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Abstract

Searching for new physics in large data sets needs a balance between two competing
effects—signal identification vs background distortion. In this work, we perform a sys-
tematic study of both single variable and multivariate jet tagging methods that aim for
this balance. The methods preserve the shape of the background distribution by either
augmenting the training procedure or the data itself. Multiple quantitative metrics to
compare the methods are considered, for tagging 2-, 3-, or 4-prong jets from the QCD
background. This is the first study to show that the data augmentation techniques of
Planing and PCA based scaling deliver similar performance as the augmented training
techniques of Adversarial NN and uBoost, but are both easier to implement and compu-
tationally cheaper.
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1 Introduction

As the search for new resonances continues at the Large Hadron Collider (LHC), it is increas-
ingly important to develop and apply search strategies that are sensitive to a wide class of
signals. For hadronically decaying resonances, there has been considerable effort in the past
to develop various methods, targeted at the boosted regime (pT � m) of these resonances.
Such boosted resonances appear in many generic Beyond Standard Model (BSM) scenarios, as
well as in hadronic channels of boosted W/Z in the Standard Model (SM) itself. In the boosted
regime, the resulting jets from the hadronic decay of these resonances are merged, and the
result is a fat jet of wide radius. Using the difference in radiation pattern inside these fat jets,
captured by various substructure variables, single variable (SV) [1,2] as well as multi-variable
(MV) machine learning based methods [3–24] have been shown to allow a good discrimina-
tion of these signals from QCD background (see [25, 26] for a review of machine learning
based techniques in high energy physics).

While entirely focusing on the best discriminant to distinguish between signal and back-
ground is desirable, it is only a first step. In realistic searches for these resonances, one needs
to model the background with confidence, given that QCD is hard to estimate entirely ana-
lytically. This is usually accomplished by looking at distributions of variables in which the
background is smooth and featureless, while the signal is not—an example of such a variable
being the invariant mass of the jet. Using sideband analysis or control regions, one can model
the background, and therefore look for new resonances using a bump hunt strategy.

The substructure of a fat jet is related to kinematic variables such as the jet mass, m, and
transverse momentum, pT . As a result, the application of any classifier for signal isolation tends
to distort the background distribution for m and pT . This leads to introducing spurious features
in the distributions, making a bump hunt harder to implement with statistical confidence. It
is not surprising that such a distortion for the background distribution occurs, because a good
discriminant should reject a large fraction of background events, so that the events that survive
are necessarily signal like, and hence the background distribution starts to look signal like. The
right optimization requires taking these two competing effects into account—a strong signal
discrimination vs an undistorted background distribution.

Specifically, there are two side effects that come as a result of the correlation of the jet mass
with the classifier output. The first is that the classifier is only good for a signal of a given mass.
This is less than ideal as a broad search strategy for new physics. One would either need to
train multiple classifiers to cover the mass range, or need to use other techniques such as
parametrized networks [5, 27]. The other side effect is related to systematics. If the only
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background that makes it through the selection criteria looks exactly like the signal, it can be
hard to estimate the level of background contamination. While unintuitive, it can be better to
have a classifier which removes less background, if it does so in such a way that the systematics
are decreased. The overall goal is to maximize the significance, which is approximately given
by S/

q

B +σ2
sys. Allowing more background can lead to a better significance if it decreases

the systematic uncertainty σsys.
Recent work, based on both single variable and multivariate approaches have addressed

this constrained optimization problem. For example, a decorrelated τ21, called τDDT
21 has been

shown to be effective in keeping background distributions unaffected [28, 29]. While this
single variable method has the advantage of being simpler to implement, it will not be useful
for more complicated boosted jets. Multivariate methods, while more powerful in general
as compared to single variable based methods, are also prone to distorting the background
distributions more, and require more sophisticated training augmentation based approaches.
For example, multivariate methods based on Boosted Decision Trees (BDT) use a modified
algorithm called uBoost to perform this constrained optimization [30]. Multivariate methods
based on Neural Networks (NN) use an adverserial architecture [27, 31, 32] to accomplish
the same. However, these multivariable methods are significantly more involved and require
tuning additional hyperparameters for optimal performance. In a recent work [33], the ATLAS
collaboration has studied mass decorrelation in hadronic 2-body decays for both single and
multivariate approaches.

In addition to these, there are data augmentation based approaches that aim for a middle
ground.1 The idea is to decorrelate the input to multivariate methods, so that any dependence
on a given background variable is reduced significantly. While these methods are not as ef-
ficient in keeping the distributions undistorted, they are quick to implement and still enjoy
the power of multivariate discrimination. Two such approaches, PCA [7,28] (based on princi-
pal component analysis, from which it derives the name) and Planing [4, 9] are shown to be
efficient in benchmark cases.

There is a general need to compare and understand the advantages and limitations of these
methods, when requiring both high signal isolation and undistorted background distribution.
A classification of these methods, and quantifying their performance using suitable metrics,
for varying levels of signal complexity (in terms of prongedness) is desired. Depending on the
situation at hand, one may want to work with higher/lower signal efficiency or lower/higher
background rejection, for a given background distortion. This should be quantified for various
methods and signal topologies. This can give a clear picture of when is a given method suitable,
and how to augment one with the other if needed. This is the aim of the present work.

The outline of the paper is as follows. A brief overview of the Monte Carlo simulation used
to generate the signal and background events is given in Sec. 2. In Sec. 3, we classify and
describe the representative methods for decorrelation, first focusing on the general idea and
then on specific details. We present the results in Sec. 4, comment on future work in Sec. 5,
and conclude in Sec. 6. Appendix A shows the results of the parameter sweep used to choose
the adversarial network studied in this work. A comparison of popular histogram distance
metrics is shown in App. B. A side-by-side graphical comparison of all of the decorrelation
methods applied to all of the signals considered is shown in App. C. Code to reproduce our
results can be found on GitHub.

1In the machine learning literature, data augmentation is a technique to modify an input and add to the existing
training set. This can make a classifier more robust to noise or underlying symmetries. We use data augmentation
instead to remove information that we don’t want to be learned.
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2 Simulation details

In this section, we provide the details about the Monte Carlo simulated dataset used in this
study. While this study does not rely on any specific model where the fat jets with some level
of prongedness come from, we choose to work with a model which can give signals with 2- as
well as 3- and 4-pronged jets, in suitable parts of parameter space. Studying higher pronged
signals is useful in the context of mass decorrelation methods—apart from broadening the
scope of the study, higher pronged jets are also sufficiently distinct from the background QCD
jets, so that the importance of de-sculpting of mass distribution is changed compared to lower
pronged jets. We quantify these statements in the next sections.

The model considered is based on warped extra-dimensional RS models with more than
2 branes (see Ref. [34] for theory and [35–37] for phenomenological details). The relevant
degrees of freedom for our case are the KK modes of the EW gauge boson (massive spin-1
EW charged particles, denoted by ZKK/WKK) and the radion (a massive spin-0 singlet under
SM, denoted by R). In this “extended” RS model, the radion coupling to tops/higgs/gluons is
highly suppressed as compared to usual RS models, so that the dominant way to produce the
radion is through the spin-1 KK EW gauge boson’s decay into SM gauge bosons and a radion.
This further leads to the dominant decay modes of the radion to be into SM W/Z. In the fully
hadronic decay channel of W/Z from radion decay, one expects 4-pronged jets when the radion
and/or the intermediate W/Z are boosted (see Ref. [37] for a detailed discussion on various
regimes of boosted topology depending on the mass of the radion). The spin-1 KK EW gauge
boson couples to SM particles like its SM counterpart. For preparing a 2-pronged signal sample,
we use the process p + p→ ZKK + j, ZKK → j j, for a 200 GeV mass ZKK. The produced ZKK is
boosted due to recoil with the first jet, so that in its fully hadronic decay, we get a 2-pronged
jet. For a 3-pronged jet, we use the process p+ p→ ZKK→ t t̄, with the usual 3-pronged fully
hadronic top decay. In this case, the ZKK is not boosted. Choosing the mass of ZKK to be 1500
GeV, the tops from its decay are sufficiently boosted, so that we get a boosted 3-pronged sample.
Finally, for the 4-pronged case, we consider p+ p→ ZKK→ Z(→ νν̄) R(→WW → j j j j). The
ZKK mass is taken to be 1500 GeV, and is produced unboosted. For a light radion of mass 200
GeV, the radion is produced boosted, and in its fully hadronic decay mode through Ws, we
get a 4-pronged jet. Note that if one of the W from the radion decays leptonically, we would
get non-isolated leptons inside a 2-pronged jet, which would be rejected by usual isolation
criteria. Further, in the case of radion decay to two Zs, if one of the Z decays invisibly, we
would again be led to a 2-pronged jet. We avoid these complications by simply focusing on
the fully hadronic decay mode of the radion through Ws.

