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Abstract

A 2π phase shift across a Josephson junction in a topological superconductor injects
vortices into the chiral edge modes at opposite ends of the junction. When two vortices
are fused they transfer charge into a metal contact. We calculate the time dependent
current profile for the fusion process, which consists of ±e/2 charge pulses that flip sign
if the world lines of the vortices are braided prior to the fusion. This is an electrical
signature of the non-Abelian exchange of Majorana zero-modes.
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1 Introduction

An interesting and potentially useful line of research in electronic quantum transport is to study
the injection, propagation, and detection of single-electron wave packets [1,2]. These studies
are inspired by analogies with quantum optics, where a single-photon source is an elementary
building block of devices. For single-particle excitations in the Fermi sea the elementary wave
packet goes by the name of leviton [3]: A voltage pulse over a tunnel barrier of integrated
amplitude equal to a flux quantum injects one electron charge, without any particle-hole ex-
citations if the time dependence is Lorentzian [4–6].

Single-electron levitons have been realized experimentally in a two-dimensional (2D) elec-
tron gas [7, 8]. In these systems the chiral motion in quantum Hall edge channels provides
for a means of propagation that is not hindered by impurity scattering [9,10]. A leviton could
function as a “flying qubit” for quantum information processing [11–13], transferring entan-
glement between immobile qubits in quantum dots.

Superconducting analogues of the leviton [14, 15] are of interest in the context of super-
conducting platforms for quantum computation. For the superconducting counterpart to the
quantum Hall effect one can turn to a 2D topological superconductor, formed by the proximity
effect on the surface of a 3D topological insulator [16]. Chiral modes appear at boundaries
where the superconductor is gapped by means of a magnetic insulator [17,18]. The direct ana-
logue of the leviton is the injection of single Majorana fermions into the edge modes [19–22].

An alternative route to flying qubits in a superconductor is to inject single edge vortices
rather than single fermions [23]. Edge vortices are π-phase boundaries injected into the
fermionic edge modes at a Josephson junction, in response to a 2π phase increment of the
pair potential. (Recall that a fermionic phase shift is one-half the phase shift for Cooper pairs.)
Unlike Majorana fermions, which are Abelian quasiparticles, the edge vortices are non-Abelian
anyons: A qubit encoded in the fermion parity of a pair of edge vortices is a topologically pro-
tected degree of freedom, which can be transformed by braiding (exchange) and measured by
fusion (merging) of the vortices.

Previous works studied the braiding of an edge vortex with a bulk vortex [23] and the non-
Abelian fusion rule of edge vortices [24]. In these studies the dynamics of the edge vortices
was ignored, by assuming that the time scale L/v for the propagation through the system is
small compared to the duration tinj of the injection process. In the present work we relax that
assumption, with a twofold objective: Firstly, to provide a time-resolved description of the
charge transferred into a metal contact by the edge vortices. Secondly, to enable the braiding
of the world lines of vortices on opposite edges. Taken together, these two objectives allow for
the time-resolved electrical detection of chiral edge vortex braiding.

The outline of the paper is as follows. In the next Sec. 2 we briefly describe the effective
edge Hamiltonian from Ref. [23], on which our analysis is based. The time dependent scat-
tering theory is developed in Secs. 3–5, both in a fermionic and a bosonic formulation. We
will work mainly in the fermionic description, but the bosonized scattering operator is helpful
to make contact, in Sec. 6, with the conformal theory of edge vortices [25,26]. We apply the
scattering theory to the dynamics of the edge vortices in Secs. 7 and 8, where we analyse their
fusion and braiding, aiming at the electrical detection. We conclude in Sec. 9.
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2 Effective edge Hamiltonian
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Figure 1: Geometry to create and braid two pairs of edge vortices in a topological
insulator/magnetic insulator/superconductor heterostructure. The edge vortices are
created at opposite ends of a Josephson junction, by an h/2e flux bias ΦA,B(t) that
induces a 2π increment of the superconducting phase difference φA,B(t) across the
junction. Each edge vortex contains a Majorana zero-mode and two zero-modes de-
fine a fermion-parity qubit. When two edge vortices are fused at the normal metal
contact a current pulse I(t) is produced, of integrated charge Q = ±e/2. Gate elec-
trodes on the edge modify the velocity of propagation and allow for a relative delay
of vortices at upper and lower edge. This makes it possible to braid their world lines,
as illustrated in Fig. 5. The braiding is a non-Abelian exchange operation which
switches the fermion parity of the qubit and flips the sign of Q, allowing for electrical
detection.

To set the stage, we summarize the findings of Ref. [23], with reference to the geometry
of Fig. 1. A 2π increment of the phase shift φ(t) = (2e/ħh)Φ(t) across a flux-biased Josephson
junction in a topological superconductor excites a vortex into each of the Majorana edge modes
at opposite ends of the junction (at y = ±W/2). The excitation process happens on the
characteristic time scale

tinj = (ξ0/W )(dφ/d t)−1, (1)

where ξ0 = ħhv/∆0 is the superconducting coherence length (at Fermi velocity v and gap
∆0). We assume that W/v � tinj, so that the time for propagation along the junction (in
the y-direction) can be neglected relative to the vortex injection time tinj. However, we will
go beyond Ref. [23] to fully account for the finite propagation time along the edge (in the
x-direction).

