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Abstract

The evaluation of partition functions is a central problem in statistical physics. For lat-
tice systems and other discrete models the partition function may be expressed as the
contraction of a tensor network. Unfortunately computing such contractions is difficult,
and many methods to make this tractable require periodic or otherwise structured net-
works. Here I present a new algorithm for contracting unstructured tensor networks.
This method makes no assumptions about the structure of the network and performs
well in both structured and unstructured cases so long as the correlation structure is
local.
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1 Introduction

A central problem of classical statistical physics is that of calculating the partition function,
which encodes thermodynamic quantities and statistical correlations as a weighted sum over
all possible configurations of a system [1]. Because of the Euclidean path integral this is also
a central problem in quantum statistical physics [2]. This problem is also closely related to
the Bayesian inference problem, and methods which solve the one are readily applied to the
other [3].

In infinite systems the partition function is not always computable or even well-defined [4],
but when the state space is finite there are no such problems. Being computable does not,
however, mean that it is straightforward or tractable to compute. For example, lattice models
have local structure. In these systems the state space is an outer product of many local spaces,
and so the number of terms in the partition function grows exponentially in system size [5].
This makes a naive numerical evaluation of the partition function impractical.

A variety of general stochastic methods have been developed to tackle this problem, from
Nested Sampling [6] to the Metropolis-Hastings algorithm [7] and Wang-Landau sampling [8],
as well as numerous variants on each of these. These methods may be applied to arbitrary finite
models, but they make no guarantees of convergence or performance. Indeed a well-known
problem of such methods is that they may silently fail, entirely and without warning missing
the most relevant regions of parameter space [9].

By contrast there are also algorithms with much more limited scope but much more certain
performance. The most famous of these is the transfer matrix [10], which takes advantage of
the fact that in one-dimensional models with short-range interactions the partition function
factors into a product of matrices. For models with such structure this algorithm produces
results to high precision with run time that scales at worst linearly in the size of the system
and at worst cubically in the size of the local state space.

A recent generalization of the transfer matrix is the tensor network. Tensor networks are
multigraphs wherein each node is a tensor and each edge is a contraction between indices on
the tensors it connects [11]. This structure allows tensor networks to encode correlations in
more complex systems, and notably allows them to represent arbitrary discrete lattice models.
It is therefore crucial to develop the means to efficiently manipulate such networks as this
would make a tremendous array of problems numerically tractable, from disordered lattices
to simulating quantum computers [12] to complex biological and chemical models [13–15].

In certain special cases, most notably trees (acyclic graphs), a tensor network may be
efficiently summed as a series of matrix multiplications. Thus the transfer matrix method is
just a special case of tensor tree summation. In most cases, however, directly summing a tensor
network is intractable because each time a pair of indices is contracted the resulting tensor has
greater rank than either of the input tensors. The computational cost of working with a tensor
scales exponentially in its rank, and so direct summation typically comes with exponential cost
in system size.

Methods have been developed to address this challenge. In small systems there is often
room for optimizing the order of contraction [16], which serves to reduce the effective base of
the exponential. There has also been some work on approximating the local environment of a
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tensor in a network, akin to a numerical mean-field theory, and that has produced promising
results in manipulating small networks [17] In larger and even infinite systems with regular
crystalline structure a variety of hand-crafted methods have arisen [18–24]. These perform
incredibly well, with polynomial run time in system size for in finite systems and accurate
results even near critical points in infinite systems. Unfortunately they are often specific to a
given model, and are not easy to extend. They also all require periodic or otherwise regular
lattice structures and in some cases impose additional symmetries [25], making use of this
either to save on storage requirements or to impose constraints on the correlation structure.

In this work I present an algorithm for contracting large finite tensor networks which places
no a priori constraints on their structure. This means that it can be applied as a general tool
to study correlations in local finite lattice systems with discrete state spaces, a niche currently
only occupied by stochastic methods.

I begin in Section 2 with a discussion of the problem of rank explosion. In Section 3 I
describe how this may be mitigated by using tensor tree decompositions, which efficiently
represent high-rank tensors to within a controlled error threshold. In order to contract pairs
of tensor trees it is necessary to eliminate cycles and to do so efficiently. This is the core of the
algorithm and is discussed in detail in Section 4. Section 5 then puts the pieces together and
describes the overall method of contracting tensor networks using these tools. In Section 6
I then demonstrate the performance of this algorithm in many real-world examples. While
it does not come with any guarantees of run time efficiency, in practice it exhibits polyno-
mial scaling in system size far from critical points and exponential scaling near them. It also
converges to the desired accuracy, being a controlled approximation method. Finally I have
released a software implementation of this algorithm along with several related methods, and
the details of this implementation are given in Appendix A.

2 Rank Explosion

Tensor networks span many different communities within mathematics and physics and so
it is best to be clear about nomenclature. The rank of a tensor is the number of indices it
possesses. The dimension of a given index is the range over which it spans (i.e. the number
of elements it introduces into sums), or equivalently the dimension of the dual space whose
members map the tensor to a tensor possessing all but the specified index. The shape of a
tensor is the collection of its index dimensions. Finally the size of a tensor is the number of
elements it contains, which is equal to the product of the dimensions of its indices.

The phenomenon of rank explosion occurs when successive contraction operations on av-
erage increase the ranks of tensors in a network. When this is not accompanied by a com-
mensurate decrease in the typical index dimension it results in an explosion in the number of
elements the network contains. Even if all indices have dimension two, which is the lowest
non-trivial dimension, a contraction which results in a tensor of rank greater than both of the
ranks of the input tensors always results in a network of at least as many elements. If the
rank increases by more than one, or the typical dimension is greater than two or the two input
tensors were not of the same size, then the number of elements generically increases. This is
a problem because in numerical algorithms the bottleneck is usually manipulating and stor-
ing these elements, and so a dramatic increase in their number is typically accompanied by a
dramatic decrease in performance.

