in the functional entails an inhomogeneous term in the back-
ward propagation in the calculation of the control updates in each iteration of Krotov’s
method, see Appendix A, and is currently not supported by the krotov package. Penal-
izing population in a subspace can also be achieved through simpler methods that do
not require a g, e.g., by using a non-Hermitian Hamiltonian to remove population from
the forbidden subspace during the time evolution.

2.3 Iterative control update

Starting from the initial guess control ego)(t), the optimized field egi)(t) in iteration i > 0 is
the result of applying a control update,

ey =" V() +ae(0). (9)
Krotov’s method is a clever construction of a particular Aegi)(t) that ensures

TP O AL <o V() e P01,

Krotov’s solution for Aegi)(t) is given in Appendix A. As shown there, for the specific run-

ning cost of Eq. (7), using the guess control field e(i_l)(t) as the “reference” field, the update

Ae()(t) is proportional to l(l). Note that this also makes g, proportional to l() , so that

Eq. (7) is still well-defined for S;(t) = 0. The (inverse) Krotov step width A, 1 can be used to

determine the overall magnitude of Aegl)(t). Values that are too large will change egl) (t) by
only a small amount in every iteration, causing slow convergence. Values that are too small will
result in numerical instability, see Appendix. A.3. The update shape function S;(t) allows to
ensure boundary conditions on egi)(t): If both the guess field egi_l)(t) and S;(t) switch on and
off smoothly around t =0 and t = T, then this feature will be preserved by the optimization.
A typical example for an update shape is

B(t;to=0,t; = 2t,,) for 0<t <ty
S(H=41 for ton <t <T—tuy (10)
B(t;tg=T =2ty t1=T) for T—txgz<t<T,

with the Blackman shape

B(t; tg,t1) = 1 (1—a—cos(27‘c £~ %)+acos(47‘c £~ %)) , a=0.16, (1D
2 t; — to t; — to
which is similar to a Gaussian, but exactly zero at t = ty,t;. This is essential to maintain
the typical boundary condition of zero amplitude at the beginning and end of the optimized
control field. Generally, any part of the control field can be kept unchanged in the optimization
by choosing S;(t) = 0 for the corresponding intervals of the time grid.

2.4 Example: state-to-state transition in a two-level system

As a first taste of the krotov package’s usage, we consider a simple but complete example for
the optimization of a state-to-state optimization in Hilbert space, specifically the transforma-
tion |0) — |1) in a two-level system H = —506,+€(t)6,, where 6, and &, are the Pauli-z and
Pauli-x matrices, respectively, w is the transition frequency between the levels |0) and |1), and

6

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

€(t) is the control field. In the language of quantum computing, we are attempting to realize
a bit-flip of a qubit from zero to one. The example assumes that the krotov package and
other prerequisites have been installed on the user’s system, see Appendix C. The full example
script, as well as a Jupyter notebook version are also available as part of the package’s online
documentation, along with additional examples, see Appendix D.

1 #!/usr/bin/env python

2 """Example script for the optimization of a simple state-to-state
3 transition in a two-level system"""

4 import krotov

5 import qutip

6 import numpy as np

7
8
9

First, we define the physical system (a simple TLS)

11 def hamiltonian(omega=1.0, ampl0=0.2):

12 """Two-level -system Hamiltonian

13

14 Args:

15 omega (float): energy separation of the qubit levels
16 amplO0 (float): constant amplitude of the driving field
17 R

18 HO = -0.5 * omega * qutip.operators.sigmaz()

19 H1 = qutip.operators.sigmax ()

20

21 def guess_control(t, args):

22 return amplO * krotov.shapes.flattop(

23 t, t_start=0, t_stop=5, t_rise=0.3, func="blackman"
24)

25

26 return [HO, [H1, guess_controll]]

27

28

20 H = hamiltonian ()

30 tlist = np.linspace(0, 5, 500)

33 # Second, we define the control objective: a state-to-state
3 # transition from the |0) eigenstate to the |1) eigenstate

3 objectives = [

37 krotov.0Objective (

38 initial_state=qutip.ket("0"), target=qutip.ket("1"), H=H
39)

40]

43 # The magnitude of the pulse updates at each point in time are
44 # determined by the Krotov step size lambda_a and the
45 # time -dependent update shape (in [0, 1])

46 def S(t):

47 """Shape function for the field update"""

48 return krotov.shapes.flattop(

49 t, t_start=0, t_stop=5, t_rise=0.3, func="blackman"
50)

53 # set required parameters for H[1][1] (the guess_control)
54 pulse_options = {H[1][1]: dict(lambda_a=5, update_shape=S)}

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
03
04
95
96
97
98
99
100
101
102

104
105
106
107

Before performing the optimization, it is usually a good idea
to observe the system dynamics under the guess pulse. The
mesolve method of the objective delegates to QuTiP’s mesolve,
and can calculate the expectation values of the projectors
onto the |0) and |1) states, i.e., the population.

H HHHEH

projo, projl = (qutip.ket2dm(qutip.ket(1l)) for 1 imn ("O", "1"))
e_ops = [projoOo, projil
guess_dynamics = objectives[0].mesolve(tlist, e_ops=e_ops)

the resulting expectations values are in guess_dynamics.expect.
The final-time populations are:

print (
"guess final time population in [0), [1): %.3f, %.3f\n"
% tuple([guess_dynamics.expect[1][-1] for 1 in (0, 1)1)

Now, we perform the actual optimization

opt_result = krotov.optimize_pulses(

objectives,

pulse_options=pulse_options,

tlist=tlist,

propagator=krotov.propagators.expm,

chi_constructor=krotov.functionals.chis_ss,

info_hook=krotov.info_hooks.print_table(
J_T=krotov.functionals.J_T_ss

),

check_convergence=krotov.convergence.0r(
krotov.convergence.value_below(’1le-3’, name=’J_T’),
krotov.convergence.check_monotonic_error,

)’

store_all_pulses=True,

)

print ("\n", opt_result, sep=’’)

We can observe the population dynamics under the optimized
control

opt_dynamics = opt_result.optimized_objectives [0].mesolve (
tlist, e_ops=[projo, projil

)

print (
"\noptimized final time population in [0), |1): %.3f, %.3f"
% (opt_dynamics.expect[0][-1], opt_dynamics.expect[1][-1])

)

The example starts by importing the krotov package, as well as QuTiP (the “Quantum

Toolbox in Python”) [24,25] and NumPy (the standard package providing numeric arrays in
Python) [54], used here to specify the propagation time grid. The integration of the krotov
package with QuTiP is central: All operators and states are expressed as qutip.{Qobj objects.
Moreover, the optimize_pulses interface for Krotov’s optimization method is inspired by
the interface of QuTiP’s central mesolve routine for simulating the system dynamics of a
closed or open quantum system. In particular, when setting up an optimization, the (time-

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

dependent) system Hamiltonian should be represented by a nested list. That is, a Hamiltonian
of the form H = H, + e(t)H; is represented as H = [HO, [H1, eps]] where HO and H1
are qutip.Qobj operators, and eps representing €(t) is a function with signature eps(t,
args), or an array of control values with the length of the time grid (t1ist parameter). The
hamiltonian function in line 11 of the example sets up exactly such an operator, using a
control field with a flattop/Blackman envelope as specified in Egs. (10, 11).

The next steps in the example set up the arguments required for the optimization initiated
in line 78. The optimize_pulses function is the central routine provided by the krotov
package. Its most important parameters are

e objectives: a list of objectives, each of which is an instance of krotov.Objective.
Each objective has an initial_state, which is a qutip.Qobj representing a Hilbert
space state or density matrix, a target (usually the target state that the initial state
should evolve into when the objective is fulfilled), and a Hamiltonian or Liouvillian H in
the nested-list format described above. In this example, there is a single objective for the
transition |0) — |1) under the Hamiltonian initialized in line 29. The objectives express
the goal of the optimization physically. However, they do not fully specify the functional
Jr that encodes the goal of the optimization mathematically: instead, Jy is implicit in
the chi_constructor argument, see below.

e pulse_options: a dictionary that maps each control to the parameters A,; (the Kro-
tov update step size) and S;(t) (the update shape). In this example, H[1] [1] refers
to the guess_control in line 21. The value of 5 for A, (no index [, as there is only
a single control) was chosen by trial and error. S(t) corresponds to the function de-
fined in Egs. (10, 11). The fact that S(t) is the same formula as the envelope of the
guess_control is incidental: S(t) as the update_shape in the pulse_options only
scales the update of the control field in each iteration, in this case enforcing that the
value of the optimized fields remains zero at initial and final time.

e tlist: An array of time grid values in [0, T']. Internally, the controls are discretized as
piecewise-constant on the intervals of this time grid. Here, the time grid is initialized
in line 30, with 500 points between t; = 0 and T = 5. This is chosen such that the
piecewise-constant approximation is sufficiently good to not affect the results within the
shown precision of three significant digits.

e propagator: Aroutine that calculates the time evolution for a state over a single inter-
val of the time grid. This allows the optimization to use arbitrary equations of motion.
Also, since the main numerical effort in the optimization is the forward- and backward
propagation of the states, the ability to supply a highly optimized propagator is key to
numerical efficiency. In this example, we use the expm propagator that is included in the
krotov package. It evaluates the result of the time propagation |¥(t + dt)) = U [¥(t))
by explicitly constructing the time evolution operator U = exp[iH dt] through matrix-
exponentiation (1 = 1). Full matrix-exponentiation is inefficient for larger Hilbert space
dimensions. For a dimension > 10 the expm propagator can still be useful as an “exact”
propagator for debugging purposes.

e chi_constructor: afunction that calculates a set of states {]){ki_l)(T)) }, according to
the equation
(i-1) 9Jr
7)) = L
‘ k > d (¢x(T)I

where the right-hand-side is evaluated for the set of states {|qbl(<i_1)(T))} resulting from
the forward-propagation of the initial states of the objectives under the guess con-

(12)

(i-1) ’

9

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

trols of iteration (i) — that is, the optimized controls of the previous iteration (i—1). The
constructed states {|)(,El_l)(T))} then serve as the boundary condition for the backward
propagation in Krotov’s method, see Appendices A, B. The chi_constructor impli-
citly defines the functional J;: For every choice of functional, there is a corresponding
chi_constructor that must be implemented from the analytic solution of Eq. (12).
The krotov package includes the chi_constructor functions for the most common
functionals in quantum optimal control. Here, chis_ss matches the functional Jy in

Eq. (5),
(i-1) — 9 tgt tgt
KD = 5y BB 66Dy -
[(¢=19(1))|*

= ((¢'81pD(T))) [9'%") .

The call to optimize_pulses also includes two optional arguments that are used for
convergence analysis. Without these, the optimization would run silently for a fixed number
of iterations and then return a Result object (opt_result in the example) that contains the
optimized controls discretized to the points of t1ist, alongside other diagnostic data. The two
parameters that allow to keep track of the optimization progress and to stop the optimization
based on this progress, are

e info_hook: A function that receives the data resulting from an iteration of the algo-
rithm, and may print arbitrary diagnostic information and calculate the value of the func-
tional J;. Any value returned from the info_hook will be available in the info_vals
attribute of the final Result object. Here, we use an info_hook that prints a tabular
overview of the functional values and the change in the functional in each iteration, see
the script output below. This is the only place where J; is calculated explicitly, via the
J_T_ss function that evaluates Eq. (5).

e check_convergence: A function that may stop the optimization based on the previ-
ously calculated info_vals. The krotov package includes suitable routines for de-
tecting if the value of J;, or the change AJ; between iterations falls below a specified
limit. In the example, we chain two function via Or: The first function, value_below,
stops the optimization when the value of Jy . falls below 1073, and the second function,
check_monotonic_error, is a safety check to verify that the value of Jr decreases
in each iteration. Both of these rely on the value of Jr ¢ having been calculated in the
previous info_hook.

The parameter store_all_pulses is set here to ensure that the optimized controls from
each iteration will be available in the all_pulses attribute of the Result, allowing for a
detailed analysis of each iteration after the optimization ends, cf. Fig 1 below. Without this
parameter, only the final optimized controls are kept. See the Jupyter notebook version of the
example (Appendix D) for details on how to obtain Fig 1.

Before and after the optimization, the mesolve method of the Objective is used in the
example to simulate the dynamics of the system under the guess control and the optimized
control, respectively. This method delegates directly to QuTiP’s mesolve function.