We will later introduce path length differences (or equivalently, velocity differences) be-
tween the upper and lower edge, but we first analyze the simplest case that the propagation
time from one junction to the next is the same for both edge modes (δt = δt ′ = 0 in Fig. 1).

The effective Hamiltonian of the edge modes is given by [23]

H = iv

�

−∂ /∂ x −δ(x)α(t)
δ(x)α(t) −∂ /∂ x

�

≡ vpxσ0 +δ(x)vα(t)σy , (2)

α= arccos
�

cos(φ/2) + tanhβ
1+ cos(φ/2) tanhβ

�

× sign (φ), β =
W
ξ0

cos(φ/2). (3)
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(We have set ħh ≡ 1.) The 2 × 2 Hermitian matrix H acts on the Majorana fermion wave
functions Ψ = (ψ1,ψ2) at opposite edges of the superconductor, both propagating in the +x
direction. Since we take same velocity on both edges, the momentum operator px = −i∂ /∂ x
is multiplied by the unit matrix σ0. The Josephson junction is positioned at x = 0 and couples
the edges via the σy Pauli matrix with a time dependent amplitude α(t). A 2π increment of
φ corresponds to a π increment of α, in a step function manner when W/ξ0� 1,

α(t)≈ arccos[− tanh(t/2tinj)] if W � ξ0. (4)

Because the Hamiltonian H is purely imaginary, the wave equation ∂ψ/∂ t = −iHψ is purely
real — which is the defining property of a Majorana mode.

More generally, we can consider a sequence of Josephson junctions in series, at positions
x1, x2, . . ., each with its own phase difference φ j(t) and corresponding α j(t). We will also
allow for bulk vortices in the superconductor. An h/2e bulk vortex at x = xvortex introduces a
π phase difference between the upper and lower edge modes “downstream” from the vortex
(so for x > xvortex). This can be accounted for in H by a term (π/2)δ(x − xvortex)σz , or
equivalently, upon gauge transformation,1 by switching the sign of the σy term:

H = vpxσ0 +
∑

j

(−1)n jδ(x − x j)vα j(t)σy . (5)

Here n j is the number of vortices “upstream” from Josephson junction j (so the number of
vortices at x < x j).

3 Construction of the phase field

The wave equation i∂ψ/∂ t = Hψ has the general solution

ψ(x , t) = e−iΛ(x ,t)σyψ0(x − vt), (6)

in terms of a phase field Λ(x , t) determined by

(∂t + v∂x)Λ(x , t) =
∑

j

(−1)n jδ(x − x j)vα j(t)

⇒ Λ(x , t) =
∑

j

(−1)n jα j(t − x/v + x j/v)θ (x − x j).
(7)

(We abbreviate ∂q = ∂ /∂ q.) For an equivalent scalar solution, the two real components of
ψ = (ψ1,ψ2) (Majorana modes at upper and lower edge) can be combined into a complex
wave function Ψ = 2−1/2(ψ1 − iψ2) (a Dirac mode), which evolves in time as

Ψ(x , t) = e−iΛ(x ,t)Ψ0(x − vt). (8)

The phase field Λ in the geometry of Fig. 1 is plotted in Fig. 2, as function of x for a fixed
t. A 2π increment of the phase of the pair potential ∆0eiφ creates a π-phase domain wall for
Majorana fermions on the edge, propagating away from the Josephson junction with velocity
v.

The phase field determines the time dependent scattering matrix S(t, t ′) that relates in-
coming and outgoing wave amplitudes. To formulate a scattering problem we assume that

1The gauge transformation H 7→ U†HU with U = exp[−i(π/2)θ (x − xvortex)σz] removes (π/2)δ(x − xvortex)σz

from H and switches the sign of δ(x − x j)α(t)σy if x j > xvortex. This gauge transformation ensures that the edge
Hamiltonian remains purely imaginary in the presence of bulk vortices.
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Figure 2: Phase field Λ(x , t) of the Majorana edge modes, calculated from Eq. (7)
for Josephson junctions at x1 = 0 and x2 = 1 and plotted as a function of x for t = 4.
The phase φ(t) = φ1(t) = −φ2(t) increases linearly from 0 at t = 0 to 2π at t = 1.
The amplitude α(t) is calculated from Eq. (3) at W/ξ0 = 5. Solid and dashed curves
are with and without a bulk vortex in between the Josephson junctions. The π-phase
domain walls propagate in the +x direction with velocity v = 1.

the Josephson junctions are all contained in the interval 0 < x < L, so that the edge modes
propagate freely for x < 0 [incoming state ψin(t) = ψ(0, t)] and for x > L [outgoing state
ψout(t) =ψ(L, t)]. The amplitudes are related by

ψout(t) =

∫ ∞

−∞
S(t, t ′)ψin(t

′) d t ′, S(t, t ′) = e−iΛ(t)σyδ(t ′ − t + L/v),

Λ(t)≡ Λ(L, t) =
∑

j

(−1)n jα j(t − L/v + x j/v).
(9)

In the energy domain one has

S(ε,ε′) =

∫

d t

∫

d t ′ eiεt−iε′ t ′S(t, t ′) = eiε′L/v

∫

d t ei(ε−ε′)t e−iΛ(t)σy . (10)

The scattering matrix of Ref. [23] is recovered if the finite propagation time between the
Josephson junctions is ignored.

Eqs. (9) and (10) relate the real Majorana fieldsψin andψout. To relate the complex Dirac
fields Ψin and Ψout one removes the σy Pauli matrix that multiplies the phase field Λ.