The details of the signal process considered are shown in Tab. 1, along with the masses and
the kinematic cuts chosen (at generation level) to produce boosted jets of desired prongedness.
The background for these signals is taken to be QCD jet, generated by p+ p→ Z + j, Z → νν̄,
at leading order in QCD coupling. A sample size of 500K is generated for each signal category,
while 1M events are generated for the QCD background,2 using MADGRAPH@AMC 2.6.4 [38]
for parton-level events generation (14 TeV center of mass energy), PYTHIA 8 [39] for parton
showers and hadronization, and DELPHES 3.4.1 [40] for detector simulation. Jets are con-
structed from the track and tower hits, using the anti-kt algorithm implementation in FAST-
JET, with a jet radius R = 1.2. The clustered jets are required to satisfy pT,J > 500 GeV and
−2.5 ≤ ηJ ≤ 2.5. A mass cut of 50 ≤ mJ (GeV) ≤ 400 is further imposed on the groomed
mass of the jet, where grooming is performed by Pruning [41] with Cambridge-Aachen algo-
rithm, with zcut = 0.1 and Rcut = 0.5. The highest pT jet is considered as the candidate jet,
from which the higher level NN inputs are constructed using the NSUBJETTINESS module in
FASTJET for axis choice of ONEPASS KT AXES, for the same jet radius used in the construction

2We do not use jet matching or merging and only take the hardest jet in the event.
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Table 1: Details of the signal process used in the event generation, along with the
choice of parameters and generation level kinematic cuts.

Prong Process Parameters (TeV) Kinematic Cuts (GeV)

2P p+ p→ j + ZKK, ZKK→ j j mKK = 0.2 pT,min = 50, p≥1
T,min = 400

3P p+ p→ ZKK→ t t̄ mKK = 1.5 pT,min = 50

4P p+ p→ ZKK→ Z(νν̄) + R( j j j j) mKK = 1.5, mR = 0.2 pT,min = 50
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Figure 1: Distributions of the transverse momentum of the hardest jet.

of the original jet.
After the pre-selection cuts, the original 1M sample of QCD jets is cut down to 151 559.

Similarly, the 500k events for the different BSM jets are reduced to 187 659, 303917, and
177 418 for the 2-, 3-, and 4-prong signals, respectively. The pT distributions for the different
samples are shown in Fig. 1. Training the machine learning algorithms is done on 70% of the
combined datasets with 15% set aside for validation and 15% for independent testing.

3 Classification of Methods

In this section, we introduce various methods for decorrelating the mass distribution from
classifier output. For classifiers, we consider single variable, such as τ21, as well as multivariate
based architectures such as BDTs and NNs. We note that typically, multivariate analysis refer to
shallow NNs or BDTs, as opposed to the more modern machine learning architectures. For mass
decorrelation, we consider either augmenting the data, to reduce the correlation of jet mass
from the input to the classifier, or augmenting the training, where the optimization procedure
is modified to decorrelate the classifier output from mass. We also introduce the benchmark
classifiers, which are needed for comparison.

3.1 Classification without decorrelation

To allow a comparison for the performance of various decorrelation methods, we need to in-
troduce the corresponding benchmark methods, which do not take any decorrelation into ac-
count. Jet classification is often done using the substructure within the jet. The N -subjettiness
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observables τ(β)N [1,2,42] can quantify the substructure, and are defined as

τ
(β)
N =

1
pTJ

∑

i∈Jet

pTi
min

¦

∆Rβ1i , ∆Rβ2i , · · · , ∆RβNi

©

, (1)

where pTJ
is the transverse momentum of the whole jet, pTi

is the transverse momentum of
the ith constituent of the jet, ∆RAi is the distance between axis A and constituent i and β is a
real number. The distance is defined as

∆RAi =
q

∆φ2
Ai +∆η

2
Ai . (2)

Suitable choices of the sub-jet axes lead to small values for different τ(β)N . For instance, a
boosted, hadronically-decaying W will have two hard partons in the jet. If the axes are chosen
to be along the directions of these two partons, the value of τ(β)2 will be much lower than τ(β)1
where only one axis is considered. In contrast, a QCD jet will have a radiation pattern taking
up more of the jet area, leading to constituents further away from the axes; both τ(β)1 and τ(β)2
will be relatively large. With this, a common method for classifying jets with 2-prong structure
is to examine the ratio between the two,

τ21 ≡
τ
(1)
2

τ
(1)
1

. (3)

For our 2-prong signal (described in more detail in Sec. 2), using τ21 results in an area under
the receiver operating characteristic curve (AUC) of 0.747. An AUC of 0.5 is the equivalent of
randomly guessing, and an AUC of 1.0 is a perfect classifier. Thus, τ21 is a simple, single ob-
servable which significantly aids in discriminating 2-prong jets. When looking for boosted jets
with more prongs, an analogous strategy is applied. For 3-prong jets, we use τ32 = τ

(1)
3 /τ

(1)
2

and the observable τ43 = τ
(1)
4 /τ

(1)
3 is used for 4-prong jets. The corresponding AUCs are 0.819

and 0.938. Once again, these simple single variable observables are strong discriminators of
the corresponding signal topologies.

We use τ21, τ32, and τ43 as examples of single variable based classifiers. The benefit of
these is that the variable is physics based and the systematics can be readily studied. However,
a single variable may not be able to take advantage of the correlations of other observables
in the data (e.g. see [43] for a BSM example). To fully incorporate all of the information,
multivariate analysis is needed. We study two such multivariate methods, based on boosted
decision tree and neural network architectures, which have been shown to lead to increased
discrimination.3

The authors of [44] introduced a minimal but complete basis for a jet with M -body phase
space. In particular, they showed that the dimension of the M body phase space is 3M −4 and
can be spanned using combinations of the τ(β)N . In our study, we examine jets with up to 4-
prong structure. We use a 5-body phase space for our multivariate analyses, as the performance
is seen to saturate for 4-prong signals for a larger basis. For jets with fewer prongs, the 5-body
basis is over-complete and the results saturate as well. This 5-body phase space basis is given
as

X =
¦

τ
(0.5)
1 ,τ(1)1 ,τ(2)1 ,τ(0.5)

2 ,τ(1)2 ,τ(2)2 ,τ(0.5)
3 ,τ(1)3 ,τ(2)3 ,τ(1)4 ,τ(2)4

©

. (4)

These observables are used as the inputs for all of the multivariate approaches studied here.
While this basis covers the substructure, the overall scale of the jet is not taken into account.

3We do not use convolutional neural networks (jet images), but only focus on the jet substructure variables to
keep the data representation constant across all methods.
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Figure 2: The architecture of a BDT. We take the BDT to be made of 150 DTs, with a
max depth of 4. The input to the BDT are the variables that span the 5-body jet phase
space, see Eq. (4). The indicated parameters αi represent the weight associated with
the particular DT.

Including the overall scale by using the transverse momentum or jet mass allows the classifiers
to achieve better background rejection for a given signal efficiency, but at the expense of more
sculpting. In the interest of not sculpting, and to have a fair comparison with the single variable
taggers, we do not use the transverse momentum or the jet mass as an input for the machine
learning algorithms.4

The first multivariate method we consider is based on a boosted decision tree (BDT) ar-
chitecture. A BDT is made of decision trees (DT), which are a tree of binary decisions on
various variables, leading to a final binary classification of data. Boosting is the technique to
allow an ensemble of DT with weak predictions to build an overall strong classifier, thereby
boosting the performance. The DTs are ordered such that each subsequent DT learns on the
failures of its predecessors, by assigning higher weights to the misclassified events. Figure 2
shows the architecture of a BDT successively made from many DTs. BDTs have the advantage
of being faster to train, less prone to overfitting and easier to see inside the box, as compared
to methods based on Neural Networks (NN). However, they are more sensitive to noisy data
and outliers.

