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Abstract

We propose exact results for the full counting statistics, or the scaled cumulant gen-
erating function, pertaining to the transfer of arbitrary conserved quantities across an
interface in homogeneous integrable models out of equilibrium. We do this by com-
bining insights from generalised hydrodynamics with a theory of large deviations in
ballistic transport. The results are applicable to a wide variety of physical systems, in-
cluding the Lieb-Liniger gas and the Heisenberg chain. We confirm the predictions in
non-equilibrium steady states obtained by the partitioning protocol, by comparing with
Monte Carlo simulations of this protocol in the classical hard rod gas. We verify numer-
ically that the exact results obey the correct non-equilibrium fluctuation relations with
the appropriate initial conditions.
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1 Introduction

Many-body physics far from equilibrium poses some of the most challenging questions in mod-
ern science [1]. It has attracted a large amount of attention in recent years with, for instance,
experimental observations of quantum heat flow [2,3] and investigations into the processes
of thermalisation in isolated systems [4]. In one dimension, integrability strongly affects non-
equilibrium physics, as demonstrated in the seminal quantum Newton’s cradle experiment on
cold atomic gases [5]. Relaxation to stationary states is constrained by the macroscopic num-
ber of conservation laws afforded by integrability [6-10]. As quantum transport problems are
accessible via hydrodynamics [11-20], an emergent, large-wavelength hydrodynamic theory
for integrable systems has been proposed, generalised hydrodynamics (GHD) [21-24]. It ac-
counts for the macroscopic number of interacting ballistic currents. GHD has been directly
tested in a neoteric experiment [25], and gives rise to a panoply of results which are expected
to be exact, including non-equilibrium flows [21,22,26-29], Drude weights [30-33] and large-
scale correlations [34,35], as well as a hydrodynamic-scale solution to the quantum Newton’s
cradle setup at arbitrary coupling strength [36].

A full characterisation of non-equilibrium states, however, must go beyond the study of re-
laxation processes and hydrodynamics, and one of the most important challenges is to provide
organising principles with universal and widely applicable reach. In equilibrium, a powerful
description is that centred on the analysis of fluctuations of thermodynamic quantities through
statistical-mechanical ensembles and free energies. Out of equilibrium, the presence of non-
zero currents suggests that a study of dynamical fluctuations might provide a similar level
of understanding [37-41]. This line of thought has led to a large deviation framework for
non-equilibrium statistical mechanics [42]. For instance, the so-called large-deviation func-
tion, which describes the rate of occurrence of rare but large fluctuations, plays the role of an
entropy. The related scaled cumulant generating function (SCGF) for full counting statistics
plays the role of a free energy.! It is of paramount importance to obtain exact results for such

! In keeping with the nomenclature used in the literature on quantum transport, in this work we use inter-
changeably the terminology “SCGF" and “full counting statistics" in the context of large-time, scaled transport
fluctuations.
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functions in transport setups of truly interacting many-body models in order to gain a deeper
understanding of non-equilibrium physics.

Fluctuations in non-equilibrium transport can be studied by analysing the statistics of the
number of particles, their energy, or any charge they carry, passing through an interface in a
bipartition of the system, see Figure 1. Exact results for transport SCGFs have been obtained
in various systems (at various levels of mathematical rigour). For instance, exact formulae
are known in non-equilibrium steady states (NESSs) of some stochastic classical gases such
as exclusion processes [37,40,41]; these are understood within macroscopic fluctuation the-
ory [43-47] based on diffusive hydrodynamics. Some results have also been obtained in open
quantum chains, see e.g. [48,49]. Such stochastic or open models, however, make assump-

AT

Figure 1: Schematic illustration depicting counting statistics in a steady state regime.
One “counts" the number of particles (or their energy or charge) passing a given
coordinate during a large time interval and then gathers the statistics of these large
numbers, scaled with time.

tions about the external baths. It is crucial to understand intrinsic transport fluctuations in
deterministic, isolated, quantum and classical systems, where exact many-body interactions
are fully taken into account. In an ensemble formulation, fluctuations originate from those in
the initial state. Despite many efforts, only a few results exist: free-fermions with the cele-
brated Lesovik-Levitov formula [50-52], harmonic chains [53] and free field theory [54,55],
particular integrable impurity models [56], and one-dimensional critical systems [57,58]; see
the review [59]. Some results also exist for fluctuation statistics of other quantities, not related
to transport, in certain integrable models, see for instance [60-63]. A full grasp of counting
statistics for transport in interacting many-body systems, especially where integrability and
ballistic processes dominate, remains an open problem.

In this work, we obtain the first (to our knowledge) model-agnostic exact expression for
transport SCGFs in homogeneous stationary states of interacting one-dimensional integrable
systems. Our analytical approach involves a new and completely general framework based
on large deviation theory and Euler-scale linear fluctuating hydrodynamics that gives access
to exact SCGFs for ballistic transport, developed in a companion paper by two of us (BD and
JM) [92].

The states considered are very general, and include current-carrying NESSs. In particular,
they include NESSs obtained by the partitioning protocol [15,16,19-22,57-59,64,65,67-71],
where an inhomogeneous, “unbalanced" initial condition generates, at large times, a homo-
geneous stationary current-carrying state. We emphasise that although the theory applies
to transport statistics in homogeneous stationary states, this statistics can be evaluated from
transfer measurements starting at the initial time of the protocol, as the large-time, stationary
region dominates. The expression applies to all models whose large-scale dynamics is gov-
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erned by GHD, and to transport of all local conserved quantities they admit. This includes
the Lieb-Liniger model [72, 73] which has been shown to describe cold atomic gases in quasi-
one-dimensional traps [74-76] (see e.g. the experiments [5,25] where the integrability of
the Lieb-Liniger model played an important role, and the book [77] for a review), and many
other quantum field theories, as well as integrable quantum chains, classical field theories,
and classical gases such as the hard rod gas [78,79] and soliton gases [80-84].

We provide explicit checks on the predictions for the first few transport cumulants by com-
paring with Monte Carlo simulations of the hard rod gas. For this purpose, we explicitly imple-
ment the partitioning protocol in the hard rod gas, and measure the total energy transferred
from the initial time of the protocol. We find very convincing agreement with the theory. We
also verify numerically that the exact expression in the Lieb-Liniger model satisfies the non-
equilibrium fluctuation relations of Gallavotti-Cohen type [85-90].

The paper is organised as follows. In section 2 we review the large deviation theory for
non-equilibrium transport. In section 3 we outline the general theory of fluctuations in ballistic
transport based on Euler-scale identities. In section 4 we review aspects of the thermodynamic
Bethe ansatz that will be useful in this work. In section 5 we present our main result, the exact
full counting statistics for transport in integrable models. In section 6 we apply this result
to the hard rod gas, providing Monte Carlo verification, and in section 7 we apply it to the
Lieb-Liniger model, verifying the non-equilibrium fluctuation relations. Finally, we conclude
in section 8. A series of appendices provide supporting calculations.

2 Large deviation theory for transport

This section provides background on large deviation theory (LDT), and introduces the scaled
cumulant generating function (SCGF) for transport of conserved quantities in the context of
integrable models. We also briefly recall some aspects of non-equilibrium fluctuation relations
(FRs). The setup is as in fig. 1, specialised to one dimension - the interface is then a single
point.