Overall, the example illustrates the general procedure for optimizing with the krotov
package:

1. define the necessary quantum operators and states using QuTiP objects,

2. create a list of optimization objectives, as instances of krotov.Objective,

10

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

3. call krotov.optimize_pulses to perform an optimization of an arbitrary number of
control fields over all the objectives.

Running the example script generates the following output:

guess final time population in [0), [|1): 0.951, 0.049

iter. J_T fga(t)dt J AJ_T A secs
0 9.51e-01 0.00e+00 9.51e-01 n/a n/a 1
1 9.24e-01 2.32e-03 9.27e-01 -2.70e-02 -2.47e-02 2
2 8.83e-01 3.563e-03 8.87e-01 -4.11e-02 -3.75e-02 2
& 8.23e-01 5.22e-03 8.28e-01 -6.06e-02 -5.54e-02 2
4 7.38e-01 7.39e-03 7.45e-01 -8.52e-02 -7.78e-02 1
5 6.26e-01 9.75e-03 6.36e-01 -1.11e-01 -1.01e-01 1
6 4.96e-01 1.16e-02 5.07e-01 -1.31e-01 -1.19e-01 1
7 3.62e-01 1.21e-02 3.74e-01 -1.34e-01 -1.22e-01 1
8 2.44e-01 1.09e-02 2.55e-01 -1.18e-01 -1.07e-01 2
9 1.53e-01 8.43e-03 1.62e-01 -9.03e-02 -8.19e-02 1
10 9.20e-02 5.80e-03 9.78e-02 -6.14e-02 -5.56e-02 1
11 5.35e-02 3.66e-03 5.72e-02 -3.85e-02 -3.48e-02 2
12 3.06e-02 2.19e-03 3.28e-02 -2.29e-02 -2.07e-02 1
13 1.73e-02 1.27e-03 1.86e-02 -1.33e-02 -1.20e-02 2
14 9.79e-03 7.24e-04 1.05e-02 -7.55e-03 -6.82e-03 2
15 5.52e-03 4.10e-04 5.93e-03 -4.27e-03 -3.86e-03 2
16 3.11e-03 2.31e-04 3.35e-03 -2.41e-03 -2.18e-03 2
17 1.76e-03 1.30e-04 1.89e-03 -1.36e-03 -1.23e-03 1
18 9.92e-04 7.36e-05 1.07e-03 -7.65e-04 -6.91e-04 1

Krotov Optimization Result

- Started at 2019-11-23 15:31:52

- Number of objectives: 1

- Number of iterations: 18

- Reason for termination: Reached convergence: J_T < 1le-3
- Ended at 2019-11-23 15:32:30 (0:00:38)

optimized final time population in [0), [|1): 0.001, 0.999

The table that makes up the main part of the output is the result of the print_table function
that was passed as an info_hook in line 84 of the example. The columns are the iteration
number, where iteration 0 is an evaluation of the guess control; the value of the final time
functional J; = Jr g, see Eq. (5); the value of the running cost with ga(egi)(t)) given by Eq. (7),
which is a measure of how much the controls change in each iteration and thus allows to gauge
convergence; the value of the total functional J according to Eq. (4); the change in the value
of Jr relative to the previous iteration; the change in the total functional J; and finally the
wallclock time in seconds spent on that iteration. The change in the total functional AJ® is
guaranteed to be negative (monotonic convergence), up to the effects of time discretization.
Note that

T

4 . Aq : i 2 . .

INCEIN 2SS f s (0= 0] de g0y (14)
1 Jo 2l

for the values J®, J0—1 from two consecutive rows of the table. This is because AJ® must

be evaluated with respect to a single reference field egir)ef(t) in Eq. (7), whereas the reported

J@D and J1D yse different reference fields, eli_l)(t) and egi_z)(t) respectively (the guess field
in each iteration).

11

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

<]
E 05]
2,]
g | emmmfpmmm——————]
o] -]
= 0.0]
— B 4
= - = guess]
o .. . N
S — optimized []
—-0.5 ! ! ! !] 0.0 [e - ! ! So

0 1 2 3 4 5 0 1 2 3 4 5

time time

Figure 1: (Color online) Control fields and population dynamics for each iteration
of the optimization procedure. (a) The initial guess control (dashed black line) and
optimized controls (solid lines), with increasing opacity for each iteration of the op-
timization. The solid black line is the final optimized control. (b) The population
dynamics for the two levels |0) (blue) and |1) (orange). The dynamics under the
guess control are indicated by the dashed lines, and the dynamics under the opti-
mized control of each iteration by the solid lines, with the opacity increasing with
the iteration number. All quantities are in dimensionless units.

Figure 1 illustrates the progression of the optimization procedure. Panel (a) shows how
the control field changes from the initial guess (dashed line) in each iteration. All these control
fields are available in the Result object due to the parameter store_all_pulses in line 91
of the example. The optimized control fields are shown with increasing opacity for each iter-
ation in the optimization. We can verify that the magnitude of the change in the control field
in each iteration corresponds to the relative magnitude to the values in the column labeled
f g,(t)dt in the output; as the optimization converges, the change in each iteration becomes
smaller. All optimized controls preserve the boundary condition of a smooth switch-on/-off
from zero at t =ty =0 and t = T = 5, due to the choice of the update_shape. Panel (b)
shows the population dynamics corresponding to the optimized control fields, obtained from
plugging the optimized controls into the objectives and propagating the system with a call
to the mesolve method. Again, the guess is indicated by the dashed line, and the opacity of
the solid lines increases with the iteration number. We can verify the population transfer of
only 0.049 under the guess control and the near perfect transfer (~ 0.999) under the final
optimized control.

3 Common optimization tasks

In the following, we discuss some of the most common tasks in quantum control and how they
may be realized using the krotov package. The code snippets in this section are also available
as complete examples in the form of interactive Jupyter notebooks in the Examples section of
the online documentation, see Appendix D.

3.1 Complex-valued controls

When using the rotating wave approximation (RWA), it is important to remember that the
target states are usually defined in the lab frame, not in the rotating frame. This is relevant for
the construction of |y (T)). When doing a simple optimization, such as a state-to-state or a
gate optimization, the easiest approach is to transform the target states to the rotating frame
before calculating |y, (T)). This is both straightforward and numerically efficient.

12

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

In the RWA, the control fields are usually complex-valued. In this case, the Krotov update
equation is valid for both the real and the imaginary part independently. The most straight-
forward implementation of the method is to allow for real-valued controls only, requiring that
any control Hamiltonian with a complex-valued control field is rewritten as two independent
control Hamiltonians, one for the real part and one for the imaginary part of the control field.
For example,

e*()a+e()a" = e,o(t)(@+a") + e ()" —id), (15)

with two independent control fields €,.(t) = Re[e(t)] and €;,,(t) = Im[e(t)] with the control
Hamiltonian @ +a" and ia" —id, respectively.

3.2 Optimization towards a quantum gate

To optimize towards a quantum gate O in a closed quantum system, set one Objective for
each state in the logical basis, with the basis state |¢,) as the initial_state and
Iq[)]t(gt) = O|¢y) as the target, cf. Eq. (6). The helper routine gate_objectives constructs
the appropriate list of objectives, e.g. for a single-qubit Pauli-X gate:

objectives = krotov.gate_objectives(
basis_states=[qutip.ket(’0’), qutip.ket(’1°)],
gate=qutip.operators.sigmax (),
H=H,

)

The gate_objectives routine allows for open quantum systems as well. The parame-
ter liouville_states_set indicates that the system dynamics are in Liouville space and
defines the choice of an appropriate (minimal) set of matrices to track the optimization [30].
For example, to optimize for a +viSWAP gate in an open quantum system, three appropriately
chosen density matrices p,, 04, O3 are sufficient to track the optimization progress [30]. Dif-
ferent emphasis can be put on each matrix, through relative weights 20:1:1 in the example
below:

objectives = krotov.gate_objectives(
basis_states=[qutip.ket (1) for 1 in [’00’, ’01°, >10°, ’11°]],
gate=qutip.gates.sqrtiswap (),
H=L, # Liouvillian super-operator (qutip.Qobj instance)

liouville_states_set=’3states’,
weights=[20, 1, 1],
)

On many quantum computing platforms, applying arbitrary single-qubit gates is easy com-
pared to entangling two-qubit gates. A specific entangling gate like CNOT is combined with
single-qubit gates to form a universal set of gates. For a given physical system, it can be hard
to know a-priori which entangling gates are easy or even possible to realize. For example,
trapped neutral atoms only allow for the realization of diagonal two-qubit gates [30, 55] like
CPHASE. However, the CPHASE gate is “locally equivalent” to CNOT: only additional single-
qubit operations are required to obtain one from the other. A “local-invariants functional” [56]
defines an optimization with respect to a such a local equivalence class, and thus is free to find
the specific realization of a two-qubit gate that is easiest to realize. The objectives for such an
optimization are generated by passing local_invariants=True to gate_objectives.

Generalizing the idea further, the relevant property of a gate is often its entangling power,
and the requirement for a two-qubit gate in a universal set of gates is that it is a “perfect
entangler”. A perfect entangler can produce a maximally entangled state from a separable
input state. Since 85% of all two-qubit gates are perfect entanglers [57, 58], a functional
that targets an arbitrary perfect entangler [31,32] solves the control problem with the least

13

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

constraints. The objectives for this optimization are initialized by passing gate=’PE’ to
gate_objectives. Both the optimization towards a local equivalence class and an arbitrary
perfect entangler may require use of the second-order update equation, see Sec. 3.4.

3.3 Ensemble optimization as a way to ensure robust controls

Control fields can be made robust with respect to variations in the system by performing an
“ensemble optimization” [29]. The idea is to sample a representative selection of possible sys-
tem Hamiltonians, and to optimize over an average of the entire ensemble. In the functional,
Eq. (4), respectively the update Eq. (28), the index k now numbers not only the states, but
also different ensemble Hamiltonians: H({e;(t)}) — {H,({;(t)D}.

The example considered in Ref. [29] is that of a CPHASE two-qubit gate on trapped Rydberg
atoms. Two classical fluctuations contribute significantly to the gate error: deviations in the
pulse amplitude (2 = 1 ideally), and fluctuations in the energy of the Rydberg level (A,,q =0
ideally). We also take into account decay and dephasing, and thus optimize in Liouville space,
setting the objectives as in Sec. 3.2:

from math import pi # standard library

objectives = krotov.gate_objectives(
basis_states=[
qutip.ket (1) for 1 im [’00°, °01°, 210, °11°]
1,

gate=qutip.gates.cphase(pi),
H=L (omega=1, delta=0),
liouville_states_set=’3states’,
weights=[0, 1, 1]

)

This will result in a list of two objectives for the density matrices p, and p5 defined in Ref. [30].
The state p; is omitted by setting its weight to zero, as the target gate is diagonal. The function
L is assumed to return the Liouvillian for the system with given values for Q and Ay4.

An appropriate set of ensemble objectives (extending the objectives defined above) can
now be generated with the help of the ensemble_objectives function.

import itertools # standard library
ensemble_liouvillians = [

L(omega, delta)

for (omega, delta)

in itertools.product (omega_vals, delta_vals)

]

objectives = krotov.objectives.ensemble_objectives(
objectives, ensemble_liouvillians

)

Here omega_vals and delta_vals is assumed to contain values sampling the space of per-
turbed values Q # 1 and A,yq # 0. For M —1 ensemble_liouvillians, i.e. M systems
including the original unperturbed system, the above call results in a list of 2M objectives.
Note that all elements of ensemble_liouvillians share the same control pulses. As shown
in Ref. [30], an optimization over the average of all these objectives via the functional in Eq. (6)
results in controls that are robust over a wide range of system perturbations.

