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Abstract

We connect two different approaches for calculating functional determinants on quo-
tients of hyperbolic spacetime: the heat kernel method and the quasinormal mode
method. For the example of a rotating BTZ background, we show how the image sum
in the heat kernel method builds up the logarithms in the quasinormal mode method,
while the thermal sum in the quasinormal mode method builds up the integrand of the
heat kernel. More formally, we demonstrate how the heat kernel and quasinormal mode
methods are linked via the Selberg zeta function. We show that a 1-loop partition func-
tion computed using the heat kernel method may be cast as a Selberg zeta function
whose zeros encode quasinormal modes. We discuss how our work may be used to pre-
dict quasinormal modes on more complicated spacetimes.
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1 Introduction

Functional determinants of kinetic operators are of interest in theoretical physics because they
allow for the study of quantum effects. For example, the 1-loop partition function for a lin-
earized graviton φ is given by

Z (1) =

∫

Dφe−
1
2

∫

dD x
p

gφ∇2φ =
det∇2

v
q

det∇2
s det∇2

g

, (1)

where ∇2
s , ∇2

v and ∇2
g correspond to the kinetic operators for the scalar, vector, and gravi-

ton, respectively. Functional determinants also underlie the quantum entropy function [1–3],
which encodes quantum corrections to black hole entropies. From a mathematical perspec-
tive, functional determinants exhibit the spectral properties of operators on function spaces
and provide a classification of smooth manifolds [4]. Here we study two different approaches
for computing functional determinants – the heat kernel and quasinormal mode methods –
and how they relate to one another via the Selberg zeta function [5].

The first method we explore is the heat kernel method (see e.g. [6]), which directly calcu-
lates the spectrum of the kinetic operator of a free quantum fieldψ via the eigenvalue equation

∇2ψn = λnψn . (2)

This equation can be rewritten in terms of the heat kernel K , which solves

(∂t +∇2
x)K(t; x , y) = 0 , K(0; x , y) = δ(x , y) , (3)

where t is the heat kernel parameter. The heat kernel is related to the 1-loop correction to the
action:

S(1) = −
1
2

log det∇2 = −
1
2

∑

n

logλn =
1
2

∫ ∞

0+

d t
t

∫

d3 x
p

gK(t; x , x) . (4)

For highly symmetric spacetimes, the differential equation (3) can be easily solved. For quo-
tients of such spacetimes, such as thermal AdS and the BTZ black hole, the method of images
allows us to calculate the complete heat kernel. This version of the heat kernel method was
employed in [7] to calculate the 1-loop determinant of all locally AdS3 spaces.

The second method we consider, put forth in [8,9], provides additional insight for thermal
spacetimes. First, we consider Z (1)(∆) as a function of the conformal dimension∆ in the com-
plex plane. If Z (1)(∆) is a meromorphic function, then we can use the Weierstrass factorization
theorem to write the 1-loop partition function as a product of zeros and poles, up to an entire
function ePol(∆):

Z (1)(∆) = ePol(∆)

∏

∆0
(∆−∆0)d0

∏

∆p
(∆−∆p)

dp
, (5)

where d0 and dp are the degeneracies of the zeros and poles.
In many cases of interest, Z (1)(∆) is indeed a meromorphic function, but not always (cf.

flat space1). In the case of a scalar field, equation (5) has no zeros. The poles occur at ∆p
where there is a solution to the Klein Gordon equation

�

−∇2 +∆p(∆p − d)
�

φ = 0, (6)

1It is fairly straightforward to see why Z (1)(∆) is not meromorphic in flat space. Consider the partition function
of a scalar field on a two-sphere: Z (1)(∆) =

∏

`(∆−
`(`+1)

a2 ), where a is the size of the sphere. The flat space limit
is obtained by taking the sphere size a→∞, and we see that the poles accumulate into a branch cut, rendering
the partition function non-meromorphic in this limit.
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which is smooth and single-valued. In general, these ∆p will not correspond to physical mass
values. Instead, as [9] shows, the ∆p occur when the quasinormal modes ω∗(∆p) coincide
with the Matsubara frequencies. For a static thermal background of temperature T , the 1-loop
partition function for the scalar field can then be expressed as

Z (1)(∆) = ePol(∆)
∏

n,∗
(2πinT −ω∗(∆))−1 . (7)

The 2πinT arises from the Euclidean periodicity condition imposed on the fields, and gener-
alizes to a function ωn(k) of the angular momentum quantum number in stationary space-
times [10].

As mentioned in [7], the subject of computing determinants of Laplacians on Riemannian
manifolds is now well-studied among mathematicians [11, 12] and physicists [13, 14] alike.
The so-called Selberg trace formula (and associated Selberg zeta function [14,15]) for a given
manifold and kinetic operator calculate the regularized spectrum of that operator. A Selberg
zeta function can be assigned to hyperbolic spacetimes of the form Hn/Γ , where Γ is a discrete
subgroup of SL(2,C) [16]. Such quotient spacetimes are the basis for holographic construc-
tions at finite temperature, as well as higher genus generalizations [17].

We show that in the case of H3/Γ , with Γ ' Z, the Selberg zeta function acts as a bridge
between the heat kernel and quasinormal mode methods. This case covers both the rotating
BTZ black hole and thermal AdS3 spacetimes. The relationship between the heat kernel and
the Selberg zeta function was presented in [13], and [18] (in the context of the static BTZ
black hole). The relationship between quasinormal modes and the Patterson-Selberg2 zeta
function was presented in [20,21]. We build on these previous works constructing a connection
between the heat kernel and quasinormal methods. Furthering these works, we present a
continuous connection between the heat kernel and quasinormal mode methods for calculating
1-loop determinants on hyperbolic quotient spacetimes.

After reviewing the heat kernel and quasinormal mode methods for computing 1-loop par-
tition functions, in Section 2 we explicitly connect the heat kernel and quasinormal mode
expressions for both scalar fields and gravitons in the 2+1 dimensional rotating BTZ black
hole background. In Section 3 we explain how these methods are formally related through
the Selberg zeta function: matching the zeros of the Selberg zeta function to the conformal
dimension of the field imposes the condition ω∗ = ωn. We summarize our conclusions and
discuss directions for future work in Section 4.

2 Quasinormal Modes and Heat Kernel: Direct Connection

2.1 Review of Heat Kernel and Quasinormal Mode Methods

2.1.1 Heat Kernel

We begin by reviewing the heat kernel method for computing functional determinants on a
BTZ background, following [7]. For a real massive scalar field of mass m, the heat kernel over

2There is a technical difference between Selberg and Patterson-Selberg zeta functions. In hyperbolic quotient
spacetimes in which the volume of the fundamental domain is finite Vol(F) < ∞, one can assign a Selberg
zeta function to that spacetime in a more or less straightforward way (cf [14]). The Vol(F) =∞ case is more
complicated, but in spacetimes that retain a high degree of symmetry (such as the BTZ black hole) it is still possible
to assign a zeta function to this quotiented spacetime, and this is referred to as the Patterson-Selberg zeta function
[16, 19]. From here on, when we say the Selberg zeta function, it is implied that we mean the Patterson-Selberg
zeta function.