As an example consider the tensor network depicted in Figure 1. The network is drawn
with Penrose notation, with shapes representing tensors and lines representing indices [26].
Where lines attached to different tensors connect those indices are to be contracted. In this
network there are two tensors of rank 4 with one contraction specified. After performing this
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A B

Figure 1: Two tensors are shown in Penrose notation. This network specifies a single
contraction over a single pair of indices between the two tensors, as well as several
external indices on each.

C

Figure 2: The same network is shown as in Figure 1 after contracting A and B along
their shared edge.

contraction the network appears as in Figure 2, with one tensor of rank 6. More generally,
whenever two tensors of ranks r1 ≥ r2 sharing k links are contracted, the resulting rank is
r1 + r2 − 2k. This exceeds both input ranks when 2k < r2. In a d-dimensional square lattice
model, for instance, k = 1 and r = 2d (see Figure 3), so for d > 1 this is a problem. The case
of d = 1 reduces to transfer matrices.

For some networks this is only an apparent problem because subsequent contractions result
in a net decrease in rank, or because the rank increases may be halted by careful choice of the
contraction sequence [16]. The network shown in Figure 4 has this property. This network
is just a 2D lattice model with just two tensors in the vertical direction. Contracting along
vertical lines results in an increase in rank, but once all such contractions have been done the
model is one-dimensional and may be contracted with no further increases in rank. This is
actually generically true for d > 1 lattice models, but the rank at which the process halts is
proportional to the cross-sectional size of the system along all but the largest dimension, and
so may be prohibitively large. This is closely related to the problem faced by DMRG methods

Figure 3: A 2D lattice model partition function is shown as a tensor network on a
5× 5 square lattice. Each tensor has rank 4 and there are k = 1 links between any
pair of adjacent tensors.
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Figure 4: A 2D lattice model partition function is shown as a tensor network on a
7 × 2 square lattice. This model does not suffer from rank explosion because it is
effectively one-dimensional.

Figure 5: Shown is a rank-6 tensor (left) along with its factorization into a tensor
tree (right).

in d > 1, where it is possible to incorporate higher dimensions at the cost of run time which
is exponential in their extent [27].

3 Tensor Trees

One way to avoid the problem of rank explosion is to devise efficient methods for represent-
ing high-rank tensors. This problem has received considerable attention from a variety of
angles [28–31] and a general theme of hierarchical decomposition has emerged. Such decom-
positions are advantageous over tensor-train decompositions in cases where the correlations
are not local in one dimension [32], and are preferable to sparse tensor schemes because the
tensors arising in statistical physics are rarely sparse.

The most well-studied such a decomposition is the tensor tree [30], in which one factors
a high-rank tensor into a tree (acyclic network) of lower-rank tensors, as shown in Figure 5.
Components of the tensor may then be evaluated efficiently as a series of matrix multiplica-
tions. While decompositions cannot improve the representation of all tensors1, those with local
structure in the correlations between their indices can be compressed dramatically [28,33].

A key feature of tensor tree decompositions is that their efficiency depends heavily on
the choice of tree. Significant work has gone into making context-specific choices [13, 32].
Recently automated methods of determining optimal or near-optimal choices have been de-
veloped [34]. These methods use the correlation structure of the tensor to infer which indices
ought to be near one another on the tree, and so in effect are always context-aware.

4 Cycle Elimination

Tensor trees may be efficient for storing tensors, but they be contracted efficiently? That is,
given two tree tensors is there an efficient way to produce a new tree tensor representing
their contraction? There are two cases in which the answer is unambiguously yes. First, when

1Otherwise all strings could be compressed, in violation of the pidgeonhole principle.
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Figure 6: A contraction between two tensor trees along one index pair is shown. For
clarity each tree has been placed in a box.

the trees in question are to be contracted along only a single index pair the contraction may
be done without any computation at all. For example consider the tensor network shown in
Figure 6. There are two tensor trees, shown in boxes, with a single contraction specified. The
overall network is already a tree, so the contraction may be performed by simply identifying
the network as a single tree tensor. No actual computation is needed.

The second case in which contracting a pair of tree tensors can definitely be contracted
efficiently is when the trees are aligned [28]. That is, where the subgraph of each tree con-
taining the indices to be contracted is identical in configuration to the equivalent subgraph on
the other tree with the same index labelling. In this case there exists a contraction sequence
such that at every stage there is at least one cycle consisting of just two tensors. At every
stage this sequence reduces the rank of the resulting trees, so it may be carried out without
rank explosion. This is illustrated in Figure 7, which from left-to-right shows the process of
contracting aligned tensor trees in two different cases. By contrast Figure 8 shows examples of
misaligned pairs of tensor trees, for which there is no obviously optimal contraction sequence.

A natural question at this stage is whether or not it is possible to arrange for all contractions
to be of one of these two forms. The answer, unfortunately, is no. It is certainly not possible
to arrange for them to all be of the first form because that form cannot handle networks with
cycles. The second form can handle cycles, but a general network will not always permit
repeated contractions of this sort. This is because an aligned contraction leaves no freedom
as to the structure of the tree, and so many networks which begin with all trees aligned no
longer have this property after just a few contractions. In panel (b) of Figure 7, for instance, a
tensor tree which connects to both the two left-most indices and the two-rightmost indices of
the final tree is not aligned with it, even though it may well have been aligned with the two
trees we began with. A method for handling misaligned trees is therefore necessary.

The fundamental difficulty with misaligned trees is that they possess large cycles. As de-
fined above, an aligned tree pair has a contraction sequence which possesses only cycles of
length two, and so may be directly contracted without generating tensors of increasing rank.
This is not true for a misaligned tree pair, and naively contracting the cycles which arise in
such pairs rapidly increases the ranks of the resulting tensors. To see this consider the the
cyclic tensor network shown in Figure 9. This network is symmetric with respect to i→ i + 1
modulo 7, and so the first contraction may be performed along any edge. For simplicity we
pick the 6 − 7 edge, and the result after this contraction is shown in Figure 10. The tensor
which resulted from this contraction is now of rank 4, one greater than either of the input
ranks. If this tensor is then contracted with one of those on either side the rank increases
further to 5, as shown in Figure 11. Each time a tensor is contracted with another in this cycle
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(a)

(b)

Figure 7: From left to right the contraction of a pair of aligned tensor trees is shown.
Cases (a) and (b) correspond respectively to contractions which reach one and two
layers deep in each tree. In the end the result is another tensor tree. Note that at
each stage there is a pair of indices to be contracted which form a cycle containing
just two tensors.