3.4 Optimization of non-linear problems or non-convex functionals

In Refs. [31,32], a non-convex final-time functional for the optimization towards an arbitrary
perfect entangler is considered. In order to guarantee monotonic convergence, the Krotov
update equation must be constructed to second order, see Appendix A.2. In practice, this

14

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

means we must specify a scalar function o (t) that serves as the coefficient to the second order
contribution.
For this specific example, a suitable choice is

o(t)=—max(es,2A+¢4) , (16)

where ¢, is a small non-negative number. The optimal value for A in each iteration can be
approximated numerically as [22]

4 Ziee1 2ReL((DIAG(T)] + AJy

a7
S 1AG(T)?

with . .
AJr = Jr({dP(TN —Jr({pUD(TH)). (18)

In the krotov package, in order to make use of the second order contribution to the pulse
update, we pass a parameter sigma to the optimize_pulses function:

1 class sigma(krotov.second_order.Sigma):

2 def __init__(self, A, epsA=0):

3 self .A = A

4 self .epsA = epsA

5

6 def __call__(self, t):

7 return -max(self.epsA, 2 * self.A + self.epsA)

8

9 def refresh(

10 self, forward_states, forward_statesO,

11 chi_states, chi_norms, optimized_pulses,

12 guess_pulses, objectives, result,

13)

14 try:

15 # info_vals contains values of PE functional
16 Delta_J_T = (

17 result.info_vals[-1][0] - result.info_vals[-2][0]
18)

19 except IndexError: # first iteration

20 Delta_J_T = 0

21 self .A = krotov.second_order .numerical_estimate_A(
22 forward_states, forward_statesO, chi_states,
23 chi_norms, Delta_J_T

24)

25

26

27 oct_result = krotov.optimize_pulses (

28 objectives,

29 pulse_options=pulse_options,

30 tlist=tlist,

31 propagator=krotov.propagators.expm,

32 chi_constructor=chi_constructor, # from weylchamber package
33 info_hook=calculate_PE_val,

34 sigma=sigma(A=0.0),

35)

The function krotov.second_order.numerical_estimate_A implements Eq. (17). The
function defined by the instantiated sigma is used for the pulse update, and then the internal
parameter, A in this case, is automatically updated at the end of each iteration, via the sigma’s
refresh method.

Even when the second order update equation is mathematically required to guarantee
monotonic convergence, often an optimization with the first-order update equation (28) will

15

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

give converging results. Since the second order update requires more numerical resources
(calculation and storage of the states |A¢(t)), see Appendix B), it is advisable to attempt an
optimization with the first-order update equation first, and to only use the second order when
the first order proves insufficient.

4 Comparison of Krotov’s method and other optimization
methods

In the following, we compare Krotov’'s method to other numerical optimization methods that
have been used widely in quantum control, with an emphasis on methods that have been im-
plemented as open source software. We first discuss iterative schemes derived from general
variational calculus in Section 4.1 before making the connection to Krotov’s method in particu-
lar, in Section 4.2. We then compare with GRadient Ascent Pulse Engineering (GRAPE) [4,21]
in Section 4.3, before highlighting the differences with gradient-free methods in Section 4.4.
Finally, Section 4.5 provides some guidance for the choice of an appropriate optimization
method for particular circumstances.

4.1 Iterative schemes from variational calculus

Gradient-based optimal control methods derive the condition for the optimal control field from
the application of the variational principle to the optimization functional in Eq. (4). Since
the functional depends both on the states and the control field, it is necessary to include the
equation of motion (Schrodinger or Liouville-von-Neumann) as a constraint. That is, the states
{|¢x)} must be compatible with the equation of motion under the control fields {€;(t)}. In
order to convert the constrained optimization problem into an unconstrained one, the equation
of motion is included in the functional with the co-states |y, (t)) as Lagrange multipliers [59—
62].

The necessary condition for an extremum becomes 6J = 0 for this extended functional.
Evaluation of the extremum condition results in [62]

Aey(t) o< 55_';]1 oc Im (1 (0|1 fx()), (19)

where (i = 9H/3d¢,(t) is the operator coupling to the field €;(t). Equation (19) is both con-
tinuous in time and implicit in €;(t) since the states |¢(t)), |xx(t)) also depend on €;(t).
Numerical solution of Eq. (19) thus requires an iterative scheme and a choice of time dis-
cretization.

The most intuitive time-discretization yields a concurrent update scheme [5,47,62],

AeBD() ocm (7 IV(0)|a]p I (0). (20)

0
Here, at iterative step (i), the backward-propagated co-states {|y(t))} and the
forward-propagated states {|¢,(t))} both evolve under the ’guess’ controls egi_l)(t) of that
iteration. Thus, the update is determined entirely by information from the previous iteration
and can be evaluated at each point t independently. However, this scheme does not guarantee
monotonic convergence, and requires a line search to determine the appropriate magnitude
of the pulse update [62].

A further ad-hoc modification of the functional [63] allows to formulate a family of update
schemes that do guarantee monotonic convergence [64, 65]. These schemes introduce sep-
arate fields {¢;(t)} and {€;(t)} for the forward and backward propagation, respectively, and

16

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

use the update scheme [66]

i (i— 6 i o (G
e =1-5)" () - =m(xV©0)]alePwm), (21a)
a

o9(1)), (21b)

with &, € [0,2] and an arbitrary step width a. For the control of wavepacket dynamics, an
implementation of this generalized class of algorithms is available in the WavePacket Matlab
package [67].

eD(t) = (1—meD(e) - g m{yO(0)|n

4.2 Krotov’s method

The method developed by Krotov [43-46] and later translated to the language of quantum
control by Tannor and coworkers [5, 22, 47-49] takes a somewhat unintuitive approach to
disentangle the interdependence of field and states by adding a zero to the functional. This
allows to construct an updated control field that is guaranteed to lower the value of the func-
tional, resulting in monotonic convergence. The full method is described in Appendix A, but
its essence can be boiled down to the update in each iteration (i), Eq. (8), taking the form

Aet(t) oc Im (1 (0)|0] 91 (0)), 22)

with co-states |y (£)%V) backward-propagated under the guess controls {egi_l)(t)} and the

states |<;b,((l)(t)) forward-propagated under the optimized controls {egl)(t)}. Compared to the
concurrent form of Eq. (20), the Krotov update scheme is sequential: The update at time t
depends on the states forward-propagated using the updated controls at all previous times,
see Appendix A.3 for details.

It is worth noting that the sequential update can be recovered as a limiting case of the
monotonically convergent class of algorithms in Eq. (21), for 6 = 1, n = 0. This may explain
why parts of the quantum control community consider any sequential update scheme as “Kro-
tov’s method” [68,69]. However, following Krotov’s construction [43-46] requires no ad-hoc
modification of the functional and can thus be applied more generally. In particular, as dis-
cussed in Section 3.4 and Appendix A.2, a second-order construction can address non-convex
functionals.

In all its variants [5,22,47-49], Krotov’s method is a first-order gradient with respect to the
control fields (even in the second-order construction which is second order only with respect
to the states). As the optimization approaches the optimum, this gradient can become very
small, resulting in slow convergence. It is possible to extend Krotov’s method to take into
account information from the quasi-Hessian [23]. However, this “K-BFGS” variant of Krotov’s
method is a substantial extension to the procedure as described in Appendix B, and is currently
not supported by the krotov package.

The update Eq. (22) is specific to the running cost in Eq. (7). In most of the schemes
derived from variational calculus, cf. Section 4.1, a constraint on the pulse fluence is used

instead. Formally, this is also compatible with Krotov’s method, by choosing egir)ef(t) =0in

Eq. (7) [70]. It turns the update equations (22, 20) into replacement equations, with egi)(t)

on the left-hand side instead of Aegi)(t), cf. Eq. (21) for 6 =1, n = 0. In our experience, this
leads to numerical instability and should be avoided. A mixture of update and replacement is
possible when a penalty of the pulse fluence is necessary [71].

4.3 GRadient Ascent Pulse Engineering (GRAPE)

While the monotonically convergent methods based on variational calculus must “guess” the
appropriate time discretization, and Krotov’s method finds the sequential time discretization by

17

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

a clever construction, the GRAPE method sidesteps the problem by discretizing the functional
first, before applying the variational calculus.

Specifically, we consider the piecewise-constant discretization of the dynamics onto a time
(i-1)
k

grid, where the final time states {|¢ (T))} resulting from the time evolution of the initial
states {|¢)} under the guess controls eg_l) in iteration (i) of the optimization are obtained
as

¢ M) =0 0D 07), @

where U,(li_l) is the time evolution operator on the time interval n in Hilbert space,

06D = exp [_ %I—AI(e(i—l)(fn_l))dt]; t,=t,+ dt/2. (24)
——

e("ifl)

The independent control parameters are now the scalar values ¢,,, respectively €, if there are
multiple control fields indexed by [.

The GRAPE method looks at the direct gradient dJ/Jde, and updates each control pa-
rameter in the direction of that gradient [21]. The step width must be determined by a line
search.

Typically, only the final time functional J; has a nontrivial gradient. For simplicity, we
assume that J; can be expressed in terms of the complex overlaps {7} between the target
states {Id);(gt)} and the propagated states {|¢(T))}, as e.g. in Egs. (5, 6). Using Eq. (23) leads
to

Tk _ i(tgt
- k
de, OJe,

~ (o}

yE-D gDl
Oy ... 00D 07 ¢y)

) _ gyt . (25)
-1 =D -1 D)
Oy, .0, L U007 i)

n+1 Je n—1
n

-~

(Pt LICY)

as the gradient of these overlaps. The gradient for Jr, respectively J if there are additional
running costs then follows from the chain rule. The numerical evaluation of Eq. (25) involves
the backward-propagated states |y (t,,1)) and the forward-propagated states |¢i(t,)). As
only states from iteration (i — 1) enter in the gradient, GRAPE is a concurrent scheme.

The comparison of the sequential update equation (22) of Krotov’s method and the con-
current update equation (20) has inspired a sequential evaluation of the “gradient”, modi-
fying the right-hand side of Eq. (25) to ()(,Ei_l)(tnﬂ)lé’eU,(li_l)|q5l((i)(tn)). That is, the states
{|¢x(t))} are forward-propagated under the optimized field [72]. This can be generalized to
“hybrid” schemes that interleave concurrent and sequential calculation of the gradient [69].
An implementation of the concurrent/sequential/hybrid gradient is available in the DYNAMO
Matlab package [69]. The sequential gradient scheme is sometimes referred to as “Krotov-
type” [69, 73]. To avoid confusion with the specific method defined in Appendix A, we prefer
the name “sequential GRAPE”.

GRAPE does not give a guarantee of monotonic convergence. As the optimization ap-
proaches the minimum of the functional, the first order gradient is generally insufficient to
drive the optimization further [23]. To remedy this, a numerical estimate of the Hessian
9%J;/de ;0 €y should also be included in the calculation of the update. The L-BFGS-B quasi-
Newton method [74, 75] is most commonly used for this purpose, resulting in the “Second-
order GRAPE” [76] or “GRAPE-LBFGS” method. L-BFGS-B is implemented as a Fortran li-
brary [75] and widely available, e.g. wrapped in optimization toolboxes like SciPy [77]. This
means that it can be easily added as a “black box” to an existing gradient optimization. As

18

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

a result, augmenting GRAPE with a quasi-Hessian is essentially “for free”. Thus, we always
mean GRAPE to refer to GRAPE-LBFGS. Empirically, GRAPE-LBFGS usually converges mono-
tonically.

Thus, for (discretized) time-continuous controls, both GRAPE and Krotov’s method can
generally be used interchangeably. Historically, Krotov’s method has been used primarily in
the control of molecular dynamics, while GRAPE has been popular in the NMR community.
Some potential benefits of Krotov’s method compared to GRAPE are [23]:

e Krotov’'s method mathematically guarantees monotonic convergence in the continuous-
time limit. There is no line search required for the step width 1/, ;.

e The sequential nature of Krotov’s update scheme, with information from earlier times
entering the update at later times within the same iteration, results in faster conver-
gence than the concurrent update in GRAPE [69, 78]. This advantage disappears as the
optimization approaches the optimum [23].

o The choice of functional J; in Krotov’s method only enters in the boundary condition
for the backward-propagated states, Eq. (12), while the update equation stays the same
otherwise. In contrast, for functionals J; that do not depend trivially on the over-
laps [79-83], the evaluation of the gradient in GRAPE may deviate significantly from
its usual form, requiring a problem-specific implementation from scratch. This may be
mitigated by the use of automatic differentiation in future implementations [84, 85].

GRAPE has a significant advantage if the controls are not time-continuous, but are phys-
ically piecewise constant (“bang-bang control”). The calculation of the GRAPE-gradient is
unaffected by this, whereas Krotov’s method can break down when the controls are not ap-
proximately continuous. QuTiP contains an implementation of GRAPE limited to this use case.