4 Bosonized scattering operator

We proceed from the single-particle dynamics described by the scattering matrix (9) to the
time evolution of the many-particle state in a bosonized formulation. This is not an essential
step, all results can be obtained from the fermionic scattering matrix, but the bosonization
provides for a direct route to the transferred charge in Sec. 5 and it will allow us to explicitly
construct the vortex field operator in Sec. 6.

We transform to a coordinate frame that moves along the edge with velocity v ≡ 1, so the
independent space and time variables are s = x−t and τ= t+x . In the complex representation
Ψ = 2−1/2(ψ1− iψ2) of the edge modes the scalar wave equation reads i∂Ψ/∂ τ= (∂Λ/∂ τ)Ψ.
The corresponding evolution of the many-particle state |τ〉 is given in terms of the fermionic
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field operator Ψ̂(s) by

i
∂

∂ τ
|τ〉= V̂(τ)|τ〉, V̂(τ) =

∫

ds Ψ̂(s)†Ψ̂(s)∂τΛ(s,τ),

Λ(s,τ) =
∑

j

(−1)n jα j(x j − s)θ (s+τ− 2x j).
(11)

The scattering operator S that solves Eq. (11) for |τ〉= Ŝ(τ)|0〉 is given formally by

Ŝ(τ) = T exp

�

−i

∫ τ

0

dτ′V̂(τ′)
�

, (12)

where T indicates time ordering of the exponential operator (later times to the left of ear-
lier times). This expression still needs to be regularized, which is conveniently achieved by
bosonization [4]. (See Ref. [27] for an alternative approach.)

The regularized density operator of the chiral fermionic mode is a Hermitian bosonic field
ρ̂(s) defined by

ρ̂(s) = : Ψ̂†(s)Ψ̂(s) : . (13)

The colons prescribe the subtraction of the (infinite) expectation value in the unperturbed
Fermi sea. The anticommutator {Ψ̂†(s), Ψ̂(s′)}= δ(s− s′) of the fermionic field corresponds to
the density commutator [28]

[ρ̂(s), ρ̂(s′)] =
i

2π
∂

∂ s
δ(s− s′). (14)

The corresponding commutator of V̂(τ) =
∫

dsρ(s)∂τΛ(s,τ) is a c-number,

[V̂(τ), V̂(τ′)] = − i
2π

∫

ds
�

∂s∂τΛ(s,τ)
�

∂τ′Λ(s,τ
′). (15)

The Magnus expansion for a c-number commutator,

T e−i
∫ τ

0 dτ′ V̂ (τ′) = e−i
∫ τ

0 dτ′ V̂ (τ′)e−
1
2
∫ τ

0 dτ1
∫ τ1

0 dτ2 [V̂ (τ1),V̂ (τ2)], (16)

allows us to remove the time ordering. The time integrals in the exponent of Eq. (12) can then
be evaluated,

T exp

�

−i

∫ τ

0

dτ′ V̂ (τ′)

�

= eiϕ(τ) exp

�

−i

∫

ds ρ̂(s)Λ(s,τ)

�

,

ϕ(τ) =
1

4π

∫

ds

∫ τ

0

dτ′Λ(s,τ′)∂s∂τ′Λ(s,τ
′).

(17)

One more step is needed. The operator ρ̂ creates particle-hole excitations, preserving the
fermion parity, so for a complete description of the scattering process we also need a Klein
factor, an operator F̂ that connects the ground states with N and N + 1 particles [28]:

F̂ |0〉N = |0〉N+1, [ρ̂(s), F̂] = 0, F̂ F̂† = 1. (18)

A fermion parity switch is possible because the edge vortices exchange a quasiparticle with
each of the Nvortex bulk vortices in between the Josephson junctions [23]. The final expression
for the bosonized scattering operator is

Ŝ(τ) = eiϕ(τ) F̂ Nvortex exp

�

−i

∫

ds ρ̂(s)Λ(s,τ)

�

. (19)
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5 Half-integer charge transfer

The operator evρ̂ is the charge current density operator, regularized by subtracting the con-
tribution from the unperturbed Fermi sea. Using the identity

Ŝ†(τ)ρ̂(s)Ŝ(τ) = ρ̂(s) + 1
2π

∂

∂ s
Λ(s,τ), (20)

which follows from Eqs. (14) and (19), we obtain the average current

I(s,τ) = ev〈τ|ρ̂(s)|τ〉= ev〈0|Ŝ†(τ)ρ̂(s)Ŝ(τ)|0〉= ev
2π

∂

∂ s
Λ(s,τ). (21)

Assuming again that the Josephson junctions are in a finite interval 0< x < L, and consid-
ering the current of the outgoing state at x > L, we have Λ(s,τ) =

∑

j(−1)n jα j(x j − s), hence
(restoring the original variables x , t),

I(x , t) = −
e

2π

∑

j

(−1)n j
∂

∂ t
α j(t − x/v + x j/v). (22)

Each π-phase domain wall carries a charge of ±e/2. In total, the average transferred charge
is 0 or ±e depending on whether Nvortex is even or odd [23].

