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Abstract

Infinite projected entangled pair states (iPEPS) provide a convenient variational descrip-
tion of infinite, translationally-invariant two-dimensional quantum states. However, the
simulation of local excitations is not directly possible due to the translationally-invariant
ansatz. Furthermore, as iPEPS are either identical or orthogonal, expectation values be-
tween different states as required during the evaluation of non-equal-time correlators are
ill-defined. Here, we show that by introducing auxiliary states on each site, it becomes
possible to simulate both local excitations and evaluate non-equal-time correlators in an
iPEPS setting under real-time evolution. We showcase the method by simulating the t−J
model after a single hole has been placed in the half-filled antiferromagnetic background
and evaluating both return probabilities and spin correlation functions, as accessible in
quantum gas microscopes.
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1 Introduction

While tensor network methods in the form of matrix-product states have become the method
of choice for the simulation of one-dimensional quantum systems and provide both excel-
lent ground-state data [1] and good accuracy for time-dependent quantities [2], the study
of two-dimensional systems remains more difficult. The limited system size of methods such
as exact diagonalisation or matrix-product states on a cylinder [3] becomes particularly rel-
evant when studying time-dependent correlators after local excitations, as the system must
be able to accommodate the spread of those correlations over time and avoid their interac-
tion with any boundaries. Infinite projected entangled pair states [4–6] (iPEPS) on the other
hand allow for the simulation of ground-state properties of infinite two-dimensional systems
with high accuracy by repeating a finite unit cell of tensors infinitely in both directions. iPEPS
were also recently shown to allow for the simulation of global quenches [7–9] at least for short
times. This simulation of a real-time evolution following a global quantum quench is relatively
straightforward: evolution methods exist [10–12], the quench can be enacted by a change of
the Hamiltonian governing this evolution and translational invariance is retained. Equal-time
correlators can also be evaluated as usual for each of the computed time-evolved post-quench
states.

However, when attempting to simulate a local quench and evaluate non-equal-time corre-
lators, one encounters two problems: First, it is not possible to simply apply an operator (such
as ĉ†) to a single site of the quantum state to create the local excitation: To follow this route,
one would have to apply this operator to a specific site, repeated on each unit cell. While
making the unit cell itself relatively large is feasible, in this case one merely recovers the case
of a finite PEPS calculation and loses the inherent infinity of the iPEPS ansatz. The handling
of fermionic commutation rules further complicates this approach.

Second, when pursuing this avenue to simulate the evolution of many excitations – one
per unit cell – over time, it is then still not possible to evaluate non-equal-time correlators:
These correlators are calculated as expectation values between two different quantum states.
However, evaluating the norms of those states will yield either 0 or 1 in the thermodynamic
limit and the scale of the correlator is hence not known. In comparison, equal-time correlators

are evaluated as 〈Ô(t)〉= 〈ψ(t)|Ô|ψ(t)〉〈ψ(t)|ψ(t)〉 , but the denumerator is clearly ill-defined for a correlator

〈Ô(t ′, t)〉 between two different infinite quantum states
�

�ψ(t ′)
�

and |ψ(t)〉.
Here, we avoid both problems by adding one auxiliary site to each of the physical sites of

our system while preserving translational invariance. We demonstrate the method by evaluat-
ing the return probability and diagonal-spin-correlators of a single hole in the two-dimensional
antiferromagnetic background of the t − J model [13–23].

2 Local excitations and non-equal-time correlators

Consider a system composed of physical local state spaces Hp
i repeated on each site i of an infi-

nite lattice. We will later focus on the case of a square two-dimensional lattice, but the method
likewise applies to other lattice geometries. The total Hilbert space is the tensor product of
the local spaces,

Hp =
⊗

i

Hp
i . (1)

We can represent a translationally invariant quantum state |ψp〉 ∈Hp using a tensor network
ansatz if it has low entanglement, which is typically true for ground states of local Hamiltoni-
ans. If |ψp〉 is only invariant under translation by multiple sites (such as e.g. an antiferromag-
netic state under translation by two instead of one site), we can also capture this by using a
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sufficiently large unit cell of tensors in the ansatz.
To simulate a local excitation without breaking translational invariance, we now create a

translationally invariant superposition of excitations on top of our initial state, simulate the
time evolution of this superposition under some Hamiltonian Ĥ and then select the part of the
superposition which contains an excitation at a specific local site [24,25].

To create the superposition of local excitations, one could apply e.g.
�

1̂+ ε x̂ p
i

�

with some
creation or annihilation operator x̂ p

i and a small prefactor ε governing the density of excitations
on each site as

Ŷ =
∏

i

�

1̂+ ε x̂ p
i

�

. (2)

If we let this operator act on our quantum state, we obtain a superposition

Ŷ |ψp〉= |ψp〉+
∑

i

ε x̂ p
i |ψ

p〉+O(ε2). (3)

By including a suitable operator (e.g. the particle number operator) in expectation values
later, we can select one of the states with an excitation (e.g. a hole at a particular site), which
is most likely one of the summands in the second term if ε is small. Crucially, we can also
do so after a real-time evolution of Ŷ |ψp〉, in this way post-selecting the evolution of a single
excitation out of the translationally invariant background.