3

https://scipost.org
https://scipost.org/SciPostPhys.8.2.017


SciPost Phys. 8, 017 (2020)

H3 can be found by directly solving the heat kernel differential equation (3):

KH
3
(t; r) =

1
(4πt)3/2

r
sinh r

exp

�

−(m2 + 1)t −
r2

4t

�

. (8)

The 1-loop contribution to the effective action then becomes

S(1) = −
1
2

log det(−∇2 +m2) =
1
2

∫ ∞

0

d t
t

∫

d3 x
p

gKH
3
(t; x , x)

=
1
2

Vol(H3)

∫

d t
t

e−(m
2+1)t

(4πt)3/2

=
Vol(H3)

12π
(m2 + 1)3/2 ,

(9)

where the Vol(H3) represents an IR divergence coming from the integral over H3. As noted
in [7], the UV divergence (corresponding to t → 0) can be removed by performing an analytic
continuation of the t integral.

The heat kernel is well suited to compute functional determinants on quotient spaces of
the form M = H3/Γ , including the BTZ black hole and thermal AdS where Γ ' Z. Since the
heat kernel differential equation (3) is linear, the heat kernel onH3/Γ can be determined using
the method of images:

KH
3/Γ (t; x , y) =

∑

γ∈Γ
KH

3
(t; x ,γy) . (10)

For the BTZ and thermal AdS cases, the heat kernel on H3/Z becomes:

KH
3/Z(t; x , y) =

∑

k∈Z
KH

3
(t; r(x ,γk x ′)) . (11)

A detailed account of how to find γ from the group theoretic structure of the BTZ black hole
is given in Appendix A.

From (11) the scalar 1-loop determinant on H3/Z is

− log detO =
∫ ∞

0

d t
t

∫

d3 x
p

gKH
3/Z(t; x , x)

= Vol(H3/Z)
∫ ∞

0

d t
t

e−(m
2+1)t

(4πt)3/2
+
∑

k 6=0

∫ ∞

0

d t
t

∫

H3/Z
d3 x
p

gKH
3
(t; r(x ,γk x)) ,

(12)

with O = (−∇2 +m2). The explicit functional determinant found in [7] is

− logdetO =
∞
∑

k=1

e−2πkτ2
p

1+m2

2k| sinπkτ|2
= 2

∞
∑

k=1

|q|k∆

k|1− qk|2
, (13)

where q ≡ e2πiτ, τ = τ1 + iτ2, and ∆ = (1+
p

1+m2). In (13) we have dropped the k = 0
contribution, as this infinite volume term can be removed via a counterterm.

Evaluating the sum over images k, the 1-loop partition function for a real scalar field in a
rotating BTZ black hole may be expressed as a product over integers ˜̀, ˜̀′

Z (1)scalar(τ, τ̄) = (detO)−1/2 =
∞
∏

˜̀,˜̀′=0

1

1− q˜̀+∆/2q̄˜̀′+∆/2
. (14)

In a similar manner, the graviton 1-loop partition function on H3/Z is [7]:

Z (1)grav(τ, τ̄) =
∞
∏

m=2

1
|1− qm|2

. (15)
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2.1.2 Quasinormal Modes

We now briefly outline how to derive the 1-loop partition function via the quasinormal mode
method, following [10]. We restrict ourselves to a real scalar field ϕ in a rotating BTZ black
hole background. The quasinormal modes for higher spin s fields in this background were
computed in [22]. The scalar field behavior near the Euclidean horizon r ∼ r+ is

ϕ(ξ, TE ,Φ)∼ ξ±ikT e−kT TE e−i`Φ . (16)

Here kT =
ωr+−i`|r−|

r2
++|r−|2

is the frequency conjugate to the Euclidean time coordinate TE , ` ∈ Z
is the angular momentum quantum number conjugate to the coordinate Φ and ξ is a radial
coordinate defined in Appendix A.

Periodicity of ϕ in the TE direction requires that kT = in for n ∈ Z. Therefore, solutions
(16) will only occur at specific quantized values ωn

3:

−ikT = n⇒
ωn

2π
= 2i

TL TR

TL + TR
n+

TR − TL

TL + TR

`

2π
, (17)

with TL,R =
1

2π(r+ ∓ r−). From (16), we can see that these values correspond to the ingoing
(quasinormal, n > 0) and outgoing (antiquasinormal, n < 0) modes, once we Wick-rotate to
real time. This equation can be rewritten as

ωn

2π
=

in
2
(TR + TL)−

(TR − TL)
2

kΦ(n,`) , kΦ(n,`) =
(TR − TL)
(TR + TL)

in−
`

π(TR + TL)
, (18)

where we have introduced kΦ(n,`) following the notation of [10].
The ingoing quasinormal mode frequencies of a real scalar field on a rotating BTZ black

hole background are given by [23]

ω∗ = −`− 2πiTR(2p+∆) , ω∗ = `− 2πiTL(2p+∆) , (19)

while the outgoing antiquasinormal frequencies are given by

ω∗ = −`+ 2πiTR(2p+∆) , ω∗ = `+ 2πiTL(2p+∆) . (20)

Here p ∈ N and ` ∈ Z.
If Z (1)(∆) is a meromorphic function, then it may be written as a product over its poles

and zeros – a consequence of the Weierstrass factorization theorem (5). For a real scalar field,
Z (1)∝ (det∇2

s )
−1/2, and thus has no zeros. The determinant will have a zero, and thus Z (1)

will have a pole, whenever the operator ∇2
s has a zero mode. These zero modes occur when

∆ is tuned such that the Klein-Gordon equation (6) has a smooth, single-valued solution for
ϕ in Euclidean signature which obeys the asymptotic boundary conditions. We will denote
these “good ϕ” by ϕ∗,n, where n labels the mode number in the Euclidean time direction and ∗
represents all other quantum numbers characterizing the solution. The associated∆ for which
ϕ∗,n solve the Klein-Gordon equation are likewise denoted as∆∗,n. Therefore, poles in Z (1)(∆)
occur whenever ∆=∆∗,n.

The central result of [9] is the relationship between these Euclidean zero modes ϕ∗,n and
the Lorentzian quasinormal modes, achieved via a Wick rotation. Quasinormal modes are
Lorentzian modes which have purely ingoing behavior at the horizon and satisfy the asymp-
totic boundary conditions. Both conditions are only satisfied at a discrete set of frequencies
ω∗(∆). For physical ∆, these frequencies generically have both real and imaginary parts, so

3We can interpret theseωn as “Matsubara frequencies" in a thermal field theory with rotation, where the integer
` corresponds to the rotation.
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quasinormal modes are the damped modes indicating the ringdown of the black hole. Anti-
quasinormal modes instead satisfy purely outgoing behavior at the horizon.