6 Construction of the vortex field operator

Given the phase field Λ(x , t), we define the unitary operator

µ̂(x) = exp

�

−i

∫

d x ′ ρ̂(x ′)Λ(x ′, x/v)

�

. (23)

The commutator

[ρ̂(x), Ψ̂(x ′)] = [Ψ̂†(x)Ψ̂(x), Ψ̂(x ′)] = −δ(x − x ′)Ψ̂(x) (24)

implies that2

µ̂(x)Ψ̂(x ′) = eiΛ(x ′,x/v)Ψ̂(x ′)µ̂(x). (25)

To interpret this relation we consider the regime W � ξ0 when each π-phase boundary in
Fig. 2 becomes a step function. For a single Josephson junction at x = 0 and a phase difference
φ(t) which crosses π at t = 0 the phase field is

Λ(x ′, t) = πθ (vt − x ′)θ (x ′). (26)

Eq. (25) takes the form

µ̂(x)Ψ̂(x ′) =

¨

−Ψ̂(x ′)µ̂(x) if 0< x ′ < x ,

+Ψ̂(x ′)µ̂(x) otherwise.
(27)

In the basis of Majorana fermion fields ψ̂1(x), ψ̂2(x) on upper and lower edge, with anti-
commutator {ψ̂n(x), ψ̂m(x ′)} = δnmδ(x − x ′), the vortex field operator (23) may be written
as

µ̂(x) = exp

�

−
∫

d x ′ ψ̂1(x
′)ψ̂2(x

′)Λ(x ′, x/v)

�

. (28)

2If we define Ô(ξ) = eiξ
∫

d x ′ ρ̂(x ′)Λ(x ′ ,t)Ψ̂(x)e−iξ
∫

d x ′ ρ̂(x ′)Λ(x ′ ,t) then ∂ξÔ(ξ) = −iΛ(x , t)Ô(ξ), hence
Ô(ξ) = e−iξΛ(x ,t)Ô(0). The result (25) then follows at ξ= 1.
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The commutator (27) applies to each Majorana fermion field separately,

µ̂(x)ψ̂n(x
′) =

¨

−ψ̂n(x ′)µ̂(x) if 0< x ′ < x ,

+ψ̂n(x ′)µ̂(x) otherwise.
(29)

The commutator (29) is the defining property of a vortex field operator, such as the twist
field in the conformal field theory3 of Majorana edge modes [25, 26]. The step function ap-
proximation (26) of the phase field Λ corresponds to the neglect of the finite size of the core
of the edge vortex. In that zero-core limit µ̂(x) is both unitary and Hermitian (it squares to
the identity). More generally, the vortex field operator (23) is unitary but not Hermitian.

7 Fusion of edge vortices with a relative time delay

So far we have assumed that the vortices propagate along opposite edges with the same ve-
locity. We now relax that assumption and allow for a relative time delay between upper and
lower edge. (This delay is crucial for the braiding scheme of Fig. 1, which we will study in Sec.
8.) Here we present a calculation using the scattering matrix, an alternative Green’s function
calculation is given in App. A.

<latexit sha1_base64="kWktZIYwcgtu//3XeAqi5TMdhxM=">AAAB7XicbVDLagIxFL1jX9a+bLvsJlQKXclMEdSd0E0XXSjUB6hIJmY0mJkMyZ2CiF/Qbd2VbvtJpX/TOA4F2x4IHM454d57/FgKg6775eR2dvf2D/KHhaPjk9Oz4vlFx6hEM95mSird86nhUkS8jQIl78Wa09CXvOvP7td+95lrI1T0hPOYD0M6iUQgGEUrtR5HxZJbdlOQv8TLSAkyNEfFz8FYsSTkETJJjel7bozDBdUomOTLwiAxPKZsRid8ka63JDdWGpNAafsiJKm6laOhMfPQt8mQ4tT89tbif14/waA2XIgoTpBHbDMoSCRBRda3krHQnKGcW0KZFnZDwqZUU4a2ka0pfrhMm6inIBtSrWSk7v000bkre27Za1VKjVrWSR6u4BpuwYMqNOABmtAGBhxe4BVWjnJWzpvzvonmnOzPJWzB+fgGORmPlw==</latexit>

Figure 3: Geometry described by the scattering matrix (30).

To study the effect of a time delay on the fusion of two edge vortices it is sufficient to
consider a single Josephson junction, as in Fig. 3. The junction is at x = 0, with phase dif-
ference φ(t) and corresponding scattering phase α(t). The propagation time from x = 0 to
x = L along the upper and lower edge is L/v+δt and L/v, respectively, corresponding to the
scattering matrix

S(t, t ′) =

�

δ(t ′ − t + L/v +δt) 0
0 δ(t ′ − t + L/v)

�

e−iα(t ′)σy . (30)

For δt = 0 this reduces to the previous Eq. (9). At x = L the two Majorana modes merge to
form a single Dirac mode, which carries an electrical current into a normal metal contact.

