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Abstract

We perform the Hamiltonian reduction of three dimensional Einstein gravity with nega-
tive cosmological constant under constraints imposed by near horizon boundary condi-
tions. The theory reduces to a Floreanini–Jackiw type scalar field theory on the horizon,
where the scalar zero modes capture the global black hole charges. The near horizon
Hamiltonian is a total derivative term, which explains the softness of all oscillator modes
of the scalar field. We find also a (Korteweg–de Vries) hierarchy of modified boundary
conditions that we use to lift the degeneracy of the soft hair excitations on the horizon.
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1 Introduction

Gravity in the presence of asymptotic boundaries has led to numerous surprises and insights,
starting from Bondi, van der Burgh, Metzner and Sachs’ seminal work in the 1960ies which
proved that the asymptotically flat limit of general relativity does not reduce to special rela-
tivity but has an infinite symmetry enhancement due to supertranslations [1, 2]. Brown and
Henneaux’s discovery in the 1980ies showed that the canonical realization of the asymptotic
symmetries in AdS3 Einstein gravity leads to a classical central extension [3], thereby provid-
ing a precursor of the AdS3/CFT2 correspondence. Since then, their asymptotic analysis has
been generalized e.g. to higher spins [4,5], lower spins [6] and within Einstein gravity [7–10].

A key outcome of all these considerations is the asymptotic symmetry algebra generated by
the boundary charges, since the physical phase space falls into representations of this algebra
and different physical states are labelled by the values of these charges, see e.g. [11, 12] and
references therein. Depending on the precise form of the asymptotic symmetry algebra, it is
possible to generate descendants of a state, so-called “edge-state excitations”, by acting on
it with raising operators. (The presence of edge states is also familiar from Quantum Hall
physics [13]; in a gravity context they are often referred to as “boundary gravitons” since
the raising operators have a gravitational interpretation as diffeomorphisms that are not pure
gauge at the boundary.)

Boundary charges also exist in the presence of finite boundaries, which can arise in two
ways: either there is an actual boundary present in the physical system or one introduces a
boundary by cutting out some part of spacetime, see for instance [14, 15]. The prototypical
example of the latter is to cut out the black hole interior and to replace the black hole by some
membrane [16,17], corresponding to suitable boundary conditions imposed on a (stretched)
horizon [18]. Carlip pioneered the suggestion that such an approach might account for the
black hole entropy [19]. The idea to use the black hole horizon as boundary thus has a long
pre-history, but concrete proposals for precise boundary conditions and symmetry analyses are
relatively recent [20–25].

In the present work we focus on consequences of the near horizon boundary conditions
proposed in [22] for the boundary theory. More specifically, we perform, discuss, extend and
apply the Hamiltonian reduction of the action under constraints imposed by these near horizon
boundary conditions, analogously to the asymptotic analysis of Coussaert, Henneaux and van
Driel [26].

Here is a summary of our main results. The near horizon boundary action for each chiral
sector,

SNH[Φn, Πn] =

∫

dt
�

∑

n≥0

ΠnΦ̇n −HNH

�

(1)

depends on a scalar field Φ(t, σ) =
∑

n∈ZΦn(t)einσ + σJ0(t), the momentum of which es-
sentially is given by its spatial derivative, Πn(t) = −

k
2 J−n(t) with Jn(t) = inΦn(t) for n 6= 0,

like in the Floreanini–Jackiw action for self-dual scalars [27]. Remarkably, the near horizon
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Hamiltonian depends only on the momentum zero mode J0

HNH =
k
2
ζJ0 . (2)

The equations of motion are solved by

Φ(t, σ) = Φ0(t) + J0σ+
∑

n6=0

Jn

in
einσ , (3)

where J0 is related to the BTZ horizon radii and Φ0(t) = −ζt + φ with constant ζ and φ.
The mode decomposition (3) is reminiscent of the ultrarelativistic/tensionless limit of string
theory [28].

The near horizon Hamiltonian density being a total derivative term implies the softness of
all near horizon oscillator modes Jn, which provides yet another way to see that Jn generate
soft hair excitations of black holes [22] in the sense of Hawking, Perry and Strominger [29].

If one desires to attribute black hole entropy to soft hair degeneracy [25, 30] then one of
the problems is the infinite degeneracy of soft hair excitations. The naive physical intuition
behind a possible resolution is that infinite blueshift factors at the horizon multiplying zero
energy excitations could yield a finite result. Producing such a cutoff in a controlled way is
essential for applications to black hole entropy, like in the fluff proposal [31,32]. In the present
work we find a novel way to generate such a cutoff, by considering our near horizon bound-
ary conditions as limiting case of an analytically continued 1-parameter family of boundary
conditions. The zeroth, first and second member of this family yields, respectively, near hori-
zon, Brown–Henneaux and Korteweg–de-Vries (KdV) boundary conditions. The associated
boundary Hamiltonian densities for any positive integer N generalize the result (2)

HN =
k

4π
ζNJ N+1 +

N−1
∑

i=1

hi, NJ N−i−1
�

∂ i
σJ

�2
+Hnl

N , J = Φ′, (4)

which no longer is a total derivative term (hi, N are field-independent coefficients and Hnl
N

vanishes for N ≤ 4). Setting N = 0 in (4) recovers (2). If instead we take the limit N = ε→ 0+

we get a Hamiltonian with log contribution

Hlog =
k

4π
ζεΦ

′ ln
�

Φ′
�

(5)

that provides a cutoff on the soft hair spectrum.
This work is organized as follows. In Section 2 we review our near horizon boundary con-

ditions and their relation to Brown–Henneaux boundary conditions. In section 3 we perform
the reduction of the Chern–Simons action to a boundary action, up to one boundary term. In
section 4 we fix this boundary term explicitly in different ways, corresponding to near hori-
zon, Brown–Henneaux and KdV boundary conditions as well as generalizations thereof. In
section 5 we consider an analytic continuation of this KdV hierarchy and focus on the limit
when continuously approaching near horizon boundary conditions, in order to make the soft
hair excitations slightly non-soft. In section 6 we compare our results with those of the fluff
proposal and tensionless strings.

Note added: After finishing our work we received a preview [33] that also considers a hier-
archy of integrable deformations of the near horizon boundary conditions [22]. The Gardner
hierarchy employed in that work contains the KdV hierarchy studied in our section 4.3 as spe-
cial case (for b = 0 in their notation). As their work does not address the boundary actions
discussed in the present paper our respective works are complementary.
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2 Near horizon boundary conditions

In this section we review the near horizon boundary conditions for AdS3 Einstein gravity [22].
We also list our conventions here.

2.1 AdS3 gravity in the bulk

Three dimensional Einstein gravity is a topological gauge theory which can be described as a
Chern–Simons theory for the appropriate gauge group [34,35]1. The gauge group reflects the
isometries of the maximally symmetric vacuum of the theory, which in turn depends on the
sign of the cosmological constant Λ. In the present work we focus on negative cosmological
constant, Λ = −1/`2, mainly due to the fact that the presence of BTZ black hole solutions
[36,37] requires negative Λ.

AdS3 gravity is described by SO(2,2) ∼= SL(2,R)× SL(2,R) Chern–Simons theory. The
Einstein–Hilbert action (neglecting boundary terms) is given as

SEH[A, Ā] = SCS[A]− SCS[Ā] , (6)

where

SCS[A] =
k

4π

∫

M
tr
�

A∧ dA+
2
3

A∧ A∧ A
�

, (7)

and the Chern–Simons level is given by k = `
4G (G is Newton’s constant). The gauge con-

nections A, Ā take values in the algebra sl(2,R) with generators L−1, L0, L+1 and commutators

[Lm, Ln] = (m− n)Lm+n m, n= −1,0,+1 . (8)

The trace in the action (7) is a non-degenerate symmetric bilinear form on the Lie algebra,
chosen as

tr(L1 L−1) = −1 tr(L2
0) =

1
2

tr(L±1 L0) = 0= tr(L2
±1) . (9)

Sometimes an explicit representation in term of (2×2)matrices is needed. We make a standard
choice compatible with the commutation and trace relations above.