When ∆ is tuned to ∆∗,n, we find

ω∗(∆∗,n) =ωn . (21)

That is, setting ∆ = ∆∗,n aligns the quasinormal modes with the Matsubara frequencies. For
static spacetimes the Matsubara frequencies are ωn = 2πinT ; for stationary spacetimes they
are given by (17). Consequently, if we know all of the (anti)quasinormal frequencies as a
function of ∆, then we can immediately locate the poles in Z (1)(∆): they are where ∆ is
tuned such that ω∗(∆) =ωn.

Using this insight, the 1-loop determinant of a real scalar field on a rotating BTZ black hole
background is given by [10]

�

ePol

Z (1)

�2

=
∏

n>0,p≥0,`

(ωn + `+ 2πiTR(2p+∆))(ωn − `+ 2πiTL(2p+∆))

∏

n<0,p≥0,`

(ωn + `− 2πiTR(2p+∆))(ωn − `− 2πiTL(2p+∆))

∏

p≥0,`

(ω0 + `+ 2πiTR(2p+∆))(ω0 − `+ 2πiTL(2p+∆)) .

(22)

After some algebraic manipulation and absorbing a factor into Pol(∆) we obtain

Z (1) = ePol(∆)
∞
∏

˜̀,˜̀′=0

1

(1− q˜̀+∆/2q̄˜̀′+∆/2)
, (23)

where q ≡ e−2π(2πTL) = e2πiτ, q̄ ≡ e−2π(2πTR) = e−2πiτ̄, τ = 2πiTL and τ̄ = −2πiTR. In a simi-
lar fashion, [10] wrote the 1-loop partition function for the graviton in the same background
as

Z (1)grav =
∞
∏

˜̀=0

1

(1− q˜̀+2)(1− q̄˜̀+2)
. (24)

Before we move on to show the explicit connection between the heat kernel and quasinor-
mal mode methods of computing 1-loop determinants, we highlight how they are different.
While the heat kernel method makes explicit use of the group theoretic structure of the quo-
tient spacetime via the method of images, the quasinormal mode method does not. More
specifically, with the heat kernel method we used that H3/Γ is locally AdS3 and that the iden-
tifications (tE ,φ) ∼ (tE ,φ + 2π) and (tE ,φ) ∼ (tE + β0,φ + θ ) easily determine the group
element γ ∈ Γ . The quasinormal mode method, on the other hand, requires a detailed knowl-
edge of the quasinormal modes for a field ϕ on the thermal background. Nonetheless, the
two approaches agree exactly, cf. (22), (14), and (24), (15). This agreement suggests that the
quasinormal modes contain information about the group theoretic structure of the orbifold
geometry H3/Γ , and that the heat kernel encodes the quasinormal modes.

The two methods also differ in how the modular transformation τBTZ → −1/τTAdS mani-
fests when comparing the thermal AdS3 and BTZ calculations. In the heat kernel method, Z (1)

for thermal AdS is obtained by performing the modular transformation at almost any point in
the calculation. In the quasinormal mode method, the relationship between the BTZ and ther-
mal AdS 1-loop partition functions via modular transformation is not apparent until the end of
the calculation, as individual normal modes of thermal AdS do not directly map to individual
quasinormal modes of BTZ. The fact that the collection of normal modes or quasinormal modes
lead to a 1-loop partition function of the same form, which also matches the results determined
using the heat kernel method, again suggests that the modes contain critical information about
the underlying quotient structure of the spacetime.
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2.2 An Explicit Connection: Scalars

We now explicitly compare the calculations of the 1-loop determinant of a real scalar field in a
rotating BTZ black hole background via the quasinormal mode and heat kernel methods. We
will find (1) the image sum (11) builds up the logarithm appearing in the quasinormal mode
expressions (25), and (2) the thermal mode sum builds up the integrand appearing in the heat
kernel expression (12).

For calculational ease we study the logarithm of the determinant. From the quasinormal
mode method we have [10]

log Z (1) − Pol(∆) =−
∑

n>0,p≥0

§

log(1− qn+pq̄p(qq̄)∆/2) + log
�

1− q̄n+pqp(qq̄)∆/2
�

ª

−
∑

p≥0

log
�

1− (qq̄)p+∆/2
�

,
(25)

where p ∈ N labels a particular quasinormal mode and n ∈ Z labels the thermal integer in the
regularity condition kT = in. We expand the logarithm by introducing a new integer k via

log(1− x) = −
∞
∑

k=1

xk

k
. (26)

As we will see shortly, k has a physical interpretation: it is the index in the image sum used in
the heat kernel method.

Implementing (26), (25) becomes

log Z (1) − Pol(∆) =
∞
∑

k=1

(qq̄)k∆/2

k

�∞
∑

n=1

�

qkn + q̄kn
�

+ 1

�

∑

p≥0

(qq̄)kp

=
∞
∑

k=1

(qq̄)k∆/2

k

�

1− (qq̄)k

(1− qk)(1− q̄k)

�

1
(1− (qq̄)k)

=
∞
∑

k=1

(qq̄)k∆/2

k





∞
∑

˜̀,˜̀′=0

qk˜̀
q̄k˜̀′



 ,

(27)

where we used a geometric series to get the final line. This expression exactly matches the
result in [7] for a scalar field in thermal AdS, after sending τBTZ→−1/τAdS in q.

From the first line of (27), we can split our expression into three factors: one involving the
thermal number n, one involving the mode number p, and another factor that only depends on
the index k coming from the Taylor expansion of the logarithm. Comparing to the functional
determinant found from the heat kernel (13), we see that k is exactly the image index in the
method of images.

In the last line of (27) there are two terms. The term in brackets is obtained by carrying out
the sums over quasinormal modes, while the other term is independent of n and p. Both terms
have distinct physical interpretations in the heat kernel picture. Multiplying and dividing (27)
by (qq̄)−k/2 we obtain

log Z (1) − Pol(∆) =
∞
∑

k=1

(qq̄)k/2(∆−1)

k

�

1
(q−k/2 − qk/2)(q̄−k/2 − q̄k/2)

�

. (28)

Evaluating the term in brackets we find

((q−k/2 − qk/2)(q̄−k/2 − q̄k/2))−1 = (4| sin(πkτ)|2)−1, (29)
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and using that
(qq̄) = e2πi(τ−τ̄) = e−4πτ2 , (30)

and ∆− 1=
p

1+m2, we arrive at

log Z (1) − Pol(∆) =
∞
∑

k=1

e−2πτ2k
p

m2+1

k

�

1
4| sin(πkτ)|2

�

. (31)

This is precisely the method of images result for the 1-loop partition function, (14)4. In sum-
mary, the sum over images in the heat kernel method builds the series expansion for the log-
arithms in the quasinormal mode method. Conversely, the combined sums over the thermal
number n and radial number p in the quasinormal mode method build the integration measure
and the heat kernel in (12).

2.3 An Explicit Connection: Gravitons

Similarly, the quasinormal mode method of computing the 1-loop partition function for mass-
less 3-dimensional gravitons rebuilds the associated heat kernel on a H3/Z background. The
form of the graviton 1-loop determinant is [24]

Z (1)grav =

�

detT (−∇2 + 2/L2)
detST T (−∇2 − 2/L2)

�1/2

, (32)

where the denominator is the determinant for symmetric, transverse and traceless rank-2 ten-
sors and the numerator is the determinant for transverse vector fields. The numerator is a
ghost contribution due to the presence of extra gauge redundancies associated with massless
3-dimensional gravitons. If we use the same steps which led us to (31), we recover the heat
kernel for a massless 3-dimensional graviton living on a (rotating) BTZ background, as we
now show explicitly.