Variants of gradient-ascent can be used to address pulse parametrizations. That is, the
control parameters may be arbitrary parameters of the control field (e.g., spectral coefficients)
instead of the field amplitude €, in a particular time interval. This is often relevant to design
control fields that meet experimental constraints. One possible realization is to calculate the
gradients for the control parameters from the gradients of the time-discrete control amplitudes
via the chain rule [86-89]. This approach has recently been named “GRadient Optimization
Using Parametrization” (GROUP) [90]. An implementation of several variants of GROUP is
available in the QEngine C++ library [91]. An alternative for a moderate number of control
parameters is “gradient-optimization of analytic controls” (GOAT) [92]. GOAT evaluates the
relevant gradient with forward-mode differentiation; that is, d7;/d¢€, is directly evaluated
alongside 7,. For N = |{€,,}| control parameters, this implies N forward propagations of the
state-gradient pair per iteration. Alternatively, the N propagations can be concatenated into a
single propagation in a Hilbert space enlarged by a factor N (the original state paired with N
gradients).

A benefit of GOAT over the more general GROUP is that it does not piggy-back on the
piecewise-constant discretization of the control field, and thus may avoid the associated nu-
merical error. This allows to optimize to extremely high fidelities as required for some error
correction protocols [92].

4.4 Gradient-free optimization

In situations where the problem can be reduced to a relatively small number of control param-
eters (typically less than ~ 20, although this number may be pushed to ~ 50 by sequential
increase of the number of parameters and re-parametrization [93, 94]), gradient-free opti-
mization becomes feasible. The most straightforward use case are controls with an analytic

19

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

shape (e.g. due to the constraints of an experimental setup), with just a few free parameters.
As an example, consider control pulses that are restricted to a Gaussian shape, so that the only
free parameters are peak amplitude, pulse width and delay. The control parameters are not
required to be parameters of a time-dependent control, but may also be static parameters in
the Hamiltonian, e.g. the polarization of the laser beams utilized in an experiment [95].

A special case of gradient-free optimization is the Chopped RAndom Basis (CRAB) method
[96,97]. The essence of CRAB is in the specific choice of the parametrization in terms of a low-
dimensional random basis, as the name implies. Thus, it can be used when the parametriza-
tion is not pre-defined as in the case of direct free parameters in the pulse shape discussed
above. The optimization itself is normally performed by Nelder-Mead simplex based on this
parametrization, although any other gradient-free method could be used as well. An imple-
mentation of CRAB is available in QuTiP CRAB is prone to getting stuck in local minima of
the optimization landscape. To remedy this, a variant of CRAB, “dressed CRAB” (DCRAB) has
been developed [93] that re-parametrizes the controls when this happens.

Gradient-free optimization does not require backward propagation, only forward propaga-
tion of the initial states and evaluation of the optimization functional J. The functional is not
required to be analytic. It may be of a form that does not allow calculation of the gradients
dJr /0 (¢x| (Krotov’s method) or dJ/de ; (GRAPE). The optimization also does not require
any storage of states. However, the number of iterations can grow extremely large, especially
with an increasing number of control parameters. Thus, an optimization with a gradient-free
method is not necessarily more efficient overall compared to a gradient-based optimization
with much faster convergence. For only a few parameters, however, it can be highly efficient.
This makes gradient-free optimization useful for “pre-optimization”, that is, for finding guess
controls that are then further optimized with a gradient-based method [35].

Generally, gradient-free optimization can be easily realized directly in QuTiP or any other
software package for the simulation of quantum dynamics:

e Write a function that takes an array of optimization parameters as input and returns
a figure of merit. This function would, e.g., construct a numerical control pulse from
the control parameters, simulate the dynamics using qutip.mesolve.mesolve, and
evaluate a figure of merit (like the overlap with a target state).

e Pass the function to scipy.optimize.minimize for gradient-free optimization.

The implementation in scipy.optimize.minimize allows to choose between different op-
timization methods, with Nelder-Mead simplex being the default. There exist also more ad-
vanced optimization methods available in packages like NLopt [98] or Nevergrad [99] that
may be worth exploring for improvements in numerical efficiency and additional functionality
such as support for non-linear constraints.

4.5 Choosing an optimization method

In the following, we discuss some of the concerns in the choice of optimization methods. The
discussion is limited to iterative open-loop methods, where the optimization is based on a nu-
merical simulation of the dynamics. It excludes analytical control methods such as geometric
control, closed-loop methods, or coherent feedback control; see Ref. [100] for an overview.

Whether to use a gradient-free optimization method, GRAPE, or Krotov’s method depends
on the size of the problem, the requirements on the control fields, and the mathematical prop-
erties of the optimization functional. Gradient-free methods should be used if the number of
independent control parameters is smaller than ~ 20, or the functional is of a form that does
not allow to calculate gradients easily. It is always a good idea to use a gradient-free method
to obtain improved guess pulses for use with a gradient-based method [35].

20

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

number of control
parameters (n)?

i n <20 20 S n <100 n 2 100 ¢ (piecewise-constant)

Are the controls

. e . . 5 > roximately
“analytical”? piecewise-constant? approximately

Are the controls Are the controls yes
time-continuous?

no | (analytical) ¢ no yes ¢ (n > 100)
; no .
Use GROUP/GOAT ‘ Is gg({) known? ({ Is 0‘)((';: ‘ known? ‘
yes no yes yes
Use general
gradient-free methods ‘ Use CRAB ‘ ‘ Use GRAPE ‘ Use Krotov’s method

Figure 2: Decision tree for the choice of a numerical open-loop optimization method.
The choice of control method is most directly associated with the number of control
parameters (n). For “piecewise-constant controls”, the control parameters are the
values of the control field in each time interval. For “analytical” controls, we assume
that the control fields are described by a fixed analytical formula parametrized by
the control parameters. The “non-analytical” controls for CRAB refer to the random
choice of a fixed number of spectral components, where the control parameters are
the coefficients for those spectral components. Each method in the diagram is meant
to include all its variants, a multitude of gradient-free methods and e.g. DCRAB
for CRAB, GRAPE-LBFGS and sequential/hybrid gradient-descent for GRAPE, and
K-BFGS for Krotov’s method, see text for detail.

GRAPE or its variants should be used if the control parameters are discrete, such as on
a coarse-grained time grid, and the derivative of J with respect to each control parameter is
easily computable. Note that the implementation provided in QuTiP is limited to state-to-state
transitions and quantum gates, even though the method is generally applicable to a wider
range of objectives.

When the control parameters are general analytic coefficients instead of time-discrete am-
plitudes, the GROUP [87, 88,90] or GOAT [92] variant of gradient-ascent may be a suitable
choice. GOAT in particular can avoid the numerical error associated with time discretization.
However, as the method scales linearly in memory and/or CPU with the number of control
parameters, this is best used when then number of parameters is below 100.

Krotov’s method should be used if the control is close to time-continuous, and if the deriva-
tive of Jr with respect to the states, Eq. (12), can be calculated. When these conditions are
met, Krotov’s method gives excellent convergence. The general family of monotonically con-
vergent iteration schemes [64] may also be used.

The decision tree in Fig. 2 can guide the choice of an optimization method. The key de-
ciding factors are the number of control parameters (n) and whether the controls are time-
discrete. Of course, the parametrization of the controls is itself a choice. Sometimes, experi-
mental constraints only allow controls that depend on a small number of tunable parameters.
However, this necessarily limits the exploration of the full physical optimization landscape. At
the other end of the spectrum, arbitrary time-continuous controls such as those assumed in
Krotov’s method have no inherent constraints and are especially useful for more fundamen-
tal tasks, such as mapping the design landscape of a particular system [101] or determining
the quantum speed limit, i.e., the minimum time in which the system can reach a given tar-
get [15,102,103].

21

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

5 Future perspectives

While the present implementation of the krotov Python package already provides the user
with the capability to tackle a broad range of optimization targets in quantum optimal con-
trol, possible future additions could enhance its versatility even further. A first most welcome
extension concerns the capability to parametrize the pulse. This would allow to guarantee pos-
itivity of the control field when optimizing, e.g., Rabi frequencies instead of pulse amplitudes,
or provide a straightforward way to impose an upper bound €, on the field amplitude. The
latter could be achieved, for example, by way of defining e(t) = e, tanh? (u(t)) [104]. The
simplest approach to adapt the algorithm to such parametrizations is to consider the Hamilto-
nian / Liouvillian as a function of u(t) instead of e(t). Then, the update equation will also be
formulated with respect to u(t) and once the optimization is completed the physical pulse e(t)
can be obtained by direct evaluation. A caveat in this approach is the fact that the Hamiltonian
/ Liouvillian will not be a linear function of u(t) even if it was linear with respect to €(t). As
such, additional care needs to be taken regarding the choice of a sufficiently large value for
the inverse step size A, to preserve monotonic convergence [22].

A second feature worthwhile to add in a future version of the krotov Python package are
state-dependent constraints g; # 0 [22,53]. This would enable to optimization towards time-
dependent targets [51,52]. If the constraint is a non-convex function of the states, usage of the
second-order contribution, o(t) # 0, in the Krotov update equation (31) is required to ensure
monotonic convergence. In this case, o(t) # 0 is linearly time-dependent [22]. The presence
of a state-dependent constraint also implies a source term in the equation of motion for the
adjoint states, cf. Eq. (30). Although this source term may pose some numerical challenges
for differential equation solvers, it should be noted that the solution of a linear Schrédinger
equation with a source term already allows for solving Schrédinger equations with a general
nonlinearity [105]. Assuming an appropriate solver was available, the krotov package would
have to calculate the appropriate source term and pass it to that solver.

Finally, the current implementation of the package does not yet allow for imposing spec-
tral constraints in the optimization functional, although this is in principle possible in Krotov’s
method [106,107]. At first glance, it may be surprising that a method that updates the con-
trol sequentially (time-locally) can include spectral (time-global) constraints without breaking
monotonic convergence. The key insight is to generalize g,(e(t)), Eq. (7), to a time-non-local

form,
T

g.(e(t),t) = J Ae(t)K(t —t)Ae(t)dt’ . (26)
0

Provided the kernel K(7) encoding the spectral constraint via a Fourier transform is positive
semi-definite, Krotov’s method yields a monotonically converging optimization algorithm [107].
However, the price to pay is the need to solve a Fredholm equation of the second kind, which
has not yet been implemented numerically. It should be noted that the current version of the
krotov package already supports a less rigorous method to limit the spectral width of the
optimized controls, by applying a simple spectral filter after each iteration. By mixing the
unfiltered and filtered controls, monotonic convergence can be preserved [108].

The above mentioned features concern direct extensions of Krotov’s method that have al-
ready been reported in the literature. Beyond that, Krotov’s method could also be combined
with other optimization approaches to overcome some of its inherent limitations. The most
severe limitations are that Krotov’s method requires analytically computable derivatives, see
Eq. (12), and it searches only in the local region of the point in the optimization landscape
where that derivative is being evaluated (as any gradient-based method does). The optimized
pulse thus depends on the guess pulse from which the optimization starts. If the pulse can be
parametrized with only a few relevant parameters, the search can be effectively globalized by

22

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

scanning those parameters [36]. This approach becomes more efficient when pre-optimizing
the parameters with a gradient-free method [35]. In this respect, it will be worthwhile to
combine the krotov package with the nonlinear optimization toolbox NLopt [98] containing
several global search methods. This should not only improve the convergence of the pre-
optimization compared to using the simplex method [35] but would, moreover, also allow for
simultaneously optimizing time-dependent and time-independent controls. The inherent lim-
itation of requiring computable derivatives might be lifted by combining Krotov’s method with
automatic differentiation, similar to what has been achieved for gradient-based optimization
in the spirit of GRAPE [84,85]. Finally, it would also be interesting to analyze optimizations
using Krotov’s method with machine learning techniques [109].

6 Conclusions

We have presented the Python implementation of Krotov’s method for quantum optimal con-
trol that comes with a number of example use cases, suitable in particular for applications in
quantum information science. The hallmark of Krotov’s method is fast initial convergence,
monotonicity and aptitude for time-continuous controls.

The krotov package adds to the available tools for optimal control around the popular
Quantum Toolbox in Python (QuTiP). The QuTiP package itself contains routines for gradient-
free optimization and gradient-ascent, currently limited to state-to-state transitions or quan-
tum gates and to a coarse time grid. Our package provides an interface for formulating quan-
tum control problems that lifts these limitations and aims to be sufficiently general to describe
any problem in quantum control. In future work, the same interface may be used to drive opti-
mization methods beyond Krotov’s method, enabling direct comparison of different methods.