(a) (b)

Figure 8: Two examples of misaligned trees are shown. Importantly there is no
contraction sequence which avoids creating intermediate tensors of rank larger than
that with which the components of the tree began.
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1 e1

2

e2

3

e3

4

e4

5
e5
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e6

7

e7

Figure 9: A cyclic tensor network is shown with external indices {ei} and tensors {i}
for i ∈ {1..7}.

the rank increases by at least one. Indeed the situation is worse than that: the final tensor
which results must have rank 7 because there are 7 external indices! This is something that
no amount of finessing the contraction order can avoid.

One solution is to avoid contracting cycles at all. While this does not sound like much
of a solution, recall that the goal is to contract two tensor trees into a new tensor tree. This
only needs to be a tree, and so must possess no cycles, but there is no specification as to how
that goal is achieved. Instead of contracting cycles then the solution is to unravel them. For
example consider once more the cyclic network shown in Figure 9. The reason that tensor 7
is a part of this cycle is because two of its indices lead to other tensors in the cycle. The same
is true of tensor 6. Figure 12 shows just the portion of this cycle in the immediate vicinity of
these two tensors. If they could be rearranged so that both external indices were on one tensor
and both indices connecting to the cycle were on the other then one of these tensors would
not be in the cycle at all.

This may be achieved by first contracting along the 6−7 edge as shown in Figure 13. This
results in a rank 4 tensor T as before. This tensor may be interpreted as a matrix by defining
the composite flattened indices (i, j) and (k, l), where i and j are the indices leading to e6 and
e7 and k and l are those leading to tensors 1 and 5. With this,

M(i, j),(k,l) = Ti jkl . (1)

This matrix may then be factored using the singular value decomposition as

M(i, j),(k,l) = U(i, j),mΣmnV †
n,(k,l), (2)

where U and V are unitary and Σ is a diagonal matrix with real non-negative entries [35]. In
order for U and V to be unitary the dimensions dn and dm of the indices n and m respectively
must be

dn = did j (3)

dm = dkdl . (4)

The singular value decomposition may also be done approximately with an error threshold
ε by eliminating singular values below the threshold. This also eliminates the corresponding
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1

e1

2

e2

3e3

4

e4

5

e5

T e6

e7

Figure 10: The tensor network in Figure 9 is shown after contracting along the 6−7
edge. The tensor which results is labeled T and has rank 4, an increase of one from
either of tensors 6 or 7.

columns in U and V as well as the associated rows and columns in Σ [35]. The result is that
dn < did j and dm < dkdl . Because of this U and V are no longer unitary, as they are no longer
square and hence cannot be invertible.

After any rank reduction Σ may be absorbed into both U and V as

M(i, j),(k,l) = U ′(i, j),mV
′†
m,(k,l), (5)

where
U ′(i, j),m = U(i, j),m

p
Σmn (6)

and
V ′(k,l),m = V(i, j),m

p
Σmn. (7)

Note that
p
Σ is perfectly well defined because Σ is diagonal. Finally, each of U ′ and V ′ may

be interpreted as tensors by disassociating the composite indices, as in

Ai jm = U ′(i, j),m (8)

and
Bmkl = V ′(k,l),m. (9)

This produces the factored result shown in Figure 14, which is shown in the broader context
in Figure 15. The cycle has one fewer tensor, with tensor B residing outside of the loop and
holding the external indices which were originally held by tensors 6 and 7. In effect these
indices have been pinched off. Importantly, there has been no increase in rank except for the
intermediate tensor T , but in this process every intermediate tensor of that sort is immediately
broken down in rank after being formed and so this process carries no risk of rank explosion.

Note that the above procedure of flattening and then contracting two rank-3 tensors, per-
forming an approximate singular value decomposition, and un-flattening the resulting matri-
ces to recover two rank-3 tensors is very similar to the approximation method at the heart of
DMRG [36]. The only difference is that here we flatten different sets of indices from the ones
we un-flatten, whereas in DMRG the same sets of indices are used in both operations.

This process can clearly be repeated until the cycle becomes a tree. The final step before this
occurs is shown in Figure 16. After unravelling with respect to tensors 2 and 3, the network
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1

e1

2

e2

3

e3 4

e4

T ′
e5

e6

e7

Figure 11: The tensor network in Figure 10 is shown after contracting along the 5−T
edge. The tensor which results is labeled T ′ and has rank 5, an increase of one from
the larger of the two input tensors.

6

7

5 e6

1 e7

Figure 12: A portion of the cycle from Figure 9 is shown. Tensors 6 and 7 are the
focus of this portion, and edges leading away from them towards the rest of the cycle
are shown in blue connecting to blue circles (tensors) while those leading out of the
cycle are shown in orange.

T

5 e6

1 e7

Figure 13: A portion of the cycle from Figure 10 is shown. Tensor T is the focus
of this portion, and edges leading away from them towards the rest of the cycle are
shown in blue connecting to blue circles (tensors) while those leading out of the cycle
are shown in orange.
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A

B

1 5

e7 e6

Figure 14: The result of factoring the tensor T in Figure 13 is shown. The new
tensors A and B are the focus, and edges leading away from them towards the rest of
the cycle are shown in blue connecting to blue circles (tensors) while those leading
out of the cycle are shown in orange. Note that A is contained in the cycle because it
connects to tensors 1 and 5 while B is not in the cycle, connecting only to A and the
external indices e6 and e7.

1

e1

2

e2

3e3

4

e4

5

e5

6′ 7′

e6

e7

Figure 15: The tensor network in Figure 9 is shown after one unravelling stage, such
that e6 and e7 are no longer held by tensors in the cycle. Note that all of the tensors
in this network are still rank 3.