The expectation value I(t) of the current can be calculated starting from a scattering for-
mula in the energy domain,

I(t) = e

∫ ∞

−∞

dE
2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω
2π

eiωt f (E′)[1− f (E)]

× Tr S†(E +ω/2, E′)σyS(E −ω/2, E′), (31)

which says that the current is produced by scattering from filled states with weight f (E′) to
empty states with weight 1 − f (E). (The function f (E) = (1 + eE/kBT )−1 is the equilibrium

3In the context of the 2D Ising model the commutator (29) defines the socalled disorder field [29].
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Fermi function at temperature T .) In App. B we derive the equivalent time-domain expression
at zero temperature,4

I(t) =
ie
4π

∫ ∞

−∞
d t ′

∫ ∞

−∞
d t ′′

1
t ′′ − t ′

Tr S†(t, t ′)σyS(t, t ′′). (32)

Figure 4: Time dependent current I(t) (in dimensionless units) produced by the
fusion of two edge vortices in the geometry of Fig. 3. The phaseφ(t) across the single
Josephson junction increases linearly from 0 at t = 0 to 2π at t = 1. The amplitude
α(t) is calculated from Eq. (3) at W/ξ0 = 5, so that tinj = (10π)−1 ≈ 0.03. The three
curves, calculated from Eq. (33), correspond to different values of the relative delay
δt between edge vortices on upper and lower edge. The current pulse is suppressed
when δt � tinj.

Substitution of Eq. (30) into Eq. (32) gives the result

I(t) =
e

2π
sin[α(t − L/v −δt)−α(t − L/v)]

δt
, (33)

plotted in Fig. 4. When the relative delay time vanishes we recover the expected limit

lim
δt→0

I(t) = −
e

2π
d
d t
α(t − L/v), (34)

in accord with Eq. (22) for a single Josephson junction without bulk vortices.
The average transferred charge Q =

∫

I(t)d t decays from e/2 to zero when δt becomes
large compared to the injection time tinj. If we take the large W/ξ0 functional form (4) for
α(t) we have a simple analytical expression,

Q = −
e
2

tanh(δt/4tinj)

δt/4tinj
. (35)

4App. B also shows how to regularize the singularity at t ′′− t ′ in Eq. (32). For our applications no regularization
is needed.
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Figure 5: Braiding of vortices moving in the same direction. The three diagrams at
the left show the edge vortices at three instants in time; the vortices are produced
by an h/2e flux increment, first at Josephson junction A (time t = 0) and then at
Josephson junction B (time t = T1). Each vortex induces a 2π phase shift of the
order parameter across a branch cut, indicated by the dashed lines. The Majorana
operator γn associated with vortex σn changes sign when the vortex crosses a branch
cut from some other vortex. This happens once for vortex 1 and twice for vortex
3, so γ1 changes sign but γ3 does not. The vortices 2 and 4 do not cross a branch
cut, so γ2 and γ4 are unaffected. In the space-time braiding diagram the crossing
of a branch cut is indicated by an overpass. At the end of this process both fermion
parity operators iγ1γ2 and iγ3γ4 change sign. Hence two fermions are produced,
one shared by vortices 1 and 2 and one shared by vortices 3 and 4. This can be
detected electrically as a sign change of the current pulse I(t) produced by the fusion
of vortices 1 and 2 when they enter a metal contact.

8 Braiding of edge vortices with a relative time delay

Now that we have a time-resolved scattering theory of edge vortices we can describe the braid-
ing of their world lines. We will consider separately the braiding of vortices propagating in the
same direction or in the opposite direction.

8.1 Co-propagating edge vortices

The world lines of vortices moving in the same direction on opposite edges can be braided by
introducing a delay, as indicated in the geometry of Fig. 1. The braiding diagram is shown
in Fig. 5, where the delay is indicated schematically as a path length difference (a velocity
difference would have an equivalent effect).

We extend the calculation of Sec. 7 to include two Josephson junctions (scattering phases
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αA and αB), and two delay times: δt on the upper edge between the first and second junc-
tion, and δt ′ on the lower edge after the second junction. The braiding exchanges a fermion
between vortex pair 1,2 produced at the first Josephson junction and vortex pair 3,4 from the
second Josephson junction, switching the fermion parity of the two vortex pairs from even–
even to odd–odd. As we will now show, the fermion parity switch can be detected electrically
as a switch in the sign of the current peak, from integrated charge −e/2 to +e/2.

The scattering matrix corresponding to the geometry of Fig. 1 is

S(t, t ′) =

∫ ∞

−∞
d t ′′

�

δ(t ′′ − t + L′/v) 0
0 δ(t ′′ − t + L′/v +δt ′)

�

e−iαB(t ′′)σy

·
�

δ(t ′ − t ′′ + L/v +δt) 0
0 δ(t ′ − t ′′ + L/v)

�

e−iαA(t ′)σy . (36)

Substitution into Eq. (32) gives, in the limit δt ′→ δt, the time dependent current

I(t) = −
e

2π
cosαB(tB) cosαB(tB −δt)

dαA(tA−δt)
d tA

−
e

2πδt

§

sinαB(tB) cosαB(tB −δt) cos[αA(tA)−αA(tA−δt)]

− sinαB(tB −δt) cosαB(tB) cos[αA(tA−δt)−αA(tA− 2δt)]

+ 1
2 sinαB(tB −δt) sinαB(tB) sin[αA(tA)−αA(tA− 2δt)]

ª

, (37)

with tA = t − L/v − L′/v, tB = t − L′/v. As a check, we can send δt → 0 and recover the
expected I(t) = −(e/2π)[α′A(tA) +α′B(tB)].

With reference to Figs. 1 and 5, the vortices at junction A are injected at time t = 0 and
those at junction B are injected at a later time t = T1 such that L/v < T1 < L/v + δt. At the
time t = T2 = L/v + L′/v + δt one thus has tB > T1 and tB − δt < T1, hence αB(tB) ≈ 0
and αB(tB − δt) ≈ π. Inspection of Eq. (37) shows that the term between curly brackets is
suppressed, leaving only the first term with a switched sign:

I(T2)≈ −
e

2π
cosαB(tB) cosαB(tB −δt)α′A(tA−δt)≈ +

e
2π
α′A(0). (38)

In Fig. 6 we show how the sign switch follows from the full Eq. (37).