Before training, the inputs are first scaled using the STANDARDSCALER of SCIKIT-LEARN so
that each variable has zero mean and unit variance on the training set. The data is split into
three separate sets, one for training, one for validation, and one for testing. The same STAN-
DARDSCALER is used for all of the sets. We use the standard implementation of the gradient
boosting classifier within the SCIKIT-LEARN framework [45]. In particular, we use 150 estima-
tors, a max depth of 4, and a learning rate of 0.1. This leads to good discrimination, with an
AUC of 0.863—a 15% increase compared to using just τ21—for the same two-prong jets as
before.

The second multivariate method we consider is based on neural networks. Figure 3 shows
the basic setup of our network, which is implemented in the KERAS [46] package with the
TENSORFLOW backend [47]. Unless otherwise stated, all neural networks in this study use
the same architecture, with three hidden layers of 50 nodes each. The nodes are activated
using the Rectified Linear Unit (ReLu). The last layer contains a single node with a Sigmoid
activation function so that the output is a number between 0 and 1. We experimented with

4The τ(2)1 observable is related to the ratio of m/pT , so including the transverse momentum would allow the
multivariate analysis the possibility to learn the jet mass.
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Figure 3: Many of the methods explored in this paper use a neural network classifier.
For consistency, we always use a network with three hidden layers, each of which
has 50 nodes and uses the ReLu activation function. The output is a single node with
a sigmoid activation function. Our input data are the 11 τ(β)N variables of 5-body jet
phase space shown in Eq. (4).

increasing or decreasing the number of layers, and found that three hidden layers is where
performance saturated. Adding more nodes was not found to be helpful.

Training is done using the ADAM optimizer [48] to minimize the binary cross entropy loss
function, which is given by:

Lclassifier = −
1
N

N
∑

i

wi

�

yi ln fC

�

X i

�

+
�

1− yi

�

ln
�

1− fC

�

X i

�

�

�

, (5)

where yi is the true label, fC

�

X i

�

is the network output, and wi is the weight for the ith event.
It is standard for all of wi to be taken to be one, but in the case of unbalanced classes with
significant difference in the number of training samples, it is useful to set wi to a specific value
per class so that the effective number of training samples for each class becomes equal; these
are called class weights. We implement class weights throughout as it was found to improve
the classifiers, even though we do not have badly imbalanced classes. In Sec. 3.2.2, we explore
another application of using weights during training.

The learning rate is initially set to 10−3. The loss is computed on the validation set after
each epoch of training to ensure that the network is not over fitting. If the validation loss has
not improved for 5 epochs, the learning rate is decreased by a factor of 10, with a minimum of
10−6. Training is stopped when the validation loss has not improved for 10 epochs. Training
usually takes between 30-40 epochs.

To have a fair comparison with the BDT, the network is trained on the same training set,
using the same pre-processing. In addition, a common test set is used for all comparisons. The
depth of the network allows it to learn more of the non-linearities between the input features
than the boosted decision tree, yielding a AUC of 0.872. This is only a 1% increase in the AUC,
but this can have large impacts on the potential discovery of new physics. For instance, at a
fixed signal efficiency of 0.5, the background rejection increases from a factor of 13 to a factor
of 15, allowing for 16% more background rejection.5

A summary of the application of the three different methods presented so far is in Fig. 4.
The left panel shows the ROC curves, where better classifiers are up and to the right. In what
follows, we will always use a solid line to denote a neural network based classifier, a dashed
line for a BDT, and a dotted line for a single variable analysis. The two multi-variate analysis
are similar and do much better than the single variable τ21. The right panels highlight the main

5Here, and in the rest of the paper, we define the background rejection over the whole jet mass range considered:
50 ≤ mJ (GeV) ≤ 400. We expect this choice to give the same qualitatively result which would be obtained by
defining the background rejection on a smaller mass window (more details on this can be found in section 4.).
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Figure 4: The left panel shows the ROC curves for three traditional methods, two
based on machine learning, to classify a 2-prong signal jet from a QCD jet. The
machine learning based methods achieve an area significantly higher than the single
variable τ21 based classifier. The right panels show the background only distributions
for successively tighter cuts in the solid lines: signal efficiency of 1.0 (black), 0.95
(green), 0.9 (red), 0.8 (purple), 0.7 (brown), 0.6 (pink) and 0.5 (yellow). The signal
with no cuts is shown in the filled-in, grey distribution. The only background events
which pass the cuts end up having masses similar to that of the signal, even though
the machine learning models do not have access to the mass.

problem explored in this work. The solid black line and the grey, shaded regions show the jet
mass distributions for the QCD background and the 2-prong signal, respectively. The different
colored lines show the resulting QCD only distribution when cutting to signal efficiencies of
0.95, 0.9, 0.8, 0.7, 0.6, and 0.5. The τ21 classifier removes much of the QCD background at low
jet masses, but allows many more events at high masses, so the background efficiency changes
drastically as a function of the jet mass. This is even worse for the multivariate analyses, which
drastically sculpt the background distributions. Even though they are only using substructure
information, and do not have access to the overall scale of the jet, the QCD events that make it
through are peaked at the signal mass. This better background rejection comes at the cost of
having both the signal and background shapes becoming very similar, which makes estimating
systematic uncertainties much harder.

With this motivation, we now turn to the different approaches of decorrelating the output
of a classifier with a given variable such as jet mass. These approaches broadly fall into two
categories. The first is to augment the data on which the model is trained, while leaving the
training procedure unchanged. The second category is to not augment the data, but to alter
the training algorithm itself. We discuss these two in turn next.

3.2 Decorrelation based on data augmentation

The general idea of data augmentation is to reduce as much as possible the correlation of the
classifier input to the jet mass. This can be done for both single and multivariable methods.
For single variable classifier, this can be done analytically, which we review below. For mul-
tivariable classifiers, the decorrelation must be done numerically, which we study using two
recently proposed methods: Planing [9] and PCA-based rescaling [7, 28]. Both of these meth-
ods can be used for NNs and BDTs; in this section we only show the examples for the NN.
These methods are fast, and have little application-time computation cost.

3.2.1 Analytic decorrelation

For classification based on a single variable such as τ21, analytic decorrelation methods have
been proposed [28,29], where a modified variable is constructed which is explicitly designed

9

https://scipost.org
https://scipost.org/SciPostPhys.8.1.011


SciPost Phys. 8, 011 (2020)

0.0 0.5 1.0
Signal Efficiency

100

101

102

103

104
B

ac
k
gr

ou
n
d
 R

ej
ec

ti
on 2-prong signal

Orig.
τ21

PCA
Planed
τDDT
21

200 400

mJ [GeV]

PCA

200 400

mJ [GeV]

Planed

200 400

mJ [GeV]

101

102

103

104

A
rb

.

τDDT
21

Figure 5: The left panel shows the ROC curves for the data augmented neural net-
work methods of PCA and planing as well as the single variable DDT. The network
trained on PCA-rescaled data is the best classifier, followed by the network trained
on planed data. Both MV decorrelation techniques result in better classification than
the single variable τDDT

21 based classification. The right panels show the background
only distributions for successively tighter thresholds for the DDT, Planed, and PCA
classifiers: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple), 0.7
(brown), 0.6 (pink) and 0.5 (yellow). For context, the 2-pronged signal distribution
is shown as grey filled-in region. All three methods reduce the background sculpting
when compared to their Fig. 4 counterparts. A full side-by-side comparison for 2, 3,
and 4 prong signals is shown in App. C.

to preserve the background distribution. The appropriate scaling variable for QCD jets is the
dimensionless ratio ρ = log(m2/p2

T ). A plot of τ21 vs ρ shows that background jets in different
pT ranges are linearly shifted from one another, and that there is a linear relation between τ21
and ρ for a certain range of ρ. With this information, the decorrelation with mass can be per-
formed in two steps. The pT dependence is removed by defining ρ′ = ρ+log (pT/µ)where the
value of µ is chosen phenomenologically (taken to be 1 GeV in [28]). The linear correlation
between τ21 and ρ′ can be removed by considering a modified variable—the so-called “De-
signed Decorrelated Tagger", τDDT

21 = τ21 −Mρ′, where M is the numerically calculated slope
of the τ21 vs ρ′ curve. Apart from being simple to implement, the background systematics
are easier to study because the method only involves a linear shift of the original observable.
However, this method fails to generalize to more complex topologies, as there is not a simple
linear relation between τ(1)N /τ

(1)
N−1 and ρ′ for N > 2.