1 e1

2

e2

3

e3

Figure 16: A cyclic tensor network is shown with external indices {ei} and tensors
{i} for i ∈ {1..3}. This is the penultimate result of the cycle unravelling process.
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1 e1AB
e2

e3

Figure 17: A cyclic tensor network is shown with external indices {ei} and tensors
{i} for i ∈ {1..3}. This is the penultimate result of the cycle unravelling process.

C e1B
e2
e3

Figure 18: Shown is the final result of unravelling the cycle from Figure 16.

contains three tensors in a row as shown in Figure 17. At this stage all that remains is to
contract tensor A with tensor 1 and the result will be a tree, shown in Figure 18.

This method of unravelling cycles is appealing because it is both local and recursive, but
it is possible to do better. In particular, it is often the case that a given tree contraction in-
volves several cycles. In this case the order in which indices are removed from a given cycle
is crucial because some choices may help to shorten other cycles while others may lengthen
them. There is no obviously correct way of accounting for this short of testing a number of
alternatives which scales exponentially in network size, and so at this time such effects are best
incorporated as a heuristic. This may be done by defining a utility function which accounts
for all of the cycles in a network and at every stage select the index-swap (unravel) operation
which optimizes this. The details of the one such function which works well in practice are
included in Appendix A.4.

5 Contracting Networks

With these pieces in place, the process of contracting a tensor network is fairly straightfor-
ward. The network is first initialised, and all tensors are internally cast into the form of tensor
trees. A contraction sequence is then chosen, typically by heuristic for large networks (see
Appendix A.5) because identifying optimal contraction orders takes exponential time in the
size of the network [16]. This sequence is then carried out. When a contraction involves no
cycles the involved tensor trees are simply concatenated. When the tensor trees involved are
aligned the contraction is carried out by iteratively contracting cycles composed of two ten-
sors. Finally, when the tensor trees involved are misaligned the contraction is carried out via
cycle elimination as described in the previous section. Once the contraction is complete the
contraction sequence may then be updated, and the process proceeds until there are no more
contractions to be performed.

At this stage the tensor network is a tensor forest, namely a collection of tensor trees with
no connections between them. In the case of a partition function this forest has no external
indices, as the partition function is just a scalar. More generally, tensor networks representing
N -point correlation functions contract to forests with N external indices. Regardless of its
origin, the resulting forest permits straightforward evaluation of any of the elements of the
tensor network. Upon specifying the element of interest on the external indices, a series of
matrix multiplications yields that element.
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6 Numerical Experiments

This section details various numerical experiments that were performed using the methods
introduced in this work. These span a wide array of models, from a dilute Ising spin glass with
no regular structure to lattice models, in one and two dimensions, including both regular and
disordered models, and including those with periodic as well as open boundary conditions.
These were done with the PyTNR library, and both the implementation and the experiments
are included in the release of this library, detailed in Appendix A.1. All timing was performed
on 10 cores of an Intel Skylake processor, and all times reported are CPU time, counted across
all cores used as applicable. In this section the convention that kB T = 1 is used. Furthermore
in this section the symbol Z always refers to the partition function:

Z =
∑

states

e−E(state). (10)

6.1 1D Ising Model

To begin consider the 1D Ising model with Hamiltonian

H = J
N
∑

i=1

sisi+1 + h
N
∑

i=1

si , (11)

where sN+1 is identified with s1 so that the boundaries are periodic. The partition function in
this case is

Z =
∑

s1=±1

∑

s2=±1

...
∑

sN=±1

e−J
∑N

i=1 sisi+1−h
∑N

i=1 si . (12)

In PyTNR this is represented by the tensor network shown in Figure 19. The tensors labeled
J are each just the matrix

M(J) =

�

e−J eJ

eJ e−J

�

. (13)

Likewise those labeled h are just the vector

v(h) =

�

e−h

eh

�

. (14)

Finally, the tensors labeled si for i ∈ {1,2, ..., 5} are just the Kronecker delta tensors δ jkl which
are one when all three indices are equal and zero otherwise. This choice of notation allows us
to clearly separate the state space on each side from the interactions between sites.

This model is a useful one to test against because it has several limits with known analytic
results. For instance, when h= 0 the free energy is

F = − ln Z = − ln
�

(2sinh(J))N + (2cosh(J))N
�

(15)

[37], where N is the number of sites. Figure 20 shows the free energy PyTNR computes in
this limit as a function of the number of sites and for several J , along with the residual versus
the exact answer and the time required for the computation. These results were produced
using the entropy contraction sequence heuristic (see Appendix A.5), no tree optimization
(see Appendix A.6), and an SVD truncation accuracy of 10−3. The error is well below the
truncation accuracy, lying near the machine floating point precision. Models with J > 0 prefer
antiferromagnetic ordering, and so as expected exhibit an oscillatory dependence on the parity
of the number of sites.
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s1

J

h

s2J

h

s3

J

h

s4

Jh s5

J

h

Figure 19: A tensor network representing the 1D Ising model is shown with periodic
boundary conditions and N = 5 sites. The tensors labeled J encode the interactions,
those labeled h encode the onsite term, and those labeled si are rank-3 Kronecker
delta tensors which enforce the condition that each interaction involving any given
spin sees the same spin as each other such interaction.

In general larger models require more run time, but this trend is a polynomial in system
size and shows little dependence on J , so the computations remain tractable even for large
systems. This may be understood because the contraction of a 1D tensor network with N sites
reduces to N matrix multiplications of fixed size, so the runtime might be expected to be linear.
In fact I find runtime scaling like N1.3, which is due to the overhead of our heuristics selecting
a contraction ordering.