8.2 Counter-propagating edge vortices

An alternative diagram to braid vortices moving in opposite directions is shown in Fig. 7. The
first Josephson junction A is the same as before, with scattering matrix SA = e−iαAσy depending
on a parameter αA given by Eq. (3). A 2π increment of the phase difference φA across junction
A injects edge vortices σ1 and σ2.

The second Josephson junction B injects vortices σ3 and σ4 in response to a 2π increment
ofφB. Its scattering matrix SB has a different form than SA, because junction B couples counter-
propagating edge modes while junction A couples co-propagating modes. As discussed in
Ref. [23], the difference manifests itself in the symmetry relation SA(φA) = −SA(φA + 2π)
versus SB(φB) = −ST

B(φB + 2π). The corresponding expression for SB is [17]

SB =

�

tanhβB 1/ coshβB
−1/ coshβB tanhβB

�

, βB =
W
ξ0

cos(φB/2). (39)
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Figure 6: Time dependent current I(t) (in dimensionless units) in the geometry of
Fig. 1. The superconducting phase is incremented from 0 to 2π across Josephson
junction A at time t = 0, and then back from 2π to 0 across Josephson junction B at
time t = T1. The curves are calculated from Eq. (37), with αA(t) = arccos(− tanh 2t)
and αB(t) = −αA(t − T1). For the black curve we took T1 = 0, while for the red
curve we introduced a delay T1 = 3.5. The resulting sign switch of the current pulse
signals the braiding of the world lines of the injected vortices, as indicated in Fig. 5.
The large peak (integrated charge ±e/2) is from the fusion of vortices 1 and 2, the
small side peaks come from vortices 3 and 4, which have little overlap and therefore
only give a small contribution to the transferred charge.

The scattering matrix S of the entire system is composed from SA and SB, upon accounting
for the time delays due to propagation along the edge. This gives an expression of the form

S(t, t ′) =

�

δ(tA− t ′ −δt ′) 0
0

∑∞
n=0 Sn(tB)δ(tA− t ′ − nδt)

�

e−iαA(t ′)σy , (40)

with the definitions tA = t − L/v − L′/v, tB = t − L′/v, and

S0(t) = −
1

coshβB(t)
, S1(t) = tanhβB(t) tanhβB(t −δt),

Sn(t) = tanhβB(t) tanhβB(t − nδt)
n−1
∏

p=1

1
coshβB(t − pδt)

, n≥ 2.
(41)

The delay δt is the time it takes to circulate from junction B back to the same junction (as
indicated in the top left panel of Fig. 7). The sum over n counts the number of times a vortex
circulates around this delay loop. The delay δt ′ at the opposite edge is adjustable by variation
of the edge velocity.

Substitution into Eq. (32) gives the current

I(t) = −
e

2π

∞
∑

n=0

Sn(tB)
nδt −δt ′

sin[αA(tA−δt ′)−αA(tA− nδt)]. (42)

Note that I(t) ≡ 0 when αA ≡ 0, so when there is no vortex injection at junction A. In con-
trast to the case considered in Sec. 8.1, the vortices σ3 and σ4 injected at junction B cannot
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Figure 7: Four steps in the braiding of vortices σ1 and σ3 moving in opposite direc-
tions. In the top two panels two pairs of edge vortices are injected by a flux pulse:
first vortices σ1 and σ2 at time t = 0, then vortices σ3 and σ4 at time t = T1. Vortex
σ2 is delayed by a time δt ′ along the right edge, to compensate for the longer path
length of vortex σ1 along the left edge. In the lower-left panel vortex σ1 crosses the
branch cut of vortex σ3, effectuating the braiding operation. In the lower-right panel
vortex σ1 has caught up with vortex σ2 and the current I(t) is measured at t = T3,
to detect the braiding via a charge transfer.

transfer any charge into the metal contact, because they represent phase boundaries in a sin-
gle Majorana edge mode. A minimum of two Majorana modes is needed for a nonzero charge
transfer.

For non-overlapping vortices, when tinj� δt, the sum over n in Eq. (42) converges rapidly,
with the n= 1 term giving the dominant contribution. In the limit δt → δt ′ this results in the
current

I(t)≈ −
e

2π
tanhβB(tB) tanhβB(tB −δt)

d
d tA
αA(tA−δt). (43)

The vortices σ3,σ4 at junction B are injected at time t = T1 with L/v < T1 < L/v +δt, when
vortex σ1 is inside the delay loop. At the fusion time t = T3 = L/v + L′/v + δt one thus has
tB > T1 and tB −δt < T1, hence tanhβB(tB) tanhβB(tB −δt)≈ −1 — while if no vortices are
injected when σ1 is inside the delay loop one has tanhβB(tB) tanhβB(tB − δt) ≈ +1. In Fig.
8 we show how the sign switch follows from Eq. (42).
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Figure 8: Same as Fig. 6, but now for the geometry of Fig. 7. The curves are calculated
from Eq. (42), with αA(t) given by Eq. (3) and βB(t) given by Eq. (39). We took
W/ξ0 = 5 and incremented φA,φB by 2π with a constant rate dφ/d t = 2π. The
curves are for five different values of T1 (the curves for T1 = 0.75 and 1.75 are
indistinguishable). The ±e/2 current pulse from the fusion of vortices σ1 and σ2
changes sign when T1 is in the interval (L, L + δt) = (1,1.5) in which σ1 is braided
with σ3.