We have given an overview of the most important gradient-free and gradient-based meth-
ods that have been developed thus far. Each method has its own strengths and weaknesses un-
der different constraints. Krotov’s method in particular excels at finding the least constrained
control fields and is thus particularly useful for exploring the fundamental limits of control in
a given quantum system. On the other hand, when there are in fact strong external constraints
on the controls due to experimental limitations, other methods may have an advantage. Our
discussion will allow the reader to make an informed choice for the most appropriate method.

Our implementation of Krotov’s method together with the examples and explanations in
this paper, and the pseudocode in Appendix B may serve as a reference when implementing
Krotov’s method in other systems or languages. We hope that this will motivate wider adoption
of Krotov’s method, and the use of optimal quantum control in general. As quantum technology
matures, optimal control for solving the inherently difficult design problems will only gain in
importance. Thus, the creation of a high quality open source software stack around optimal
control is paramount. The krotov package is a contribution to this endeavor.

Acknowledgements

M.H.G was supported by the Army Research Laboratory under Cooperative Agreement Num-
ber W911NF-17-2-0147. The Kassel team gratefully acknowledges financial support from the
Volkswagenstiftung, the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement Nr. 765267, and the State Hessen Ini-
tiative for the Development of Scientific and Economic Excellence (LOEWE) within the focus
project SMolBits. We thank Steffen Glaser, Shai Machnes, and Nathan Shammah for fruitful
discussions and comments.

23

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

A The Krotov update equation

The core of Krotov’s method is the numerical evaluation of the field update in each iteration,
Aegl)(t) in Eq. (9). In the following, we specify Aegl)(t) and discuss how its discretization
leads to a numerical scheme.

A.1 First order update

Krotov’s method is based on a rigorous examination of the conditions for calculating the up-
dated fields {e%’)(t)} such that J({|¢](<l)(t))}, {651)(0}) < J({|¢,El_1)(t))}, {egl_l)(t)}) is true by
construction [22,45,46,49,50]. For a general functional of the form in Eq. (4), with a convex
final-time functional J, the condition for monotonic convergence is

>]) (27)

N
Sl
o) L;< ‘ del(t)]g

see Ref. [50]. The notation for the derivative on the right hand side being evaluated at (D)

98a
de(t)

should be understood to apply when the control Hamiltonian is not linear so that 56 () is
still time-dependent; the derivative must then be evaluated for eg)(t) — or, numerically, for

egi_l)(t) R~ egi)(t). If there are multiple controls, Eq. (27) holds for every control field ¢;(t)
independently.
For g, as in Eq. (7), this results in an update equation [5,49,50],

Aoy = 5100 1 i< (i 1)(t)(H)¢“)(t)> (28)
! Ao del(®))] ’

k=1
cf. Eq. (22), with the equation of motion for the forward propagation of |¢](<i)) under the

optimized controls {efi)(t)} of the iteration (i),

= Jo00)) = A0 60(0)) 29

The co-states | xlgi_l)(t)) are propagated backwards in time under the guess controls of iteration
(1), i.e., the optimized controls from the previous iteration (i — 1), as

‘) = Hm 1)' D(e))+ 98 (30)

a (gl

(i-1) ’

with the boundary condition of Eq. (12).

The coupled equations (28-30) can be generalized to open system dynamics by replacing
Hilbert space states with density matrices, H with i£, and brakets with Hilbert-Schmidt prod-
ucts, (|-} = ((-|-)). In full generality, H in Eq. (28) is the operator H on the right-hand side of
whatever the equation of motion for the forward propagation of the states is, written in the
form il = He, cf. Eq. (29). Note also that the backward propagation Eq. (30) uses the ad-
joint H, which is relevant both for a dissipative Liouvillian [30,110,111] and a non-Hermitian
Hamiltonian [28,112].

A.2 Second order update

The update Eq. (28) assumes that the equation of motion is linear (H does not depend on
the states |¢,(t))), the functional J; is convex, and no state-dependent constraints are used

24

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

(@D backward-propagation and storage with guess control

(=1 (=1 Eg\i,fl)l 6%7”
o N VN v TN 70T N

PN PN PN
xx(0) Xk (t1) 2oc Xk (ENp—1) xx(T)

oH oH oH

de Oe Oe
#x(0) dr(t1) 200 Sk (tnp—1) o (T)
~_— ~_— ~_—

N Lo N 7 N0 e
1 2 ENp—1 N

@ forward-propagation with updated control

Figure 3: Sequential update scheme in Krotov’s method on a time grid.

(g, = 0). When any of these conditions are not fulfilled, it is still possible to derive an optimiza-
tion algorithm with monotonic convergence via a “second order” term in Egs. (27, 28) [22,46],
The full update equation then reads

(1)) >

(1) Si1(6) = (i-1)
S A m[z< ()‘(3 1(t)
(3 1(6) (1)) >] ’

al k=1
18¢0(0) = 10D (0)) — 16 V(1)) (32)

+5 o(t)<A¢“)(t)
see Ref. [22] for the full construction of the second-order condition.
In Eq. (31), o(t) is a scalar function that must be properly chosen to ensure monotonic
convergence. As shown in Ref. [22], it is possible to numerically approximate o (t), see Sec-
tion 3.4 for an example.

(31

with

A.3 Time discretization

The derivation of Krotov’s method assumes time-continuous control fields. Only in this case,
monotonic convergence is mathematically guaranteed. However, for practical numerical ap-
plications, we have to consider controls on a discrete time grid with N+ 1 points running from
t=ty=0tot=ty, =T, withatime step dt. The states are defined on the points of the time
grid, while the controls are assumed to be constant on the intervals of the time grid. A coarse
time step must be compensated by larger values of the inverse step size A, ;, slowing down
convergence. Values that are too small will cause sharp spikes in the optimized control and
numerical instabilities. A lower limit for A, ; can be determined from the requirement that the
change Ae((t) should be at most of the same order of magnitude as the guess pulse e(=1(¢)
for that iteration. The Cauchy-Schwarz inequality applied to the update equation (28) yields

el [ZH""J) HWH

From a practical point of view, the best strategy is to start the optimization with a comparatively
large value of A, ;, and after a few iterations lower A, ; as far as possible without introducing

de(t) || oo (33)

25

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

numerical instabilities. The value of A, ; may be adjusted dynamically with respect to the rate
of convergence, via the modify_params_after_iter argument to the optimize_pulses
function. Generally, the ideal choice of A, ; requires some trial and error.

The discretization yields the numerical scheme shown in Fig. 3 for a single control field (no
index 1), and assuming the first-order update is sufficient to guarantee monotonic convergence
for the chosen functional. For simplicity, we also assume that the Hamiltonian is linear in the
control, so that H /3 e(t) is not time-dependent. The scheme proceeds as follows:

1. Construct the states {| x,ﬁi_l)(T))} according to Eq. (12). For most functionals, specif-

ically any that are more than linear in the overlaps 7y defined in Eq. (6), the states
{l)(,El_l)(T))} depend on the states {|¢,(<l_1)(T))} forward-propagated under the opti-

mized pulse from the previous iteration, that is, the guess pulse in the current iteration.

2. Perform a backward propagation using Eq. (30) as the equation of motion over the entire
time grid. The resulting state at each point in the time grid must be stored in memory.

3. Starting from the known initial states {|¢;)} = {|¢px(t = t, =0))}, calculate the pulse
update for the first time step according to

S(%,) N
N N i—1
A€l = Ael(Tg) = == Im[z<x£l X(to)

a k=1

oH

de

¢k(to)>] . 34)

The value Ae(li) is taken on the midpoint of the first time interval, t, = t, + dt/2, based
on the assumption of a piecewise-constant control field and an equidistant time grid with
spacing dt.

4. Use the updated field e(li) for the first interval to propagate |¢;(t = t,)) for a single time

step to Iqb,((i)(t =ty + dt)), with Eq. (29) as the equation of motion. The updates then
proceed sequentially, using the discretized update equation

. _ S(E,) N .
Ac), = AeD(E,) = =" Im [> {x)

oH
a = de

¢£i)(tn)>], (35)

with t, = t, + dt/2 for each time interval n, until the final forward-propagated state
|¢>,(<l)(T)) is reached.

5. The updated control field becomes the guess control for the next iteration of the algo-
rithm, starting again at step 1. The optimization continues until the value of the func-
tional J; falls below some predefined threshold, or convergence is reached, i.e., AJy
approaches zero so that no further significant improvement of J; is to be expected.

Eq. (28) re-emerges as the continuous limit of the time-discretized update equation (35), i.e.,
dt — 0 so that {, — t,. Note that Eq. (35) resolves the seeming contradiction in the time-
continuous Eq. (28) that the calculation of e)(t) requires knowledge of the states |¢](<i)(t))
which would have to be obtained from a propagation under ¢(t). By having the time ar-
gument £, on the left-hand-side of Eq. (35), and t,, < t,, on the right-hand-side (with S(t,,)
known at all times), the update for each interval only depends on “past” information.

26

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

B Pseudocode for Krotov’s method

For reference, Algorithm 1 shows the complete pseudocode of an optimization with Krotov’s
method, as implemented in the krotov package. It realizes the time-discretized scheme de-
scribed in Appendix A.3.

Variables are color coded. Scalars are set in blue, e.g. egg). States (Hilbert space states or
vectorized density matrices) are set in purple, e.g. d)}(“it. They may be annotated with light gray
superscripts to indicate the iteration-index i of the control under which state was propagated,
and with light gray time arguments. These annotations serve only to connect the variables
to the equations in Appendix A: ¢, and ¢, are the same variable ¢,. Operators
acting on states are set in green, e.g. U;.,. These may be implemented as a sparse matrix
or implicitly as a function that returns the result of applying the operator to a state. Lastly,
storage arrays are set in red, e.g. ®,. Each element of a storage array is a state.

The Python implementation groups several of the algorithm’s input parameters by intro-
ducing a list of N “objectives”. The objectives are indexed by k, and each objective contains
the initial state ¢,i<“it, the Hamiltonian or Liouvillian H;. to be used by the propagator U and for
the operators u;;,, and possibly a “target” to be taken into account by the function y. In many
applications, H;, = H is the same in all objectives, and u;;,, = y; if H is linear in the controls in
addition. The subscript n and the superscript (i — 1) for y;, ~ in lines 31, 34 comes into play
only if H is not linear in the control. Mathematically, u;;,, would then have to be evaluated
using the updated control. Since the update is not yet known, the guess control may be used
as an approximation (valid for sufficiently large A, ;).

The CPU resources required for the optimization are dominated by the time propagation
(calls to the function U in lines 7, 24 37). This is under the assumption that evaluating U
dominates the application of the operator u, to the state ¢ and the evaluation of
the inner product of two states, lines 31, 34. This condition is fulfilled for any non-trivial
Hilbert space dimension.

Loops over the index k are parallelizable, in particular in a shared-memory (multi-threaded)
parallelization environment like OpenMP In a (multi-process) method-passing environment
like MPI, some care must be taken to minimize communication overhead from passing large
state vectors. For some (but not all) functionals, inter-process communication can be reduced
to only the scalar values constituting the sum over k in lines 31, 34.

The memory requirements of the algorithm are dominated by the storage arrays ¢, ¢,
and X. Each of these must store N(N; + 1) full state vectors (a full time propagation for
each of the N objectives). Each state vector is typically an array of double-precision complex
numbers. For a Hilbert space dimension d, a state vector thus requires 16d bytes of memory,
or 16d? bytes for a density matrix. Under certain conditions, the use of ®, and &, can be
avoided: both are required only when the second order update is used (o(t) # 0). When
the first order update is sufficient, ®; may overwrite ®, so that the two collapse into a single
forward-storage ®. The states stored in are only used for the inhomogeneity dg,/9 (¢«| in
Eq. (30), and no storage ¢ of forward-propagated states at all is required if g, = 0. Thus, in
most examples, only the storage X of the backward-propagated states remains. In principle,
if the time propagation U is unitary (i.e., invertible), the states stored in X could be recovered
by forward-propagation of {y, }, eliminating X at the (considerable) runtime cost
of an additional time propagation.

27

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

Algorithm 1 KROTOV’S METHOD FOR QUANTUM OPTIMAL CONTROL

Input:

1.