The opposing limit is less interesting, but provides a useful test nonetheless. In this case
J = 0, so

F = N ln (2cosh(h)) (16)

[37]. Figure 21 shows the free energy PyTNR computes in this limit as a function of the
number of sites and for several h, along with the residual versus the exact answer. These
results were produced using the entropy contraction sequence heuristic (see Appendix A.5),
no tree optimization, and an SVD truncation accuracy of 10−3. There is no coupling between
sites so there are no finite size effects, and the result is just a flat line in each case. Note that
the model was still initialized with the J tensors shown in Figure 19, so this lack of coupling is
something that PyTNR computed, rather than being pre-specified. The error is again of order
the machine floating point precision. Once more larger models require more run time, but this
trend is a polynomial in system size and shows little dependence on J , so the computations
remain tractable even for large systems.

As a final one-dimensional example, consider the disordered 1D Ising model in which each
of h and J are drawn independently per site from identically distributed random normal distri-
butions with unit variance. This model does not have an analytic solution to compare against
and is not translation symmetric, and so while the transfer matrix method is applicable many
other tensor network methods are not. Figure 22 shows the free energy per site for this model
as a function of the number of sites. These results were produced using the entropy contraction
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Figure 20: The free energy per site from PyTNR (top), residuals (middle) and run
time (bottom) for the 1D Ising model with nearest neighbor interactions is shown as
a function of the number of sites for a variety of interaction strengths J . Note that
models with J > 0, which prefer antiferromagnetic ordering, exhibit a dependence
on the parity of the number of sites.

sequence heuristic (see Appendix A.5), no tree optimization, and an SVD truncation accuracy
of 10−3.

Each point in Figure 22 represents a distinct sample drawn from the distribution char-
acterizing the model. Note that the variation between neighbouring points decreases with
increasing system size. This is expected because larger systems in effect average over a larger
number of replicas of the system. Once more the run time is almost independent of the sample,
and only shows a dependence on system size.

6.2 2D Ising Model

The next example of interest is the 2D Ising model. This is described by the Hamiltonian

H = J
∑

〈i j〉

sis j + h
∑

i

si , (17)

where 〈i j〉 denotes all nearest-neighbour pairs and i and j index over the entire lattice. The
corresponding partition function may be represented by the tensor network shown in Fig-
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Figure 21: The free energy per site from PyTNR (top), residuals (middle) and run
time (bottom) for the 1D Ising model with nearest-neighbor interactions is shown as
a function of the number of sites for a variety of on-site energies h.

ure 23, where the tensors labeled h and J are as before and the tensors labeled s are rank 5
Kronecker delta tensors.

Except for the trivial case of h = 0 this model only permits a closed-form solution in the
limit of infinite system size, so our focus will be on how finite size effects decay as the systems
become larger. Figure 24 shows the free energy PyTNR computes as a function of the number
of sites and for h = 0 and several J , along with the residual versus the asymptotic result for
N →∞ and the computation time required. These results, and all other results in 2D, were
produced using the replica loop contraction sequence heuristic, tree optimization, and an SVD
truncation accuracy of 10−3. The lattice dimensions were chosen to have aspect ratios no
greater than 3 and to cover a range of N without large gaps.

As in the 1D case, the free energies of systems with J ≤ 0 show little dependence on system
size, with just a small perturbation that decays as a power law in N . The positive J , by contrast,
show a strong dependence on system size. This is as expected because these systems prefer
anti-aligned spins, and so the parity of the system is critically important when it is small. The
fact that these variations are not simple oscillatory ones is a result of the fact that the aspect
ratio changes with N , which is not a consideration in the 1D case.

Note that while the computation time again scales polynomially in system size, scaling like
N3.3 on average, in this case it shows a strong dependence on the system parameters. In partic-
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Figure 22: The free energy per site from PyTNR (top) and run time (bottom) for the
1D Ising model with disordered h and J is shown as a function of the number of sites.
Note that three samples were drawn for each system configuration.
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Figure 23: The 2D Ising model partition function is shown as a tensor network on a
4×4 periodic square lattice. The tensors labeled h and J are the same as in Figure 19,
and the tensors labeled s are rank 5 Kronecker delta tensors. Note that the system
wraps around its edges in a toroidal fashion, so there are actually no external indices.
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Figure 24: The free energy per site from PyTNR (top), residual versus the asymptotic
value (middle) and computation time (bottom) for the 2D Ising model on a square
lattice with periodic boundary conditions for h = 0 and several J is shown as a
function of the number of sites N . The lattice dimensions were chosen to have aspect
ratios no greater than 3 and to cover a range of N without large gaps.

ular, it is greatest for systems with J near Jcrit ≈ ±0.44 [38], and these systems also exhibited
the greatest memory requirements. This is a general feature of using tree representations in
multiple dimensions: because all correlations must be transmitted through a central bond in
the tree, the amount of memory required initially scales exponentially in the cross-sectional
area of the system2. For systems larger than the correlation length this scaling is halted by the
fact that different sides of the tree cease to be strongly correlated. Thus in d dimensions for a
system of linear size L and with correlation length ξ, the maximum memory required during
the contraction scales as

M ∼ Ld exp
�

min (ξ, L)d−1� . (18)

This has the advantage over other methods of being asymptotically polynomial in system size,
but has the disadvantage that near criticality it is effectively exponential. Near criticality it
may be that MERA-type tensor representations are more performant because of their facility
with long-range structure [29, 39, 40], but exploring such options is beyond the scope of this
work.

2This is a perimeter in 2D, an area in 3D, and so on
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Figure 25: An example of one of the ground states of the antiferromagnetic Ising
model on a 2D periodic square lattice with odd shape in both dimensions, in this
case 5× 5. Red boxes indicate frustrated interactions.

It is also interesting to examine the dependence of the free energy on J for this model.
Figure 26 shows this along with the residual versus the N → ∞ limit (i.e. the finite size
effects) and the computation time taken. The free energy per site is mostly symmetric in J ,
but shows a finite size asymmetry between positive and negative couplings. When J < 0 the
system prefers all spins aligned, and so these effects are minimal. When J > 0 the system
prefers anti-aligned spins, and so on this odd-parity lattice the residual versus the infinite
system result is proportional to J . In particular, for a system of shape L × L with L odd, 2L
interactions must be frustrated in the ground state, as shown in Figure 25. Thus the finite size
effect per site ought to be of order 2J/L, which is what is seen.