2.1 Rate functions and multiple conservation laws

Large deviation theory focuses on fluctuating quantities J(© which are extensive with respect
to some parameter t, and whose densities J()/t take almost-sure values j in the extensive
limit t — 00. A standard example is the energy in equilibrium thermodynamics, with ¢ being
the volume. According to the large deviation principle [42], such extensive quantities have
probability distributions that are exponentially peaked at the almost-sure value; in the cases
of interest here, this takes the form

I(j)=0 j=j

,  where { i . )
I(j)>0 j#]

The function I(j) is referred to as the large-deviation rate function. It describes the proba-
bilities of rare but significant events where the quantity J) deviates “macroscopically" from
tj.

The framework is general enough to encompass fluctuations in transport, and systems that
are far from equilibrium, see e.g. [91] for stochastic processes. In the setup of fig. 1 which
we consider in the present paper, J(*) is the total current of some conserved charge that has
passed through the interface in a time ¢, and the state is a homogeneous steady state. Recall
that the evolution is deterministic, but the state, at time t, is fluctuating due to the ensemble
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description of the initial condition leading to the probability distribution we denote as P(:--)
above.

In order to describe more precisely the state and the total current J), we consider a
system with a certain number of (local or quasi-local) conserved quantities Q; = f dx q;(x,0).
This number will be taken to infinity, as we are interested in integrable models which, in
the thermodynamic limit, admit an infinite number of conserved quantities. Consider the
associated local conservation laws

i (x, ) + 3yji(x, ) = 0, (2)

indexed by i, with current density j;. States where entropy is maximised with respect to all
local conservation laws are characterised by as many Lagrange parameters 3' as there are
conservation laws and, formally, have probability measure or density matrix proportional to

e 2B 3)

In integrable systems, these probability measures are referred to as generalised Gibbs ensem-
bles (GGEs) [6-10]. The infinite sum over the conserved quantities in (3) must be dealt with
carefully: a precise definition of GGEs requires an appropriate completion of the space of
conserved quantities [9]. In this sense, ), B'Q; should be understood as a particular “pseu-
dolocal" charge, characterised by coefficients 3 in some basis decomposition. As is customary,
we refer to GGEs with this general understanding. We will denote averages by (- - -) p Where

B is the vector of Lagrange parameters 3'. These are the homogeneous steady states that we
will concentrate on in this paper.

GGE states include many (homogeneous) NESSs. Indeed, the fundamental characteris-
tic of a non-equilibrium steady state is that, despite being stationary, it breaks time-reversal
invariance. As integrable systems admit conserved charges that break time-reversal symme-
try, including the total momentum, many GGEs are non-equilibrium, current-carrying states.
Physically, this corresponds to the fact that the presence of appropriate conserved quanti-
ties allows ballistic propagation, where currents are sustained without the need for an ex-
ternal force. A paradigmatic example of a NESS is that emerging from the partitioning pro-
tocol [64, 65], which is referred to as the Riemann problem in hydrodynamics (see e.g. the
lecture notes [66]). In this protocol, the steady state is formed, at very large times, by deter-
ministic or unitary evolution from an initial inhomogeneous state which is homogeneous far
to the left and right (x — +00), as e~ 2ihQ (left) and e~ 2 P (right). Despite the inho-
mogeneous initial condition, at infinite times, in any finite region around the central position,
the state is expected to become homogeneous. In integrable systems, this state is a GGE.
Such NESSs emerging from the partitioning protocol were constructed for integrable models
in [21,22,26]: the BUs for the NESS were obtained as functions of the ﬂli’s and /Bri’s of the
initial condition of the protocol. We will make use of these results below.

We focus on the total transfer of some particular charge Q; , say from the left to the right
of the system, in time t, see fig. 1. This can be, for instance, the number of particles (if particle
number is conserved), the electric charge (in systems with U(1) symmetry), the energy, or any
other conserved quantity. We are then interested in the total current passing by the origin,

t
JO = J dsj; (0,s). )
0

One expects (1) to hold for this quantity.
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2.2 Scaled cumulant generating function and fluctuation relations

In a NESS, the average of J(!)/t is given by the almost-sure value j. More generally, consider
the scaled cumulants ¢, of the transferred quantity, or rather their generating function, the
SCGF:

o1 ‘ o AK
F(A) = lim ?1og(e””>é =2 (5)
k=1

By the Gértner-Ellis theorem, if this limit exists and the result is differentiable, then the
Legendre-Fenchel transform of F(A) gives the large deviation rate function I(j) (see e.g. [42]).
Note that if in fact the limit exists at each order in A, then all the cumulants of J () scale like
t, that is
1 k\c
— lim 2{([J©

cc= Jim T ©
where the superscript ¢ means that these are connected averages. The scaled cumulants can
be expressed in terms of the average current and its connected time-integrated correlation
functions. For example?

1= (ji,)g, Co = J de (j;, (0, t)j;, (O, 0))@ 3= J dedt’ (j; (0,t)j; (0, t)j; (O, 0))%_, 7

where we recall that i, is the index of the charge, and corresponding current, we are interested
in. The quantity c, is referred to as the zero-frequency noise in mesoscopic physics, and was
dubbed the Drude self-weight in [32]. In sections 6 and 7 we will consider energy transfer,
making j; more concrete.

Key ingredients of the general theory of NESSs are fluctuation relations, which compare the
probabilities of “forward" and “backward" currents; see the reviews for classical [38,93-95]
and quantum [39, 96, 97] systems. For currents obeying (1), the fluctuation relations are
reflected in fundamental symmetries of the SCGF connecting scaled cumulants in a non-trivial
way:

F(A)=F(v—21), (8)

where v is a constant encoding properties of the force or external baths generating the NESS.
This formula applies, for instance, in the NESS emerging from the partitioning protocol de-
scribed in subsection 2.1. Indeed, under certain conditions — if both the dynamics and the
charge Q; are time-reversal invariant and the initial state has an imbalance in Q only,

ﬂli = ﬂri Vi # i, — then we expect (8) to hold with v = ﬂli* —/5ri* [98,99].

3 Fluctuations from Euler-scale hydrodynamics

The general theory of fluctuations for one-dimensional systems supporting ballistic transport,
which we will refer to as the ballistic fluctuation formalism, is developed in [92]. This is the
approach that we will use in order to access fluctuations in integrable systems. Explicitly, the
theory shows how to construct F(A), as defined in subsection 2.2, using Euler-scale identities.
Possible corrections to the Euler scale of diffusive and other types would provide subleading
corrections to ballistic fluctuations

2In field theory, UV divergences occur at coincident points. However, the scaled cumulants are independent of
such divergences and thus UV finite [59], as can be seen by using the conservation laws (2) to change the positions
of the currents to different space coordinates.
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3.1 Flux Jacobian

Consider the averages of all local conserved densities, (q;) = (q;)5 = (q;(0,0))p, and the
current averages (j;) = (j;)p = (;(0,0)) . We can write (j;) as functions of {g;) by inverting the
relation between (q;) and the Lagrange parameters f'. This functions describe the equations

of state: in this form currents are sometimes referred to as “fluxes". From the equations of
state we construct the flux Jacobian