ARSI

list of guess control values {6(0)} where e(o) is the value of the I’th control field on the

n’th interval of the propagation time grid (t, =0,...,ty, =T), ie, e(o) = go)(tn_l)
withn € [1,Ny] and &, = (t,, + t,41)/2

list of update-shape values {S;,} with each S;,, € [0,1]

list of update step size values {1, ;}

list of N initial states {¢>m“} att=ty=0

propagator function U that in “forward mode” receives a state ¢, and a list of
control values {¢;,} and returns ¢, by solving the differential equation (29),

respectively in “backward mode” (indicated as U™) receives a state y X and returns
X by solving the differential equation (30)

%LG’ cf. Eq. (27), where Hy, is the right-hand-side of the
equation of motion of ¢, (1), up to a factor of (—i/h), cf. Eq. (29)

list of operators u;;,, =

function y that receives a list of states {¢>, (1)} and returns a list of states {y (7)}
according to Eq. (12)

optionally, if a second order construction of the pulse update is necessary: function

o(t)

Output: optimized control values {e(om)} such that J [{e(Opt)}] <J [{egg)}], with J defined in

10:
11:
12:
13:
14:
15:

1
2
3
4
5t
6
7
8
9

Eq. (4).
: procedure KROTOVOPTIMIZATION({E } {Sin}s {Aai}s {¢m“} U, {tin}> 2, 0)

i<0 > iteration number

allocate forward storage array ®,[1...N,0...Ny]

fork < 1,...,N do > initial forward-propagation
@[k, 0] — ¢, (1)) P
forn1,...,N; do

®o[k,n] ¢, —U(9, ,{e (0)}) > propagate and store

end for

end for

while not converged do > optimization loop
i—i+1
@1,{6(1)} «— KROTOVITERATION(®), {e(l Dy)
by — P4

end while

VYi,V¥n: e(OPt) %;) > final optimized controls

16: end procedure

Notes:

e The index k numbers the independent states to be propagated, respectively the indepen-
dent “objectives” (see text for details), [numbers the independent control fields, and n
numbers the intervals on the time grid. All of these indices start at 1.

e The optimization loop may be stopped if the optimization functional or the change
of functional falls below a pre-defined threshold, a maximum number of iterations is
reached, or any other criterion.

28

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080

Scil SciPost Phys. 7, 080 (2019)

17: procedure KROTOVITERATION(®,, {e&_l)}, {Sin, A b {6 U, {ttikn} 2, 0)
18: Vk : ¢k — q)O[kﬁNT]
19: {x, Y= x({o, D > backward boundary condition

20: allocate backward storage array X[1...N,0...N¢].
21: fork < 1,...,N do

22: X[k,Np] < x,

23: forn < Ny,...,1do > backward-propagate and store
24: X[k,n—1]« x, <—U_"()(k ,{65;_1)},430)

25: end for

26: end for

27: allocate forward storage array ®;[1...N,0...Ny]

28: Vi :®[k,0] < ¢, — ¢t

29: forn<1,...,N; do > sequential update loop
30: Vk:x, —X[k,n—1]

31: Vi: Agp, < %Imzk (xk |‘U’lkn |q5k > > first order
32: if o(t) # 0 then > second order
33: Vk:A¢, — ¢, —Po[k,n—1]

34: Vi: Aeq, <—Aeln+%lmzk %a(fn)(Aqbk |,ulkn |¢k >

35: end if '

36: Vi : e&) — 6&_1) + A€, > apply update
37: Vk:®[k,n] < ¢, < U(p, , {e&)}) > propagate and store
38: end for

39: if o(t) # 0 then

40: Update internal parameters of o(t) if necessary, using ®,, ¢,

41: end if
42: end procedure

Notes:

e The braket notation in line 31 indicates the (Hilbert-Schmidt) inner product of the state
Xk and the state resulting from applying u;, .~ to ¢, . In Hilbert space,
this is the standard braket. In Liouville space, it is tr (2k Uienl Pr]) with density matrices
x> ¢ and a super-operator Ujj,.

e For numerical stability, the states y, in line 19 may be normalized. This norm
then has to taken into account in the pulse update, line 31.

e In line 24, the storage array &, is passed to U' only to account for the inhomogeneity
due to a possible state-dependent constraint, dg,/d (¢x| in Eq. (30). If g, = 0, the
parameter can be omitted.

C Installation instructions

The krotov package is available for Python versions >3.5. Its main dependency is QuTiP [24,
25]. Thus, you should consider QuTiP’s installation instructions, see http://qutip.org.

It is strongly recommended to install Python packages into an isolated environment. One
possible system for creating such environments it conda, available as part of the Anaconda
Python Distribution, respectively the smaller “Miniconda”, available at
https://conda.io/miniconda.html. Anaconda has the additional benefit that it provides bi-

29

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://qutip.org
https://conda.io/miniconda.html

Scil SciPost Phys. 7, 080 (2019)

nary versions of scientific Python packages that include compiled extensions, and may be hard
to install on systems that lack the necessary compilers (Windows, macOS). This includes the
QuTiP package. Assuming conda is installed, the following commands set up a virtual envi-
ronment into which the krotov package can then be installed:

$ conda create -n qucontrolenv python=3.7

$ conda activate qucontrolenv

$ conda config --append channels conda-forge
$ conda install qutip

To install the latest released version of krotov into your current (conda) environment, run
this command in your terminal:

$ pip install krotov

The examples in the online documentation and in Section 2.4 require additional dependencies.
These can be installed with

$ pip install krotov[dev]

See the package documentation linked in Appendix D for the most current installation instruc-
tions.

D Package documentation

This paper describes only the most central features of the krotov package. For a complete
documentation, refer to https://qucontrol.github.io/krotov. The most current version of the
krotov package is available at https://github.com/qucontrol /krotov under a BSD license.

The example script of Section 2.4 is available at https://github.com/qucontrol/krotov/
tree/paper/examples. A Jupyter notebook version of the same example is available in the
Examples section of the online documentation, together with notebooks illustrating in more
detail the optimization tasks discussed in Section 3.

References

[1] A. Acin et al., The quantum technologies roadmap: a European community view, New J.
Phys. 20, 080201 (2018), doi:10.1088/1367-2630/aad1ea.

[2] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cam-
bridge University Press (2000).

[3] C.L.Degen, E Reinhard and P Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002
(2017), doi:10.1103/RevModPhys.89.035002.

[4] S.J.Glaser et al., Training Schrédinger’s cat: quantum optimal control, Eur. Phys. J. D 69,
279 (2015), doi:10.1140/epjd/e2015-60464-1.

[5] D. Tannor, V. Kazakov and V. Orlov, Control of photochemical branching: Novel procedures
for finding optimal pulses and global upper bounds, In J. Broeckhove and L. Lathouw-
ers, eds., Time-dependent quantum molecular dynamics, Springer, Boston, MA (1992),
doi:10.1007/978-1-4899-2326-4 _24.

[6] P Gross, D. Neuhauser and H. Rabitz, Optimal control of curve-crossing systems, J. Chem.
Phys. 96, 2834 (1992), d0i:10.1063/1.461980.

30

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
https://qucontrol.github.io/krotov
https://github.com/qucontrol/krotov
https://github.com/qucontrol/krotov/tree/paper/examples
https://github.com/qucontrol/krotov/tree/paper/examples
http://dx.doi.org/10.1088/1367-2630/aad1ea
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/10.1140/epjd/e2015-60464-1
http://dx.doi.org/10.1007/978-1-4899-2326-4_24
http://dx.doi.org/10.1063/1.461980

Scil SciPost Phys. 7, 080 (2019)

[7] J. B. Murdoch, A. H. Lent and M. R. Kritzer, Computer-optimized narrowband pulses for
multislice imaging, J. Magnet. Res. 74, 226 (1987), do0i:10.1016/0022-2364(87)90336-
2.

[8] S.J.Glaser and G. P Drobny, The tailored TOCSY experiment: Chemical shift selective coher-
ence transfer, Chem. Phys. Lett. 164, 456 (1989), doi:10.1016/0009-2614(89)85238-8.

[9] C. B Koch, Controlling open quantum systems: tools, achievements, and limitations, J.
Phys.: Condens. Matter 28, 213001 (2016), doi:10.1088,/0953-8984/28/21/213001.

[10] J. Cui, R. van Bijnen, T. Pohl, S. Montangero and T. Calarco, Optimal control of Rydberg
lattice gases, Quantum Sci. Technol. 2, 035006 (2017), doi:10.1088/2058-9565/aa7daf.

[11] S. Patsch, D. M. Reich, J.-M. Raimond, M. Brune, S. Gleyzes and C. P Koch, Fast
and accurate circularization of a Rydberg atom, Phys. Rev. A 97, 053418 (2018),
doi:10.1103/PhysRevA.97.053418.

[12] C.Lovecchio, E Schéfer, S. Cherukattil, M. Ali Khan, I. Herrera, E S. Cataliotti, T. Calarco,
S. Montangero and E Caruso, Optimal preparation of quantum states on an atom-chip
device, Phys. Rev. A 93, 010304 (2016), doi:10.1103/PhysRevA.93.010304.

[13] S.van Frank et al., Optimal control of complex atomic quantum systems, Sci. Rep. 6, 34187
(2016), doi:10.1038/srep34187.

[14] N. Ofek et al., Extending the lifetime of a quantum bit with error correction in supercon-
ducting circuits, Nature 536, 441 (2016), doi:10.1038/nature18949.

[15] J.J. W. H. Sgrensen et al., Exploring the quantum speed limit with computer games, Nature
532, 210 (2016), doi:10.1038/nature17620.

[16] R. W. Heeres, P Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret and R. J.
Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator,
Nat. Commun. 8, 94 (2017), doi:10.1038/s41467-017-00045-1.

[17] R. Heck et al., Remote optimization of an ultracold atoms experiment by ex-
perts and citizen scientists, Proc. Nat. Acad. Sci. USA 115, E11231 (2018),
doi:10.1073/pnas.1716869115.

[18] G. Feng, E H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh and R. Laflamme, Gradient-based
closed-loop quantum optimal control in a solid-state two-qubit system, Phys. Rev. A 98,
052341 (2018), doi:10.1103/PhysRevA.98.052341.

[19] A. Omran et al., Generation and manipulation of Schrodinger cat states in Rydberg atom
arrays, Science 365, 570 (2019), doi:10.1126/science.aax9743.

[20] A. Larrouy, S. Patsch et al., in preparation.

[21] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbriiggen and S. J. Glaser, Optimal control
of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, J.
Magnet. Res. 172, 296 (2005), doi:10.1016/j.jmr.2004.11.004.

[22] D. M. Reich, M. Ndong and C. P Koch, Monotonically convergent optimization in
quantum control using Krotov’s method, J. Chem. Phys. Physics 136, 104103 (2012),
doi:10.1063/1.3691827.

31

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1016/0022-2364(87)90336-2
http://dx.doi.org/10.1016/0022-2364(87)90336-2
http://dx.doi.org/10.1016/0009-2614(89)85238-8
http://dx.doi.org/10.1088/0953-8984/28/21/213001
http://dx.doi.org/10.1088/2058-9565/aa7daf
http://dx.doi.org/10.1103/PhysRevA.97.053418
http://dx.doi.org/10.1103/PhysRevA.93.010304
http://dx.doi.org/10.1038/srep34187
http://dx.doi.org/10.1038/nature18949
http://dx.doi.org/10.1038/nature17620
http://dx.doi.org/10.1038/s41467-017-00045-1
http://dx.doi.org/10.1073/pnas.1716869115
http://dx.doi.org/10.1103/PhysRevA.98.052341
http://dx.doi.org/10.1126/science.aax9743
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1063/1.3691827

Scil SciPost Phys. 7, 080 (2019)

[23] R. Eitan, M. Mundt and D. J. Tannor, Optimal control with accelerated convergence:
Combining the Krotov and quasi-Newton methods, Phys. Rev. A 83, 053426 (2011),
doi:10.1103/PhysRevA.83.053426.

[24] J. R. Johansson, P D. Nation and E Nori, QuTiP: An open-source Python framework for
the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012),
doi:10.1016/j.cpc.2012.02.021.

[25] J. R. Johansson, P D. Nation and E Nori, QuTiP 2: A Python framework for the
dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013),
doi:10.1016/j.cpc.2012.11.019, http://qutip.org.

[26] T. Caneva, T. Calarco and S. Montangero, Chopped random-basis quantum optimization,
Phys. Rev. A 84, 022326 (2011), doi:10.1103/PhysRevA.84.022326.