Following the quasinormal mode method presented in [10]5, the logarithm of the 1-loop
partition function for the massless graviton becomes

log Z (1)grav =
∞
∑

˜̀,˜̀′=0

log
��

1− q
˜̀+2q̄

˜̀′+1
��

1− q
˜̀+1q̄

˜̀′+2
��

−
∞
∑

˜̀,˜̀′=0

log
��

1− q
˜̀+2q̄

˜̀′
��

1− q
˜̀
q̄

˜̀′+2
��

.

(33)
The first sum on the right hand side is

−
∞
∑

˜̀,˜̀′=0

log
��

1− q
˜̀+2q̄

˜̀′+1
��

1− q
˜̀+1q̄

˜̀′+2
��

=
∞
∑

k=1

∞
∑

˜̀,˜̀′=0

1
k
(qk(˜̀+2)q̄k(˜̀′+1) + qk(˜̀+1)q̄k(˜̀′+2))

=
∞
∑

k=1

1
k|1− qk|2

(q2kq̄k + q̄2kqk)

=
∞
∑

k=1

|q|2k(qk + q̄k)
k|1− q̄k|2

,

(34)

4We can also compare (31) to (13). The factor of two difference arises because (13) is the functional determi-
nant of the kinetic operator, while (31) is the logarithm of the 1-loop partition function, and Z (1) = (detO)−1/2.
Had we considered a complex scalar field instead of a real scalar field, there would not be an additional factor of
1/2 in Z (1).

5We impose the same condition as for the scalar fields in (3.2), except that the conformal dimension
∆→∆2±2 TR−TL

TR+TL
where∆2 is the conformal dimension of the graviton. A similar argument holds for the calculation

of the quasinormal mode spectrum for massive spin-1 vector fields, except here the replacement is∆→∆1±
TR−TL
TR+TL

.
These shifts occur because some low-mode number quasinormal modes do not Wick-rotate to well-behaved Eu-
clidean modes, as explained in the appendix of [10].
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while the second sum on the right hand side of (33) is

−
∞
∑

˜̀,˜̀′=0

log
��

1− q
˜̀+2q̄

˜̀′
��

1− q
˜̀
q̄

˜̀′+2
��

=
∞
∑

k=1

∞
∑

˜̀,˜̀′=0

1
k
(qk(˜̀+2)q̄k˜̀′ + qk˜̀

q̄k(˜̀′+2))

=
∞
∑

k=1

q2k + q̄2k

k|1− qk|2
.

(35)

Combining (34) and (35) leads to

log Z (1)grav =
∞
∑

k=1

q2k + q̄2k − |q|2k(qk + q̄k)
k|1− q̄k|2

=

∫ ∞

0

d t
t

∞
∑

k=1

2π2τ2

| sin(πkτ)|2
e−(2πkτ2)2/4t

4π3/2
p

t

�

e−t cos(4πkτ1)− e−4t cos(2πkτ1)
�

,

(36)

matching the full 1-loop free energy given in section 4, equation (4.27), in [7]. We can easily
rewrite this quantity as

log Z (1)grav =
1
2

∫ ∞

0

d t
t
(K(2)(τ, τ̄; t)e2t − K(1)(τ, τ̄; t)e−2t) , (37)

where we have introduced the heat kernel K(s)(τ, τ̄; t) for fields of spin-s [25]:

K(s)(τ, τ̄; t) =
∞
∑

k=1

2πτ2p
4πt| sin kπτ|2

cos(2πskτ1)e
−(2kπτ2)

2

4t e−(s+1)t . (38)

The sum over images in the heat kernel (38) method rebuilds the power series expansion for
log(1− x) in the quasinormal mode method, and the combined sum over the radial quantum
number p and thermal integer n in the quasinormal mode method build the integrand of the
heat kernel in (37).

3 Quasinormal Modes and Heat Kernel: Formal Connection

Inspired by the results in the previous section, we now seek a more formal connection be-
tween the quasinormal mode and heat kernel methods for calculating functional determinants
of Laplacians. The connection resides in the Selberg zeta function ZΓ , a quantity that can be
assigned to a quotient spacetime M/Γ with Γ a discrete subgroup of SL(2,C). For concrete-
ness, we again work in the case of a real massive scalar field in the rotating BTZ black hole
background6. The graviton result is worked out subsequently.

The quantity det(∇2) is divergent as ∇2 is an unbounded operator, so our first task in
computing its spectrum is to regularize it. Though various regularization schemes are possible
(see e.g. [14] and references therein), we will see that zeta function regularization yields a
particularly simple expression for the finite piece of Z (1) in terms of the generalized Riemann
zeta function [26].

We can assign a generalized Riemann zeta function ζ(s) to an invertible operator O satis-
fying Oψn(x) = λnψn(x), defined by

ζ(s|O)≡
∑

n

1
λs

n
. (39)

6The calculation that we present is equivalent to that of thermal AdS, with the appropriate redefinition of q,
arising from the modular transformation τBTZ→−1/τAdS .
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This function is similar to the standard Riemann zeta function, except the sum is taken over
the nonzero eigenvalues of O rather than over the natural numbers. This zeta function allows
us to neatly express the functional determinant detO as

log detO = −∂ ζ(s|O)
∂ s

�

�

�

�

s=0
, (40)

and thus the generalized Riemann zeta function is a repackaging of detO itself.
If we also introduce the heat kernel associated with O,

K(t; x , x ′|O) =
∑

n

e−λn tψn(x)ψ
∗
n(x

′) , (41)

we see that the generalized zeta function is given by the Mellin transform of this heat kernel
[14]:

ζ(s|O) = 1
Γ (s)

∫ ∞

0

ts−1TrK(t; x , x |O)d t . (42)

Here Γ (s) is the gamma function and the trace implies an integral over Kt(x , x |O)with respect
to x .

3.1 A Formal Connection: Scalars

We now specialize to the case of a real massive scalar field in a rotating BTZ black hole back-
ground in order to explore the link between the generalized Riemann zeta function and the
Selberg zeta function. This specialization will facilitate comparison with the results of the pre-
vious section7 . Recall that the 1-loop determinant for such a scalar field is, as in (12)-(13):

−logdet∇2
s = ζ

′(e) +
∑

k 6=0

∫ ∞

0

d t
t

∫

H3/Z
d3 x
p

gKH
3
(t; r(x ,γk x))

= ζ
′(e) +

∞
∑

k=1

e−2πkτ2
p

1+m2

2n| sinπkτ|2
.

(43)

The term ζ
′(e) represents the k = 0 term of the sum. It is a divergent quantity proportional

to the volume of H3/Z, and its superscript is to remind us that it corresponds to the identity
element of the group action Γ .