The computation time exhibits a strong dependence on J . It peaks near the critical points
J ≈ ±0.44 because the correlations in this model are longest-ranged there, so the bond di-
mension must rise to accomodate the increased entanglement entropy. The model at J = 0 is
cheap to contract because there are almost no correlations between sites.

A further informative case is the same model but with open boundary conditions, as de-
picted in Figure 27. Figure 28 shows the free energy PyTNR computes as a function of the
number of sites and for h = 0 and several J , along with the residual versus the asymptotic
result for N →∞. The same run settings were used as in the periodic case.

Unlike the periodic case, the free energy here is precisely symmetric under J ↔−J . This
is because the frustration which occurs when J > 0 in the periodic case is absent when the
boundaries are open. Equivalently, in the open case the effect of negating J may be undone by
flipping the spins in a checkerboard pattern (i.e. letting s→ −s on alternating sites). For the
same reason, the finite size effects in this case are less pronounced than in the periodic case.
Rather they decay in power-law fashion with system size, matching the J < 0 periodic cases.

Another difference worth noting is that the run time is considerably lower in the open
boundary case, with a shallower scaling of N2.6. This is because for a given near-ground state
in the open system there are O(N) such states in the periodic system, which are generated by
translations. As such tensors in the periodic system cannot be compressed as readily.

Finally, it is useful to examine the disordered case. Figure 29 shows the free energy PyTNR
computes as a function of the number of sites and for h and J randomly and independently
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Figure 26: The free energy per site from PyTNR (top), residual versus the asymptotic
value (middle) and computation time (bottom) for the 2D Ising model on a square
lattice with periodic boundary conditions for h= 0 and as a function of J for a 7× 7
lattice.
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Figure 27: The 2D Ising model partition function is shown as a tensor network on a
4× 4 open square lattice. The tensors labeled h and J are the same as in Figure 19,
and the tensors labeled s are rank 5 Kronecker delta tensors. Note that the system
wraps around its edges in a toroidal fashion, so there are actually no external indices.
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Figure 28: The free energy per site from PyTNR (top) and computation time (bottom)
for the 2D Ising model on a square lattice with open boundary conditions for h = 0
and several J is shown as a function of the number of sites N . The lattice dimensions
were chosen to have aspect ratios no greater than 3 and to cover a range of N without
large gaps. Note that three samples were drawn for each system configuration.

drawn from unit normal distributions on a per-site basis. The computation time used is also
shown. Open boundary conditions were used and the run settings as in the open boundary
case.

Each point in this figure represents a distinct sample drawn from the distribution char-
acterizing the model. As in the one-dimensional system the variation between neighbouring
points decreases with increasing system size. This is expected because larger systems in effect
average over a larger number of replicas of the system. The run time is again only weakly
dependent on the sample while showing a polynomial dependence on system size.

6.3 Dilute Spin Glass

As a final example consider a spin glass with Hamiltonian

H = −
∑

i

∑

j

Ji jsis j (19)

[41]. The model is known as dilute if only a small fraction Ji j are non-zero [42]. There
is no local structure in such systems, as any spin may be linked to any other. This makes it
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Figure 29: The free energy per site from PyTNR (top), residual versus the asymptotic
value (middle) and computation time (bottom) for the 2D Ising model on a square
lattice with open boundary conditions and disordered h and J is shown as a function
of the number of sites N . The lattice dimensions were chosen to have aspect ratios
no greater than 3 and to cover a range of N without large gaps.

fundamentally dissimilar from the other networks considered here.
Figure 30 shows the free energy PyTNR computes as a function of the number of sites

along with the computation time. Each sample was produced by letting a randomly chosen
bNkc bonds have Ji j = 1 and the remaining bonds be zero. The bonds with Ji j = 0 were then
omitted from the network.

The free energy per site shows some scatter but is remarkably constant with the number of
sites and between samples. From the perspective of tensor network contraction though what
is notable about this model is not the physics but the computation time, which scales strongly
with the number of sites. I believe this scaling to be exponential, but I have fit both power-law
and exponential relations to the timing data and see similar a similar quality of fit. If it is a
power-law then it is one with an extreme exponent of roughly 10.

Whatever the precise scaling, this model proved much more challenging. It is possible that
this just reflects a failure of heuristics, but given the historic challenges with these models [43]
it seems possible that they do not admit a strongly compressed representation, at least not
within the framework of tensor tree decompositions. This suggests that there is still much to
be done in developing tensor network methods for such non-local systems.

7 Conclusions

I have introduced a new algorithm for contracting misaligned tensor trees and placed it in
the context of a new framework for automatically contracting unstructured tensor networks.
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Figure 30: The free energy per site from PyTNR (top) and computation time (bottom)
for the dilute Ising glass as a function of N . Bonds were assigned randomly to either
Ji j = 1 or Ji j = 0, with a fixed number of the former equal to bNkc. The samples
shown used k = 1.5.

I have also implemented these methods in a new GPLv3 software package PyTNR. These new
methods allow for rapid and controlled approximation of the contraction of finite local tensor
networks off-criticality and so will hopefully enable a wider variety of investigations into both
classical and quantum mechanical discrete models. Near criticality these methods fail because
the tensor tree representation is inherently poor at capturing critical long-range order. This
manifests in PyTNR in the form of trees with exponentially large bond dimensions near their
centers, which are needed to carry area-law correlations from one side of the tree to the other.
There are strong indications that this may be corrected through MERA-type representations
which are designed to capture such phenomena and this provides a promising avenue for future
research. Additionally, there is much to be done in developing improved contraction sequence
and cycle elimination heuristics, as the ones included in this work have not been analysed in
detail and different heuristics may have significantly different performance characteristics.