[27] T. Kluyver et al., Jupyter Notebooks - a publishing format for reproducible computational
workflows, In E Loizides and B. Schmidt, eds., Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, IOS Press (2016), doi:10.3233/978-1-61499-649-
1-87, https://jupyter.org.

[28] M. M. Miiller, H. R. Haakh, T. Calarco, C. P Koch and C. Henkel, Prospects for fast Rydberg
gates on an atom chip, Quantum Inf. Process. 10, 771 (2011), doi:10.1007/s11128-011-
0296-0.

[29] M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P Koch and K. B. Whaley, Robustness of
high-fidelity Rydberg gates with single-site addressability, Phys. Rev. A 90, 032329 (2014),
doi:10.1103/PhysRevA.90.032329.

[30] M. H. Goerz, D. M. Reich and C. P Koch, Optimal control theory for a unitary opera-
tion under dissipative evolution, New J. Phys. 16, 055012 (2014), doi:10.1088/1367-
2630/16/5/055012.

[31] P Watts, J. Vala, M. M. Miiller, T. Calarco, K. Birgitta Whaley, D. M. Reich, M. H. Goerz
and C. P Koch, Optimizing for an arbitrary perfect entangler. I. Functionals, Phys. Rev. A
91, 062306 (2015), doi:10.1103/PhysRevA.91.062306.

[32] M. H. Goerz et al., Optimiging for an arbitrary perfect entangler. II. Application, Phys. Rev.
A 91, 062307 (2015), doi:10.1103/PhysRevA.91.062307.

[33] D.Basilewitsch, R. Schmidt, D. Sugny, S. Maniscalco and C. P Koch, Beating the limits with
initial correlations, New J. Phys. 19, 113042 (2017), doi:10.1088/1367-2630/aa96f8.

[34] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018),
doi:10.22331/q-2018-08-06-79.

[35] M. H. Goerz, K. B. Whaley and C. P Koch, Hybrid optimization schemes for quantum
control, EPJ Quantum Technol. 2, 21 (2015), doi:10.1140/epjqt/s40507-015-0034-0.

[36] M. H. Goerz, E Motzoi, K. B. Whaley and C. P Koch, Charting the circuit QED design land-
scape using optimal control theory, npj Quantum Inf. 3, 37 (2017), doi:10.1038/s41534-
017-0036-0.

[37] J.Bezanson, A. Edelman, S. Karpinski and V. B. Shah, Julia: A fresh approach to numerical
computing, SIAM Rev. 59, 65 (2017), doi:10.1137/141000671.

32

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1103/PhysRevA.83.053426
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://qutip.org
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.3233/978-1-61499-649-1-87
https://jupyter.org
http://dx.doi.org/10.1007/s11128-011-0296-0
http://dx.doi.org/10.1007/s11128-011-0296-0
http://dx.doi.org/10.1103/PhysRevA.90.032329
http://dx.doi.org/10.1088/1367-2630/16/5/055012
http://dx.doi.org/10.1088/1367-2630/16/5/055012
http://dx.doi.org/10.1103/PhysRevA.91.062306
http://dx.doi.org/10.1103/PhysRevA.91.062307
http://dx.doi.org/10.1088/1367-2630/aa96f8
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1140/epjqt/s40507-015-0034-0
http://dx.doi.org/10.1038/s41534-017-0036-0
http://dx.doi.org/10.1038/s41534-017-0036-0
http://dx.doi.org/10.1137/141000671

Scil SciPost Phys. 7, 080 (2019)

[38] J. Akeret, L. Gamper, A. Amara and A. Refregier, HOPE: A Python just-in-
time compiler for astrophysical computations, Astron. Comput. 10, 1 (2015),
doi:10.1016/j.ascom.2014.12.001.

[39] H. Eichhorn, J. Luis Cano, E McLean and R. Anderl, A comparative study of program-
ming languages for next-generation astrodynamics systems, CEAS Space J. 10, 115 (2017),
doi:10.1007/s12567-017-0170-8.

[40] D. J. Tannor and S. A. Rice, Control of selectivity of chemical reaction via control of wave
packet evolution, J. Chem. Phys. 83, 5013 (1985), doi:10.1063/1.449767.

[41] R. Bellman, Dynamic programming, Princeton University Press, Princeton, NJ (1957).

[42] L. S. Pontryagin, V. G. Boltyanskii, G. R. V. and E. E Mishchenko, The mathematical theory
of optimal processes, Interscience, New York, NY (1962).

[43] V. E Krotov and I. N. Fe’'dman, An iterative method for solving optimal-control problems,
Eng. Cybern. 21, 123 (1983).

[44] V. E Krotov, A technique of global bounds in optimal control theory, Control Cybern. 17,
115 (1988).

[45] V. Krotov, Global methods in optimal control theory, CRC Press (1995).

[46] A. Konnov and V. E Krotov, On global methods of successive improvement of controlled
processes, Autom. Rem. Contr. 60, 1427 (1999).

[47] J. Somldi, V. A. Kazakov and D. J. Tannor, Controlled dissociation of I, via opti-
cal transitions between the X and B electronic states, Chem. Phys. 172, 85 (1993),
d0i:10.1016/0301-0104(93)80108-1L.

[48] A. Bartana, R. Kosloff and D. J. Tannor, Laser cooling of internal degrees of freedom. II, J.
Chem. Phys. 106, 1435 (1997), doi:10.1063/1.473973.

[49] S. E. Sklarz and D. J. Tannor, Loading a Bose-Einstein condensate onto an optical lattice:
An application of optimal control theory to the nonlinear Schrédinger equation, Phys. Rev.
A 66, 053619 (2002), doi:10.1103/PhysRevA.66.053619.

[50] J. P Palao and R. Kosloff, Optimal control theory for unitary transformations, Phys. Rev. A
68, 062308 (2003), doi:10.1103/PhysRevA.68.062308.

[51] A. Kaiser and V. May, Optimal control theory for a target state distributed in time: Opti-
mizing the probe-pulse signal of a pump-probe-scheme, J. Chem. Phys. 121, 2528 (2004),
doi:10.1063/1.1769370.

[52] 1. Serban, J. Werschnik and E. K. U. Gross, Optimal control of time-dependent targets,
Phys. Rev. A 71, 053810 (2005), doi:10.1103/PhysRevA.71.053810.

[53] J. P Palao, R. Kosloff and C. P Koch, Protecting coherence in optimal control
theory: State-dependent constraint approach, Phys. Rev. A 77, 063412 (2008),
doi:10.1103/PhysRevA.77.063412.

[54] S.van der Walt, S. C. Colbert and G. Varoquaux, The NumPy Array: A structure for efficient
numerical computation, Comput. Sci. Eng. 13, 22 (2011), doi:10.1109/MCSE.2011.37.

[55] D. Jaksch, J. I. Cirac, P Zoller, S. L. Rolston, R. C6té and M. D. Lukin, Fast quantum gates
for neutral atoms, Phys. Rev. Lett. 85, 2208 (2000), doi:10.1103/PhysRevLett.85.2208.

33

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1016/j.ascom.2014.12.001
http://dx.doi.org/10.1007/s12567-017-0170-8
http://dx.doi.org/10.1063/1.449767
http://dx.doi.org/10.1016/0301-0104(93)80108-L
http://dx.doi.org/10.1063/1.473973
http://dx.doi.org/10.1103/PhysRevA.66.053619
http://dx.doi.org/10.1103/PhysRevA.68.062308
http://dx.doi.org/10.1063/1.1769370
http://dx.doi.org/10.1103/PhysRevA.71.053810
http://dx.doi.org/10.1103/PhysRevA.77.063412
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1103/PhysRevLett.85.2208

Scil SciPost Phys. 7, 080 (2019)

[56] M. M. Miiller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B. Whaley, T. Calarco and C. P
Koch, Optimizing entangling quantum gates for physical systems, Phys. Rev. A 84, 042315
(2011), doi:10.1103/PhysRevA.84.042315.

[57] B Watts, M. O’Connor and J. Vala, Metric structure of the space of two-qubit gates, perfect
entanglers and quantum control, Entropy 15, 1963 (2013), doi:10.3390/e15061963.

[58] M. Musz, M. Ku$ and K. Zyczkowski, Unitary quantum gates, perfect entanglers, and unis-
tochastic maps, Phys. Rev. A 87, 022111 (2013), doi:10.1103/PhysRevA.87.022111.

[59] R. Kosloff, S. A. Rice, P Gaspard, S. Tersigni and D. J. Tannor, Wavepacket dancing:
Achieving chemical selectivity by shaping light pulses, Chem. Phys. 139, 201 (1989),
doi:10.1016/0301-0104(89)90012-8.

[60] S. Shi and H. Rabitz, Quantum mechanical optimal control of physical observables in mi-
crosystems, J. Chem. Phys. 92, 364 (1990), doi:10.1063/1.458438.

[61] S.Shiand H. Rabitz, Optimal control of bond selectivity in unimolecular reactions, Comput.
Phys. Commun. 63, 71 (1991), doi:10.1016/0010-4655(91)90239-H.

[62] D. J. Tannor and Y. Jin, Design of femtosecond pulse sequences to control photochemical
products, In Mode Selective Chemistry, Springer, 333 (1991).

[63] W. Zhu, J. Botina and H. Rabitz, Rapidly convergent iteration methods for quantum optimal
control of population, J. Chem. Phys. 108, 1953 (1998), doi:10.1063/1.475576.

[64] Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control
algorithms, J. Chem. Phys. 118, 8191 (2003), doi:10.1063/1.1564043.

[65] Y. Ohtsuki, G. Turinici and H. Rabitz, Generalized monotonically convergent algorithms
for solving quantum optimal control problems, J. Chem. Phys. 120, 5509 (2004),
doi:10.1063/1.1650297.

[66] J. Werschnik and E. K. U. Gross, Quantum optimal control theory, J. Phys. B: At. Mol. Opt.
Phys. 40, R175 (2007), doi:10.1088/0953-4075/40/18/r01.

[67] B. Schmidt and C. Hartmann, WavePacket: A Matlab package for numerical quantum dy-
namics.Il: Open quantum systems, optimal control, and model reduction, Comput. Phys.
Commun. 228, 229 (2018), d0i:10.1016/j.cpc.2018.02.022.

[68] S. G. Schirmer and P de Fouquieres, Efficient algorithms for optimal control of quan-
tum dynamics: the Krotov method unencumbered, New J. Phys. 13, 073029 (2011),
doi:10.1088/1367-2630/13/7/073029.

[69] S. Machnes, U. Sander, S. J. Glaser, P de Fouquieres, A. Gruslys, S. Schirmer and
T. Schulte-Herbriiggen, Comparing, optimizing, and benchmarking quantum-control al-
gorithms in a unifying programming framework, Phys. Rev. A 84, 022305 (2011),
doi:10.1103/PhysRevA.84.022305.

[70] J. P Palao and R. Kosloff, Quantum computing by an optimal control al-
gorithm for wunitary transformations, Phys. Rev. Lett. 89, 188301 (2002),
doi:10.1103/PhysRevLett.89.188301.

[71] M. Goerz, Optimizing robust quantum gates in open quantum systems,
Ph.D. thesis, Universitdt Kassel, (2015), https://kobra.bibliothek.uni-
kassel.de/handle/urn:nbn:de:hebis:34-2015052748381.

34

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1103/PhysRevA.84.042315
http://dx.doi.org/10.3390/e15061963
http://dx.doi.org/10.1103/PhysRevA.87.022111
http://dx.doi.org/10.1016/0301-0104(89)90012-8
http://dx.doi.org/10.1063/1.458438
http://dx.doi.org/10.1016/0010-4655(91)90239-H
http://dx.doi.org/10.1063/1.475576
http://dx.doi.org/10.1063/1.1564043
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1088/0953-4075/40/18/r01
http://dx.doi.org/10.1016/j.cpc.2018.02.022
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1103/PhysRevA.84.022305
http://dx.doi.org/10.1103/PhysRevLett.89.188301
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2015052748381
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2015052748381

Scil SciPost Phys. 7, 080 (2019)

[72] S. Schirmer, Implementation of quantum gates via optimal control, J. Mod. Opt. 56, 831
(2009), doi:10.1080/09500340802344933.

[73] E E Floether, P de Fouquieres and S. G. Schirmer, Robust quantum gates for open systems
via optimal control: Markovian versus non-Markovian dynamics, New J. Phys. 14, 073023
(2012), doi:10.1088/1367-2630/14/7/073023.