9 Conclusion

In summary, we have shown how the braiding of world lines of edge vortices can be detected in
electrical conduction. The signature of the non-Abelian exchange is the transfer of a fermion
from one vortex pair to another, which is detected as a sign change of the current pulse when
two vortices are fused in a metal contact.

The edge vortices are elementary excitations of a chiral Majorana edge mode in a topologi-
cal superconductor, and it is instructive to make a comparison with the elementary excitations
of the chiral Dirac edge modes in a quantum Hall insulator [9]. In that context the leviton is the
charge-e excitation of minimal noise, produced by a 2π phase increment of the single-electron
wave function [4–6]. The edge vortices, in contrast, are injected by a 2π phase increment of
the pair potential, which is a π phase shift for single fermions. This explains why the elemen-
tary current pulse transfers half-integer charge.

In a different context, the fractionally charged π-phase domain wall bound to the edge
vortices is the mobile counterpart of the ±e/2 charge bound to a zero-mode in a topological
insulator [30, 31]. For example, in a narrow ribbon of quantum spin Hall insulator a ±e/2
domain wall is formed by the merging of ±e/4 charges on opposite edges of the ribbon [32].
In a topological superconductor the ±e/4 charge associated with a vortex is referred to as its
“topological spin” [33,34].

Since only integer charge can enter into a normal metal, the fractional charge transfer by
edge vortices cannot be noiseless — that is a basic distinction with single-electron levitons.
We have not succeeded in calculating the spectral density of the charge noise — attempts
to generalize the simple integral expression (32) for the average current to higher moments
introduce contributions from deep below the Fermi level that are out of reach of our low-energy
description.

While a determination of the charge noise remains an open problem for further research,
we do emphasise that the charge noise does not directly matter for applications to quantum
information processing — because the charge noise only appears when the edge vortices are
fused. The qubit degree of freedom, the fermion parity, is topologically protected as long as
the vortices remain widely separated.
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A Current expectation value from Green’s function of a chiral mode

The Green’s function of a chiral mode Ψ0(x) of free fermions is

〈Ψ†
0(x + d)Ψ0(x)〉= 〈Ψ0(x + d)Ψ†

0(x)〉=
∫ ∞

0

dk
2π

eikd =
i

2π
1

d + i0+
, (44)

where 〈· · · 〉 is the equilibrium expectation value at zero temperature. We can use this Green’s
function for an alternative derivation of the time dependent current (33).

A relative delay τ in propagation time between upper and lower edge is introduced by the
operatorD(τ) = e−(τ/2)σz∂t in the Majorana basis {ψ1,ψ2}, corresponding toD(τ) = e−(τ/2)νx∂t

in the electron-hole basis {Ψ,Ψ†}. (We use different symbols σ and ν to distinguish Pauli ma-
trices in the two bases.) The chiral mode evolves in the single-junction geometry of Fig. 3 as

�

Ψ(x , t)
Ψ†(x , t)

�

=D(τ)e−iα(t−x/v)νz

�

Ψ0(x − vt)
Ψ†

0(x − vt)

�

. (45)

In view of the identity

UνzU† = νx , U = 2−1/2

�

1 −i
1 i

�

, (46)

we have
�

Ψ(x , t)
Ψ†(x , t)

�

= Ue−(τ/2)νz∂t U†e−iα(t−x/v)νz

�

Ψ0(x − vt)
Ψ†

0(x − vt)

�

⇒ Ψ(x , t) = − 1
2 eiα(t+τ/2−x/v)Ψ†

0(x + vτ/2) + 1
2 eiα(t−τ/2−x/v)Ψ†

0(x − vτ/2)

+ 1
2 e−iα(t+τ/2−x/v)Ψ0(x + vτ/2) + 1

2 e−iα(t−τ/2−x/v)Ψ0(x − vτ/2)

⇒ Ψ†(x , t)Ψ(x , t) = 1
2 eiα(t+τ/2−x/v)−iα(t−τ/2−x/v)Ψ†

0(x + vτ/2)Ψ0(x − vτ/2)

− 1
2 e−iα(t+τ/2−x/v)+iα(t−τ/2−x/v)Ψ0(x + vτ/2)Ψ†

0(x − vτ/2)

+O(Ψ†
0Ψ

†
0) +O(Ψ0Ψ0). (47)

The bilinears Ψ†
0Ψ

†
0 and Ψ0Ψ0 vanish upon taking the expectation value. What remains is

〈Ψ†(x , t)Ψ(x , t)〉=
1

2π
sin [α(t −τ/2− x/v)−α(t +τ/2− x/v)]

1
vτ+ i0+

. (48)

Eq. (33) (with a relative delay δt = τ) then follows from I(t) = ev〈Ψ†(L, t)Ψ(L, t)〉.
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B Derivation of the scattering formula (7.3) for the average cur-
rent

The expectation value of the time-dependent electrical current is given in terms of the energy
dependent scattering matrix by

I(t) =
1
2

e

∫ ∞

−∞

dE
2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω
2π

f (E′)eiωt Tr S†(E +ω/2, E′)σyS(E −ω/2, E′). (49)