Using τDDT
21 as a single variable classifier on a 2-prong signal gives an AUC of 0.687, which

is the lowest among the decorrelation methods considered in this work. Compared to τ21,
the Designed Decorrelated Tagger has an AUC that is 8% lower, though only a nominally
smaller background rejection at a fixed signal efficiency of 50%, as seen in the left panel of
Fig. 5. The right panels of Fig. 5 show how the background distribution changes as tighter
cuts are made on the signal efficiency. τDDT

21 sculpts far less than τ21 (See App. C for a side-by-
side comparison), and by eye, seems to perfectly preserve the shape of the QCD background
distribution. We quantify these statements in the next sections.

3.2.2 Planing

Data planing [9] is a procedure that was initially designed to better understand what infor-
mation an MV model is learning. This is accomplished by using the “uniform phase space"
scheme introduced in [4] to restrict the model’s access to a certain observable, and looking
for a subsequent drop in performance during testing. It turns out, however, that limiting what
information the neural network is capable of learning and decorrelating the network output
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from a given observable are similar tasks.
At its core, planing is a weighting technique that takes a given distribution, and weights

the data such that this distribution is now uniform over the range of values in consideration.
Our choice to weight both the signal and the background to be uniform is not unique—one
could instead weight the signal to the background shape or vice versa, as long as they have
the same distribution after the procedure. For a set of input features, X i , where i denotes a
given event, and m is the feature to be planed, the weights can be computed as:

[w (X i)]
−1 = C

dσ (X i)
dm

�

�

�

�

m=mi

, (6)

where σ(X i) is the distribution of the data as a function of feature X , and C is a dimensionful
constant common to both signal and background. This is required, as signal and background
are planed separately. In practice, these weights are determined by uniformly binning the
events, and then inverting the resulting histogram. This introduces some finite binning effects,
which tend to be more pronounced near the ends of the distribution. However, these effects
can be easily mitigated, and do not have a significant impact on training, see Ref. [49] for a
method to compute the weights without binning.

The planed feature does not necessarily have to be an input to the network. In this work, we
are interested in decorrelating the network output from the jet mass, so this is the variable we
apply the planing procedure to. As mentioned in Sec. 3.1, it is possible to add event-by-event
weights to the loss function when training, treating some events as more or less important
than others. Planing uses the weights in Eq. (6) and treats events that weigh less (more) as
more (less) important. When training a network on planed data, the weights in the binary
cross-entropy, Eq. (5), are the product of the planing weights, Eq. (6), and the class weights
discussed previously.

Figure 6 highlights the key features of planing. In the left panels, we show the jet mass
distributions for the 2-pronged signal events and the QCD background events. These distri-
butions are planed separately, and the lower left panel shows the resulting distributions after
planing away the jet mass information. Both are uniform over the relevant mass range, though
there are some finite binning effects visible near the high- and low-mass ends of the planed
distributions. The two center panels show one of the network inputs, τ(1)1 , before and after
planing. Before planing there is a clear separation between the signal and background distri-
butions, which means that there is discriminating power available to the network from this
feature alone. After weighting this input, we see that the signal and background τ(1)1 look
much more similar, so there is now less discriminating power in this planed feature. However,
planing does not reduce the discriminating power of every input feature. In the rightmost
panels, we see that before planing, the distributions of τ(1)2 are nearly identical for signal and
background. After applying the weights from the planing procedure, we see that there is now
more distinction between the two, with the added benefit that this extra classifying power
does not come at the cost of further sculpting the background jet mass distribution.

The MV classifier is trained on planed data, but is tested using unaltered data. Compared to
a network with the same architecture, but trained on unaugmented data, the network trained
on planed data is only able to achieve an AUC of 0.778—nearly 11% lower. This reduction in
AUC corresponds to a background rejection nearly 3 times smaller at a fixed signal efficiency
of 50% compared to the network trained on data which has not been planed, as seen in the
left panel of Fig. 5. The right panels of Fig. 5 shows how the background distribution changes
as tighter cuts are made on the signal efficiency. Comparing these distributions to the right
panels of Fig. 4, it is clear that a network trained on planed data sculpts far less than any of
the MV techniques discussed thus far. A side-by-side comparison can be found in App. C. We
quantify these statements in the next sections.
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Figure 6: The upper and lower panels show distributions before and after planing
away the jet mass, respectively. The left panels show the jet mass distribution for the
2-pronged signal and QCD background. By design, both distributions are (nearly)
identical, and uniform across the entire mass range after planing. The center panels
show τ(1)1 , one of the input variables for the classifiers. Before planing, this variable
has discriminating power, but that was correlated with the jet mass and got removed
by the planing process. The right panels show τ(1)2 , which has more separation be-
tween signal and background after planing.

3.2.3 PCA

Another preprocessing procedure which aims to decorrelate the discrimination power of the
NN from the jet mass was proposed in [7]. The basic idea is to preprocess the τ(β)N variables in
such a way that their distribution for QCD events is no longer correlated to the jet mass. This
is achieved by first binning the standardized data (zero mean and unit standard deviation for
each variable) in jet mass, with a variable binning size to have the same number of QCD events
in each bin. Then, in each bin, the standardized input variables are transformed as follows:

~τ std
i → ~τPCA

i = R−1
i SiRi ~τ

std
i , (7)

where ~τ std
i (~τPCA

i ) is a 11 dimensional vector made of standardized (PCA transformed) vari-
ables in bin i, Ri is the matrix that diagonalizes the covariance matrix for the QCD τ variables
in that given bin, and Si makes the covariance matrix unity in that bin. The action of Ri is
to induce a rotation into a basis where all the variables are linearly uncorrelated (this is the
typical procedure used in principal component analysis (PCA), from which the method derives
its name). Typically, after this rotation the data needs to be standardized again, requiring the
action of the diagonal Si matrix. The effect of PCA preprocessing procedure is illustrated by
the scatter plot in Fig. 7, for two of the variables τ(1)1 and τ(1)2 , for three mass bins. In the
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Figure 7: Scatterplot of two benchmark τ variables for QCD events in three differ-
ent mass windows. The left panel shows the original variables, before any kind of
preprocessing. The events from different mass bins are well separated. The center
panel shows the same events after removing the mean and setting the variance of
each variable in each bin to unity. The different mass bins now have the same range,
but the 2D correlations are still distinct. In the right panel, the events have been
standardized and PCA transformed on a linearly independent basis. The different
mass ranges are now hard to distinguish.

scatter plot, the differences for the mass bins in the original variables are very easy to see, and
also noticeable in the standardized variable. However, the mass bins look much more similar
for PCA transformed variables. Notice that, while both the R and S are computed (bin-by-bin)
only using the QCD sample, the transformation, Eq. (7), is then applied both to the QCD and
signal events (both during the training of the NN and when applying the tagger to the test
data).6

The network trained on PCA scaled data is able to achieve an AUC of 0.829, which is only
a 4% reduction compared to the network with the same architecture trained on the unaltered
data. This is shown in the left panel of Fig. 5. The right panel of Fig. 5 shows how the
background distribution changes as tighter cuts are made on the signal efficiency. Comparing
these distributions to the right panels of Fig. 4 (see App. C for the side-by-side comparison),
it is again clear that a network trained on PCA scaled data sculpts less. We quantify these
statements in the next sections.

3.3 Decorrelation based on training augmentation

The general idea of training augmentation is to assign a penalty to distorting a background
distribution that is desired to be uncorrelated with the classifier. This allows the optimal solu-
tion to balance the performance with decorrelation. Further, the decorrelation is not requested
at just one step in the process, like in data augmentation based approach, but rather at each
step in the process. In this category, we study two of recently proposed methods uBoost and
Adverserial Neural Networks.

3.3.1 uBoost

A BDT algorithm can be modified to leave some distributions of a given class unaffected in the
classification procedure, as proposed in [30], called uBoost.7 The basic idea is to incorporate

6This is different than the case of planing, where the test set does not use data augmentation.
7A follow up to the uBoost algorithm was developed in Ref. [50]. This new method achieves similar classification

and uniformity as uBoost, but only trains a single BDT with a modified loss function, rather than training mulitple
BDTs.
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Figure 8: The network architecture used in the uBoost algorithm. Each BDT has the
same layout as those in Fig. 2, and is tasked with keeping the background uniform at a
given target signal efficiency. We use 20 BDTs to cover the entire efficiency range, and
results are interpolated between target efficiencies to keep the background uniform
over the whole efficiency range. The Gini index is used to measure the quality of a
split, and the best split is taken when creating new branches.

the cost of affecting the distribution that is desired to be unaffected in the optimization proce-
dure. This procedure necessarily depends on the efficiency of classification, since the cost of
affecting a distribution has to be measured for fixed efficiency. In other words, a trivial way
to not affect a distribution for a variable for a given class is to have a very small efficiency
to select the other class, so that no events of the other class are selected and the distribution
stays the same. Hence, the non-trivial optimization algorithm is implicitly defined for a given
efficiency, taken to be the average efficiency of the BDT. The average efficiency of the overall
BDT corresponds to a local efficiency for each event. This local efficiency is calculated using
k-nearest-neighbor (kNN) events that pass the BDT cut, constructed from DTs up to this point.
Hence this local efficiency depends on both the event and the tree. Data points with a local
efficiency lower than average efficiency are given more importance, and those with a local
efficiency higher than average efficiency are given lesser importance. The relative importance
is controlled by a parameter βu (see Eq.(2.3) in Ref. [30]). The BDT then is optimized for a
given efficiency. One can then construct an even bigger ensemble of BDTs, each optimized for
a given efficiency, and design the response function in such a way that the right one is chosen
for a given efficiency. An illustration of this is sketched in Fig. 8.