9

As this matrix plays a fundamental role in the ballistic fluctuation formalism, it is useful to
recall some of the important equations where it is involved. The physical interpretation of the
flux Jacobian is that it describes the flow of conserved quantities within maximal entropy states.
Indeed, first, it is naturally involved in the Euler hydrodynamic equations for the system. These
are the equations for the evolution of large-wavelength, low-frequency inhomogeneous states,
and are obtained by applying the conservation laws (2) on densities and currents averaged
within local entropy-maximised states [100]. Using the flux Jacobian, the Euler equations are
written as equations for the averages (q;) g(x,e),

(i) pie,ey + ZAijax<qj)E(x,t) =0. (10)
j

By linear-response theory, Ai] is also involved in evolution equations for space-time depen-
dent connected correlation functions within stationary, homogeneous, maximal entropy states
[100],

3y (ai(x, )ax(0,0)) + D A7 8, (a;(x, )ax(0,0)) = 0. (1)
L g

Correspondingly, it is related to the rate at which correlation functions spread [101],
lim | dx > (aCx, 00:(0,00)5 = > A7 | dx {a;(x, )ax(0, 0))¢ (12)
00 t q; 06 )Y, B . i q; X, T)qelY, B
j

The equations above lead to the observation that eigenvalues of the flux Jacobian correspond
to velocities at which perturbations travel within a homogeneous state.

3.2 Flow equation and SCGF

Two equations form the backbone of the ballistic fluctuation formalism, the flow equation
and an equation showing how this can be used to obtain the SCGE We start with the flow
equation. In the ballistic fluctuation formalism, one defines the state (O)(A) by biasing the
measure e~ 2P ' multiplying it by the operator generating the charge transport of interest,
et 4t 0.0 Here A should be seen as the conjugate parameter for the particular quantity
of interest indexed by i, as per (5) with (4).2 It turns out that a state defined in this way
is still a stationary, homogeneous, maximal entropy state [92]. The flux Jacobian is used in
order to define a relation that characterises how the conserved quantities are affected by this
A-modification, a flow equation. This equation takes the form [92]

1

3Strictly speaking, one should use A as a variable specifically linked to Ji, but this creates tortuous notation.

7
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where sgn(A) is the matrix obtained by diagonalising A and taking the sign of its eigenvalues.

A motivation for this result can be obtained as follows. For simplicity let us consider the
case where a single conserved quantity is present, so that A is a number, the velocity of a pertur-
bation within the homogeneous state. By definition of the A-modified state,
a ()W) = f dt (j(0, t)j(0,0))¢(A). On the right-hand side, by linear response in the limit
x,t — oo with x/t constant (Euler scaling limit), the current is related to the correspond-
ing charge multiplied by its velocity through the medium, so we can replace j(x, t) by Aq(x, t).
Solving the hydrodynamic equation (11) by the method of characteristics, the correlation func-
tion is supported on x = At, hence we can use dx = |Aldt. Therefore,
[dt (i(0,0)i(0,0)°(1) = A%/|A| [dx (a(x,0)q(0,0))*(A). On the other hand,
9, (3)(A) = A3, (q)(A). This gives (13) specialised to the case of a single conserved quantity.

It is useful to recast (13) in a different form so as to expose the A-dependence in the
Lagrange multipliers:

3,B(2) = —sgn(A(L)),. (14)

This is the flow equation at the basis of the general theory.

The flow equation can be used to determine the SCGE This is achieved by first solving for
Bi(A) and considering the A-dependent currents (j;) gy = (ji)(A). Then, the general theory
predicts that [92], B

A
F() = f dn’ (j; )X, (15)
0

This equation generalises the relationship between F(A) and the cumulants (see (5) and (7))
for A #0. _

The average currents (j;) and the flux Jacobian Al.J are known exactly in integrable models,
see [21,22,102] and [32]. Combining these exact results with the above formalism* gives an
expression for F(A). First, we must review the Thermodynamic Bethe Ansatz (TBA) formalism.
The TBA description of integrable models will then be amenable to the application of the
ballistic fluctuation formalism.

4 Thermodynamic Bethe Ansatz

In this section we review the powerful description of integrable models in the thermodynamic
limit using the language of the Thermodynamic Bethe Ansatz (TBA).

In a wide family of many-body integrable systems, GGEs (introduced in section 2) are
efficiently described via the TBA [103,104] in terms of “quasiparticles”, whose scattering is
elastic and factorises into two-body processes. The TBA is powerful enough to describe ther-
modynamics of not only quantum, but also classical models (including field theories, gases
and chains). Exact solutions for the NESSs from the partitioning protocol in integrable models
were expressed in the language of TBA in [21,22,26]. Quasiparticles are parametrised by
a spectral parameter 8, which, in general, encodes both their momenta and type. Here, for
simplicity, we will consider 8 € R with a single particle type. Each quasiparticle 0 carries a
quantity h;(0) of charge Q;, for instance momentum and energy, which we will denote by p(6)

“The validity of the ballistic fluctuation formalism rests on the assumption of strong enough decay of current
correlation functions at large times [92]: essentially the time-integrated correlation functions (7) should be con-
vergent. In integrable models, dynamical two-point correlation functions generically decay, at large times, as
1/t [32,34]. However, from [32, Eq 4.55], one can see that current two-point functions decay more rapidly along
the time direction, making them integrable, with finite value given by [32, Eq 1.4]. Likewise, higher-point correla-
tion functions are expected to decay strongly enough [34]. The arguments for the ballistic fluctuation formalism
in fact require, in their current form, strong enough decay in a neighbourhood of the time direction [92]; a precise
analysis of this in integrable models is left for future works.
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and E(6) respectively. The generalised specific free energy is given by f d};_(n@ F(e(8)) where
the pseudoenergy e(0) involves the Lagrange parameters and satisfies the non-linear integral
equation

e(6) =Zﬁihi(9)+f 2 00, @ (e(a), 16)

Here, the “differential scattering phase" ¢ (8, a) encodes the microscopic interactions, and is
related to the two-body scattering matrix. We assume (6, a) to be symmetric for simplicity
— in many integrable models, there is a choice of spectral parameter where this is the case.
The TBA free energy function F(e) depends on the statistics of the quasiparticles: for instance,
—log(1+e~¢) for fermions, log(1—e™¢) for bosons, —e™* for classical particles, 1/¢ for classical
radiative modes [34]. Intuitively, the pseudoenergy €(0) of a quasiparticle 6 determines the
amount this quasiparticle contributes to the GGE probability distribution. It is a modification
of the form it would have in free theories that takes into account the interaction with the
other quasiparticles. It is important to note that instead of the Lagrange parameters f, the
pseudoenergy can also be used to fully characterise the GGE.