This approach using Ŷ has two downsides: First, the operator x̂ p
i alone typically breaks

some symmetry of the system such as spin projection, particle conservation or fermionic parity.
While the former two merely lead to a less efficient simulation (as those symmetries then
cannot be used in the tensor network ansatz), the breaking of fermionic parity is a serious
problem which makes the simulation of fermionic systems impossible. Furthermore, while it
is possible to post-select a quantum state with an excitation present at a particular site after
the time evolution, we cannot post-select for a state where the excitation was created at a
particular site initially.

To circumvent both problems, we add an auxiliary state space Ha
i of the same dimension

as Hp
i to each site of our lattice. The total Hilbert space H is then defined as the tensor product

of the auxiliary and physical tensor product spaces on each lattice site

H =
⊗

i

�

Hp
i ⊗Ha

i

�

. (4)

The initial quantum state |ψp〉 is extended by a suitably-chosen empty quantum state |0a〉
to form a state in the full Hilbert space |ψ〉 = |ψp〉 ⊗ |0a〉. In the case of the t − J model,
for example, |0a〉 is the state with zero particles on each site in the auxiliary system. The
Hamiltonian Ĥ used for the time evolution still only acts on the physical system.

We then replace the excitation operator Ŷ by a form which conserves all symmetries of the
system, namely

X̂ =
∏

i

�

1̂+ ε x̂ p
i

�

x̂a
i

�†
+ h.c.

�

, (5)

where for convenience with existing implementations, we then instead use the local exponen-
tial form

X̂ =
∏

i

exp
¦

ε x̂ p
i

�

x̂a
i

�†
+ h.c.

©

. (6)

Instead of creating excitations from nothing as Ŷ did, X̂ now moves (e.g.) particles from the
physical to the auxiliary system and thereby creates an excitation in the physical sector. The
density of particles moved and hence the density of local excitations is given by ε, ideally we
want to consider the case ε→ 0. No symmetry is broken during this process if we account for
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auxiliary particles in the same way as we account for physical particles and X̂ hence leaves the
fermionic parity of the state well-defined.

Additionally, it is now possible to not only post-select based on the physical state of some
particular site (to select an excitation present there after the evolution), but also to post-select
based on the auxiliary state of some particular site. Because there are no dynamics in the
auxiliary layer, the auxiliary state at time t is equal to the auxiliary state at time 0 and hence
allows for the selection of an excitation which was created at a particular site initially.

3 Application to the t − J model

Specifically, we consider the two-dimensional t − J model on the square lattice with a local
physical three-dimensional state space Hp

i = span
��

�0p
i

�

,
�

�↑p
i

�

,
�

�↓p
i

�	

. Taking a second such
space Ha

i increases the local physical dimension of the iPEPS tensor from three to nine, but

iPEPS methods scale favourably in this dimension, so this is not a concern. Let ĉp(†)
iσ annihilate

(create) a physical fermion on site i with spin σ, let ŝp[+,−,z]
i be the physical spin-[+,−, z]

operator on site i (0 if the site is empty) where ŝz has eigenvalues ±1/2 and let ĉa(†)
iσ annihilate

(create) an auxiliary fermion on site i with spin σ. Finally, let n̂p
i (n̂a

i ) denote the particle
number operator (0 or 1) on the physical (auxiliary) site i.

The Hamiltonian

Ĥ = −t
∑

〈i, j〉,σ

�

ĉp†
iσcp

jσ + ĉp†
jσcp

iσ

�

+ J
∑

〈i, j〉

�

1
2

�

ŝp+
i ŝp−

j + ŝp+
j ŝp−

i

�

+ ŝpz
i ŝpz

j −
1
4

n̂p
i n̂p

j

�

(7)

acts on the physical sector only and is the standard t − J Hamiltonian linking all nearest-
neighbour sites 〈i, j〉. Here, we fix t = 1 and J = 1/3.

Now take |GS〉 to be an approximation of the infinite ground state of Ĥ at a given iPEPS
bond dimension D and half-filling (one fermion per site) in the physical sector, with the aux-
iliary sector being entirely empty:

|GS〉= |GSp〉 ⊗ |0a〉 . (8)

The physical ground state |GSp〉 is simply the ground-state of the Heisenberg Hamiltonian,
which can be reasonably well approximated by a D = 4 or D = 5 iPEPS (other states may
of course require a larger bond dimension). This state breaks translational invariance, so we
use a 2 × 2 unit cell. It preserves both U(1)N particle number and U(1)Sz spin-projection
symmetry and we make use of both [26]. Fermionic commutation relations are ensured using
the fermionic tensor network ansatz [27, 28] as implemented in SYTEN’s STensor class [29,
30].