L−1 =

�

0 −1
0 0

�

L0 =
1
2

�

1 0
0 −1

�

L+1 =

�

0 0
1 0

�

. (10)

The Cartan variables, dreibein and (dualized) spin-connection, are given as linear combi-
nations of the Chern–Simons connections A, Ā.

e =
`

2

�

A− Ā
�

, ω=
1
2

�

A+ Ā
�

. (11)

The metric is bilinear in the dreibein and thus also bilinear in the Chern–Simons connections.

gµν = 2 tr(eµeν) =
`2

2
tr
�

(A− Ā)µ(A− Ā)ν
�

. (12)

All solutions of three dimensional gravity are locally gauge equivalent to each other, but
differ up to boundary terms or global identifications. Hence the specification of boundary
conditions is a crucial part of the definition of the theory under consideration. The boundary
conditions will determine which gauge transformations are proper gauge transformations, in
the sense that they keep the boundary data invariant, and which are improper gauge transfor-
mations that turn into symmetry transformations of the boundary theory.

1The relation between the Chern–Simons and metric formulations of Einstein gravity is not fully understood at
the quantum level.
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2.2 Boundary conditions

Suppose that our manifold M is topologically an annulus times time, with the outer boundary
being a hypersurface of constant large radius approaching the asymptotically AdS-boundary
and the inner boundary of the annulus corresponding to a stretched horizon, i.e., a hypersur-
face of constant radius r close to the locus of a black hole horizon. We equip the manifold
with a coordinate system (t,σ, r), where t is the time coordinate, σ ∼ σ+ 2π the coordinate
around the annulus and r some radial coordinate so that the asymptotic boundary is at r →∞
and the inner boundary ∂M at r → 0.

In section 2.3 we are going to impose boundary conditions inspired by near horizon consid-
erations at the inner boundary. While in principle one could independently impose a different
set of boundary conditions at the asymptotic boundary, we choose the same boundary condi-
tions there, which guarantees that the respective boundary conditions are (trivially) consistent
with each other. To make sure of this, it is convenient to express the Chern–Simons connection
in radial gauge

A= b(r)−1
�

d+ a(t,σ)
�

b(r) (13)

such that b(r) ∈ SL(2,R) depends only on the radial coordinate and the boundary connection
a(t,σ) = atdt + aσdσ only has legs in the (t,σ) plane. Moreover, the group element b(r) is
not allowed to vary, δb = 0. The choice (13) makes it manifest that the limits r →∞ and
r → 0 yield the same sets of boundary conditions. This is so because all the state-dependent
information is contained in the boundary connection a(t,σ), which is independent from the
radial coordinate.

On an equal time slice, the asymptotic charges on the boundary are obtained by function-
ally integrating

δQ[ε] = −
k

2π

∮

dσ tr
�

ε δaσ
�

(14)

for asymptotic symmetry transformations ε satisfying δaσ = ∂σε + [aσ,ε] (see e.g. [38]).
Hence aσ contains all information about the asymptotic charges, and specifying boundary

conditions means specifying the form of aσ and its allowed fluctuations. By contrast, the time
component at contains the information about the sources of the boundary theory. It can always
be taken to be proportional to an asymptotic symmetry transformation with arbitrary param-
eter, which would then play the rôle of a chemical potential for the corresponding boundary
charge [39].

The interplay between boundary conditions, holonomies of the gauge connection and
SL(2) conjugacy classes is reviewed in appendix A.

2.3 Near horizon boundary conditions

The boundary conditions of [22] are formulated as the set of diffeomorphisms preserving the
near horizon expansion of the non-extremal BTZ black hole. Their purpose was to be able to
ask conditional questions given the presence of a black hole in the bulk, so we restrict ourselves
to the BTZ black hole subsector of solutions. From the analysis in appendix A we see that in
radial gauge this is equivalent to imposing the connections to have hyperbolic holonomies. So
we may write them as (J ± are real functions)

aσ = J +(t,σ)L0, āσ = −J −(t,σ)L0 . (15)

Under boundary condition preserving gauge transformations they transform as

δεJ ±L0 = ±∂ση±L0, (16)
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where ε = η+ L0 + η+± L±1 and ε̄ = η− L0 + η−± L±1. The gauge parameters η±± do not appear
in the transformation laws or in the charges below, and hence correspond to proper gauge
transformations. The variation of the charges (14) is easily integrated, assuming that η± are
state-independent

Q[η±] = −
k

4π

∫

dση±J ± . (17)

A Fourier decomposition of the charges with respect to the angular coordinate σ yields an
asymptotic symmetry algebra consisting of two affine û(1) current algebras2

i{J±n , J±m}= ±
2
k

nδn+m, 0, {J±n , J∓m}= 0 . (18)

Here J±n =
1

2π

∮

dσJ ±einσ are the Fourier components of J ±. (Note the conventional factor
2
k relative to [22].) This algebra can be rewritten as a Heisenberg algebra with infinitely many
canonical generators Xn, Pn and two Casimirs (X0 and P0) at its center. Hence these near
horizon boundary conditions are also referred to as “Heisenberg boundary conditions”.

To see that (15) indeed corresponds to black hole solutions we should construct the metrics
associated with these boundary conditions. First we write at and āt proportional to a gauge
transformation with arbitrary, state-independent parameters ζ±.

at = −ζ+L0, āt = −ζ−L0. (19)

Then we should find a suitable group element b to construct the metric (12) from (13). The
choice of [40] is b = exp

� r
2`(L+ − L−)

�

and b̄ = b−1. Other choices for b(r) are suitable as
long as they lead to a non-degenerate metric which contains as much information as the gauge
connections a, ā. This particular choice leads to a metric which, expanded near r = 0 (and
assuming a co-rotating frame, ζ+ = ζ−) gives Rindler spacetime,

ds2 = −κ2r2 dt2 + dr2 + `2

4 (J
+ +J −)2 dϕ2 + a

�

J + −J −
�

r2 dtdϕ + . . . , (20)

with Rindler acceleration κ= ζ+ = ζ−. For simplicity henceforth we assume ζ± to be constant,
implying on-shell time-independence of J ± (dot means ∂t),

J̇ ± = 0 . (21)

Finally, writing the functions J ±(σ) as

J ±(σ) =
γ(σ)
`
±ω(σ), (22)

the full metric constructed from this configuration [using (12)] for constant J ± becomes the
BTZ metric with inner and outer horizons γ and `|ω|,

r+ = γ r− = `|ω| . (23)

There are a number of crucial differences as compared to Brown–Henneaux (or other)
boundary conditions:

• Soft Heisenberg hair. The zero modes J±0 commute with all generators J±n . Thus, non-
trivial descendants of some state generated by acting on it with products of J±n (with
negative n) have the same J±0 eigenvalues as the original state. Since the near horizon
Hamiltonian is given by the sum of these zero modes [22] this means that all such de-
scendants are soft in the sense that they do not change the energy eigenvalue, concurrent

2We write i times Poisson brackets so that the right hand sides do not change when passing to commutators.
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with the proposal of Hawking, Perry and Strominger. By contrast, for Brown–Henneaux
boundary conditions Virasoro descendants generated by acting with L±n (with negative
n) on a given state will raise the L±0 eigenvalues of such descendants as compared to
the original state, and hence descendants have a higher energy (as measured by the
Hamiltonian L+0 + L−0 ) than the state from which they originate.

• Fixed temperature. Since Rindler acceleration a = 2πT and horizon temperature T
are fixed we are automatically in the canonical ensemble. Their state-independence
implies that all states in our theory have the same temperature. By contrast, for Brown–
Henneaux boundary conditions different BTZ black holes generally have different tem-
peratures.

• Regularity of excitations. All soft hair excitations (with real J ±) of black holes are
compatible with regularity conditions, in particular with the absence of conical defects.
Such excited black holes are sometimes referred to as “black flowers”. By contrast, for
Brown–Henneaux boundary conditions only extremal black holes can carry (Virasoro)
excitations without generating singularities [41], and generally only one BTZ black hole
is free from conical defects for given temperature and angular rotation.

• Reducibility parameter. Gauge transformations that vanish on-shell are called reducibil-
ity parameters (see e.g. [42]). In a gravity context typically they do not exist outside
of mini-superspace models, since this would amount to vector fields that are Killing for
all geometries compatible with a given set of boundary conditions. For our boundary
conditions, however, ∂t is a Killing vector for all geometries, including softly excited
ones. Thus, we do have a non-trivial reducibility parameter. By contrast, for Brown–
Henneaux boundary conditions there is no vector field that is Killing for all Bañados
geometries (118) and hence no reducibility parameter.

• Abelianization. Up to the central extension, the near horizon symmetries (18) are
abelian, which at a technical level is a direct consequence of the connection (15) re-
siding exclusively in the Cartan subalgebra. By contrast, Brown–Henneaux boundary
conditions lead to non-abelian asymptotic symmetries (regardless of central extensions).