Acknowledgements

I am grateful to Jesse Salomon for valuable advice on the software implementation of the
methods in this work, to Milo Lin for helpful discussions regarding its physical applications,
and to Jordan Cotler for thoughtful suggestions regarding spin glass models. I am also thank-
ful for financial support from the UK Marshall Commission as well as for travel funds from
both the Hertz Foundation and the Physics department at MIT. This research was funded in
part by the Gordon and Betty Moore Foundation through Grant GBMF7392, by the National
Science Foundation under Grant No. NSF PHY-1748958, and by the Flatiron Institute of the

23

https://scipost.org
https://scipost.org/SciPostPhys.8.1.005


SciPost Phys. 8, 005 (2020)

Simons Foundation. This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

A Software Details

A.1 Availability and Dependencies

The software used in this work, PyTNR (Python Tensor Network Contraction), is available
under a GPLv3 license at github.com/adamjermyn/PyTNR, and consists of a Python pack-
age which implements the algorithm discussed here as well as several related methods. This
package was developed for use with Python v3.5.2, NumPy v1.11.2 [44] and NetworkX-1.11,
though any Python 3 distribution should suffice to run it. The plots in this work were created
with Matplotlib v1.5.3 [45] and the ggplot style.

The SVD was computed using three distinct methods depending on context. For small
matrices the NumPy dense SVD implementation was used. This was also used in cases where
the desired rank was specified and exceeded 10% of the smallest dimension of the matrix. For
large matrices with a desired rank specified the iterative SVD implementation in SciPy was
used. Finally for large matrices with a desired precision rather than rank the interpolative
decomposition SVD implementation in SciPy was used [46].

A.2 Code Structure

For clarity class names in PyTNR begin with a capital letter to distinguish them from regular
nouns. Thus the word ‘Tensor’, for instance, refers to the class in PyTNR or to an instance
thereof rather than to the mathematical concept of a tensor, though the two share many simi-
larities.

There are four fundamental objects in PyTNR: Node, Tensor, Bucket and Link. A Node is a
kind of multigraph node. Each Node contains a Tensor and an ordered list of Bucket objects.
This list has length equal to the rank of the Tensor in that Node.

A Bucket represents an index, and a Link is a specification of an edge in a tensor network.
As such each Bucket may refer to zero or one Link objects, indicating either an external index
or one which is to be contracted. Each Link object must, however, refer to precisely two Bucket
objects, namely those representing the indices to be contracted.

The base Tensor class is an abstract basis class requiring Tensor objects to have shape, rank
and size, along with a string representation for debugging purposes. Tensor objects must also
support contraction against other Tensor objects and flattening (i.e. merging indices). There
are three subclasses of the Tensor class in PyTNR. The first, the ArrayTensor class, stores and
manipulates a tensor as a multidimensional NumPy array. Note that the implementation of
this class monitors the norm of the array and keeps track of an exponential prefactor to avoid
overflow and underflow difficulties. The second, the TreeTensor class, encodes a tensor as
a tensor tree. The third, the IdentityTensor class, is a subclass of the TreeTensor class and is
discussed in more detail in Appendix A.3. Finally, Tensor objects must allow setting and getting
the minimal portion of their representation associated with a single index. For ArrayTensor
objects this is trivial, and just amounts to manipulating the underlying array. For TreeTensor
objects this amounts to addressing the leaf node corresponding to that index.

In addition to these objects, PyTNR has a Network class. A Network object contains a set of
Nodes and so is a multigraph. A subclass of this is the TreeNetwork class for networks which
are restricted to be acyclic.
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Each TreeTensor object internally contains a TreeNetwork, and uses this to define the
contraction operation as described in Section 4. By convention the Node objects inside this
TreeNetwork only ever contain ArrayTensor objects, but this is a convention only. Note that
contraction between TreeTensor and ArrayTensor objects is supported, and results in the latter
being cast into the format of the former.

Each of these classes also contains several helper methods which are primarily used in-
ternally. There are two notable exceptions to this, namely the TreeTensor optimization and
link merger methods. The former optimizes the tree to minimize memory use, detailed in Ap-
pendix A.6. This is done by performing various local operations such as index swaps between
adjacent tensors and examining their impact on memory usage. The latter may be invoked
when a pair of tensors share multiple indices, and in this case it flattens those indices and
compresses them with a truncated singular value decomposition. In very large networks in
more than one dimension this can be useful because it reduces the number of nodes in the
tensor trees and thereby stops graph algorithms from being the bottleneck. The downside of
doing this is that leaving the tree as is sometimes provides for a more compressed representa-
tion.

Finally there are two higher-level constructions of note, namely models and contractors.
These are not classes, but rather common code patterns. Models are just methods which
return tensor networks drawn from classes of interest (e.g. 1D Ising, 2D Ising, 3D Ising, etc.),
and contractors are methods which control the process of contracting a network. Different
contractors use different heuristics to decide on the contraction sequence and similarly use
different rules for determining when to optimize tensor trees.

A.3 Identity Tensors

A typical lattice model comes with a local state space at each site in the lattice and then defines
interactions between nearby sites. A term which couples n sites is most naturally expressed as
a rank n tensor containing the matrix elements of the interaction (i.e. the Boltzmann weights).
In this language there is a high-rank Kronecker delta (identity) tensor at each site with one
index per interaction term tied into that site, ensuring that every term which couples to that
site sees the same state. Even for simple models the rank of this identity tensor can be large.
For instance the Ising model on a d-dimensional square lattice has each spin interacting with
2d other spins, and so for d = 2 the identity tensor already has rank 6. Including three-spin
interactions increases this dramatically, and it is easy to write down non-pathological models
for which the identity tensor is too large to store directly in memory.

To circumvent this challenge, PyTNR contains a special IdentityTensor class. This is a
subclass of the TreeTensor class, and directly constructs a tensor tree composed of rank 3
identity tensors. The shape of the tree is currently arbitrary, but could be specified if this
proves useful.