As reviewed in Appendix A, the BTZ black hole (and, equivalently, thermal AdS3) can be
understood as the quotient space MΓ = H3/Γ , with Γ ' Z being the group generated by
(95). The Selberg zeta function ZΓ (s) for orbifold spaces of the form MΓ =Hn/Γ when Γ is a
Kleinian group was derived in [5], whereas [16] worked out the Selberg zeta function for the
BTZ black hole associated with dilations of the Poincaré patch :

ZΓ (s) =
∞
∏

k1,k2=0

�

1− e2i bk1 e−2i bk2 e−2a(k1+k2+s)
�

. (44)

Here a = πτ2, b = −πτ1, and τ = τ1 + iτ2
8 . The infinite product converges for all s. ZΓ (s)

is an entire function, with zeros occurring whenever the argument of the exponential equals
2πi` for ` ∈ Z. These zeros occur when s = s∗

`,k1,k2
, with

s∗`,k1,k2
= −(k1 + k2) +

i b
a
(k1 − k2)−

iπ`
a

. (45)

7To generalize this comparison to higher spin fields, see subsection 3.2 for the graviton case and [27] for spinor
fields.

8For the BTZ black hole we have a = πr+ and b = π|r−|.
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Consider the quantity log ZΓ (s). Expanding the logarithm in a Taylor series and performing
two geometric series summations on k1 and k2, we arrive at

log ZΓ (s) = −
∞
∑

k=1

e−2πkτ2(s−1)

4k| sinπkτ|2
. (46)

Comparing (43) and (46), we obtain:

−log det∇2
s = ζ

′(0|O) = ζ
′(e) − 2 log ZΓ (∆) , (47)

where ∆ = 1+
p

1+m2. This equation is our desired relationship between the Selberg and
generalized Riemann zeta functions. We see that they are related through the divergent vol-
ume contribution ζ

′(e).
We can now elucidate the connection between the Selberg zeta function (and thus the heat

kernel) and quasinormal modes. We repackage the integers k1 and k2 defined in (44) in terms
of two new integers j and n as follows:

n≥ 0 : k1 + k2 = 2 j + n k1 − k2 = ∓n ,

n< 0 : k1 + k2 = 2 j − n k1 − k2 = ∓n .
(48)

These shifts produce four different combinations of s∗. For n≥ 0,

s∗`,n, j = −(2 j + n)− in
b
a
− i
π`

a
, s∗`,n, j = −(2 j + n) + in

b
a
− i
π`

a
, (49)

while for n< 0

s∗`,n, j = −(2 j − n)− in
b
a
− i
π`

a
, s∗`,n, j = −(2 j − n) + in

b
a
− i
π`

a
. (50)

The redefinitions (48) are not ad hoc. Remarkably, the prescription for defining k1 and k2 in
terms of j and n is a result from scattering theory, and we urge the interested reader to see [16]
for more details.

We will see below that j and n both have an interpretation in terms of quasinormal modes.
In particular, j becomes the radial quantum number, n plays the role of the thermal n in the
Matsubara frequencies (with n ≥ 0 corresponding to ingoing modes), and ` is the angular
quantum number. For clarity and convenience, these relationships are recorded in Table 1.

We present evidence for the dictionary presented in Table 1 through three examples: a
real scalar field, a massive spin-2 tensor field and a massive spin-1 vector field in a rotating
BTZ black hole background [10]. The scalar case provides a simple example to illustrate the
dictionary, and we will see that the graviton and vector examples are interesting in their own
right.

The ingoing modes of a scalar field on a rotating BTZ background are (19)

ω∗`, j(∆) = −`− 2πiTR(2 j +∆) , ω∗`, j(∆) = `− 2πiTL(2 j +∆) , (51)

while the outgoing (antiquasinormal) modes are (20)

ω∗`, j(∆) = −`+ 2πiTR(2 j +∆) , ω∗`, j(∆) = `+ 2πiTL(2 j +∆) , (52)

where j ∈ N and ` ∈ Z. To obtain a result that is easily mapped to thermal AdS, we rewrite
ω∗
`, j(∆) in terms of a = πr+ and b = π|r−|. Using |r−| = ir−, TR =

a−i b
2π2 and TL =

a+i b
2π2 , the

ingoing modes become

ω∗`, j(∆) = −`−
i
π
(a− i b)(2 j +∆) , ω∗`, j(∆) = `−

i
π
(a+ i b)(2 j +∆) , (53)
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Table 1: The dictionary associating the repackaging of Selberg zeta function integers
and their interpretation in terms of quasinormal modes and Matsubara frequencies.

Selberg zeta integers Interpretation

j (rewriting k1 and k2) QNM radial quantum number p

n (rewriting k1 and k2) Matsubara thermal integer n

` (condition that ZΓ (s∗) = 0) QNM angular quantum number `

Table 2: Quasinormal modes and their associated Selberg zeta integer pairings.

Ingoing (n≥ 0) Outgoing (n< 0)

ω∗
`, j(∆) = `−

i
π(a+ i b)(2 j +∆) ω∗

`, j(∆) = `+
i
π(a+ i b)(2 j +∆)

k1 + k2 = 2 j + n k1 − k2 = n k1 + k2 = 2 j − n k1 − k2 = −n

ω∗
`, j(∆) = −`−

i
π(a− i b)(2 j +∆) ω∗

`, j(∆) = −`+
i
π(a− i b)(2 j +∆)

k1 + k2 = 2 j + n k1 − k2 = −n k1 + k2 = 2 j − n k1 − k2 = n

while the outgoing modes become

ω∗`, j(∆) = −`+
i
π
(a− i b)(2 j +∆) , ω∗`, j(∆) = `+

i
π
(a+ i b)(2 j +∆) . (54)

Each one of these expressions corresponds to a particular choice for the packaging of the
Selberg zeta integers (48). The correct pairings are given in Table 2.

Now we validate the dictionary presented in Table 1. The quantity of interest will be the
difference between the conformal dimension ∆ of the field in question and the zeros of the
Selberg zeta function s∗

`,k1,k2
:

∆− s∗`,k1,k2
=∆+ (k1 + k2)−

i b
a
(k1 − k2) +

iπ`
a

. (55)

As a concrete example, consider the ingoing mode

ω∗`, j(∆) = `−
i
π
(a+ i b)(2 j +∆) , (56)

and its corresponding integer transformation

k1 + k2 = 2 j + n k1 − k2 = n . (57)

Combining (55)-(57), we arrive at:

∆− s∗n,`, j =
iπ(ω∗

`, j(∆)− `)

(a+ i b)
+
(a− i b)

a
n+

iπ`
a

. (58)

We learn that tuning ∆ to the zeros of the Selberg zeta function is equivalent to tuning the
quasinormal modes to the quantity:

ω∗`, j(∆) =
in
aπ
(a2 + b2)−

i b
a
` . (59)
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The righthand side of this equation is exactly the Matsubara frequenciesωn for a thermal field
theory that includes rotation (as reported in (17)). No matter which quasinormal mode/integer
transformation pair we choose from Table 2, we always arrive at Equation (59). Notice that
when there is no rotation (b = 0), we recover the results reported in [20,28]

∆− s∗n,`, j =
iπ
a
ω∗`, j(∆) + n . (60)

Setting ∆= s∗n,`, j leads to

ω∗`, j(∆) = −
a
iπ

n= 2πiT n . (61)

That is, the quasinormal modes ω∗
`, j(∆) are mapped to the Matsubara frequencies ωn exactly

when ∆ is identified with the zeros of the Selberg zeta function. In summary, we see that the
Selberg zeta function is the vehicle that takes us between the heat kernel and quasinormal
mode methods of computing functional determinants.