[74] R.H. Byrd, P Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained
optimization, SIAM J. Sci. Comput. 16, 1190 (1995), doi:10.1137/0916069.

[75] C. Zhu, R. H. Byrd, P Lu and J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization, ACM Trans. Math. Softw. 23, 550 (1997),
doi:10.1145/279232.279236.

[76] P de Fouquieres, S. G. Schirmer, S. J. Glaser and I. Kuprov, Second order gradient ascent
pulse engineering, J. Magnet. Res. 212, 412 (2011), doi:10.1016/j.jmr.2011.07.023.

[77] E. Jones, T. Oliphant, P Peterson et al., SciPy: Open source scientific tools for Python,
(2001-), http://www.scipy.org/.

[78] G. Jager, D. M. Reich, M. H. Goerz, C. P Koch and U. Hohenester, Optimal quantum con-
trol of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-
pulse-engineering and Krotov optimization schemes, Phys. Rev. A 90, 033628 (2014),
doi:10.1103/PhysRevA.90.033628.

[79] J.L.Neves, B. Heitmann, N. Khaneja and S. J. Glaser, Heteronuclear decoupling by optimal
tracking, J. Magnet. Res. 201, 7 (2009), doi:10.1016/].jmr.2009.07.024.

[80] T. T. Nguyen and S. J. Glaser, An optimal control approach to design entire relaxation
dispersion experiments, J. Magnet. Res. 282, 142 (2017), doi:10.1016/j.jmr.2017.07.010.

[81] Q. Ansel, M. Tesch, S. J. Glaser and D. Sugny, Optimizing fingerprinting experiments for
parameter identification: Application to spin systems, Phys. Rev. A 96, 053419 (2017),
doi:10.1103/PhysRevA.96.053419.

[82] P E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T. E. Skinner, S. J. Glaser and
T. E Prisner, Shaped optimal control pulses for increased excitation bandwidth in EPR, J.
Magnet. Res. 218, 49 (2012), doi:10.1016/j.jmr.2012.02.013.

[83] Z. Tosner, R. Sarkar, J. Becker-Baldus, C. Glaubitz, S. Wegner, E Engelke, S. J. Glaser and
B. Reif, Overcoming volume selectivity of dipolar recoupling in biological solid-state NMR
spectroscopy, Angew. Chem. Int. Ed. 57, 14514 (2018), doi:10.1002/anie.201805002.

[84] N. Leung, M. Abdelhafez, J. Koch and D. Schuster, Speedup for quantum optimal control
from automatic differentiation based on graphics processing units, Phys. Rev. A 95, 042318
(2017), doi:10.1103/PhysRevA.95.042318.

[85] M. Abdelhafez, D. I. Schuster and J. Koch, Gradient-based optimal control of open quantum
systems using quantum trajectories and automatic differentiation, Phys. Rev. A 99, 052327
(2019), doi:10.1103/PhysRevA.99.052327.

[86] G. von Winckel and A. Borzi, Computational techniques for a quantum control problem
with H'-cost, Inverse Probl. 24, 034007 (2008), doi:10.1088/0266-5611/24/3/034007.

[87] T. E. Skinner and N. I. Gershenzon, Optimal control design of pulse shapes as analytic
functions, J. Magnet. Res. 204, 248 (2010), doi:10.1016/j.jmr.2010.03.002.

35

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1080/09500340802344933
http://dx.doi.org/10.1088/1367-2630/14/7/073023
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1016/j.jmr.2011.07.023
http://www.scipy.org/
http://dx.doi.org/10.1103/PhysRevA.90.033628
http://dx.doi.org/10.1016/j.jmr.2009.07.024
http://dx.doi.org/10.1016/j.jmr.2017.07.010
http://dx.doi.org/10.1103/PhysRevA.96.053419
http://dx.doi.org/10.1016/j.jmr.2012.02.013
http://dx.doi.org/10.1002/anie.201805002
http://dx.doi.org/10.1103/PhysRevA.95.042318
http://dx.doi.org/10.1103/PhysRevA.99.052327
http://dx.doi.org/10.1088/0266-5611/24/3/034007
http://dx.doi.org/10.1016/j.jmr.2010.03.002

Scil SciPost Phys. 7, 080 (2019)

[88] E Motzoi, J. M. Gambetta, S. T. Merkel and E K. Wilhelm, Optimal control
methods for rapidly time-varying Hamiltonians, Phys. Rev. A 84, 022307 (2011),
doi:10.1103/PhysRevA.84.022307.

[89] D. Lucarelli, Quantum optimal control via gradient ascent in function space and
the time-bandwidth quantum speed limit, Phys. Rev. A 97, 062346 (2018),
doi:10.1103/physreva.97.062346.

[90] J. J. W. H. Sgrensen, M. O. Aranburu, T. Heinzel and J. E Sherson, Quantum optimal
control in a chopped basis: Applications in control of Bose-Einstein condensates, Phys. Rev.
A 98,022119 (2018), doi:10.1103/PhysRevA.98.022119.

[91] J. J. Segrensen, J. H. M. Jensen, T. Heinzel and J. E Sherson, QEngine: A C++ library for
quantum optimal control of ultracold atoms, Comput. Phys. Commun. 243, 135 (2019),
doi:10.1016/j.cpc.2019.04.020.

[92] S. Machnes, E. Assémat, D. Tannor and E K. Wilhelm, Tunable, flexible, and efficient
optimization of control pulses for practical qubits, Phys. Rev. Lett. 120, 150401 (2018),
doi:10.1103/PhysRevLett.120.150401.

[93] N. Rach, M. M. Miiller, T. Calarco and S. Montangero, Dressing the chopped-random-
basis optimization: A bandwidth-limited access to the trap-free landscape, Phys. Rev. A 92,
062343 (2015), doi:10.1103/PhysRevA.92.062343.

[94] R. Esteban Goetz, A. Karamatskou, R. Santra and C. P Koch, Quantum optimal con-
trol of photoelectron spectra and angular distributions, Phys. Rev. A 93, 013413 (2016),
doi:10.1103/PhysRevA.93.013413.

[95] K. P Horn, E Reiter, Y. Lin, D. Leibfried and C. P Koch, Quantum optimal control of the
dissipative production of a maximally entangled state, New J. Phys. 20, 123010 (2018),
doi:10.1088/1367-2630/aaf360.

[96] P Doria, T. Calarco and S. Montangero, Optimal control technique for many-body quantum
dynamics, Phys. Rev. Lett. 106, 190501 (2011), doi:10.1103/PhysRevLett.106.190501.

[97] T. Caneva, T. Calarco and S. Montangero, Chopped random-basis quantum optimization,
Phys. Rev. A 84, 022326 (2011), doi:10.1103/PhysRevA.84.022326.

[98] S.G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt.

[99] J. Rapin and O. Teytaud, Nevergrad - A gradient-free optimization platform, (2018),
https://GitHub.com/FacebookResearch/Nevergrad.

[100] D. Dong and I. R. Petersen, Quantum control theory and applications: a survey, IET
Control Theory Appl. 4, 2651 (2010), doi:10.1049/iet-cta.2009.0508.

[101] M. H. Goerz, E Motzoi, K. B. Whaley and C. P Koch, Charting the circuit QED design land-
scape using optimal control theory, npj Quantum Inf. 3, 37 (2017), doi:10.1038/s41534-
017-0036-0.

[102] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti and G. E.
Santoro, Optimal control at the quantum speed limit, Phys. Rev. Lett. 103, 240501 (2009),
doi:10.1103/PhysRevLett.103.240501.

[103] M. H. Goerz, T. Calarco and C. P Koch, The quantum speed limit of optimal controlled
phasegates for trapped neutral atoms, J. Phys. B: At. Mol. Opt. Phys. 44, 154011 (2011),
doi:10.1088,/0953-4075/44/15/154011.

36

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1103/PhysRevA.84.022307
http://dx.doi.org/10.1103/physreva.97.062346
http://dx.doi.org/10.1103/PhysRevA.98.022119
http://dx.doi.org/10.1016/j.cpc.2019.04.020
http://dx.doi.org/10.1103/PhysRevLett.120.150401
http://dx.doi.org/10.1103/PhysRevA.92.062343
http://dx.doi.org/10.1103/PhysRevA.93.013413
http://dx.doi.org/10.1088/1367-2630/aaf360
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://ab-initio.mit.edu/nlopt
https://GitHub.com/FacebookResearch/Nevergrad
http://dx.doi.org/10.1049/iet-cta.2009.0508
http://dx.doi.org/10.1038/s41534-017-0036-0
http://dx.doi.org/10.1038/s41534-017-0036-0
http://dx.doi.org/10.1103/PhysRevLett.103.240501
http://dx.doi.org/10.1088/0953-4075/44/15/154011

Scil SciPost Phys. 7, 080 (2019)

[104] M. M. Miiller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B. Whaley, T. Calarco and C. P
Koch, Optimizing entangling quantum gates for physical systems, Phys. Rev. A 84, 042315
(2011), doi:10.1103/PhysRevA.84.042315.

[105] I. Schaefer, H. Tal-Ezer and R. Kosloff, Semi-global approach for propagation of the time-
dependent Schrodinger equation for time-dependent and nonlinear problems, J. Comput.
Phys. 343, 368 (2017), doi:10.1016/j.jcp.2017.04.017.

[106] J. P Palao, D. M. Reich and C. P Koch, Steering the optimization pathway
in the control landscape using constraints, Phys. Rev. A 88, 053409 (2013),
doi:10.1103/PhysRevA.88.053409.

[107] D. M. Reich, J. P Palao and C. P Koch, Optimal control under spectral con-
straints: enforcing multi-photon absorption pathways, J. Mod. Opt. 61, 822 (2014),
doi:10.1080/09500340.2013.844866.

[108] M. Lapert, R. Tehini, G. Turinici and D. Sugny, Monotonically convergent optimal control
theory of quantum systems with spectral constraints on the control field, Phys. Rev. A 79,
063411 (2009), doi:10.1103/PhysRevA.79.063411.

[109] M. Bukov, A. G. R. Day, D. Sels, P Weinberg, A. Polkovnikov and P Mehta, Reinforce-
ment learning in different phases of quantum control, Phys. Rev. X 8, 031086 (2018),
doi:10.1103/PhysRevX.8.031086.

[110] A.Bartana, R. Kosloff and D. J. Tannor, Laser cooling of molecular internal degrees of free-
dom by a series of shaped pulses, J. Chem. Phys. 99, 196 (1993), doi:10.1063/1.465797.

[111] Y. Ohtsuki, W. Zhu and H. Rabitz, Monotonically convergent algorithm for quantum op-
timal control with dissipation, J. Chem. Phys. 110, 9825 (1999), doi:10.1063/1.478036.

[112] M. H. Goerz and K. Jacobs, Efficient optimization of state preparation in quan-
tum networks using quantum trajectories, Quantum Sci. Technol. 3, 045005 (2018),
doi:10.1088/2058-9565/aacel6.

37

https://scipost.org
https://scipost.org/SciPostPhys.7.6.080
http://dx.doi.org/10.1103/PhysRevA.84.042315
http://dx.doi.org/10.1016/j.jcp.2017.04.017
http://dx.doi.org/10.1103/PhysRevA.88.053409
http://dx.doi.org/10.1080/09500340.2013.844866
http://dx.doi.org/10.1103/PhysRevA.79.063411
http://dx.doi.org/10.1103/PhysRevX.8.031086
http://dx.doi.org/10.1063/1.465797
http://dx.doi.org/10.1063/1.478036
http://dx.doi.org/10.1088/2058-9565/aace16

	Introduction
	Overview of Krotov's method and the krotov package
	The quantum control problem
	Optimization functional
	Iterative control update
	Example: state-to-state transition in a two-level system

	Common optimization tasks
	Complex-valued controls
	Optimization towards a quantum gate
	Ensemble optimization as a way to ensure robust controls
	Optimization of non-linear problems or non-convex functionals

	Comparison of Krotov's method and other optimization methods
	Iterative schemes from variational calculus
	Krotov's method
	GRadient Ascent Pulse Engineering (GRAPE)
	Gradient-free optimization
	Choosing an optimization method

	Future perspectives
	Conclusions
	The Krotov update equation
	First order update
	Second order update
	Time discretization

	Pseudocode for Krotov's method
	Installation instructions
	Package documentation
	References