The double counting of electrons and holes is corrected by the 1/2 prefactor.
Because of unitarity, the integral (49) over E′ without the Fermi function f (E′) is propor-

tional to δ(ω)Trσy = 0, so we may rewrite the expression identically as

I(t) =
e
2

∫ ∞

−∞

dE
2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω
2π

eiωt[ f (E′)− f (E)]

× Tr S†(E +ω/2, E′)σyS(E −ω/2, E′)

=
e
2

∫ ∞

−∞

dE
2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω
2π

eiωt[ f (E′) f (−E)− f (−E′) f (E)]

× Tr S†(E +ω/2, E′)σyS(E −ω/2, E′), (50)

where in the second equality we used that f (−E) = 1− f (E).
Particle-hole symmetry in the Majorana basis, S(E, E′) = S∗(−E,−E′), implies that the

trace in Eq. (50) changes sign if E, E′ 7→ −E,−E′:

Tr S†(E +ω/2, E′)σyS(E −ω/2, E′) = −Tr S†(−E +ω/2,−E′)σyS(−E −ω/2,−E′). (51)

Hence the two terms in Eq. (50) combine into a single term, canceling the 1/2,

I(t) = e

∫ ∞

−∞

dE
2π

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dω
2π

eiωt f (E′) f (−E)Tr S†(E +ω/2, E′)σyS(E −ω/2, E′).

(52)
This equation says that the current is produced by scattering from filled states with weight
f (E′) to empty states with weight f (−E) = 1− f (E), as expected.

The Fourier transform from the energy to the time domain is defined by

S(t ′, t) =

∫ ∞

−∞

dE′

2π

∫ ∞

−∞

dE
2π

e−iE′ t ′S(E′, E)eiE t , f (t) =

∫ ∞

−∞

dE
2π

e−iE t f (E), (53)

resulting in

I(t) = e

∫∫∫ ∞

−∞
d t1d t2d t3 f (t1) f (t2)Tr S†(t− t2/2, t3− t1/2)σyS(t+ t2/2, t3+ t1/2). (54)

We now take the zero-temperature limit. At T = 0 the Fermi function f (E) = θ (−E) has
Fourier transform

f (t) =

∫ 0

−∞

dE
2π

e−iE t =
1
2
δ(t) +

i
2πt

, (55)

where the second term is a principal value. Because S(t, t ′) is real in the Majorana basis, and
σy is imaginary, only the imaginary part of f (t1) f (t2) contributes to the current, which equals

Im f (t1) f (t2) =
1

4π

�

t−1
2 δ(t1) + t−1

1 δ(t2)
�

. (56)
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Substitution into Eq. (54) gives I(t) as the difference of two terms,

I(t) =
ie
4π

∫ ∞

−∞
d t ′

∫ ∞

−∞

dτ
τ

�

Tr S†(t, t ′ −τ/2)σyS(t, t ′ +τ/2)

−Tr S†(t +τ/2, t ′)σyS(t −τ/2, t ′)
�

. (57)

Because of unitarity, the integral over t ′ in the second term vanishes, leaving the first term,
which is Eq. (32) in the main text.

For some applications it is helpful to retain the second term Eq. (57), since that regularizes
the integrand at τ= 0. In particular, we need both terms if we take the instantaneous scatter-
ing (adiabatic) limit before carrying out the time integration, replacing S(t, t ′) 7→ SF(t)δ(t− t ′)
with SF(t) the “frozen” scattering matrix. In this limit

1
τ

Tr
�

S†(t, t ′ −τ/2)σyS(t, t ′ +τ/2)− S†(t +τ/2, t ′)σyS(t −τ/2, t ′)
�

7→
1
τ
δ(t − t ′ +τ/2)δ(t − t ′ −τ/2)Tr

�

S†
F(t)σySF(t)− S†

F(t +τ/2)σySF(t −τ/2)
�

=
1
2
δ(t − t ′)δ(τ)Tr

�

S†
F(t)σy

dSF(t)
d t

−
dS†

F(t)

d t
σySF(t)

�

= δ(t − t ′)δ(τ)Tr S†
F(t)σy

dSF(t)
d t

. (58)

The last equality follows from unitarity of SF(t). Substitution into Eq. (57) then recovers the
Brouwer formula [35],

I(t) =
ie
4π

Tr S†
F(t)σy

∂

∂ t
SF(t). (59)

Eq. (32) can be seen as a generalization of the Brouwer formula beyond the adiabatic regime.
Two further remarks about this scattering formula:

• We have assumed chiral conduction, but we may generalize to a situation with backscat-
tering by inserting a projector Pout into the outgoing lead,

I(t) =
ie
4π

∫ ∞

−∞
d t ′

∫ ∞

−∞
d t ′′

1
t ′′ − t ′

Tr S†(t, t ′)PoutσyS(t, t ′′). (60)

• In applications without superconductivity, it is more natural to work in the electron-hole
basis, where σy is transformed into σz . When the scattering matrix does not couple
electrons and holes, we can consider separately the electron block se and the hole block
sh(t, t ′) = s∗e(t, t ′). The current is then given by

I(t) = −
e

2π

∫ ∞

−∞
d t ′

∫ ∞

−∞
d t ′′

1
t ′′ − t ′

Im Tr s†
e(t, t ′)Poutse(t, t ′′). (61)
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