3.2 A Formal Connection: Gravitons

We now write the 1-loop partition function for the massless graviton in terms of Selberg zeta
functions, as in [27]; we extend this work by making the connection to quasinormal modes.
The essential structure of the Selberg zeta function is independent of the field species, i.e., it
only depends upon the background geometry. The primary difference comes from swapping
the scalar conformal dimension ∆ with, as we will show, “effective" conformal dimensions for
the graviton and vector ghost.

First, we relate the 1-loop partition function for the graviton Z (1)grav to the Selberg zeta
function [16]

ZΓ (∆) =
∞
∏

k1,k2=0

�

1− e2i bk1 e−2i bk2 e−2a(k1+k2+∆)
�

=
∞
∏

k1,k2=0

�

1− qk2/2q̄k1/2|q|∆
�

, (62)

just as we did for the scalar in (47). We start from the logarithm of the 1-loop partition function
(36), and use q2k = e−2ka[2(1+i b/a)] to find

log Z (1)grav =
∞
∑

k=1

e−2ka∆
m2<0
2

k|1− qk|2
−
∞
∑

k=1

e−2ka∆
m1<0
1

k|1− qk|2
+ c.c.= log

�

ZΓ (∆
m1<0
1 )ZΓ (∆

m1>0
1 )

ZΓ (∆
m2<0
2 )ZΓ (∆

m2>0
2 )

�

. (63)

Here we have introduced

∆
m2<0
2 = 2

�

1+ i
b
a

�

=∆2 − 2
TR − TL

TR + TL
, ∆

m1<0
1 = 3+ i

b
a
=∆1 −

TR − TL

TR + TL
,

∆
m2>0
2 = 2

�

1− i
b
a

�

=∆2 + 2
TR − TL

TR + TL
, ∆

m1>0
1 = 3− i

b
a
=∆1 +

TR − TL

TR + TL
.

(64)

Following the notation in [10], here ∆2 = |m2| + 1 and ∆1 = |m1| + 1 are the conformal
dimensions for a massive graviton and massive spin-1 ghost, respectively. The physical case of
a massless graviton can be obtained by setting m2

2 = 1 and m2
1 = 4; we then find the physical

values ∆2 = 2 and ∆1 = 3.
The quantities ∆mi<0

i ,∆mi>0
i are “effective" conformal dimensions of a massive spin field.

By effective, we mean that the condition ω∗ = ωn can be brought to the same form as a real
scalar field by shifting ∆i →∆

mi<0
i or ∆mi>0

i , as expressed in (64). This shift depends on the
sign of mi as the quasinormal modes depend on the sign of mi . We will show how the effective
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Table 3: The condition ω∗ = ωn for ingoing modes for scalar, vector and graviton
fields with angular momentum quantum number `.

Scalar 2 j +∆+ n− ikΦ(n,`) = 0

Vector 2 j +∆1 + (n+ 1)− ikΦ(n,`) = 0

Graviton 2 j +∆2 + (n+ 2)− ikΦ(n,`) = 0

conformal dimensions arise from the condition ω∗ = ωn momentarily,9 but here we see the
effective conformal dimensions naturally arise as the argument of the Selberg zeta functions.

As we observed for a real scalar field on the rotating BTZ black hole background in (59),
when we tune the effective conformal dimensions ∆mi<0

2 ,∆mi>0
2 to the zeros of the Selberg

zeta function, we find that the quasinormal modes ω∗ associated with the higher spin field in
question are identified with the thermal (Matsubara) frequencies ωn.

First we show again how ∆mi<0
i = s∗ leads to ω∗ = ωn for a scalar, and then we use this

language to prove the statement for the graviton and vector field. We begin by rewriting s∗ in
terms of familiar quantities. For specificity, we work with the ingoing mode (49)

s∗`,n, j = −(2 j + n)− in
b
a
− i
π`

a
(65)

and with positive angular momentum k. The other cases work very similarly. For positive `
we may express s∗ as

s∗`,n, j = −2 j − n+ ikΦ(n,`) , (66)

where we have used kΦ(n,`) from (18). Then

∆− s∗`,n, j = 2 j +∆+ n− ikΦ(n,`) = 0 . (67)

Identifying j as the radial mode number, this equation is the condition that ωn = ω∗, for the
specific case of the ingoing quasinormal mode (56). The identical result is obtained upon
choosing any mode in (49) and (50).

This relationship extends to the massive graviton and vector, as we now show. Concen-
trating again on the ingoing mode with postive angular momentum, and also specifying to the
massive graviton with m2 < 0 as in (64), we observe

∆
m2<0
2 − s∗`,n, j = 2 j +∆m2<0

2 + n− ikΦ(n,`) = 0 . (68)

We recover the condition ωn = ω∗ for the graviton reported in Table 3 by shifting n→ n+ 2
in (68). The massive vector also works the same way. Specifying to m1 < 0 and thus effective
conformal dimension ∆m1<0

1 as in (64), we find

∆
m1<0
1 − s∗`,n, j = 2 j +∆m1<0

1 + n− ikΦ(n,`) = 0 . (69)

This equation is also equivalent to ωn = ω∗, as stated in Table 3, after shifting n→ n+ 1 in
(69).

At first glance, it seems strange that the Selberg zeta function zeros provide access to
the quasinormal modes of general spin s fields, when the function itself depends only upon

9This shift is also discussed in an appendix of [10], where it shown to arise from a regularity condition on the
low-thermal number quasinormal modes for mode number j less than the spin.
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the spacetime, not the field content. However, while the Selberg zeros s∗ and the Matsubara
frequencies ωn are only dependent upon the spacetime, the effective conformal dimension
∆

mi
i and the quasinormal mode frequencies ω∗ depend on the spin of the perturbing field.

Thus the statement that ∆mi
i − s∗ = 0 implies ω∗ =ωn can hold for fields of any spin because

the shift in ∆mi
i is accounted for by a corresponding shift in ω∗.

The generalization to arbitrary spin-s fields includes additional subtleties demanding fur-
ther care, as we recently showed in [29]. It was noted in [10] that not all quasinormal modes
Wick rotate into square integrable Euclidean zero modes; for certain low lying values of radial
quantum number, there are unphysical Euclidean zero modes. Building the 1-loop partition
function for higher spin fields requires the removal of these non-physical modes. As such,
when considering arbitrary spin fields, we must generalize the relabeling of Selberg integers
k1 and k2 (48) such that the conditionωn =ω∗ holds only for those quasinormal modes which
are physical, i.e., those which Wick rotate to square-integrable Euclidean zero modes.