The uBoost architecture we consider uses 20 BDTs to cover the full signal efficiency range,
with each BDT being comprised of 150 individual DTs, each with a maximum depth of 4.
The decision trees use the Gini Index to measure the quality of a split. Additionally, we use
k = 50 nearest neighbor events to compute the local efficiencies. As the authors of [30] point
out, there is very little change in the performance of uBoost for k ∈ [50, 1000], but choosing
k < 20 drastically increases the statistical uncertainty on the local efficiency, which worsens
the performance of the uBoost algorithm. The parameter βu which sets the relative training
importance of events with local efficiency more/less than the average efficiency, is set to 1.

Using the uBoost algorithm for classification results in an AUC of 0.783, which is a 9% re-
duction when compared to classification using standard gradient boosted decision trees. At a
fixed signal efficiency of 50%, this translates into uBoost rejecting 23% less background than a
standard BDT operating at the same signal efficiency. However, this reduction in classification
power comes with the benefit of decreased background sculpting. The right panel in Fig. 9
shows how the background distribution changes as tighter cuts are made on the uBoost net-
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Figure 9: The left panel shows the ROC curves for the adversarially trained neural
network and uBoost, along with the results of the base neural network and τ21, for
comparison. The adversarial results use λ = 50, and the uBoost results use βu = 1.
The right panels show the background only distributions as successively tighter cuts
are made on the output of these classifiers: signal efficiency of 1.0 (black), 0.95
(green), 0.9 (red), 0.8 (purple), 0.7 (brown), 0.6 (pink) and 0.5 (yellow). The full
2-pronged signal is shown in the filled-in grey distribution for context. Both these
methods are able to preserve the background shape well, with only a marginal de-
crease in performance, but take a factor of 10 to 100 more time to train. Compared to
their MV counterparts in the upper panels, it is clear that the training augmentation
based approaches significantly reduce the extent of the background sculpting. A full
side-by-side comparison for 2, 3, and 4 prong signals is shown in App. C.

work output. By eye, uBoost sculpts the background considerably less than a traditional BDT.
Quantitative assessments are made in Section 4.

3.3.2 Adversarial

The idea to use adversarial networks to decorrelate jet mass from the output of a classifier
was first introduced in [27]. The authors showed that in the case of small systematic errors,
both adversarially trained networks and traditional neural networks lead to better chances of
discovery for 2-pronged jets than using traditional jet substructure or the DDT [28]. However,
when the systematic uncertainty on the background is large, the traditional neural network
never does as well as the adversarially trained network or the analytic taggers. The adversar-
ially trained network remains better than the analytic methods.

The key aspect of adversarial training is using multiple neural networks, instead of single
one. First, the inputs are fed through a traditional classifier, as in Sec. 3.1. The output of
the classifier is a number between 0 and 1. The next stage trains a second network to infer
the feature to be decorrelated (the mass for us) using only the output of the classifier. An
illustration of this is shown in Fig. 10.

The overall goal then becomes to train a classifier which not only classifies well, but which
also does not allow the adversary to infer the jet mass. This is done using a combined loss
function of the form

Ltagger = Lclassifier −λ Ladversary, (8)

where Lclassifier and Ladversary are usual classification loss functions. However, we only calcu-
late Ladversary for the QCD sample and not the signal samples. The parameter λ is a positive
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Figure 10: The setup of our adversarially trained neural network. The classifier has
the same hyperparameters as in Fig. 3. The output of the classifier becomes the
input of the adversary, which attempts to predict which bin of the jet mass the QCD
events came from. We use tanh activation for the hidden layers of the adversary, and
softmax activation for the final layer, with 10 outputs. The multi-class cross entropy
loss function is used for the adversary.

hyperparameter set by the user, giving the relative importance of the two tasks; classifying
and decorrelating. A larger value of λ puts more emphasis on not allowing the adversary to
be able to infer the mass at the cost of poorer classification.

As done in Ref. [27], we use ten nodes for the output of the adversary, with the jet mass dig-
itized to ten bins with equal numbers of QCD jets per bin, treating the problem as a multi-class
classification problem. The activation for the last layer is the softmax function and Ladversary
is the multiclass cross entropy. This was found to lead to more stable training than trying to
regress the exact jet mass. In addition, we found that a tanh activation function for the hidden
layers of the adversary to be more stable than ReLu activation. The ATLAS study in Ref. [33]
also uses adversarial neural networks for mass decorrelation, but does so by having the ad-
versary predict the probability distribution function of the background, as in Ref. [31], rather
than predicting the mass bin.

The adversarial set-up makes training the networks more involved. First, we train the
classifier using only the binary cross entropy loss function. Next, the adversary is trained
alone, only using the output of the classifier. We found the training procedure which led to
the most stable results for the combined networks to be as follows. The adversary is set to not
be trainable, and the classifier weights are updated using the total loss of Eq. (8). However,
only a small number of updates to the weights of the classifier are allowed. Then, the classifier
weights are frozen and the adversary becomes trainable. It is given substantially more time
to adjust to the updated classifier, minimizing its own Ladversary for many epochs. The process
is then repeated many times, first making minor updates to the classifier followed by ample
time for the adversary to respond. This procedure takes about a factor of 10-100 more time
to train than other methods.

The other aspect of adversarial training which makes it more challenging is the choice of
the hyperparameter λ. A priori, the value of λ should be chosen so that the loss of the classifier
is of order the same size as the loss of the adversary. However, the best value will depend on
the use case. The necessity of this optimization produces a family of classifiers with trade-offs
between classifying power and decorrelation abilities. This is in contrast to analytic and data
augmentation based decorrelation methods, which only give a single classifier. For our studies,
we scanned over ranges of λ ∈ {1, 2,5, 10,20, 50,100, 200,500, 1000}. The results seem to
saturate at λ = 50. The result of this hyperparameter scan are shown in App. A. We tried
smaller values as well, but these were seen to be nearly equivalent with the traditional neural
network. The longer training times, coupled with the need to optimize λ greatly increases the
computational overhead for using adversarial methods.
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The adversarially-trained neural network (with λ = 50) achieves an AUC of 0.807, which
is a 7% reduction in AUC compared to the neural network considered in section 3.1. At a
fixed signal efficiency of 50%, this difference in AUC translates to the adversarially trained
network rejecting 33% less background than a traditionally trained neural network. However,
the adversarial approach still results in a better classifier than single variable analyses, as
shown in Fig. 9. The right panel of Fig. 9 shows how the background distribution changes
as tighter cuts are made on the output of the adversarially trained network. It is clear that
the adversarial approach sculpts the background far less than traditional neural networks. We
make this statement more quantitative in Sec. 4.

4 Results

One of the considerations when choosing an analysis method is the computational overhead.
Table 2 shows the amount of time it takes to train the different classifiers. The difference
between the number of prongs is mostly dominated by the different sample sizes, but also
comes from how easy the minimum of the loss function is to find.

The neural network based methods take longer to train than the boosted decision trees.
As expected, the methods which augment the training process take longer to return a good
classifier. The uBoost method trains 20 different BDTs so it takes around 20 times longer than
the base BDT.8 Decorrelating the NN by using an adversary network takes substantially longer
to train, although as we show below, it does achieve the best results. In contrast, the methods
which augment the data beforehand show very little change in the time it takes to train.