Before deriving the boundary action we comment on our terminology of ‘near horizon
boundary conditions’. Due to our separation (13) of radial and boundary coordinates the
charges (14) are independent from the radius and thus can be envisoned to be localized at
any r = const. hypersurface, including one near the horizon or, alternatively, one near the
asymptotic AdS boundary. Thus, one could also refer to our boundary conditions as ‘asymptotic
boundary conditions’, which is more in line with tradition. However, it is fair to say that from
an asymptotic observer’s perspective our boundary conditions are somewhat bizarre; as shown
in [22, 40] the usual Fefferman–Graham expansion reveals that the sources depend in a very
specific, but complicated, way on the charges, with no clear asymptotic interpretation, other
than that this leads to a rather simple set of asymptotic symmetries, given by (18). However,
as the list of properties above shows from a near horizon observer’s perspective the physical
meaning of our boundary conditions is very clear and natural: these boundary conditions
guarantee that surface gravity is state-independent and that all state-dependent excitations
in our theory are compatible with regularity at the horizon. This, together with the soft hair
property, seems like a good reason to associate our boundary conditions with a near horizon
observer rather than an asymptotic one.
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3 Reduction of the Chern–Simons action

In this section we reduce the Chern–Simons action to a two dimensional field theory by first
reducing AdS3 Einstein gravity to a sum of two chiral Wess–Zumino–Witten (WZW) models
and then imposing the boundary conditions as constraints on the WZW currents. We shall also
discuss the presence of non-trivial holonomies in the bulk. We consider here the reduction of
Chern–Simons theory to a single boundary of the annulus.

3.1 General aspects of the Hamiltonian reduction

Following [43] we rewrite the two Chern–Simons actions in (6) as two WZW actions for
SL(2,R). At this stage, the reduction is very similar to the one with asymptotically AdS bound-
ary conditions first observed in [26] (see also [44] for a review). It is most easily obtained
after a Hamiltonian decomposition of the action (6). We focus in the rest of this work on one
chiral sector (SCS[A]) and drop ±-superscripts, as the barred sector is analogous.

The Hamiltonian form of the action (7), supplemented by a boundary term Ibdy,

SCS[A] =
k

4π

∫

M
dtdrdσ tr

�

Ar Ȧσ − AσȦr + 2At Fσr

�

+ Ibdy (24)

is our starting point for the reduction. The boundary term Ibdy will be fixed such that the
variational principle is well-defined, i.e., the first variation of the action

δSCS[A]
�

�

EOM
= δIbdy −

k
2π

∫

∂M
dtdσ tr

�

AtδAσ
�

= δIbdy −
k

2π

∫

∂M
dtdσ tr

�

atδaσ
�

(25)

vanishes on-shell. In the second equality we used the decomposition (13), assuming again
state-independence of the group element b, i.e., δb = 0. We are going to fix Ibdy in the next
section and focus on the symplectic terms in (24) in the remainder of this section.

The constraint Fσr = 0 is solved locally by

Ai = G−1∂iG i = σ, r G ∈ SL(2,R) . (26)

Globally, there may (and will) be holonomies in the gauge connection. There are two
ways to treat them. One may write the gauge connection as sum of a periodic group element
g plus a term representing the holonomy. Alternatively, the holonomies can be encoded in the
periodicity properties of the group element g. We follow the latter approach and write

G(t, r, σ+ 2π) = h(t)G(t, r, σ) , (27)

where h ∈ SL(2,R), with tr(h) = Hσ(aσ) at the boundary, using the holonomy definition (111).
We assume in this work that h depends only on time.

With the assumptions above the action (24) decomposes into two boundary actions; one
at the r-boundary and a contribution at the σ-boundary

SCS[A] =
k

4π

∫

M
d3 x tr

�

∂σ(G
−1∂r GG−1∂t G)− ∂r(G

−1∂σGG−1∂t G)
�

(28)

− IWZ[G] + Ibdy ,

with the Wess–Zumino (WZ) term

IWZ[G] =
k

12π

∫

M
tr
�

G−1dG
�3

. (29)

The Wess-Zumino term evaluates to a total derivative as well and hence the action (28)
solely consists out of boundary contributions. In the remainder of this section we choose
G(t, r,σ)|∂M = g(t,σ). This implies b = 1 at the boundary, which holds particularly for the
choice of b two lines below (19).
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3.2 Near horizon action

To implement the boundary conditions described in section 2.3 it is convenient to perform a
Gauss decomposition of the SL(2,R) group element in the action (28)

G = eX L+eΦL0 eY L− , (30)

where Φ, X , Y are fields depending on all spacetime coordinates, while their pullback to the
boundary is r-independent since G|∂M = g. In terms of these fields, the action (28) splits into
two parts

S[A] = S[Φ, X , Y ] = Ir−bdy[Φ, X , Y ] + Iσ−bdy[Φ, X , Y ] , (31)

with

Ir−bdy[Φ, X , Y ] =
k

4π

∫

∂M
dtdσ

�1
2
Φ̇Φ′ − 2eΦX ′Ẏ

�

+ Ibdy . (32)

The σ-boundary terms receive contributions from the first term in (28) and from the Wess-
Zumino term (29). It reads

Iσ−bdy =
k

4π

∫

d3 x ∂σ

�

1
2
∂rΦΦ̇− 2eΦ∂r X Ẏ

�

. (33)

We can simplify theσ boundary term by using the periodicity conditions imposed by the holon-
omy. For our near horizon boundary conditions, the holonomy can be encoded by taking

h(t) = exp (2πJ0(t) L0) , (34)

where J0 is defined as the (suitably normalized) zero mode of J .

J0(t) =
1

2π

∮

dσJ (t,σ) . (35)

The periodicity property (27) implies periodicity conditions on the fields Φ, X and Y appearing
in the Gauss decomposition

Φ(t,σ+ 2π) = Φ(t,σ) + 2πJ0(t) , (36a)

X (t,σ+ 2π) = e−2πJ0(t)X (t,σ) , (36b)

Y (t,σ+ 2π) = Y (t,σ) . (36c)

This implies that the σ boundary term evaluates to a total r-derivative

Iσ−bdy =
k
4

∫

drdt ∂rΦ|σ=0 J̇0(t) , (37)

where Φ|σ=0 = Φ(t, r,σ = 0). The action thus gives a corner contribution to the r-boundary
action (32).

The action (32) depends only on the boundary values of the fields, so from now on when
referring to Φ, X and Y we exclusively mean their boundary values. The boundary conditions
aσ = J (t, σ)L0 impose the following conditions on these boundary fields

Φ′ = J , X ′ = 0, Y ′ + YΦ′ = 0 . (38)

These constraints remove the second term in the boundary action (32). Including the σ-
boundary term (37), the total action (31) simplifies to

Sred[Φ] = −
k

4π

∫

∂M
dtdσ

1
2
Φ̇Φ′ +

k
4

∫

dt Φ|σ=0 J̇0 + Ibdy . (39)
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And the field Φ satisfies a generalized periodicity condition

Φ(t, σ+ 2π) = Φ(t, σ) + 2πJ0(t) , (40)

which captures the holonomy in the bulk. We thus see that the holonomies of the Chern–
Simons connection, which correspond to the horizon radii of the BTZ black hole, appear as
linear terms in σ (or, equivalently, as momenta) in the mode expansion of Φ.

When expressed in terms of a periodic field Φ̃ defined through Φ(t,σ) = Φ̃(t,σ)+σJ0(t),
the boundary action reads

Sred[J0, Φ̃] = −
k

4π

∫

Σi

dtdσ
�

1
2

˙̃Φ(Φ̃′ + 2J0)
�

+ Ibdy (41)

up to total time derivatives. This action is equivalent to the boundary action obtained from
reducing U(1) Chern–Simons theory to the boundary [45].

4 Boundary Hamiltonians

In this section we fix the boundary term Ibdy in the Hamiltonian form of the Chern–Simons
action (24). The defining property of Ibdy is that its variation cancels the boundary term
obtained from the variation of the bulk Chern–Simons theory,

δIbdy =
k

2π

∫

∂M
dtdσ tr

�

at δaσ
�

. (42)

For our near horizon boundary conditions in section 2.3 the only term contributing to the
variation of aσ is δJ L0 and hence only the L0 component of at will contribute to the boundary
Hamiltonian. If we write at = −ζ(t,ϕ)L0 the variation of the boundary term becomes

δIbdy = −
k

4π

∫

∂M
dtdσζδJ . (43)

The remaining part of the specification of the boundary conditions consists of stating
whether ζ is allowed to be a functional of J and if so, which one. A minimal requirement
that we impose is finiteness and integrability of the boundary term Ibdy. Finiteness of (43) is
guaranteed by our choice of radial gauge (13). Integrability imposes a condition on ζ,

ζ(J ) = δH
δJ

, (44)

where H is the boundary Hamiltonian density that we shall refer to as “near horizon Hamil-
tonian density” when placing the boundary at or near the horizon.