We can generalize our expression of the 1-loop partition function in terms of Selberg zeta
functions in (63) to other quotient geometriesH3/Γ for any discrete subgroup Γ of the isometry
group PSL(2,C) of H3. The only change is an additional product over γ ∈ P , where P is a set
of representatives of the primitive conjugacy classes of γ:

ZH
3/Γ

(1),grav =
∏

γ∈P

ZγΓ (∆
m1<0
1 )ZγΓ (∆

m1>0
1 )

ZγΓ (∆
m2<0
2 )ZγΓ (∆

m2>0
2 )

, (70)

where

ZγΓ (∆γ) =
∞
∏

k1,k2=0

�

1− qk2/2
γ q̄k1/2

γ |qγ|∆γ
�

. (71)

Here we made the substitution q → qγ in (44), where qγ are the eigenvalues of primitive
generators γ of the discrete subgroup Γ ⊂ SL(2,C) [7]. We emphasize that, in general, the
effective conformal dimension ∆γ will depend on the primitive γ.

We saw before in the BTZ case that tuning the quantity ∆mi to the zeros of the Selberg
zeta function led to the condition ωn = ω∗, where ω∗ are the Lorentzian quasinormal mode
frequencies of a massive field. It seems natural that a similar analysis would hold for more
general quotientsH3/Γ . In that scenario tuning the arguments∆γ of the Selberg zeta function
(71) would lead to a condition analogous to ωn = ω∗, where ω∗ are the quasinormal mode
frequencies of fields living on the Lorentzian continuation of handle-bodies H3/Γ , such as the
black hole geometries described in [17]. Thus far, the frequencies ω∗ are not known for such
higher genus surfaces. In fact, while the Euclidean zero modes onH3/Γ are simply the smooth
and single valued solutions on the handlebody (and thus in principle well-known), their Wick
rotation is ambiguous. The ambiguity arises because it is unclear which cycle of the g-handled
handle body is to be identified as the thermal circle; different choices may match to different
g-handled black hole solutions. To predict the quasinormal modes we would need to know
the Matsubara frequencies ωn, as well as the zeros of the Selberg zeta function on H3/Γ .
It is possible some headway can be made when Γ is a Schottky group. For example, when
computing the holographic entanglement entropy of two intervals on a line, the qγ are known
explicitly to some order in an expansion in small cross ratio (see, e.g., Eqn. (58) of [30]). We
leave this study for future work.

4 Discussion

We have demonstrated the relationship between the heat kernel and quasinormal mode meth-
ods for calculating 1-loop determinants, both directly and formally. The examples we consid-
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ered were the scalar and graviton fields in a rotating BTZ black hole background. First, we
showed that (1) the quasinormal mode sums build up the integrand of the heat kernel integral,
and (2) the image sum of the heat kernel builds up the logarithms in the quasinormal mode
expression. Building upon previous work, we demonstrate that the Selberg zeta function of
H3/Z acts as a bridge between the quasinormal mode and heat kernel methods. Tuning the
effective conformal dimensions ∆mi<0

i or ∆mi>0
i to the zeros of the Selberg zeta function s∗

is equivalent to tuning the quasinormal modes ω∗ to the Matsubara frequencies ωn of the
spacetime.

Using the formalism of Section 3, we may potentially predict quasinormal modes on more
complicated quotient spacetimes Hn/Γ , such as higher dimensional generalizations of the ro-
tating BTZ black hole. As far as we know, quasinormal modes in such backgrounds are cur-
rently unavailable in the literature. If we know any two of (1) the Selberg zeta function of the
spacetime, (2) the Matsubara frequencies and (3) the quasinormal modes, we can construct
the third. We expect this predictive process to work for fields of all spin, including fermions10.

Beyond considering higher dimensional manifolds of the formHn/Γ , we also hope to adapt
our formalism to non-hyperbolic quotients M/Γ that possess sufficient symmetry. Product
spacetimes may be a particularly interesting and straightforward extension, as many are ex-
pressible as quotients. We leave this for future work.

Since spacetimes of the form H3/Γ are of interest in the study of holography, specifically
when finding bulk quantum corrections to holographic entanglement entropy [30], one might
hope that connections made in this work could circumvent challenges that arise in analytic
calculations of 1-loop corrections to holographic Rényi entropies. However, it is difficult to
express the eigenvalues of the Schottky generators q in terms of boundary field data, so we
leave this application to future work.

The relationship between quasinormal modes and the Selberg zeta function might further
the understanding of quantum chaos in holographic field theories. Black hole quasinormal
modes are dual to poles in the retarded two-point function of the corresponding operators in
the dual field theory [23,31]. Furthermore, if the field theory exhibits properties of chaos [32],
the quasinormal modes are related via holography to the Ruelle resonances of the quantum
theory [33], which control the decay of the two-point autocorrelation function of an operator
O. Indeed, Ruelle defined his own zeta function ζR(s), which generalized certain properties of
the Selberg zeta function ζS(s) [34], and in the case of constant curvature manifolds is related
to ζS(s) via [15,35]:

ζR(s) =
ζS(s)
ζS(s+ 1)

. (72)

The zeros and poles of the Ruelle zeta function are related to the Pollicott–Ruelle resonances,
while the singularities of the Selberg zeta function correspond to quasinormal modes and thus
eigenvalues of the Laplacian (see [36] and references therein). The Selberg trace formula
and zeta function also appear in the literature on chaos [15], and so perhaps the results pre-
sented here will have further applications in that subfield. We leave the study of both of these
connections for future work.

While this work was in preparation, we became aware of another work which connects the
standard heat kernel approach and normal/quasinormal mode method of computing 1-loop
determinants [37]. While [37] connects these methods in the context of higher dimensional
hyperbolic spacetimes using elements of Sturm-Liouville theory, we relate them in the context
of 2+ 1-dimensional hyperbolic quotient spacetimes via the Selberg zeta function. We expect
our two complementary approaches will facilitate future work.

10In fact, we have extended this current work to arbitrary spin-s fields, including fermions, in [29], where we
show the relabeling of integers k1 and k2 (48) must be generalized.
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A BTZ Group Structure

In the body of this article we make extensive reference to the rotating BTZ black hole. Let us
therefore briefly review the geometry of the BTZ black hole (for a longer review, see [38]).
The rotating BTZ black hole in Boyer-Lindquist coordinates is given by

ds2 =
r2

(r2 − r2
+)(r2 − r2

−)
dr2 −

(r2 − r2
+)(r

2 − r2
−)

r2
d t2 + r2

�

dφ −
r+r−
r2

d t
�2

, (73)

where we have set the AdS radius L = 1, and where the locations of the inner and outer
horizons r− and r+ are given by

r2
+ + r2

− = M , r2
+r2
− =

J2

4
, (74)

with M and J being the mass and angular momentum of the black hole, respectively. Note
that we require the angular variable φ to be periodic φ ∼ φ + 2π.