The computational overhead is not the only consideration. In the rest of this section, we
examine both the amount of background rejection and the degree to which the background is
sculpted. Depending on the particular analysis, it may be optimal to allow more or less sculpt-
ing depending on the needed background rejection. The background rejections is defined over
the whole jet mass range considered: 50 ≤ mJ (GeV) ≤ 400. For the taggers considered in
this work, we expect this choice to give qualitatively the same results that would be obtained
by defining it in a narrower mass window centered around the signal. This is because they
are structured exactly to achieve this goal: to keep the background rejection constant over the
whole mass range.

To quantitatively define how much the classifier sculpts the background, we use the Bhat-
tacharyya distance, which is a popular measure of the distance between two probability dis-
tributions. For two given histograms H1 and H2 with N bins each, the distance is given as:

dB(H1, H2) =

√

√

√1−
1

N
p

〈H1〉〈H2〉

∑

I

�
Æ

H1(I)H2(I)
�

, 〈HK〉=
1
N

∑

J

HK(J) . (9)

This distance has the nice property that it is normalized between 0 and 1, allowing for a
comparison of the sculpting from various taggers more easily. This choice of metric is not
unique. In App. B, we compare the Bhattacharyya distance with another distance measure,
the Jensen-Shannon distance (used in Ref. [33]). The two are seen to have similar features.

4.1 Augmented training

In this section we examine the decorrelation methods which change the way the training is
done, namely the adversarial neural networks and uBoost. While these methods take longer

8The updated boosting methods found in [50] do not require training multiple BDTs, so their training time is
similar to a standard BDT.
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Table 2: The time in seconds to train a classifier on dual E5-2690v4 (28 core) proces-
sors. The mean and standard deviation are calculated over 10 independent trainings.
The large variance in the neural network times is due to the early stopping condi-
tion, leading to a non-fixed number of epochs. Note that the adversarially trained
neural network statistics are over sampled once over each of the nine different val-
ues of λ due to the long training time. In addition, the adversarial networks used
GPU nodes. BDTs are faster to train, but are not as effective classifiers. The Adver-
sarial and uBoost decorrelation methods take much longer than the PCA or Planing
methods.

Method 2-prong 3-prong 4-prong

Base Network 409± 56.8 601± 82.9 483± 64.9

Base BDT 66± 2.7 88± 0.4 64± 1.1

PCA Network 421± 48.7 566± 63.6 366± 32.8

PCA BDT 70± 1.3 97± 1.3 69± 0.9

Planed Network 406± 44.2 604± 90.7 462± 81.7

Planed BDT 64± 1.0 88± 1.2 63± 0.8

Adversarial 49 429± 520.8 54 953± 683.3 49 003± 1892.0

uBoost 1495± 6.6 2047± 6.5 1430± 10.0

to train, their input data is unaltered, which is better for calibration and other systematics. In
all of the comparisons, we include the base neural network and the single-variable analysis as
benchmark references.

Figure 11 shows the ROC curves for decorrelation methods along with the benchmarks.
The left, middle, and right columns are for the 2-prong (boosted ZKK → qq̄), 3-prong (boosted
top), and 4-prong (boosted R→ qq̄q′q̄′) jets as described in Sec. 2, respectively. The first no-
ticeable trend is that the more prongs the signal sample contains, the easier it is to distinguish
from the QCD background, which is typically single pronged. In fact, for many of our classi-
fiers for the 4-prong signal, we run out of background events at a signal efficiency of around
0.1. We will see evidence of this in the remaining metrics even though the rapid removal of
background events yields more statistical uncertainty on these results.

The adversarially trained network with λ = 50 is shown in the solid light-purple line and
uBoost classifier is shown by the dashed blue line. This value of λ was around where the
performance saturated; Appendix A shows the results for all values of λ tested. For the 2-
prong signal, uBoost and the adversarially trained network have very similar curves. These
are roughly in the middle of the base MV methods and the single variable analysis. Moving
to the 3- and 4- prong signals, the adversarially trained network achieves better background
rejection than uBoost, but both of these are significantly better than a single variable analysis.
Note that currently there are no DDT type methods for 3- and 4-prong jets.

The Bhattacharyya distance calculated on the QCD background only distributions is shown
in Fig. 12. Specifically, we calculate the distance between the original (no cuts) jet mass dis-
tribution and the background distribution which passes a cut for the specified signal efficiency
(top row) or background rejection (bottom row). We see clearly that the original NN and BDT

18

https://scipost.org
https://scipost.org/SciPostPhys.8.1.011


SciPost Phys. 8, 011 (2020)

0.00 0.25 0.50 0.75 1.00
Signal Efficiency

100

101

102

103

104

B
a
ck

g
ro

u
n
d
 R

ej
ec

ti
on

2-prong

Orig. NN
Orig. BDT
uBoost
Adv.
τN/τN− 1

τDDT
21

0.00 0.25 0.50 0.75 1.00
Signal Efficiency

3-prong

0.00 0.25 0.50 0.75 1.00
Signal Efficiency

4-prong

Figure 11: ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background
for the methods which augment the training method to decorrelate the jet mass. The
solid, dashed, and dotted curves show results for neural networks, boosted decision
trees, and single variable analysis, respectively. The light blue curves are for the tradi-
tional method benchmarks. The purple and dark-blue lines denote the adversarially
trained network and uBoost decision tree. For the 3- and 4-prong cases, uBoost can-
not classify as well as the adversarially trained neural networks, but still does much
better than using a single variable, τ3/τ2 and τ4/τ3, respectively

give the greatest amount of distortion to the distributions, resulting in larger distances. For
the 2-prong jets, the distance for original MVs is around 0.5 for most of the signal efficiencies,
and τ21 slowly grows to the same values. For 3- and 4-prong, the single N-subjettiness variable
produce smaller distances than the original MVs over the whole region.

The τDDT
21 classifier was specifically designed to remove the mass correlation; as such, it

produces the smallest distances for fixed signal efficiency. However, there are no 3- or 4-prong
versions. That being said, the adversarially trained neural network produces distances that
are comparable to τDDT

21 over the range of signal efficiencies. It also has the smallest distances
for the MV methods for the 3- and 4-prong signals. uBoost does not achieve as low of distance
scores but its distances are still generally closer to the adversarially trained network than the
originals, and trains about a factor of 30 faster than the adversary.

Only looking at the distance compared to the signal efficiency does not take into account
how well the classifier separates the signal jets from QCD. Balancing the need for unaltered
distributions against the necessary background rejection is task specific, but can be aided by
plotting the two against each other. In the lower row of Fig. 12, we show the parametric plots
of the histogram distance versus the background rejection. In these plots, the optimal classifier
will be to the lower-left corner, yielding a small distance between the distributions before and
after cuts and simultaneously rejecting large backgrounds. These are made by scanning over
the values of the signal efficiency from 1 to 0.05, which is why the curves do not extend all the
way to the left. The points marked by circles, stars, and squares are for fixed signal efficiencies
of 0.75, 0.5, and 0.25, respectively.

The original MV methods, along with the single variable analysis, yield similar shaped
curves, offering the same amount of sculpting for a fixed amount of background rejection.
This is interesting because the τN/τN−1 distances were quite different when plotted against
the signal efficiency. This can be observed by examining the location of the marked points
along the curve, where the pink ones fall further to the left than do the light blue and orange
points.

The adversarially trained classifier sculpts the least for a given background rejection for
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Figure 12: The Bhattacharyya distance for the QCD background distributions com-
pared to the original distributions. The distance is defined in Eq. (9), and a larger
distance represents more sculpting—lower on the plot is better. The upper and lower
rows plot the distance as a function of signal efficiency or background rejection, re-
spectively. τDDT

21 produces the smallest distances for fixed signal efficiency, but does
not generalize to higher-prong jets. The adversarially trained network yields a close
approximation and generalizes to more prongs. uBoost falls between the original
methods and the adversarially trained network, but takes a factor of 30 less time to
train.

the different pronged jets, other than a small region where τDDT
21 is the least. uBoost again

falls between the original methods and the adversarially trained network, providing a good
compromise on computation time and decorrelation.

For the 4-prong jets, all of the classifiers give similar results with fairly large distances. This
indicates that the QCD is not 4-pronged, so all of the classifiers can cut out large amounts of the
background. Even the methods which are supposed to produce smaller histogram distances
end up sculpting the backgrounds quite heavily. In any real analysis, this is most likely not an
issue because of the extensive background rejection.