There are infinitely many different choices of ζ(J ) that lead to an integrable boundary
term. We discuss a few of them in this section and give their gravitational interpretation,
starting with the choice that is most natural from a near horizon perspective.

4.1 Near horizon Hamiltonian

The simplest assumption is δζ = 0, corresponding to the near horizon boundary conditions
of [22]; additionally we assume ζ = constant. The variation of the boundary term is trivially
integrated

Ibdy = −
∫

dt HNH = −
∫

dtdσHNH = −
k

4π

∫

dtdσζJ = −k
2

∫

dt ζJ0 , (45)
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to obtain the near horizon Hamiltonian

HNH =
k
2
ζJ0 . (46)

As J0 commutes with all other modes Jn the Hamiltonian (46) assigns equal energy to each of
the Jn descendants of a state, which is the softness property mentioned in section 2.3.

In terms of the boundary scalar field theory (39), the near horizon action is given by

SNH[Φ] = −
k

4π

∫

dtdσ
1
2
Φ̇Φ′ −

k
2

∫

dt
�

ζJ0 −
1
2
Φ|σ=0 J̇0

�

. (47)

Note that the last terms do not contribute to the near horizon equations of motion for Φ, but
it fixes the time derivative of Φ0, the zero mode of Φ.

Φ̇′ = 0 , Φ̇0 = −ζ . (48)

The solution to the first field equations (48) is Φ(t,σ) = Φt(t) +Φσ(σ) which, together with
the periodicity condition (40), implies J̇0 = 0 and gives the mode decomposition announced
in (3),

Φ(t, σ)
�

�

EOM
= Φ0(t) + J0σ+

∑

n6=0

Jn

in
einσ , (49)

with Φ0(t) = −ζt +φ where φ is an arbitrary constant.
Since the near horizon Hamiltonian density (2) is a total derivative term, the only non-

trivial information in our near horizon theory is captured by the on-shell value of the Hamil-
tonian and by the symplectic structure. To discuss the latter we make off-shell a mode decom-
position like (49),

Φ(t, σ) = Φ0(t) + J0(t)σ+
∑

n6=0

Φn(t)e
inσ , Φn(t) :=

Jn(t)
in

, (50)

where we allow arbitrary time-dependence of Jn, and plug it into the near horizon action (47),
obtaining

SNH[Φ0, Jn] =
k
2

∫

dt
�

− Φ̇0J0 −
∑

n>0

Φ̇nJ−n − ζJ0

�

. (51)

The Hamiltonian action corresponding to (51) simplifies to3

SNH[Φn, Πn] =

∫

dt
�

∑

n≥0

ΠnΦ̇n −HNH

�

, (52)

with the near horizon Hamiltonian (46) and the momenta

Πn = −
k
2

J−n n≥ 0 , (53)

which are the main results of this paper announced in the introduction (1)-(3). Canonical
Poisson brackets {Φ0, Π0} = 1, {Φn, Πm} = δn, m then essentially recover (one chiral half of)
the near horizon symmetry algebra (18).

i {Jn, Jm}=
2
k

nδn+m, 0 , i {J0, Φ0}=
2i
k

. (54)

3The sum extends only over positive integers to avoid having to go through the Dirac analysis of systems with
second class constraints, i.e., the configuration variables are defined as positive index quantities Jn and the mo-
menta, up to a scale factor, by negative index quantities J−n. This is a trivial implementation of the more general
Faddeev–Jackiw method [48].
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The only change as compared to the near horizon symmetry algebra (18) is the presence of a
canonically conjugate, Φ0, for the zero mode J0. The relation (53), which basically states that
the momentum Π of the scalar field Φ is given by its spatial derivative, is a key characteristic
of self-dual scalar fields [47], so the action (52) resembles the Floreanini–Jackiw action [27].
We shall say a bit more about this relation in the next subsection when discussing Brown–
Henneaux type of boundary conditions from a near horizon perspective.

For later purposes it is convenient to split the scalar field

Φ= Φ+ +Φ− , (55)

into positive and negative modes (the subscripts± should not be confused with the superscripts
± referring to the chiral sectors, which we mostly suppress in this work)

Φ+(t, σ) = Φ0(t) +
∑

n>0

Jn(t)
in

einσ , Φ−(t, σ) = σJ0(t)−
∑

n>0

J−n(t)
in

e−inσ , (56)

and define the momentum

Π := −
k

4π
Φ′− = −

k
4π

�

J0(t) +
∑

n>0

J−n(t)e
−inσ

�

, (57)

in terms of which the symplectic part of the action (52) is given by
∫

dtdσΠΦ̇+.
Since the Hamiltonian HNH in (46) commutes with all the oscillators, Jn descendants cannot

raise or lower the energy of any state in the theory. We thus recover the expected statement
that Jn descendants are soft hair on the black hole horizon.

With possible applications to microstates and black hole entropy in mind this soft hair de-
generacy is a stumbling block, since there is no sensible way to count the number of soft states
contributing to a black hole at a given energy J0. Proposals to lift the degeneracy of the soft
hairs were made in the literature [31, 32]. In section 5 below we propose a new way for lift-
ing the soft hair degeneracy by constructing a natural hierarchy of integrable boundary terms
(44), and then taking the limit to the near horizon Hamiltonian above. In order to achieve this
we introduce this hierarchy in the remainder of this section, starting with a reconsideration of
Brown–Henneaux boundary conditions from a near horizon perspective.

4.2 Chiral bosons, Liouville theory and Schwarzian action

To set the stage for a generalization of the boundary action, we discuss the relation of the
above reduction to the more familiar reduction of the action using Brown–Henneaux boundary
conditions, leading to Liouville theory [26].

In [22] it was shown how the near horizon boundary conditions are related to the usual
Brown–Henneaux boundary conditions with chemical potentials. Using slightly different con-
ventions here, we map the near horizon boundary conditions aNH

σ given by (15) to the Brown–
Henneaux ones [aBH

σ given in (112)] by a suitable gauge transformation g,

aBH
σ = g−1(∂σ + aNH

σ )g . (58)

This map relates the charges in both formulations of the boundary conditions as

L= 1
4
J 2 +

1
2
J ′ . (59)

The chemical potentials are also related to each other, but in a state-dependent way; i.e. the
relation involves the charges J

ζ= µ′ −Jµ . (60)
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Assuming δµ= 0 and integrating (44) yields the Brown–Henneaux boundary Hamiltonian

Ibdy =
k

4π

∫

∂M
dtdσ µ

�1
2
J 2 +J ′

�

=
k

2π

∫

∂M
dtdσ µL . (61)

Expressed in terms of the scalar field Φ, one chiral half of the reduced action with Brown–
Henneaux boundary conditions and arbitrary chemical potential is given by a boundary action

S[Φ] =

∫

∂M
dtdσ

�

ΠΦ̇+ +
µ k
8π

�

(Φ′)2 + 2Φ′′
�

�

, (62)

analogous to the the near horizon action (47), but with a different Hamiltonian density,

HBH = −
kµ
8π

�

(Φ′)2 + 2Φ′′
�

. (63)

It is also possible to derive this boundary action directly from imposing the constraints
on aσ and at following from the Brown–Henneaux boundary conditions (112) and (117).
The constraints on the fields X , Y and Φ appearing in the Gauss decomposition (30) for the
Brown–Henneaux boundary conditions are

X ′ = e−Φ, Φ′ = −2Y , (64)

andL is related to the fieldΦ by the Miura transformation (or, equivalently, a twisted Sugawara
construction)

L= 1
4

�

Φ′
�2
+

1
2
Φ′′ . (65)

Implementing these constraints into the action (28) gives the action (62) up to total deriva-
tives. The periodicity condition (40) on the field Φ implies

X (σ+ 2π) = e−2πJ0 X (σ) . (66)

Here the holonomy has been parameterized by (34), and J0 is related to the zero modes of L0
via equation (59).