One useful form of the BTZ line element is

ds2 = dξ2 − sinh2 ξdT2 + cosh2 ξdΦ2 , (75)

which can be arrived at by making the coordinate transformation

tanh2 ξ=
r2 − r2

+

r2 − r2
−

T = r+ t − r−φ Φ= r+φ − r− t . (76)

We may also write the BTZ geometry in Poincaré patch coordinates

ds2 =
1
z2
(−d y2 + d x2 + dz2) , (77)

where
x = tanhξ cosh TeΦ , y = tanhξ sinh TeΦ , z = sechξeΦ , (78)

or equivalently,

x =

�

r2 − r2
+

r2 − r2
−

�1/2

cosh(r+ t − r−φ)exp(r+φ − r− t) ,

y =

�

r2 − r2
+

r2 − r2
−

�1/2

sinh(r+ t − r−φ)exp(r+φ − r− t) ,

z =

�

r2
+ − r2

−

r2 − r2
−

�1/2

exp(r+φ − r− t) .

(79)

In this article we will be interested in the Euclidean BTZ black hole. Under the Eu-
clideanization scheme t →−i tE and J →−iJE , we have r−→ i|r−|, and, consequently,

T →−iTE , Φ→ Φ , (80)
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and
x → x , y →−i yE , z→ z . (81)

In order for the coordinate transformation (79) to be regular at r = r+ we require the identi-
fication

tE ∼ tE + β0 , φ ∼ φ + θ , (82)

where

β0 =
2πr+

r2
+ − r2

−
, θ =

2π|r−|
r2
+ − r2

−
. (83)

In the context of Euclidean quantum field theory, β0 is interpreted as a finite temperature,
while θ is the angular potential. This identification is equivalent to TE ∼ TE + 2π, which
allows the coordinate transformation (76) at ξ= 0 to be regular. It is often helpful to combine
the two parameters (β0,θ ) into a single complex quantity τ= 1

2π(θ + iβ0).
The identifications

φ ∼ φ + 2π , (tE ,φ)∼ (tE + β0,φ + θ ) , (84)

allow for the BTZ black hole to be understood as a quotient of AdS3 by the set of integers Z,
where Z is generated by an element γ ∈ SL(2,C), an isometry group of H3, such that

γ(y, w)→ (|q|−1z, q−1w) , (85)

where we have defined the complex coordinate w ≡ x + i yE on the Euclideanized Poincaré
patch of the BTZ black hole,

ds2 =
1
z2
(dz2 + dwdw̄) , (86)

and introduced q ≡ e2πiτ. Geometrically we may picture the Euclidean space M=H3/Z as a
solid torus of constant negative curvature.

It is interesting see how each of the identifications (84) affect the coordinates (x , yE , z). A
straightforward exercise reveals that (tE ,φ)∼ (tE ,φ + 2π)

x → x ′ = [x cos(2π|r−|)− yE sin(2π|r−|)] e2πr+

yE → y ′E = [yE cos(2π|r−|) + x sin(2π|r−|)] e2πr+

z→ z′ = ze2πr+ ,

, (87)

while the (tE ,φ)∼ (tE + β0,φ + θ ) behaves as the identity transformation:

x ∼ x , yE ∼ yE , z ∼ z . (88)

We can write these two transformations in a more suggestive form:









x ′

y ′E

z′









= γ









x

yE

z









=









e2a 0 0

0 e2a 0

0 0 e2a

















cos2b − sin2b 0

sin 2b cos2b 0

0 0 1

















x

yE

z









, (89)

with
2a ≡ r+θ − |r−|β0 = 0 , 2b ≡ r+β0 + |r−|θ = 2π , (90)

corresponding to the (tE ,φ)∼ (tE + β0,φ + θ ) identification and

2a ≡ 2πr+ 2b ≡ 2π|r−| , (91)
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associated with the (tE ,φ) ∼ (tE ,φ + 2π) identification. It is clear from here that
(tE ,φ)∼ (tE +β0,φ+θ ) identification can be understood as a identity transformation, while
(tE ,φ) ∼ (tE ,φ + 2π) identification can be understood as a composition of a rotation in R2

with complex eigenvalues e±2i b, and a dilation e2a. The above observation suggests a group-
theoretic interpretation of coordinate transformations induced by the identifications of the
BTZ black hole. Following [16], we can make this more precise.

Let A ∈ SL(2,C). We say that A is loxodromic when trA ∈ C/R, i.e., if the entries of A are
real then A is not loxodromic. Next, fix a, b ∈ R with a 6= 0 and define

γ= γ(a,b) ≡





ea+i b 0

0 e−(a+i b)



 ∈ SL(2,C) . (92)

By the above definition, γ is loxodromic unless b = πn for n ∈ Z, in which case γ is said to
be hyperbolic. We can then define the discrete subgroup Γ = Γ(a,b) ∈ SL(2,C) as the group
generated by γ when γ is loxodromic; precisely

Γ ≡ {γn|n ∈ Z} . (93)

In the context of the BTZ black hole, we see that the identification (tE ,φ) ∼ (tE ,φ + 2π)
can be understood as the transformation generated by the elements of ΓBTZ with a = πr+ and
b = π|r−|. Meanwhile, the identification (τ,φ)∼ (τ+β0,φ +Φ), an identity transformation,
has a = 0, and b = 2π, in which case the associated γ is not loxodromic.

Next define the orbifold
MΓ =H3/Γ . (94)

The standard linear fractional action of SL(2,C) on H3, under Γ , is restricted to

γn ·









x

y

z









=









e2an(x cos2bn− y sin2bn)

e2an(x sin2bn+ y cos 2bn)

e2anz









. (95)

This means that MΓ is the space H3 with two points p1, p2 ∈ H3 identified if p1 = γn · p2 for
some n ∈ Z.

The orbifold MΓ may also be obtained from the fundamental domain F

F = {(x , y, z) ∈H3, 1≤
Æ

x2 + y2 + z2 ≤ e2a} . (96)

The fundamental domain is obtained by identifying points on the upper hemisphere of radius
1 with their images on the upper hemisphere of radius e2a under the action of the generator
γn of Γ [17]. In this context, a is understood as the length of the geodesic segment which
projects to a single closed geodesic on the quotient MΓ .

Using a > 0, we find that the hyperbolic volume of the fundamental domain F ,

vol(F)≡
∫

d x d y dz
z3

, (97)

is infinite. One can show this explicitly using spherical coordinates – x = ρ cosθ cosϕ,
y = ρ cosθ sinϕ, z = ρ sinθ with θ ∈ [0,π/2] and ϕ ∈ [0, 2π]. When the volume of the
fundamental domain of F associated with orbifold MΓ is infinite, Γ is said to be a Kleinian
subgroup of SL(2,C).

Therefore, the Euclidean BTZ black hole with the given Γ (93) can be understood as the
orbifold MΓBTZ

= H3/ΓBTZ ' H3/Z for Kleinian group ΓBTZ. In other words, the periodicity of
φ means, in group theoretic terms, that the Euclidean BTZ black hole can be regarded as the
quotient space MΓBTZ

under the action of ΓBTZ on H3.
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