The equations of state in GGEs were found in [21, 22] and proven for relativistic field
theory in [102], with the exact currents written as

do

(3:) = J 2—El(9)n(9)hfr(9), n(6) = dF(e)
i

_ dE(0)
de le=e(0)’ B :

E'(0) dé

17)
Here n(0) is referred to as the occupation function, and, like the pseudoenergy, is also suf-
ficient to fully characterise the GGE. The superscript “dr" in h?r refers to a fundamental op-
eration within the TBA formalism, the dressing transformation. In a similar fashion to the
pseudoenergy, the dressing transformation modifies a bare quantity, in this case h;, by tak-
ing into account the interaction with the other quasiparticles. The dressing transformation of
some quantity g(8) is defined through the linear integral equation

§(0)=g(0)+ f 22 (6, ()" () (8)

Using the dressing transformation, the flux Jacobian Al.J , introduced in the previous sec-
tion, was evaluated exactly in [32]. A consequence of the expression found there is that AiJ is

diagonalised by the dressing transformation: the vectors hfr (0), for fixed 6, are its eigenvec-
tors. The corresponding eigenvalues are the effective velocities of the generalised fluids, given
by veff(6) = (E")¥/(p’)¥. Effective velocities describe the velocity of quasiparticles through
the medium, given the interactions with other quasiparticles. More precisely, the result of [32]
can be recast into the explicit form

Al = f do hd (06K’ (6), (19)

where here hér(e) are the orthonormal conjugates to h?r under the L2(R) inner product, i.e.,

f do h?r(G)hér(Q) = 5{ (with Kronecker delta, as the set of indices i is taken to be discrete).’
By assumed completeness of the set of functions h}ir(O), we have

> A7 (0) = ve(0)nd(6). (20)
J

5 If h/(0) are defined to be orthonormal to h;(0), then these orthonormality relations define the “lower-index
dressing" h — hy,, making it a different transformation from the usual “upper-index" dressing.

9
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In the Euler fluctuation theory, we are interested in sgn(A)l.j , which is given by

sgn(4), = J d6 h¥(0) sgn(veH (0, (6). (21)

The example systems used in this work are the classical hard rod gas in section 6, and
the quantum Lieb-Liniger gas in section 7. In both cases, there is only a single quasiparticle
type. Furthermore these are both Galilean systems, so that 8 can be taken as the quasiparticle
velocity. The quasiparticle momentum and energy are given by p(8) = 6 and E(8) = 62/2
respectively, where we set the mass to unity.

5 Exact transport fluctuations in integrable models

We now turn to writing (14) and (15) for integrable models. This gives us an exact expression
for the full counting statistics F(A) of any total current, in terms of TBA quantities and a pseu-
doenergy function satisfying a flow-equation. From this, all cumulants can be obtained order by
order in terms of TBA quantities in the original state. We believe this to be a remarkable result
as, to our knowledge, no such widely applicable expression exists for interacting integrable
models. The result naturally generalises the known expressions for free-fermion and other
quadratic models [50-55], and for one-dimensional critical systems [57-59], see Appendix A
and the discussion in [92]. However, its connection to the exact SCGF found in integrable
impurity models [56] is not understood yet.
The exact expression for F(A) is presented in (25).

5.1 Full counting statistics

As per subsection 3.2, we consider 8 becoming A-dependent by satisfying the flow equa-
tion (14). Through (16) the pseudoenergy acquires a A-dependence, €(8;2), and similarly
all dressed functions become, h%"(6; 1) through n(6) in (17). From (16), the pseudoenergy
€(0; A) satisfies

; d
e(0:2) = Y B (M (6) + f o @0, )F(e(; 2)). 22)
- T
Using Eq. (14), we find

3re(032) == sgn(A(A)) ;(0) + f do ¢(8,a)n(a; A)dze(a; A), (23)
* 2n

i

and therefore using the definition of the dressing operation and the eigenvalue equation (20),

3,6(052) = — > sgn(A(1),hE(0; ) = —sgn(v(6; 1A (6; A). (24)
As the pseudoenergy fully characterises the GGE, this defines the flow equation for integrable
models.
An expression for F(A) can now be obtained using (15) and the solution of (24) in (17).
We will show below that

F(A)=— f 49 k(o) (sgn (vf(6; 1)) (F(e(0; 1)) — F(e(6;0)))
=3 D olFCee; 1)~ Fe(6;0)),

o&{*} Jeas(6)n[0,1]

(25)
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where the sets 27(0) are the turning points of the sign of the effective velocity:

AE0) = {1 :vefi(6; 1) =0, 8,v°(0; 1) Z 0}. (26)

The proof of (25) proceeds as follows. The idea is to take a derivative of (25) with respect to
A and show, in accordance with (15), equality with (j;) from (17). We first take the derivative
on the first line of the right-hand side of (25). Using the Leibniz Rule, two terms emerge. In
the first, the derivative is applied on sgn(v¢f(0; 1)), giving a §-function contribution (under
the integral), and thus the term

_J %El(eﬁ(\;eff(e; A)) 3)Lveff(9; k)(F(e(Q; A)) —F(e(6; 0)))_ 27)

On the other hand, taking the A-derivative on the second line of the right-hand side of (25),
we also obtain a 6-function contribution, which occurs when an element of the set A{ enters
the interval [0, A]. This contribution therefore has the form

J%E’(Q) Z Z 5(l—i)a(F(e(0;i))—F(e(g;o))_ (28)

as{£} jerq(9)

By a change of variables, we have

eff . 7\ s(A—1) as(A— 1)
5(\/ ff(@})t)) - Z Z |8Aveff(9;l)| - Z Z 8;Lv6ff(9;l) (29)

as{} lera(9) as{£} jera(0)

and we see that (27) cancels (28). Finally, we are left with the second term from application
of the Leibniz rule on the first line of the right-hand side of (25), the term in which the A-
derivative acts on the factor (F(e(@; A))— F(e(Q;O))). Using (24), we obtain (17), with the
A-dependent state n(6; A). The final step is to check that F(0) = 0, which is trivially true. This
completes the proof.

Eq. (25) is an exact general result for the SCGF - or full counting statistics — in GGEs of
arbitrary integrable models. The key development, the inclusion of interactions, is contained
within v¢ff(8; 1) and €(8; ). The form of the result separates the effects of the fluctuations
in the state, encoded within the free energy function F(e€), from the effects of the interactions.
The state fluctuations give rise to transport fluctuations, but in a way that is affected by the
interactions, as the quasiparticle velocities and charges depend on the fluctuating state. Ex-
plicitly, the function F(A) is obtained by solving (24) (numerically, or order by order in A),
and by then using the resulting pseudoenergy in order to evaluate the TBA quantities involved
in (25), and integrating over the spectral parameter.

This result can be applied to any model with known TBA, opening up a diverse range of
interacting quantum models for which we can obtain information about the statistics of flows.
Importantly, the result agrees with the Lesovik-Levitov formula for free-fermions (appendix
A). In order to illustrate this method we apply (25) to obtain new results in the classical hard
rod gas and the quantum Lieb-Liniger model in the next sections.

5.2 Cumulants

Before we consider the specific models discussed above, we first show how to obtain cumulants
from the expression (25). The first few cumulants provide important information about the
shape of the distribution, and are the most accessible to numerical simulations and experiment;
these are arguably the most important outcome of our expression for F(A).
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The cumulants are evaluated from (25) via ¢, = 3){‘F (A)‘A K The first cumulant is the

average current, given in (17). For the second cumulant, omitt_ing the 0-dependence of the
integrand for lightness of notation, we obtain

¢ = f a6 p, v (RIS, (30)

where p, = n(p’)¥/(2m) is the quasiparticle density, and f = —dlogn/de is known as the
statistical factor. The expression in (30) was already evaluated exactly in [32] by different
methods, and follows as a consequence of current-current sum rules [101]. Our expression is
in agreement with this, providing an important check on our result. The higher cumulants are
new, and in particular (again omitting the explicit 6-dependence of the integrand),

cy = J dé p, flvefflh‘ir [(hg‘:)Z fs+3 ((hgj)z fs)dr], (31)

where f = —(dlog f /de + 2f) and s = sgn(v¢). We have also evaluated ¢4, the result of
which is presented in appendix B, but higher cumulants quickly become cumbersome. Details
on the calculation of these quantities can also be found in appendix B. In [32], a natural linear-
response formulation was also shown to reproduce c¢,. The present results for ¢, agree with a
generalisation of this linear-response formulation (see appendix C).