Under conformal transformations generated by ξ the energy-momentum flux component
L transforms with an infinitesimal Schwarzian derivative, while X transforms like a weight-0
primary, Φ like a twisted weight-0 primary,4 e−Φ like a weight-1 primary and Y like a twisted
weight-1 primary. The corresponding transformation laws are given by (115) and

δξX = ξX ′, δξΦ= ξΦ
′ − ξ′, (67)

δξe−Φ =
�

ξe−Φ
�′

, δξY = ξY ′ + ξ′ Y + 1
2 ξ
′′ . (68)

The formulas above can be derived starting from the near horizon transformation law (16),
using a relation analogous to (60), namely η= ξJ − ξ′, with J = Φ′.

In the case of constant chemical potentials (and discarding holonomy terms)5 we may com-
pare with known results in the literature. The last term in the action (62) is a total derivative
and the reduced action is equal to the Floreanini–Jackiw action [27] of a chiral boson [47]
with propagation speed µ. This is a key difference to near horizon boundary conditions, where
the propagation speed tends to zero.

4Entanglement entropy transforms in the same way, see [49]. For vacuum solutions to the Einstein equations Φ
is essentially equivalent to entanglement entropy and the equality (65) corresponds to saturation of the quantum
null energy condition [50].

5For a recent analysis including the holonomies and both boundaries of the annulus, see [45]
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Setting µ= 1/` and combining the two chiral sectors reproduces the results of the reduc-
tion under Brown–Henneaux boundary conditions performed in [51], before the two chiral
WZW models are combined into a non-chiral WZW model [52].

S[Φ±] = −
k

8π

∫

∂M
dtdσ

�

Φ̇+Φ+ ′ − Φ̇−Φ−′ −
1
`
Φ+ ′Φ+ ′ −

1
`
Φ−′Φ−′

�

. (69)

It was shown in [51] that for vanishing holonomies this action is related to the Hamiltonian
form of Liouville theory by a series of field redefinitions (see (3.7)-(3.11) of [51] for more
details). This connects our work to the result of [26].

Another representation of the action (62) is obtained by changing variables to X using the
constraint X ′ = e−Φ. Then the kinetic term Φ̇Φ′ is equal to the geometric action of the Virasoro
group on its coadjoint orbit [53] first derived by Alekseev and Shatashvili [54]

S[X ] =
k

4π

∫

dtdσ
�

Ẋ ′′

X ′
−

3
2

X ′′Ẋ ′

X ′2
−µ{X ,σ}

�

, (70)

where the Hamiltonian term is given by the Schwarzian derivative

{X ,σ}=
X ′′′

X ′
−

3
2

�

X ′′

X ′

�2

. (71)

To obtain the formulation of the Alekseev–Shatashvili action with non-zero representative
on the coadjoint orbit one should make a field redefinition X = exp(−J0 f (t,σ)) such that
f (t, σ+ 2π) = f (t, σ) + 2π reproduces the periodicity conditions (66) for X . This gives the
total action (for µ= 1)

S[ f ; J0] =
k

4π

∫

dtdσ
�

ḟ ′′

f ′
−

3
2

f ′′ ḟ ′

f ′2
− { f ,σ} −

1
2

J2
0 f ′( ḟ − f ′)

�

. (72)

The orbit representative, denoted as b0 in [54] is related to the zero mode charges of the bulk
solution as

b0 =
k

8π
J2

0 =
c

12π
L0 , (73)

where L0 is the zero mode of L. From this formula it is clear that the exceptional PSL(2,R)
invariant orbit at b0 = −

c
48π corresponds to the global AdS3 solution with L0 = −

1
4 , while

the BTZ black holes correspond to orbits with b0 > 0. Our near horizon boundary conditions
do not include the global AdS3 ground state unless we analytically continue J0 to imaginary
values such that J2

0 = −1.
The relation between this action and the boundary theory of pure AdS3 gravity with Brown–

Henneaux boundary conditions was reported in [55] and expanded upon recently in [56]. It is
interesting to note that besides the formulation of the boundary action as the geometric action
on the coadjoint orbit of the Virasoro group, it can also be obtained as the geometric action
for an affine û(1) Kac–Moody group. For affine Lie groups the Kirillov–Kostant orbit method
gives the WZW model of the corresponding group [57]. In the case of û(1), the symplectic
term of the geometric action is the near-horizon action (39).6 As discussed in [55], suitable
Hamiltonians for geometric actions are (invariant tensor products of) Noether charges for
global symmetries of the symplectic term. In this context the near-horizon Hamiltonian (46)
can be understood as the Noether charge for the shift symmetry

Φ(t,σ)→ Φ(t,σ) +φ(t) , (74)

where φ(t) is an arbitrary (but fixed) function of time. The Brown–Henneaux Hamiltonian
(63) is the square of this Noether charge (up to a total derivative).

6To be more precise, the near-horizon action corresponds to the term proportional to the central charge of the
û(1) geometric action. The orbit representative term can be obtained by a field redefinition to a periodic field ϕ
as Φ(t,σ) = ϕ(t,σ) + J0σ.
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4.3 KdV action and symmetries

We generalize now the key relation (60) between near horizon and Brown–Henneaux chemical
potentials in a specific non-linear way, while maintaining finiteness and integrability of the
boundary charges as well as the shift symmetry (74). This will lead to novel boundary actions.
The Hamiltonian of the boundary theory is modified by choosing boundary conditions where
the chemical potentials ζ depend on the charges J . The choice (60) in the previous subsection
was a special case of the general possibility (44). In [58] (see also [59,60]) similar arguments
were used to derive the KdV hierarchy from boundary conditions on AdS3 gravity, where the
Brown–Henneaux charges L solve the KdV equation. In this subsection we show how the
boundary action (39) reduces to the action principle leading to the KdV equation for the near
horizon charges J instead of for L.

The idea is to choose the chemical potentials ζ such that the boundary term (25) integrates
to a differential polynomial of rank N representing the integral of motion of the KdV equation.
A useful basis of chemical potentials ζ are the Gelfand–Dikii differential polynomials RN (J )
[61], as they automatically satisfy the integrability condition (44).

Starting from R0 = 1, these differential polynomials are defined recursively by

R′N+1 =
N + 1

2N + 1
DRN , (75)

for D = ∂σJ + 2J ∂σ + 1
2∂

3
σ . Taking

ζN = RN (J ) , (76)

and integrating (44) leads to a hierarchy of boundary Hamiltonians

H0 =

∫

dσJ , (77)

H1 =

∫

dσ
1
2
J 2, (78)

H2 =

∫

dσ
�1

3
J 3 −

1
6
J ′2

�

, (79)

HN =
1

N + 1

∫

dσRN+1(J ) . (80)

The Hamiltonian H0 is identical to the near horizon Hamiltonian (46) for constant ζ. The
Hamiltonian H1 (when multiplied by constant µ) leads to the chiral boson action (62) follow-
ing from the Brown–Henneaux boundary conditions, which are now understood as deformed
boundary conditions on the horizon. The Hamiltonian H2 [after rescaling by −k/(4π) and
using the definitions (55)-(57)] leads to the boundary action

SKdV[Φ] =

∫

dtdσ

�

ΠΦ̇+ +
k

4π

�1
3

�

Φ′
�3 −

1
6

�

Φ′′
�2�
�

. (81)

The field equations for Φ following from the KdV action (81) can be written in terms of J = Φ′
as

J̇ = 2JJ ′ + 1
3
J ′′′ . (82)

This is the KdV equation for the current J . In this case the chemical potential is ζ2 = J 2+ 1
3 J

′′

which means the bulk field equations Ftϕ = 0 also reproduce the KdV equation (82). Finally,
the identity (80) was derived in [61], see their Eq. (16’) [taking into account the respective
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normalizations of RN ] and their appendix 1. Appendix B contains a discussion of Gelfand–Dikii
differential polynomials and associated Hamiltonian densities for general N .

Thus, we have constructed a (KdV) hierarchy of different boundary conditions labelled by
a non-negative integer N , with the case N = 0 corresponding to near horizon boundary con-
ditions, N = 1 to Brown–Henneaux boundary conditions, N = 2 to KdV boundary conditions
and N > 2 leading to boundary Hamiltonian densities of the form

HN [Φ]∼
1

N + 1
J N+1 +

N−1
∑

i=1

hi, NJ N−i−1
�

∂ i
σJ

�2
+Hnl

N , J = Φ′ (83)

with some rational coefficients hi, N and additional terms of similar form in Hnl
N when N ≥ 5,

see appendix B for details. The equations of motion

J̇ = N J N−1J ′ +
N−2
∑

i=1

ĥi, NJ N−i−1 ↔∂
2i+1

σ J + 2(N !)2

(2N)!
∂ 2N−1
σ J , (84)

descending from the action

SN [Φ] = −
k

4π

∫

dtdσ
�1

2
Φ̇Φ′ −HN [Φ]

�

, (85)

generalize the KdV equation (82), where ĥi, N are rational multi-coefficients and
↔
∂ means that

some derivatives may act to the left. The expression on the right hand side of the equations of
motion (84) is given by ∂σRN , see appendix B for explicit results up to N = 6.