A.4 Cycle Elimination Heuristic

In practice a method which performs well is to define the weight of an edge connecting tensors
A and B as

Weight(A, B) = ln [Size(A)Size(B)] , (20)

where the size of a tensor is once more the number of elements it contains. In this way the
weight of an edge reflects the extent to which it contributes to the overall complexity of the
network, and the logarithm ensures that edges between tensors of very different sizes are not
entirely weighted based on the larger of them. With this it is possible to define the minimal
cycle basis, which is just the cycle basis of minimal weight (i.e. which minimizes the sum over
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all cycles of the sum over all edges of the edge weight) [47]. The utility of a network is then

Utility(network) =
∑

c∈Minimal Cycle Basis

Length(c), (21)

where the length of a cycle is just the number of nodes it contains.
The minimum cycle basis is computed following the approach of [48]. That is for each edge

the corresponding Horton graph is constructed. The shortest path in the Horton graph between
two nodes which are adjacent in the original graph produces an element of the minimum
cycle basis. The edges in this cycle are then removed from the original graph via symmetric
difference, and the search proceeds until a full minimum cycle basis has been constructed.

During the cycle elimination process, the index swap which reduces the utility of the net-
work as much as possible is chosen repeatedly until there are no cycles. I do not have a proof
that this process always results in eliminating all cycles, but I have not encountered any cases
in which this heuristic fails.

A.5 Contraction Sequence Heuristics

It is difficult to identify optimal (or even acceptable) contraction sequences. This problem
is tractable for small numbers of tensors when contractions are performed directly [16], but
becomes extremely difficult when either the network of interest is large or the contractions
are not performed directly between tensors stored as arrays.

To mediate this difficulty, several heuristics are included in PyTNR. Each of these performs
well in typical use cases, but particularly near criticality the question of which one to use
becomes sensitive to the problem at hand. The included heuristics, along with the relevant
function names in parentheses, are:

1. Utility (utilHeuristic) - Let U be the utility of the graph associated with contracting ten-
sors A and B, as defined in Appendix A.4, and let M be the number of index pairs to be
contracted between them. The contraction which maximizes M2/(Size(A)Size(B)

p
1+ U)

is the one which is chosen at each stage. The intuition behind this is that it reflects a
compromise between containing the rank explosion of the resulting tree and avoiding
needlessly complex contractions.

2. Entropy (entropyHeuristic) - Let d be the index dimension of one edge connecting the
tensors A and B and let Q be the number of common neighbours of A and B in the tensor
network. The contraction which maximizes (Size(A)Size(B)/d2)(0.7)Q−Size(A)−Size(B)
is the one which is chosen. The intuition behind this is that Size(A)Size(B)/d2 is the size
of the tensor which will result from the contraction in a naive representation, the fac-
tor of 0.7Q reduces this on the assumption that the shared neighbours are reflective of
shared correlations and hence a propensity for compression, and the final two terms
favor contracting bigger objects, all else being equal.

3. Merge (mergeHeuristic) - This heuristic performs the first contraction, if any, that it can
find which involves a tensor of rank at most 2, as there is no danger of rank explosion
with such tensors. It does this until there are no more such tensors to be contracted, at
which point it contracts the pair of tensors with the most common neighbours. This re-
flects the intuition that tensor pairs with more common neighbours have more redundant
correlations between them and hence the final result will be more readily compressed.

4. Small Loop (smallLoopHeuristic) - This heuristic performs the first contraction, if any,
that it can find which involves a tensor of rank at most 2, as there is no danger of rank
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explosion with such tensors. It does this until there are no more such tensors to be con-
tracted, at which point it contracts the pair of tensors which minimizes
Rank(A) + Rank(B) −Q +W , where Q is as defined previously and W is the length of
the largest cycle between the two tensors. This reflects the intuition that tensor pairs
with more common neighbours have more redundant correlations between them whilst
avoiding excessively complex contractions.

5. Loop (loopHeuristic) - At each stage this heuristic performs the contraction which max-
imizes the greatest distance within either tensor tree between any pair of indices being
contracted. Tensors which are not represented by tensor trees are assigned a distance
of 100, which means that they will be contracted first under most circumstances. This
is meant to prevent cycles from becoming large in the first place.

6. One Loop (oneLoopHeuristic) - This provides an alternate implementation of the Loop
heuristic.

The Merge, Loop and Entropy heuristics are the most well-tested and are recommended unless
there is a context-specific reason to prefer one of the others.

Note that the term “replica” in front of a heuristic name indicates that that heuristic is
used with the replicaContractor method. This method maintains a user-specified number of
replicas of the tensor network. In cases where the heuristic views multiple different contraction
choices as equally good, this contractor will select one of them at random and apply it to the
replica with the lowest memory footprint. In this way, choices which result in large increases
in memory usage need not be pursued further unless such increases appear to be inevitable,
either because there is only one choice available with the given heuristic or because a large
fraction of the available choices also yield increasing memory usage.

A.6 Tree Optimization

Tree optimization is done in three stages. First, all rank 2 tensors in the tree are contracted
against rank 3 tensors, if possible. This just reduces the number of tensors which need to
be considered and stored. Secondly, all tensors which are doubly linked to one another are
contracted. This is just an extension of the first stage because such tensors have effective rank
2.

At the end of the second stage, every internal link in the tree is of the form

Ai jkBklm. (22)

The same object may also be written as

CilkDk jm (23)

or
EimkFk jl . (24)

These possibilities are depicted in Figure 31. These three representations generally require
different internal index dimensions because they co-locate different pairs of indices. It is more
efficient to co-locate highly correlated indices, and so one of these is generally preferable. The
algorithms which generate tree structures during the contraction process are not guaranteed
to make the optimal choice for each pair of neighbouring tensors, and so this must be enforced
afterwards. This is what the third optimization stage does.

To do this, PyTNR marks each Link in the TreeTensor as ‘not done’. It then picks one
which is marked as such and picks the optimal configuration. If this is the configuration it was
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i l
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Figure 31: Three representations of the same tensor network are shown. In each
there is a single contraction over a single pair of indices between the two tensors, as
well as two external indices on each. These are all of the unique factorizations of a
rank 4 tensor into a network of two rank 2 tensors.

already in it just marks that Link as ‘done’. Otherwise it marks that Link as ‘done’ and marks
all other Link objects connected to either of the newly created Node objects as ‘not done’. This
process proceeds until all Link objects are marked as ‘done’, at which point the optimization
is complete.
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