In the next section we confirm these exact predictions in the classical hard rod gas by direct
numerical simulation, thereby verifying (25) while simultaneously obtaining new results for
the paradigmatic hard rod gas.

6 Classical hard rod gas

In this section we use Monte Carlo simulations to verify the newly-found expressions for cu-
mulants based on (25). This requires the specialisation of the above general expressions to
the hard rod gas.

The hard rod gas is a one-dimensional classical system of rods of length a whose whose
only interactions are elastic collisions. Upon colliding, the rods swap velocities. The hydrody-
namic description of the gas was derived rigorously in [78]. In our notations, F(e) = —e™¢,
n(0) =e 9, £(0) =1, and the interactions are defined by ¢ (6, a) = —a. In order to verify
(25), we specialise to the hard rod gas and compare the predictions of the first four cumulants
of the energy flow (h; (0) = 62 /2) with direct Monte Carlo simulations of the gas. Using the
exact TBA description [26], we first evaluate the predicted cumulants in a NESS from the par-
titioning protocol with initial left and right states that are thermal and boosted with different
temperatures and boost velocities. See appendix D for a derivation of thermal distributions
in the hard rod gas; these are normal distributions, proportional to exp(3(v — v,)?/2) where
v, describes the boost velocity and 3 the temperature of the bath. We then simulate the gas
by running the (deterministic) hard rod dynamics from a sampled initial condition, where the
initial left and right halves of the line are sampled with the prescribed left and right thermal
boosted states. We add up the energy of the rods that pass through the centre of the system up
to time t. This is done for multiple samples, from which we extract the cumulants and then
scale by time. At large times, these numerical results are expected to agree with the cumulants
evaluated in the NESS itself.®

5This is based on the fact that at large times, in the partitioning protocol, time-dependent correlation functions
at the position x = 0 tend to their form in the state that is obtained on the ray x = 0. In integrable systems, this
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Figure 2: Insets highlight the agreement between theoretical predictions and Monte
Carlo simulation of the first four energy flow cumulants in the hard rod gas. Theo-
retical predictions from (25) are the red lines, Monte Carlo results are the blue dots
with error bars. The initial velocities of the rods are drawn from normal distribu-
tions, with mean 8 and variance 15, and mean —3 and variance 10, for the left and
right system halves, respectively. Other parameters are: rod length a = 0.56; 10°
particles; 2 x 107 Monte Carlo samplings; initial system length 10°. Rod densities
are fixed by the velocity variances in thermal distributions. The scaling parameter
for the y-axis is 7°/a where 7 is the average rod speed. Error bars are found via
bootstrap re-sampling using 3000 samples. Times plotted are chosen so as to reach
the effective steady state before boundary effects arise; higher cumulants, which are
affected by rarer events with faster moving rods, are sensitive to finite-size effects
sooner.

The Monte Carlo error bars are obtained via the bootstrap sampling method which entails
re-sampling with replacement from the obtained data set and calculating “alternative" values
of the required cumulant [105]. The standard deviation of these values represents the as-
sociated uncertainty. Figure 2 shows cumulants of the steady state energy flow in the hard
rod gas realised by Monte Carlo simulation, compared with results predicted from generalised
hydrodynamics. It is clear that within error bars the prediction from (25) is successful — see
appendix D for details on theoretical cumulant calculations in the hard rod gas, and appendix
E for details on the Monte Carlo numerical simulation. Here, by boosting, the initial partitions
are not just put into contact, but are thrust into each other. This is a highly non-trivial setup
and the accurate prediction displays the power of the formalism employed here, providing
strong evidence that (25) is correct.

fact can be observed, for generic observables, from the expressions for correlation functions in inhomogeneous
states found in [34]. We note that in particular, the discussion in [34, sect 5.2.1] was inaccurate in claiming that
the factor V(6) would remain.
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Lieb-Liniger energy current SCGF
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Figure 3: Numerical evidence for the fluctuation-relation symmetry in the Lieb-
Liniger gas. Plot of the energy flow SCGF for the Lieb-Liniger model using (25).
For this plot the parameters used are ; = 1, 3, = 5, ¢ = 1. The fluctuation-relation
symmetry point is (f; — 8,)/2, as indicated by the dotted line.

7 Quantum Lieb-Liniger gas

A different check on (25) is to confirm the expected non-equilibrium fluctuation relations (8).
As mentioned at the end of section 2, general arguments suggest that the fluctuation relations
should hold for the SCGF in the NESS from the partitioning protocol. We do not yet have an
analytical proof of (8) from (25); this is nontrivial, as the fluctuation relations involve finite
shifts of the generating parameter A, while (25) is expressed in terms of the solution to a flow
equation, which is local in A. Nevertheless, one may verify the symmetry (8) by numerically
solving the flow equation (24) and evaluating (25).

In order to provide verifications of our results beyond classical models, we choose to check
the fluctuation relations for the energy current in the quantum Lieb-Liniger model. This model
is important in the context of integrability as recent advances have rendered it accessible
through cold atom experiments, see the book [77].

The Lieb-Liniger model describes a one-dimensional gas of Bose particles with §-function
interactions. Specialising Eq. (25) to this model, we obtain explicit predictions for all the
large-scale cumulants for transport, including for the total number of particles transferred
(h; () = 1) and the total energy (h; (6) = 62/2). Again we analyse the energy SCGF in
the partitioning protocol NESS (using its exact TBA description [21]) with initial states set by
different purely thermal baths, at inverse temperatures f3; and f3,.. We set F(¢) = —log(1+e™°),
n(0) =1/1+e® and f = 1—n, while interactions are defined by (0, a) = 4c/((0—a)?+4c?)
where c is the coupling strength. The equation (24) is solved numerically using an iterative
approach known as Picard’s method [106]. The SCGF is plotted in fig. 3; it is convex as it
should be [42], and grows sharply near the values —f3, and ;. These are the values at which
divergences in the SCGF occur in free bosonic models (and also in conformal field theory [57]),
thus suggesting that at these values, the free bosonic physics of the Lieb-Liniger model domi-
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nates. The plot also indicates that the energy flow in the Lieb-Liniger model, with these initial
conditions, satisfies the non-equilibrium fluctuation relations (8). Appendix F provides more
extensive numerical verifications of the fluctuation relations by exploring a range of parame-
ters in the Lieb-Liniger model and shows numerical evidence in the hard rod gas too.

The validity of the fluctuation relations in the Lieb-Liniger model and hard rod gas provides
further support both for (25), and for the general consistency of the theory of non-equilibrium
transport.