The action (85) (up to a total derivative term) again has the shift symmetry (74). The field
equations (84) for N > 1 have an anisotropic scale invariance with odd anisotropy coefficient

N > 1 : t → λ2N−1 t, σ→ λσ, Φ→ λ−1Φ . (86)

The Lifshitz type scaling behavior (86) resembles the one found in [58], but differs from it since
our basic entity is the spin-1 current J = Φ′, whereas in [58] the basic entity was the spin-2
current L. Note that (86) is an invariance of the equations of motion, but not of the action
(85), which gets multiplied by a factor 1/λ2 (see [62] for a discussion of such invariances).
For N = 1 the scale invariance becomes isotropic, and the transformation weight of J could
be arbitrary. For N = 0 additionally the transformation weight of time becomes arbitrary. To
fix this arbitrariness, for N = 0 and N = 1 we demand that not only the equations of motion
are invariant, but also the action (85), obtaining

N = 0 or 1 : t → λN t, σ→ λσ, Φ→ Φ . (87)

We consider finally the near horizon symmetries induced by deformed boundary conditions
within the KdV hierarchy, starting with the two known cases. For N = 0 the near horizon
boundary conditions remain undeformed and the near horizon symmetries are given by spin-
1 currents (18). For N = 1 the near horizon boundary conditions are deformed to Brown–
Henneaux and the near horizon symmetries are given by spin-2 currents

Ln =
k
4

∑

p

Jn−pJp + . . . , (88)

where the ellipsis denotes a possible twist term proportional to nJn. The Sugawara relation
(88) is compatible with the Miura-transformation (65) and with the boundary Hamiltonian
H1 (78), and leads to the Poisson brackets

i{Ln, Lm}= (n−m) Ln+m + . . . , (89)

i{Ln, Jm}= −m Jn+m + . . . , (90)
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where the ellipses denote possible central extensions depending on the twist term. Since (89)
is nothing but the Virasoro algebra, Ln are spin-2 currents, with their usual brackets with the
spin-1 current (90).

For N = 2 the situation is qualitatively different from N = 0 and N = 1, since one obtains
infinitely many mutually commuting charges, namely all the Hi [61]. Note that, for instance,
H0 is the zero mode of the tower of N = 0 charges Jn, H1 is the zero mode of the tower of
N = 1 charges Ln, and Hi (83) for i ≥ 2 are zero mode charges given by the whole hierarchy
of boundary Hamiltonians. For N > 2 the situation is identical to N = 2. Similar results
were derived for a KdV hierarchy based on the Brown–Henneaux boundary charges by Perez,
Tempo and Troncoso in [58], where our û(1) charges J are replaced by the Virasoro charges
L. Most of their conclusions carry over to the present case, including the statements made in
this paragraph.

5 KdV scaling limit for the near horizon Hamiltonian

In this section we consider analytic continuation of the family of boundary Hamiltonian den-
sities (83) to real N ∈ [0, 1] with the intention of taking the limit N = ε→ 0+, assuming large
J . We start by omitting all derivative terms in J . There are three reasons for this.

1. For the boundary points of the interval of interest, N = 0, 1, the derivative terms are
absent, so it does make sense to assume also the analytic continuation between these
two points maintains this property.

2. In the limit of large black holes (which is necessary for a good semi-classical description)
the quantity J parametrically is large, which means that the first term in (83) dominates
over all the remaining terms.

3. When continuing analytically a good guiding principle is to maintain as many symmetries
as possible. The scaling symmetry (87) of the boundary action persists if there are no
derivative terms present.

In the continuous family of boundary Hamiltonians

Hε =
k

4π
ζε

ε(1+ ε)

∫

dσJ 1+ε, 0≤ ε≤ 1 , ζε ∈ R , (91)

a convenient normalization factor in front of the integral is introduced in order to have an
interesting limit ε→ 0+,

lim
ε→0+

Hε =
k

4π
ζε

∫

dσJ lnJ =: Hlog , (92)

where we dropped a boundary term before taking the limit. The associated action at finite ε
[using again the definitions (55)-(57)]

Sε[Φ] =

∫

dtdσ
�

ΠΦ̇+ −
k

4π
ζε

ε(1+ ε)

�

Φ′
�1+ε�

, (93)

yields the limiting action

lim
ε→0+

Sε[Φ] =

∫

dtdσ
�

ΠΦ̇+ −
k

4π
ζεΦ

′ ln
�

Φ′
�

�

=: Slog[Φ] . (94)
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The action (93) is invariant under anisotropic scalings

t → λε t, σ→ λσ, Φ→ Φ . (95)

For ε = 1,0 the result (87) is recovered. Also the limiting action (94) has this invariance for
constant ζε, since the inhomogeneous term coming from the logarithm is a total derivative
term. Gratifyingly, in the limit of vanishing ε the scale invariance above is compatible with the
one of near horizon boundary conditions [40,58]

The field equations derived from the limiting action (94),

Φ̇′ = −ζε
Φ′′

Φ′
, (96)

can easily be integrated once,
Φ̇= −ζε(1+ lnΦ′) , (97)

where the integration constant is fixed by the J0 field equation.
The off-shell Fourier-like expansion (50) for Φ permits to decompose the integrated field

equations (97) in the limit of large J0,

Φ̇0 = −ζε (1+ ln J0) , (98a)

J̇0 = 0 , (98b)

J̇n = −inζε
Jn

J0
+ . . . , (98c)

with the solution

Φ(t, σ) = Φ0(t) + J0(t)σ+
∑

n 6=0

Jn(t)
in

einσ EOM
= φ(t) + J0σ+

∑

n6=0

J (0)n

in
ein
�

σ−ζε t/J0

�

+ . . . , (99)

where φ(t) = −ζε(1+ ln J0)t +φ0, the ellipses denote subleading terms in 1/J0, and J (0)n are
integration constants of individual soft hair Fourier modes. Note that J̇0 vanishes as conse-
quence of the field equations, so it is not an assumption but rather a result that the quantity
determining the holonomy at ε= 0 is time independent.

The main physical consequence of the limiting action (94) as compared to the near horizon
action (52) is that the soft hair excitations acquire a positive energy, which we calculate now.

Plugging the mode expansion (50) into the Hamiltonian (92) yields

Hlog =
kζε
4π

∫

dσ
�

J0(t) +
∑

n6=0

Jn(t)e
inσ
��

∑

n6=0

Jn(t)einσ

J0(t)
−

1
2

�

∑

n6=0

Jn(t)einσ

J0(t)

�2

+ . . .
�

, (100)

where the ellipsis refers to higher order terms suppressed at least by 1/J3
0 and to terms that

exclusively depend on the zero mode J0 and thus do not contribute to the dynamics of soft
hair excitations. Neglecting these terms, the Hamiltonian (100) integrates to

Hlog =
kζε

2J0(t)

∑

n>0

Jn(t)J−n(t)
EOM
=

kζε
2J0

∑

n>0

J (0)n J (0)−n . (101)

Up to an overall factor, the term displayed in (101) is essentially the Sugawara stress tensor
of a spin-1 current. If expressed in terms of momenta (53) the limiting Hamiltonian

Hlog[Jn, Πn] =
ikζε
4Π0

∑

n>0

nJnΠn (102)
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is of ‘x p-form’. The limiting Hamiltonian action

Slog[Φn, Πn] =

∫

dt
�∑

n≥0

Π̇nJn −Hlog

�

, (103)

recovers the on-shell condition J0 = const. and produces equations of motion for the soft hair
excitations

J̇n = −inζε
Jn

J0
, Π̇n = inζε

Πn

J0
, (104)

that coincide with (98), up to terms suppressed by 1/J2
0 .

Thus, soft hair excitations of the vacuum, J−n|0〉, are not soft with respect to Hlog, but rather
are finite energy eigenstates,7

HlogJ−n|0〉= [Hlog, J−n]|0〉=
ζε
J0

n J−n|0〉 , (105)

with eigenvalues proportional to n.

6 Discussion

We conclude with a comparison and intriguing relations to previous results and proposals, in
particular the fluff proposal [31,32], starting with the latter.