Plotting the distance versus signal efficiency (top row of Fig. 12) makes it hard to see
trends in sculpting between the various pronged jets. However, in the bottom row, we get
a sense that the decorrelation techniques yield a certain distortion of the background shape
given the amount of rejection. For instance, with a background rejection of 10, τDDT

21 , uBoost,
and adversarially trained networks yield Bhattacharyya distances ∼ 0.1 for all of the prongs.
Additionally, the distance is ∼ 0.25 for a background rejection of 100 for all prongs. This is
expected because our different pronged signal distributions peak at roughly the same mass
(200 GeV for 2- and 4-pronged, and 173 GeV for 3-pronged). Thus, for a fixed background
rejection, the background events which remain mimic a signal region that is approximately
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Figure 13: ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background
for the methods which augment the data to decorrelate the jet mass rather than
augment the training. The dashed and solid lines show the gradient boosted decision
trees (BDT) and neural networks (NN), respectively. The blue, red, and green curves
are for the data which has not been altered, data which uses the PCA rescaling,
and data which has the jet mass planed away. The dotted lines show the results
using a single combination of the N-subjettiness variables. Generally the BDTs have
slightly worse background rejection than the NNs. Similarly, the PCA rescaling based
methods tend to be between the unaltered methods and the planing methods, which
are better than the single variable analyses.

independent of the signal prongedness.

4.2 Augmented data

The previous section examined the extent to which uBoost and adversarially trained neural
networks can decorrelate the jet mass from the classifier output, which is achieved by changing
the training procedure. We now move on to focus on the methods proposed in Sec. 3.2:
altering the input data rather than the training. Augmenting the data rather than the training
procedure greatly reduces the amount of time required to train the models, as shown in Tab. 2.
Additionally, it allows us to test the methods using both boosted decision trees and neural
networks.

The overall ability to classify is shown in the ROC curves in Fig. 13. As with the last
section, the left, middle, and right plots have the signal jets with boosted two-body, three-
body, and four-body decays, respectively. In all of the plots, the blue, red, and green lines are
for the unaltered data, the PCA rotated data, and the Planed data respectively. The solid lines
represent the neural network results, and the dashed lines are the gradient boosted decision
tree. Additionally, we show the single N-subjettiness variable analyses in the dotted lines.

In all of the plots, the unaltered neural network achieves the best classification. This is
expected, because neural networks can use more non-linearities, and the data has not been
processed to remove correlations with the jet mass. The 2-prong signal shows some difference
in the PCA and Planed neural network results, but for the 3- and 4-prong signal neural nets,
these methods yield similar classification. The BDTs show similar trends, performing slightly
worse than the neural networks in terms of pure classification. The methods to decorrelate the
jet mass from the MV output still achieve better background rejection than the single variable
analysis.

The degree of decorrelation is examined in Fig. 14 where the Bhattacharyya distance
is plotted against the signal efficiency in the upper row. The distance is calculated on the
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Figure 14: The Bhattacharyya distance for the QCD background distributions com-
pared to the original distributions. The distance is defined in Eq. (9), and a larger
distance represents more sculpting—lower on the plot is better. The neural networks
tend to sculpt the distributions worse than the BDT, regardless of the data. Both the
PCA rotations and Planing the jet mass result in smaller distances than the classifiers
trained on the original data.

background-only distributions and the color scheme is the same as the previous figure. In al-
most every case, the BDT has smaller distances (less distortion) than the NN. The classifiers
trained on the PCA rotated data show much less distortion than the original data other than
for the 4-prong jets. For instance, the 2-prong jet mass distribution distances are about half
the value as the corresponding unaltered method. The method of planing away the jet mass
information shows nearly an additional factor of two less sculpting than the PCA method for
the 2-prong jets. However, the planing curves do not reach as low of distances as τDDT

21 for
most signal efficiencies.

The planing method produces the smallest distances out of the different methods consid-
ered here for the 3-prong jets. The 4-prong signal is particularly easy for the classifiers to
distinguish from the QCD background. As a result, even the MVs with attempts at mass decor-
relation have large Bhattacharyya distances for fixed signal efficiency. Out of these, the planing
method sculpts the distributions the least.

In the bottom row of Fig. 14 we again show the background rejection plotted against the
Bhattacharyya distance. We again find that for 2-prong jets, τDDT

21 sculpts the least for a given
background rejection. However, it does not reach the largest background rejection values.
The next best method is the neural network trained on planed data, which even produces
smaller distances for background rejection above around 20, as compared to τDDT

21 . The plan-
ing methods seem different than the others in that the NN has less sculpting than the BDT. The
BDT trained on the PCA scaled data behaves similar to the BDT trained on planed data, but
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reaches to larger background rejections and for a fixed background rejection has better signal
efficiency. The PCA scaled neural network has slightly more sculpting for fixed background
rejection than the other decorrelation methods, but still has much smaller distances than the
unaltered methods.

The 3-prong jet signal Bhattacharyya distance shows an interesting change when plotted
against the background rejection as opposed to the signal efficiency. In the middle panel of
Fig. 14, τ3/τ2 produces smaller distances for fixed signal efficiency than all of the methods
other than planing. However, for a fixed background rejection, it sculpts the data more than
nearly all of the MV methods. We again find that the neural network trained on planed data
provides the smallest distances for a given background rejection, but the BDT is not far behind.
The PCA-based methods also provide less sculpting than the original methods.

The 4-prong jet results are more clustered, but τ4/τ3 (shown in pink) has smaller distances
for fixed background rejection than the original methods—and surprisingly—the PCA based
methods. That being said, the signal efficiencies are also much smaller. The neural network
trained on data which has had the jet mass planed away produces the best curve.

The data augmentation methods explored in this section allow for using both BDTs and
NNs and training takes about the same amount of time as the unaltered data. However, by
augmenting the data, it is possible to make the MVs sculpt the jet mass much less than the
original MVs. This does lower the overall background rejection for a given signal efficiency,
but for fixed background rejection, the degree of sculpting can be much less. In this regard,
these methods achieve similar results to the methods which augment the training process
instead of the input data which have already been studied in the literature.

4.3 Comparison

Finally, we want to get a sense for how the augmented training methods perform, as compared
to the data augmentation methods. In Fig. 15 we show the Bhattacharyya distance versus the
signal efficiency (top) and background rejection (bottom) for only the decorrelation methods
and not the original methods. We only show the neural networks for the data augmentation
methods because they achieve better background rejection than BDTs, for fixed signal effi-
ciency. For 2-prong jets, τDDT

21 has the least sculpting for background rejections smaller than
around a factor of 10, but for larger than this, the adversarially trained network has the small-
est distances. The network trained on planed data has the next smallest distances for large
background rejection. While the green line is close to the purple adversary line, the marked
points are further to the right, indicating that the planed network does not have as much sig-
nal efficiency for the corresponding background rejection/histogram distance. However, it is
worth pointing out that planing sculpts less than uBoost, and takes about a factor of three less
time to train. For the 2-prong jets, the PCA based method sculpts the most out of the decorre-
lation methods. PCA, however, seems to perform far better when paired with BDTs rather than
NNs. Comparing Figs. 14 and 15, we see that augmenting the data using the PCA approach
and then training a BDT—as opposed to a NN—sculpts just about the same as uBoost does for
fixed background rejections, but takes less than 1/20 of the time to train.

The 3- and 4-prong jets show similar patterns in their results. As emphasized before, there
is currently not an analytic decorrelation method similar to τDDT

21 for higher prong jets. The
neural networks trained on the data with the jet mass planed away achieve very similar curves
to the adversarial network curves—and train about a factor of 100 times faster. One may worry
that this is a sign that the adversary is not actually doing well for the higher pronged jets. In
App. C we show the jet mass distributions and do not think this is the case.

With these higher-pronged jets, the PCA based rotation method gives similar curves to
uBoost. However, the PCA method has two benefits over uBoost. First, the marked points
are further to the left, indicating that for fixed signal efficiency, the PCA networks have more
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Figure 15: A comparison of all the MV based methods to decorrelate the jet mass from
the classifier output. The shown PCA and Planed results are for NN architecture. The
analytical τDDT

21 method sculpts the least for moderate background rejection, but for
larger values does not do as good as the adversarially trained neural network. The
network trained on data augmented by planing the jet mass do almost as good as
the adversarially trained network, with uBoost and the PCA based networks show-
ing slightly more sculpting. With more prongs, planing and adversaries are nearly
identical to each other while PCA and uBoost are very similar to each other.

background rejection than uBoost. Second, the amount of time required to train the machine
is around a factor of four less.