8 Conclusion

In this paper, we have obtained the exact SCGE or full counting statistics, for transport of
arbitrary conserved quantities in a wide family of integrable models, and in arbitrary GGEs,
including non-equilibrium steady states. The results have been obtained by combining recent
developments in integrable systems in the context of generalised hydrodynamics [21,22], in
particular the flux Jacobian obtained in [32], with a new ballistic fluctuation formalism de-
veloped in [92]. They significantly generalise previous expressions and studies in free particle
models [50-55] and in one-dimensional conformal field theory [57-59]. To our knowledge,
these are the first exact results for transport SCGFs in interacting homogeneous integrable
systems, and provide an entirely new application of the hydrodynamic theory of integrable
systems. The SCGF allows one to extract, order by order, exact expressions for the scaled
transport cumulants purely in terms of quantities from the thermodynamic Bethe ansatz. We
have provided explicit expressions for the first few cumulants. The results can be immediately
applied, for instance, to the paradigmatic classical hard rod gas, the quantum Lieb-Liniger
model, as well as other classical and quantum chains and field theories such as the sinh-Gordon
and sine-Gordon model and the Heisenberg chain, and to soliton gases [80-84]. Importantly,
we have explicitly verified the validity of the formalism by comparing the exact formulae for
cumulants with Monte Carlo simulations in the classical hard rod gas. We have also explained
how to apply the formalism to the quantum Lieb-Liniger gas, and we have checked, by numer-
ically evaluating the exact expression, that the SCGF satisfies the non-equilibrium fluctuation
relations both in the classical hard rod and quantum Lieb-Liniger gases.

Many questions arise from the present results. First, a more in-depth analysis of the SCGF
and its properties would be very interesting, including an analytic proof of the fluctuation rela-
tions. It would particularly useful if simplifications of the general formula (25) could be found,
allowing for a better analysis of the SCGF at large or complex values of the generating param-
eter A. For instance, the analytic structure of the SCGF in the complex A-plane would provide
information about the structure of transport degrees of freedom, see [107]. Applications to
other integrable models would be very desirable. As our main results, even though accurate,
are not derived in a mathematically rigorous fashion, it is paramount to have comparisons
with tDMRG studies for quantum models. Furthermore, as explained in [92], the SCGF gives
the exact exponential decay of dynamical two-point correlation functions of twist fields; the
latter, in many cases, represent order parameters, and examples are the exponential fields in
the sine-Gordon model. It would be useful to verify the predicted exponents, and further study
their consequences. Finally, it would be interesting to explore the empirical counting statis-
tics of the Lieb-Liniger gas in experiments on cold atomic gases, and compare them with our
theoretical results. Tantalisingly, generalisations to inhomogeneous non-stationary situations
might also be possible with current technology within GHD.
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A Specialisation to the Lesovik-Levitov formula

In free-fermion models, there is a well-known formula for the SCGF for particle transfer
through an impurity between two “leads", the Lesovik-Levitov formula [50]. The Lesovik-
Levitov formula specialised to pure transmission (that is, without an impurity) should agree
with our formula (25), specialised to free-fermionic particles, to the steady state arising from
an initial imbalance in the partitioning protocol, and to the study of particle transfer. Here
we verify this in a very simple example, corresponding to the choice of free massless, charge-
less fermionic leads, which have linear dispersion relation. In this case, the Lesovik-Levitov
formula takes the form [52]

F(A) = f ;1_: log[1—m(w)(1—n(w))(1—er) —n(w)(1—n(w))(1—e™)], ((32)

—0Q

where n;(w) is the Fermi occupation function for the initial left, j = 1, and right, j =1,
reservoirs; for instance, with temperatures T; and chemical potentials u;", we have,

1

ST 5 1 (33)

n j(w) =
Here w plays the role of an energy; it is not bounded from below because of the linear disper-
sion relation.

In our formalism, we have two particle types, o = £1, corresponding to the right-movers
and left-movers of the massless free-fermion theory. We may choose momentum p(6,c0) = 6;
the energy function takes the form E(6,0) = o6 so that the velocity is v(6,0) = o. The
theory is free, hence this also equals the effective velocity, and the dressing operation is trivial.
The non-equilibrium steady state in free-fermion models has been known exactly for some
time [67,68], and, in our notations, has pseudoenergy given by

1 1
(6,032) = (6~ )B(0) + (=0 )8 (—0). (34)
1 r
This embodies the independent thermalisation of right- and left-movers with respect to the

16


https://scipost.org
https://scipost.org/SciPostPhys.8.1.007

Scil SciPost Phys. 8, 007 (2020)

initial left and right states, respectively. Solving (24) we find

€(6,050) = [%(e — ) —A] (o) + [%(—9 )+ A]e(—o) 35)

and (25) becomes
F(A) = — > (log(1 + e <071y —Jog(1 + e~(0:7:0)y) | 36
o J_OOMEU(og( e 0oM) —log(1 + ¢~ (07)) (36)

Changing variable to w = o6, followed by some simple algebraic manipulations, it can be
seen this agrees with (32).

B Calculating c; and c,

The cumulants are obtained from the SCGF (25) as ¢, = 8A”F (A) o ; this appendix outlines

the steps involved in taking the A-derivatives.
This appendix makes use of a flow equation on the state n(6; A). To obtain this expression
we use f = —dlogn/de with the flow equation (24) to get

d,n(0;2) = sgn (v*(6; 1)) k" (6; 1)n(6; 1) (6; 2). (37)

Calculating A-derivatives of (25) requires the following identities, gleaned from understanding
the integral-operator structure of the dressing operator:

HXY(0; 1) = (sFRIXINI(9; 1) — £(0; A)s(0; LRI (0; WX (6; 1), (38)

J don(0)x(0)Y¥(6) = J d6 n(6)x¥(6)Y(6), (39)

where s(6; 1) = sgn (veff(Q ; A)), and X(60) and Y (0) stand for any two quantities within the
GHD description.

Going forward we use the A-dependent state n(6; A) which is defined by (37). The A-
dependent current is obtained from the expression

() = J < F(OIn(0; I 0; 1), (40)

At A = 0 this correctly produces the steady-state current as given by the first expression in
7).

In order to ensure the next calculations are more readable, the 8-dependence in the no-
tation is suppressed with the understanding that all terms inside the 6 integrals are 6 depen-
dent. Furthermore, the following simplified notation is introduced: s(A) = sgn (VEff(G;A))
and H(A) = h¥(0; 1).

The second cumulant ¢, is found by taking a A-derivative of the A-dependent current and
setting A =0,

:
200) = || 32 B IBnOIH) +r)ZHO)]

.
= %E’[S(K)Hz(l)n(?\)f(k) +n(A)(sf H)¥(A) —n(A)f (Ms(A)H*(A))]

:
= | 99 @y ynsyf (H2O), 1)
J 21T
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where in the second line we used (37) and (38) while the third line required (39). At A =0
this correctly reproduces c, from the literature [32].