The fluff proposal envisions the BTZ microstates as û(1) descendents of the vacuum
�

�BTZ micro ({n±i })
�

=
∏

J+−n+i
J−−n−i

�

�0
�

, J±n
�

�0
�

= 0 , ∀n≥ 0 , (106)

labelled by two sets of positive integers {n±i } subject to the spectral constraints

∑

n±i = c∆±, ∆± =
1
2

�

`MBTZ ± JBTZ

�

=
c

24

�

J±0
�2

, (107)

that provide a cutoff on these descendants. (It is assumed that the products of Brown–Henneaux
central charge c and weights ∆± are large integers; MBTZ and JBTZ are Brown–Henneaux mass
and angular momentum.) The spectral constraints (107) give soft hair excitations an effective
energy linear in the mode number n. This property leads to a Hardy–Ramanujan counting [63]
of the degeneracy of û(1) descendants (dubbed “fluff”) leading to the Bekenstein–Hawking en-
tropy of BTZ black holes. While in [31] the constraints (107) were imposed essentially by an
argument going back to Bañados [64], in [32] they were derived from independent working
assumptions. One of them required the existence of a weight-1 CFT primary W = exp (−Φ)
with the twisted periodicity propertyW(τ, σ+2π) = exp (−2πJ0)W(τ, σ) and non-vanishing
commutation relation between the zero mode operator Φ̂0 of Φ and the zero mode operator
Ĵ0 of the û(1) current.

Key aspects of the fluff proposal reproduced by our limiting action (103) with (102) are

1. the fact that soft hair excitations fall into û(1) current algebra representations (54)

2. the existence of a canonically conjugate to the near horizon zero mode charge J0, namely
Φ0, with Poisson bracket (54)

3. the existence of a weight-1 CFT primary operator X ′ = W = exp (−Φ) in (64) with
generalized periodicity property (40)

7In evaluating the commutator (105) we made the canonical replacement i{, } → [, ] and used the left Poisson
bracket (54), since we still have the same symplectic structure as in the undeformed theory.
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4. the lift of soft hair degeneracy to energies linear in the mode number n, see (105).

Additionally, the anisotropic scale invariance of the original near horizon action (47) is shared
by the limiting action (94), which played a crucial rôle in a Cardy-type of counting of BTZ
microstates from a near horizon perspective [65]. We have thus confirmed crucial aspects of
the fluff proposal [31,32].

However, we have not succeeded in deriving all important aspects of the fluff proposal.
In particular, the free parameter ζε appearing as prefactor in the Hamiltonian (102) is un-
determined. In order to obtain the spectral constraints (107) we need to fix it to the value

desired: ζ±ε =
J±0
c

(108)

in each chiral sector, assuming H±
log

�

�BTZ micro ({n±i })
�

= ∆±
�

�BTZ micro ({n±i })
�

for BTZ mi-
crostates (106). There are two reasons why the choice (108) is not obvious. First of all, if we
keep J0 as state-dependent parameter then it is impossible to demand (108) without deforming
the boundary conditions, since ζε is a chemical potential. Second, even if we allow for possi-
ble dependence of J0 the choice (108) is not the most natural one; instead, the commutation
relation (105) and the solution (99) both may suggest ζε = J0 as ‘natural’.

We explain now how these issues could be resolved. The first issue is reminiscent of the
dilaton gravity description [66] of the SYK model [67–70], the key issue being that the dilaton
is allowed to fluctuate, while its zero mode is kept fixed [71, 72]. To resolve this issue, we
can simply impose the additional restriction that J0 is kept fixed (like in the microcanonical
ensemble) while all other Fourier excitations Jn are allowed to vary. The asymptotic symmetry
algebra (18) is compatible with this restriction.

The second issue was already encountered in Carlip’s attempt to account for the BTZ black
hole entropy, see [73] and refs. therein. Without further input, a û(1) current naturally leads to
a Virasoro algebra with (quantum) central charge c = 1 rather than a (classical) central charge
with Brown–Henneaux value c = 3`/(2G), which would lead to a considerable under-counting
of the degeneracy of microstates.

Therefore, for the fluff proposal to work it is important not only to provide a controlled
cutoff on the soft hair spectrum (we have succeeded in doing so in the present work), but
also to produce the desired result (108). In [32] this issue was resolved by a set of Bohr-type
quantization conditions that led to a counting of a discrete set of conical defect geometries
with certain rational values for the conical defect as building blocks for the BTZ microstates. It
would be desirable to derive these conditions [or to directly derive (108)] from first principles.

In our way of providing a cutoff for soft hair excitations we used the KdV hierarchy and the
gravity-approximation. Since the latter corresponds to the large central charge approximation
on the CFT side, it could be rewarding to compare our results with corresponding large c
results, such as [74,75].

Finally, let us point out two different ways of interpreting our near horizon boundary con-
ditions as ultrarelativistic limit of some other theory.

The first one starts from the Floreanini–Jackiw action (62), where the parameter µ has
the physical interpretation as propagation speed of the chiral boson. The ultrarelativistic (or
Carrollian) limit is µ→ 0 and recovers our near horizon action (47). This concurs, at least in
spirit, with the near horizon analysis by Donnay and Marteau [76] and Penna [77], who found
Carrollian structures at black hole horizons.

The second consideration starts from bosonic string theory, where the string spectrum is
given by

Xµ±(t ±σ) =
xµ

2
+
`2

s

2
pµ± (t ±σ) +

`sp
2

∑

n6=0

α±−n

in
ein(t±σ) . (109)
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In the naive ultrarelativistic limit t → εt, σ→ σ, ε→ 0 (109) reduces to

Xµ±(σ) =
xµ

2
±
`2

s

2
pµ±σ+

`sp
2

∑

n6=0

α±−n

in
e±inσ , (110)

which is equivalent to the on-shell expansion (49) for constant Φ0, identifying xµ = 2Φ0,
`2

s pµ+ = 2J0 and `sα
+
−n =

p
2Jn (and similarly for the other chiral sector). A more careful

ultrarelativistic limit also features the linear term in time present in (49) and is relevant for
tensionless strings [28], which suggests [78–81] that (nearly) tensionless strings could play
a key rôle in the near horizon descriptions of generic black holes and in understanding their
microstates.
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A Brown–Henneaux boundary conditions and holonomies

As discusssed in the main text, boundary conditions are provided by specifying the form of
aσ. Being a flat connection, aσ can locally always be written as g−1∂σg. What distinguishes
solutions are the global charges, which in turn are measured by Wilson loops, or holonomies
of the connection around a closed σ-cycle.

Hσ = tr
�

P exp

∮

aσ dσ
�

. (111)

Because aσ is an element of the sl(2,R) algebra, the holonomy around the σ-cycle is charac-
terized by the conjugacy classes of SL(2,R). These are

Hyperbolic. Conjugate to dilatation g ∼
�

e2πλ 0
0 e−2πλ

�

, with holonomy

Hσ = 2cosh(2πλ)

Parabolic. Conjugate to translation g ∼
�

1 2πa
0 1

�

, with holonomy Hσ = 2
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Elliptic. Conjugate to rotation g ∼
�

cos 2πα sin2πα
− sin 2πα cos 2πα

�

, with holonomy Hσ = 2cos(2πα)

To obtain the boundary conditions of Brown and Henneaux we take aσ to be in the ‘highest
weight gauge’ (and similarly for āσ)

aσ = L+ −L(t,σ)L− =
�

0 L
1 0

�

. (112)

This choice indeed leads to an asymptotic Virasoro symmetry algebra with the Brown–
Henneaux central charge, which can be shown by computing the charges and the variations
of aσ under boundary condition preserving gauge transformations ε.