5 Outlook and Future Work

The significance of a discovery or exclusion will always be the primary factor when determining
which decorrelation method to use in an analysis. With this in mind, one potential concern
with the data augmentation techniques is that they may reduce the statistical power of the
data itself, especially when applied to data on the tails of the distribution. We do not expect
this to be the case since the PCA based approach involves only linear transformations of the
data and Planing only requires that the data used for training be reweighted. In future work,
we will answer this question concretely, as part of a larger study where we explicitly look at
a phenomenological proxy for the discovery significance that properly accounts for systematic
errors and further optimizes the working point of the tagger.

One interesting extension of the techniques explored here would be to train networks on
jets in a given mass range, and then use these networks to classify jets in an entirely different
mass range. Neural networks offer a very flexible framework to train a wide variety of models,
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but are far less adaptable once trained. The techniques studied here distinguish signal from
background with less reliance on the jet mass. Since they only rely on substructure informa-
tion, and not the absolute scale of the jet, they should be applicable to other regions of the
mass parameter space. Showing that such results are possible could increase the usage of such
MV techniques in large experimental collaborations, such as those at the LHC.

Our comparisons used the same representation of the input data for all of the classifiers,
namely the N-subjettiness basis. However, there have been many studies of jet taggers using
other representations, such as images, sequences, or graphs. Mass decorrelation has been done
in images with Planing [4] and Adversarial training [32], but it would be interesting to see
how all of the techniques studied here could be applied to the different representations, and
if any additional advantage is offered. Additionally, decorrelating in both the jet mass and the
transverse momentum could make for a stable jet tagger (See Ref. [49] for multidimensional
decorrelation with Planing).

In this work, we applied all our methods to decorrelate the classifiers from the jet mass by
explicitly using the jet mass in the decorrelation procedure (flattening the jet mass distribution
for Planing; binning in jet mass for PCA). However, τDDT

21 uses ρ = log(m2/p2
T ) in its analytic

decorrelation. An interesting test would be to examine how the decorrelation techniques work
using this value (or just pT ) as opposed to the mJ alone. Additionally, it would be worthwhile
studying how robust these techniques are in a more realistic experimental environment by
testing how the classification and decorrelation generalize to signals with mixed prongedness,
and signal contamination. This is work we intend to do, and leave to future study.

Code to reproduce our results can be found on GitHub.

6 Conclusion

New physics searches are challenging, especially when the processes are rare and the back-
grounds plentiful. Rejecting background events is necessary, but how the background is re-
moved is also important. Experimental efforts to look for new physics are greatly aided by
easy-to-model backgrounds, so the need for techniques that preserve the profiles of the under-
lying background distributions cannot be understated.

In this work, we explored a variety of cutting-edge methods used in the classification of
boosted objects. We started by looking at how standard single- and multi-variate techniques
achieve better classification at the cost of increased background sculpting. These standard
methods serve as a point of comparison to analytic [28] and multivariate [27,30]methods de-
signed specifically with mass decorrelation in mind. Previous studies of these techniques [33]
focused only on their application to searches for two-body hadronic resonances. We extended
these analyses to see how existing methods perform when tasked with classifying jets with
more complex substructure. We also studied two data augmentation based techniques to
decorrelate the classifier output from the mass of the jet, Planing and PCA-based rescaling,
as well as two training augmentation based techniques, uBoost and Adversarial NNs.

All of the decorrelation techniques studied in this work reduce the extent to which the back-
ground is sculpted, and could therefore be used to increase sensitivity in a new physics search.
We have shown that Planing and PCA give comparable performance to training augmentation
based methods, while taking only a fraction of the time and computational overhead to train.
These data augmentation techniques could be useful in situations such as testing prototypes,
where fast turnaround is desired.
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A Adversary decorrelation parameter

As mentioned in Sec. 3.3.2, adversarially-trained neural networks introduce a new positive
hyperparameter, λ, which must be chosen by the user. Higher values of λ increase the impor-
tance of the adversary when minimizing the loss function of the tagger, which decorrelates the
output from the tagger from the jet mass at the cost of worse classification when compared to
standard neural networks.

In choosing a value of λ to use in our analysis, we examined the different metrics and found
that λ = 50 is where results start to saturate. Figure 16 shows the results of this parameter
sweep using the three metrics used in the main body of this work. The ROC curves for the
2-, 3-, and 4-prong signals are shown in the top row. Darker shades correspond to lower
values of λ. As expected, using lower values of λ result in better classification. In the middle
row, we have plotted the Bhattacharyya distance as a function of signal efficiency for every
value of λ. The darkest curves look nearly identical to the Original NN results of Fig. 12, and
sculpt the background the most, while the lightest curves (corresponding to higher values of
λ) sculpt the least. From this row, we can see that the mass decorrelation as measured by
the Bhattacharyya distance saturate at λ = 50. The bottom row shows a parametric plot of
the Bhattacharyya distance and the background rejection, made by scanning across the signal
efficiencies. For a fixed level of background rejection, we again see that the decorrelating
benefits of the adversarial approach saturate at λ= 50.

B Comparison of histogram distances

We have used Bhattacharya distance in this work to quantify the sculpting of jet mass distribu-
tion from various jet tagging methods. This distance has the nice feature that it is normalized
and therefore allows fair comparison across various methods. It is certainly not a unique
choice. Another method used by ATLAS collaboration in Ref. [33] to quantify the mass distor-
tion is the Jensen-Shannon distance, which is given as

dJSD(P,Q) =

√

√

√dKL(P,
P+Q

2 ) + dKL(Q, P+Q
2 )

2
, (10)

where dKL is the Kullback-Leibler divergence, given by

dKL(P,Q) =
∑

i

pi log
pi

qi
, (11)

pi , qi being the value of the distribution P,Q in bin i. For us, P is the background mass dis-
tribution before the application of a given tagger, and Q is the background mass distribution
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Figure 16: The top row shows the ROC curves for all of the adversarially-trained
neural networks tasked with distinguishing the 2-, 3-, and 4-prong signal jets from
the QCD background. Lighter shades correspond to increasingly larger values of λ.
Larger values of λ put an increased emphasis on making the network output less
dependent on the mass, at the cost of worse classification. The middle row shows
how the Bhattacharyya distance for the QCD background changes as tighter cuts are
made on the network output. As expected, higher values of λ lead to less sculpting
than lower values of λ. The bottom row shows a parametric plot of the Bhattacharyya
distance for the QCD background versus the background rejection. The adversarially-
trained networks are all able to achieve similarly large background rejections, but
networks using higher values of λ are able to reject much of the background while
preserving the profile of the underlying distribution. All three rows show that the
benefits of adversarial training saturate at λ= 50.

after the application of a given tagger. In Fig. 17, we compare how the two distances dB and
dJSD compare. We see that the two distances are very similar to each other for 2-pronged and
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3-pronged signals, while have some differences in the 4-pronged case. The general shape is
the same however, and one can be chosen over the other without biasing any inferences.
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Figure 17: Comparison of Bhattacharyya distance and Jensen-Shannon distance for
2-, 3-, and 4-pronged signals, as a function of signal efficiency for various decorrela-
tion methods studied in this work. The general trend for both metrics is seen to be
the same.

C Histogram Sculpting Comparison

Here we show a qualitative comparison of all of the decorrelation methods for all of the dif-
ferent pronged signals considered in the main body of this work. The figures are organized as
follows: the leftmost column shows the single-variable benchmark, τ(1)N /τ

(1)
N−1 (N = 2, 3,4 for

2-/3-/4-pronged signal), as well as the Designed Decorrelated Tagger for the 2-prong signal;
the middle column shows how the BDT benchmark sculpts the background, followed by all
of the BDT based decorrelation methods studied in this work—uBoost, Planing, and PCA; the
right column shows how the NN benchmark sculpts, followed by all of the NN based methods
studied, namely Adversarial NNs, Planing, and PCA. A legend is provided in the lower left of
each figure to remind the reader which colors correspond to which cuts on the signal efficiency,
εS .

Figure 18 shows the comparison of methods for the 2-pronged signal, Fig. 19 shows this
comparison for the 3-pronged signal, and Fig. 20 shows the comparison for the 4-prong signal.
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Figure 18: Comparison of all decorrelation methods to the benchmarks for the 2-
prong signal. τN/τN−1 is τ2/τ1.
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Figure 19: Comparison of all decorrelation methods to the benchmarks for the 3-
prong signal. τN/τN−1 is τ3/τ2.
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Figure 20: Comparison of all decorrelation methods to the benchmarks for the 4-
prong signal. τN/τN−1 is τ4/τ3.
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