For higher-order derivatives special care of the terms d,s(A) is necessary. Recall s(A) is a
sign function and the derivative of this produces a 6-function. The §-function leads to terms
evaluated at 6*(A) where v¢ff(6*(1); 1) = 0. This can be problematic, as in the partitioning
protocol considered in this work, n(60*(A)) is ill-defined. However, for ¢ the ambiguity resolves
fairly
straightforwardly. On taking the derivative of 9;(j(1)) there is a term that contains
J5 sgn (veff(Q ; l)) = 5(v¢ff(0;1))3,v*f(6; 1). The trick comes from recalling from the def-
inition of v¢f in section 4 that (E))4(8; 1) = v¢f(0;1)(p")¥(0;A). Thus we have a term
| 99 ") (0; Mvef(8; M5 (veT(6; 1)) 3, v (8; M)n(A)f (A)HZ(A). The 5-function sets v = 0
which ensures we do not need to evaluate n(6*(A)). The remaining terms all follow from use
of (37), (38) and (39) which leads to

a7(i(A) = J % [(sf (BN H)* (A)n(A)s(A)f (MH?(A)
+ 2(EN"(Mn(Ds(R)f WHA)(sf HT () + (BN (D) f MH3 (D) (A)]

= J < B SO [ +3(sf H* ()], “42)

where f = —(dlog f /de + 2f) and s%(1) = 1 was used throughout. The final expression (31)
for ¢4 is obtained by recalling again the identities (E’ ) = veff(p/)dr |yeff| = veff sgn(veff), and
pp= n(p")¥ /(2m) before finally setting A = 0.

Although the results are exact, one can see the increasing complexity of the required ma-
nipulations for higher cumulants. To obtain ¢4 involves the same steps as above, first using
(37) and (38) followed by acting on the term gained from E),l(E’)dr with (39). However, a
further complication arises when considering the term d,(sf H>)4"(1). We now explain the
specific issue and how to overcome it but we do not repeat manipulations already covered in
the calculations of ¢, and cs..

In order to calculate 3, (sf H)4'(1), consider the integral representation of a dressed ob-
ject. From (18), the dressing operator is h%"(0) = h(0) + g—g ¢(a, O)n(a)h(a). With this
definition

B,(sf H)(X) =3,(s(6; 2)f (6; M)H?(6; 1))
+ 3xf g—i ¢ (a, 0In(a; A)s(a; A)f (a; A)H(a; A)?

2

+..., (43)

+ 3AJ da ¢(a, 9)n(a;l)J 2—07: e(a’,a)n(a’; A)s(a’; A)f (as A)H(a'; 1)

where we have displayed only the first three terms of the infinite sequence arising from the iter-
ative equation defined by the dressing operator. Everything is fairly straightforward except that
the derivatives of s(6; 1) do not resolve the issues of evaluating n(6*(A)) as in c5 before. To get
around this issue, consider  splitting the integrals above such that

[doso*(n) = — [P

—0Q0
terms which come from J, f d6s(6*(A)) cancel each other out. This removes the ambiguity
from (43), as is to be expected since the sign function entered our initial calculations as a
shorthand. In fact, it is possible to do all calculations without the explicit use of this func-
tion, instead computing under split integrals from the start so that there is never a question of

de + f(;om d6. Then using the Leibniz integral rule, the boundary
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ambiguity. With this issue resolved we write

&, (s B (2) = 3(fsHUSHA®) () = FQSOHMFHIT ) + (F FHH(R).  (44)

The rest of the calculation, although tedious, follows the same principles as before. For com-
parative purposes we write c4 in the more formal notation used in (31) for c5:

¢ =J d6 p, fveT{(RE")'sf f +3s((sf (RN + 4hSs(f F (R + 6F (RS (sf (hEDH)™
+12R%s (s £ RS (s £ (RER) )Y (45)

where f = —(dlog(f f)/de + 3f).

C Cumulants from a linear response principle

We show that the cumulants obtained by taking A-derivatives of (25), can also be obtained
by following a linear response principle, generalising the linear-response formulation of the
second cumulant found in [32].

The linear response formulation for the cumulants, in a given state of the system, is ob-
tained by considering a certain partitioning protocol with respect to that state. Specifically, the
required partitioning protocol is that whose initial condition, on the left/right, is the system
state perturbed by £(u/2)Q, where Q is the conserved charge of interest. One then looks at
the NESS emerging from this partitioning protocol. Here we show that taking the u-derivative
of the occupation function representing this NESS, evaluated at u = 0, results in the same
expression as that obtained by taking the A-derivative at A = 0. By recursively applying this
procedure, one can then obtain all A derivatives.

Recall the expression for the TBA pseudoenergy (16):

©)=w(®)+ [ 52 010, Fc(a) (46

where w(6) is a source term defining the initial state — in (16) we used w(0) = Zi Bih,(0)).

As mentioned, the basis of the linear-response formulation of the cumulants in a par-
ticular state with occupation function n(8), is to first evaluate the occupation function for
the NESS emerging from the partitioning protocol with initial condition where both halves
are set to the state under consideration, but with a “perturbation” by £(u/2)Q in the left
and right GGEs, respectively. The NESS occupation function, solution to this partitioning
protocol, is given in [21, 22], and will be denoted [n],(0). It takes the form
[n].(0) = nl;u(Q)@(vﬁff(G)) + nr;“(Q)e(—vﬁff(Q)) where n; .., (0) are constructed from the
modified source terms of the pseudoenergy corresponding to the initial state of the protocol,
Wi ru(0) =w(6) £ (u/2)h(6), and vﬁff(G) is evaluated in the state [n],(0).

Consider the u-derivative of [n],(6). We may recast the form of the solution [n],(6)
in terms of the pseudoenergy [€],(6), as they are related in a simple algebraic way. Clearly,
o,[n],(6) = (8€n)6:[e]u(9) d,le],(0). The first factor was presented in the main text:
d.n = —nf. By the linear-response construction and using the definition of the dressing oper-
ation, the second factor is 9,[€],(6) = J,¢;,,(0) if vsz(e) >0, and J,[€],(0) = J,¢,,,(0) if
vﬁff(e) < 0, with a delta-function contribution at vﬁff(e) =0. Using d,€; ., = ih?’rr;u and the
fact that h?,rr;o = h%, the delta-function contribution vanishes at u = 0. We are left with

9u[n1u(0)lu=0 = h*'(6)f (6)n(6) sgn(v*(6)). (47)
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Comparing this equation to (37), which is a re-expression of (24), we observe that

Fuln]u(8)lu=o = 3an(8; Al r=o- (48)

The equality does not hold in general when the derivatives are evaluated at u # 0 and A # 0.
However, since the equality holds for every state, we can follow the same procedure starting
with the A-dependent state n(6; A), and considering a y-modification of it. We obtain

3M[n(';7t)]u(9)|uzo = 0,n(6; ). (49)

In short, the method outlined here gives an alternative way of expressing the A-flow: the
first-order variation of the state in A is equated with its first-order variation in another pa-
rameter, U, obtained by first applying an inhomogeneous perturbation with opposite chemical
potentials +uQ/2 on the left and right halves — a bias — to the state n(-; A1), and then letting the
state evolve for an infinite time towards the emerging steady state, getting [n(-; 1)],. Again,
the equality holds only for first variations; there is in general no equality for second and higher
derivatives (except for free-particle models), and no group property, [[n],], # [n],,/. Thus,
this approach does not provide a finite-A solution to the flow, but a re-writing of the flow
equation.

The full re-writing is as follows. Recall from the previous appendix that (37) - specify-
ing A-derivatives — can be used to find the cumulants from (25). Since (49) states that the
linear response in y (that is, the u-derivative at u = 0), reproduces the first A-derivative,
this implies that linear response can be used to reproduce all cumulants. Explicitly, writing
n(0; 1) = n9(0) + AnM () + (12/2)n®(0) + ... ., we determine the n(0)’s by solving

n(0) + @ (0) +... = 3,[n” + 2D + (A%/2)n + ... ] (6= (50)

recursively in powers of A.