δεaσ = ∂σε + [aσ,ε] =

�

0 δεL
0 0

�

. (113)

Expanding ε = εn Ln yields ε+ = ε+(ε+) and

ε0 = −∂σε+, ε− =
1
2
∂ 2
σε
+ −Lε+, (114)

δεL= ∂σLε+ + 2L∂σε+ −
1
2
∂ 3
σε
+ . (115)

Using this result in the expression for the charges (14) and assuming ε+ is state-independent,
i.e., δε+ = 0, one may trivially integrate them and finds

Q(ε) =
k

2π

∮

dσε+L . (116)

After expanding the charges in Fourier modes and using the fact that the Poisson brackets of
the charges can be computed by {Q(ε1),Q(ε2)}= δε1

Q(ε2), one can easily see the appearance
of the Virasoro algebra with a central charge c = 6k = 3`

2G from the transformation law (115).
The time component part of the connection can be taken to have the same structure as the

gauge parameter ε, but with an arbitrary function µ instead of ε+. Explicitly,

at = ε(µ) = µL+ − ∂σµL0 +
�1

2
∂ 2µ−Lµ

�

L− . (117)

The metrics (with µ = 1) to which these solutions correspond are the so-called Bañados-
metrics [82]. They are obtained by taking b(r) = exp(r/` L0) (and similarly for the barred
sector) and plugging the connection into (12)

ds2 = dr2 − `2
�

er/`dx+ − e−r/`L̄(x−)dx−
� �

er/`dx− − e−r/`L(x+)dx+
�

. (118)

Here we used light cone coordinates x± = t/`±σ.
We can characterize the Bañados solutions by considering the holonomies of the connec-

tions aσ and āσ. The holonomy of the connection (112) (for constant L) is given by

Hσ(aσ) = tr
�

exp(2π
p

4L)L0

�

= e2π
p
L + e−2π

p
L , (119)

and likewise for the other sector. This implies that for L > 0 the holonomy falls into the
hyperbolic conjugacy class of SL(2,R). When L= 0, the holonomy is parabolic and for L< 0
it is elliptic.

22

https://scipost.org
https://scipost.org/SciPostPhys.8.1.010


SciPost Phys. 8, 010 (2020)

The Bañados solutions for

L= 2G
`
(`m+ j), L̄= 2G

`
(`m− j) , (120)

correspond to BTZ black holes with mass m and angular momentum j. Thus, generic BTZ black
holes have hyperbolic holonomies, whereas extremal black holes (where either L of L̄ = 0)
have one connection with parabolic holonomy while the other is still hyperbolic. Whenever
L or L̄ is negative, then the holonomy is conjugate to a complex SL(2,R) element unless
L = −1

4 n2 and likewise for L̄. At these points the bulk solution has an angular periodicity of
2πn, with n = 1 corresponding to the global AdS3 solution. Any other negative value of L, L̄
will give conical singularities.

B Gelfand–Dikii differential polynomials and Hamiltonians

We list here the first couple of Gelfand–Dikii differential polynomials generated recursively
through the defining relation (75)8

R0 = 1 , R1 = J , R2 = J 2+1
3 J

′′ , (121)

R3 = J 3 − 1
2 J

′2+
�

JJ ′
�′
+ 1

10 J
(4) , (122)

R4 = J 4 − 2JJ ′2 + 1
5 J

′′2+2
3

�

J 3
�′′
+ 2

5

�

JJ ′′
�′′
+ 1

35 J
(6) , (123)

R5 = J 5 − 5J 2J ′2 +JJ ′′2 − 1
14 J

′′′2+5
6

�

J 4
�′′
+
�

J 2J ′′
�′′
+ 5

9

�

J ′3
�′

+1
7

�

JJ (4)
�′′
+ 1

7

�

J ′J (4)
�′
+ 13

42

�

J ′′2
�′′
+ 1

126J
(8) , (124)

R6 = J 6 − 10J 3J ′2 + 3J 2J ′′2 − 3
7 JJ ′′′2 + 1

42

�

J (4)
�2−5

6 J
′4 + 30

63 J
′′3

+
�

J 5
�′′
+ 2

�

J 3J ′′
�′′
+ 10

3

�

JJ ′3
�′
+ 1

7

�

3J 2J (4) + 6JJ ′J ′′′ + 7J ′2J ′′
�′′

+ 1
21

�

60JJ ′′J ′′′ + 9J ′J ′′2 +JJ (7) + 3J ′J (6) + 8J ′′J (5) + 11J ′′′J (4)
�′

+ 1
462 J

(10) , (125)
... =

...

RN = J N + N
N−2
∑

i=1

(−1)i
((i + 1)!)2

(2i + 2)!

�

N − 1
i + 1

�

J N−i−2
�

∂ i
σJ

�2
+N Hnl

N−1+∂σRtd
N , (126)

where Hnl
N−1 is defined below and Rtd

N captures total derivative terms. Their schematic form
for N > 2 is given by

Rtd
N =

∑

{bi,N }

r{bi,N }J
b0,N

2N−5
∏

i=1

�

∂ i
σJ

�bi,N +
21−N N !
(2N − 1)!!

∂ 2N−3
σ J , (127)

where the sets of non-negative integers {bi,N} are subject to the constraints

2N−5
∑

i=0

�

i + 2
�

bi,N = 2N − 1 , (128)

and r{bi,N } are rational coefficients for each of these sets. The expression Hnl
N denotes terms at

least cubic in derivatives of J . These terms vanish for N < 5 and otherwise read

Hnl
N =

∑

{ai,N }

h{ai,N }J
a0,N

N−4
∏

i=1

�

∂ i
σJ

�ai,N + h{a2,N=1, aN−3,N=2}J ′′
�

∂ N−3
σ J

�2
, (129)

8The coefficient of the third-derivative term in D defined below (75) is free. We fixed it to 1
2 , which, together

with our normalization choice for RN , explains differences to (and between) results in the literature.
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where the sets of non-negative integers {ai,N} are subject to the constraints

N−4
∑

i=0

(i + 2) ai,N = 2N + 2 ,
N−4
∑

i=1

ai,N ≥ 3 , aimax,N ≥ 2 , (130)

with aimax,N denoting the number for the largest value of i = imax that leads to non-vanishing
ai,N within a given set {ai,N}, and h{ai,N } are rational coefficients for each of these sets. Explicit
results for N = 5,6, 7 are

Hnl
5= −

5
36 J

′4 + 5
63 J

′′3 , (131)

Hnl
6= −

5
6 JJ ′4 + 10

21 JJ ′′3 + 1
2 J

′2J ′′2 − 5
42 J

′′J ′′′2 , (132)

Hnl
7= −

35
12 J

2J ′4 + 5
3 J

2J ′′3 + 7
2 JJ ′2J ′′2 − 5

6 JJ ′′J ′′′2

+ 7
24 J

′′4 − 1
4 J

′2J ′′′2 + 7
132 J

′′�J (4)
�2

. (133)

The split in (126) into N Hnl
N−1 and ∂σRN is ambiguous, since we can add total derivative terms

to the former and subtract them from the latter. Above we made particular choices for Hnl
N that

minimize the number of derivatives acting on the J -factor with the highest number of deriva-
tives for each term. (For instance, the term J ′2J ′′′2 in (133), up to total derivative terms and
a term proportional to J ′′4, is equivalent to −J ′2J ′′J (4), which has four derivatives on the
last factor, whereas the original term had at most three derivatives.)

A cross-check on the numerical factors in (121)-(126) is the relation [61]

∂ RN

∂J
= N RN−1 . (134)

Note that additionally all black terms in (126) (the ones displayed explicitly) are mapped to
each other via (134); the same is true for the red and blue terms for our choice of Hnl

N .
The associated Hamiltonian densities HN obeying

δHN ∼ RN δJ ∼ 1
N+1 δRN+1 , (135)

(where ∼ denotes equality up to total derivative terms) are given by

H0 = J , H1 =
1
2 J

2 , H2 =
1
3 J

3 − 1
6 J

′2 , (136)

H3 =
1
4 J

4 − 1
2 JJ ′2 + 1

20 J
′′2 , (137)

H4 =
1
5 J

5 −J 2J ′2 + 1
5 JJ ′′2 − 1

70 J
′′′2 , (138)

H5 =
1
6 J

6 − 5
3 J

3J ′2 + 1
2 J

2J ′′2 − 1
14 JJ ′′′2 + 1

252

�

J (4)
�2
+Hnl

5 , (139)

H6 =
1
7 J

7 − 5
2 J

4J ′2 +J 3J ′′2 − 3
14 J

2J ′′′2 + 1
42 J

�

J (4)
�2 − 1

924

�

J (5)
�2
+Hnl

6 , (140)
... =

...

HN =
1

N+1 J
N+1 +

N−1
∑

i=1

(−1)i
((i + 1)!)2

(2i + 2)!

�

N
i + 1

�

J N−i−1
�

∂ i
σJ

�2
+Hnl

N . (141)

Inspection of the explicit results above shows compatibility with (80), which is a simple, yet
non-trivial, cross-check on the correctness of the equations displayed in this appendix.

Starting with the general form of the Hamiltonian density (141), analytically continuing
in N ≤ 1, assuming N = ε→ 0+, inserting J = Φ′ and dropping total derivative terms yields
the limiting Hamiltonian density

Hε ∼ εΦ′ lnΦ′ +O(ε2) , (142)

which remains finite and non-trivial if rescaled by 1/ε.
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