Via the above procedure, linear response is capable of exploring the space close to any
fixed A via a small shift in the initial charge, and hence can be used, in principle, to calculate
all cumulants.

D The hard rod gas and its thermal distribution

The hard rod (HR) gas provides a simple model in which to test our results. We here explain
how to generate the inputs for the theoretical predictions of ¢y, c,, c3 and c4 plotted in fig. 2.

To obtain the theoretical values for the cumulants, the following are required: the con-
served quantity h(0); the occupation function n(6) together with the related pseudoenergy
€(0) and particle density p,(6), the dressing operation, the effective velocity vefi(9), and the
statistical factor f(6). Here 6 is the velocity and we take unit mass.

As stated in the main text, in the HR gas the differential scattering amplitude is given by
(8, a) = —a where a is the rod length. The constant interaction term simplifies the dressing
operation (see again the main text), giving

dr _ _ a d_a
h®(0) =h(0) 1+abJ27‘c n(a)h(a), (51)
with
b= f d_a n(a). (52)
27
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This produces further simplifications of v¢f(8) since v¢f(0) = (E")4"(0)/(p")¥(6). Further, in
the HR gas f(0;A) =1 (independent of the state) and

n(0) =e ), (53)

as this is a gas of classical particles with free energy function F(e) = e™¢. The particle density
is given by p,(6) = n(6)(p")¥((6))/(2m) which, using p’(8) = 1 and (51), is easily shown to
yield

1

— b
pp(0) = 2 4P n(6), wherep = f dap,(a)= 54)

T 1+ab ’
Since the differential scattering phase is constant in the HR gas, the pseudoenergy can be
expressed as €(6) = w(0) + z, where the constant g satisfies

d
z=ade %, d= J & e W), (55)
27

The equation for z is solved using the Lambert-W function as z = W(ad).

For the particular situation of interest, we are concerned with energy currents so h(9)
takes the simple form 62/2. For the HR gas in the steady state arising from the partitioning
protocol, a result of [26] provides the exact expression for n(6) in terms of the occupation
functions n;(8) and n,(8) in the initial left and right baths of the protocol. Here, the initial
state is fixed using two boosted thermal distributions. In order to apply the result of [26], we
therefore only need to describe what form n(6) takes for thermal distributions in the HR gas;
Galilean boosting is simply a shift of 6. To obtain a thermal distribution in the HR gas, one
may naively assume that fixing the source term w(68) of the pseudoenergy (46) to be Gaussian
is sufficient. However, we show that for truly thermal distributions, the starting rod density
per unit length must also be fixed in a particular way.

To fix a thermal state, we choose a thermal source term defined by w(9) = BO2/2. 1tis
now clear that setting a thermal source term will effect the particle density. The thermal d™
is a Gaussian integral giving d™ = 1//27f. This is used to find €™ = $62/2 + W(ad™).
Then, using n(0) = e~¢(®) with (54),
p(th) _ e—e(th)(e) _ o—B0%/2 e—W(ad(‘h)) |

P 2n(1+ab)  27(1 + W(ad())

(56)

This is how the initial thermal densities are constructed for the Monte Carlo simulation of
the hard rod gas. Since we investigate boosted thermal distributions, we use such Gaussian
distributions with non-zero means; the above details remain unaffected other than in the final
equality 6 — 6 — .

E Monte Carlo details

We here describe in detail the Monte Carlo procedure used to obtain c,, c3 and c4 for the HR
gas in the partitioning protocol used in fig. 2. In the partitioning protocol the system is split
into two halves defined by different boosted thermal distributions for the left and right side of
the partition (see appendix D above). This defines both the rod velocities, through sampling
from a Gaussian distribution, and the rod densities, through (56). On the left side of the
partition we used a Gaussian with a mean of 8 and standard deviation of 15, on the right a
mean of —3 and standard deviation of 10. The initial length scale in the system is defined by
the distance between the leftmost rod of the left partition and the rightmost rod of the right
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LL SCGF where c=1.0, B;=20,B,=4 LL SCGF wherec=1, ,=0.25,3,=1.5
J T FQ) 051\ Fluctuation-Relation Symmetry
——————— Fluctuation-Relation Symmetry 0.0 — F(A)

Reflection of left part of SCGF

Reflection of left part of SCGF

-0.4 -0.2 0.0

Figure 4: Energy flow SCGF for the Lieb-Liniger model using equation (25). Both
plots use an interaction strength of ¢ = 1. In (a) the parameters used are ff; = 20,
B, =4 and in (b) B, = 0.25, B, = 1.5. In both cases a dotted line is plotted for the
expected symmetry point at (8; — f3,)/2. Both plots also indicate the symmetry by
reflecting the left-hand side of the plot onto the right-hand side of the plot.

LL SCGF with mutliplec, 8;=1,B,=5

— F(A),c=05
0s — FA),c=1
04 F(A), c=3

------- Fluctuation-Relation Symmetry

Figure 5: Same as fig. 4 but with §; = 1 3, = 5 and various values of c. The FR
symmetry point, (5 — ,)/2, is again shown by the dotted line.

partition. To ensure we study a system where interactions are important while also avoiding
packing the rods too densely, we enforce the initial length scale to be half-populated by rods,
taking into account rod lengths. It is easy to show that the initial length scale and the rod
length are uniquely determined by the choice of rod number, left/right Gaussian parameters
and the constraint the initial length scale is half-filled with rods. We used 10° rods in our
simulation. We stress again that all the stochasticity is contained within the initial conditions
as the initial rod velocities are randomly drawn from Gaussian distributions but, the time
evolution is deterministic. For a given realisation of initial velocities, we count the total amount
of energy that passes through the midpoint of the system during a long time interval t. To
gain statistics on the energy flow, we allow multiple realisations of initial rod velocities and
record the total energy flow for each. From the data collected the scaled cumulants can be
determined.

F Numerical evidence for fluctuation relations

We provide further numerical evidence that the SCGF given in (25) satisfies fluctuation rela-
tions (FRs). Recall from (8), and the discussion below it, that in our setup FRs take the form
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HR SCGF where rod length =0.1, 8,=1, B,=5

— F(A) i
——————— Fluctuation-Relation Symmetry
125 Reflection of left part of SCGF

Figure 6: Plot of the energy flow SCGF for the hard rod model using equation (25).
For this plot the parameters used are 8, = 1, B, = 5 and rod length = 0.1. Once
again the dotted line is the expected FR symmetry point and the curve is reflected to
indicate how symmetrical it is.

F(A) = F(B;— B, —A) where ; and 3, are the left and right inverse temperatures in the parti-
tioning protocol. Thus the FRs are exposed by a symmetry in the plot of the SCGF about the
point (8 — ,)/2. We stress that the figures in this section are not produced via Monte Carlo
simulations but rather represent numerical solutions for (25) for various model scenarios. In
fig. 4 we plot the SCGF for the Lieb-Liniger model with different temperatures but the same
interaction strength c. fig. 5 displays the results of varying the interaction strength while main-
taining the same temperatures. In order to be complete, fig. 6 shows HR-specific results where
we use similar parameters as for the previous plots. In all cases the symmetry is prominent
which provides strong numerical evidence that our exact SCGF formula does indeed satisfy
FRs.
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