Given |GS〉 as described above, we create the initial excitation with the operator

X̂ =
∏

i

exp

�

ε
∑

σ

�

ĉp†
iσca

iσ + ĉa†
iσcp

iσ

�

�

. (9)

This operator will move particles from the occupied physical sector to the empty auxiliary
sector and results in new state |ψ(0)〉 with a finite hole density on each physical site. Evolving
this state under the physical Hamiltonian Ĥ is straightforward and for a given time t results
in a state

|ψ(t)〉= e−itĤ |ψ(0)〉 . (10)

In the following, we are particularly interested in (a) the return probability pR(t) of a hole to
its creation site and (b) the diagonal spin-spin correlator zdiag(t) at time t with a hole present
at time t between the two spins.
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pR(t)

1− n̂p
00

n̂a
00

zdiag(t)

ŝpz
00

ŝpz
11

1− n̂p
10

Figure 1: Top view of a single iPEPS unit cell, representing a state |ψ(t)〉. Each site
is the product space of a physical (black) and auxiliary (white/dotted) site. Sites are
connected via iPEPS virtual bonds (dashed). Left: The return probability pR(t) is
evaluated by measuring 1− n̂p

i and n̂a
i at the same iPEPS site. Right: The equal-time

correlator zdiag(t) around a hole at time t is evaluated by measuring ŝpz
00, ŝpz

11 and
1− n̂p

10.

The return probability pR(t) is given by

pR(t) =
〈ψ(t)|

�

1̂− n̂p
i

�

n̂a
i |ψ(t)〉




ψ(t)
�

� n̂a
i

�

�ψ(t)
� , (11)

where the numerator evaluates the joint probability of a hole created at site i (via the density
on the auxiliary site, n̂a

i ) present there at a later time (via the density on the physical site, n̂p
i )

with the denumerator conditioning on the initial creation of a hole at this site. As the hole
density is low, we neglect the case of the hole created at site i moving away and another hole
created at some neighbouring site j taking its place.

For the diagonal spin-spin correlator around a hole, let us first define site indices 00, 10
and 11 of the 2× 2 unit cell. The correlator is then

zdiag(t) =
〈ψ| ŝpz

00(t)
�

1̂− n̂p
10(t)

�

ŝpz
11(t) |ψ〉

〈ψ|
�

1̂− n̂p
10(t)

�

|ψ〉
(12)

=
〈ψ(t)| ŝpz

00

�

1̂− n̂p
10

�

ŝpz
11 |ψ(t)〉

〈ψ(t)|
�

1̂− n̂p
10

�

|ψ(t)〉
. (13)

These correlators are sketched in Fig. 1. Note that, if desired and with larger computational
effort, it would be conceivable to repeat the same calculation at different values of ε and
subsequently extrapolate ε→ 0.

4 Results

In the following, we apply the method described above to evaluate the return probability and
diagonal-nearest-neighbour spin correlators in the t − J model after the effective introduction
of a single hole. We also simulate this system using time-dependent matrix-product states [2]
on cylinders of width 4 and 6 to obtain comparison data for short times.

Time-dependent matrix-product states on cylindrical geometries are used to provide com-
parison data, assumed to be valid at least for short times when the finite circumference of
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Figure 2: Return probability as calculated using MPS-TDVP or the MPO W II methods
at J = 1/3. Both methods used a step size δt = 0.05. On W = 4 cylinders, results are
well-converged at m = 1000 already. On W = 6 cylinders, we only achieve qualita-
tive convergence as the required MPS bond dimension would exceed computational
resources.

the cylinders is not yet relevant. We compute the ground-states of the t − J model at half-
filling and apply an excitation ĉ0,↑+ ĉ0,↓ in the centre of the system. The resulting excited state
is then time-evolved with either the 2TDVP [31] or the MPO W II method [32–34] using the
SYTEN [29, 30] and TENPY toolkits [35] respectively. The return probability is given simply
as 〈1− n̂0(t)〉. On cylinders of width W = 4, convergence is easy to achieve at modest bond
dimensions m= 1000, increasing the bond dimension further (up to m= 5000) does not lead
to different results. As the MPS bond dimension scales exponentially with the circumference
of the cylinder, convergence is more difficult on W = 6 cylinders. Running the time evolution
at the same fixed bond dimension as the initial ground state does not converge well. Preparing
the initial ground state at a smaller bond dimension 200 and then running the time evolution
at bond dimension m= 1000 leads to results at least on short times very similar to the W = 4
cylinder (cf. Fig. 2), which is expected as the short-time dynamics are independent of the
spin background and hence governed by the hole motion only. Departing from the short-time
regime, however, the results become uncontrolled. Increasing the bond dimension further or
evolving with the same bond dimension as the initial state does not lead to good convergence.
Additionally, while the hole spreads isotropically along the x- and y-direction on the W = 4
cylinder, this is not the case on the W = 6 cylinder (not shown). Overall, we only obtain
reliable data for the return probability on cylinders of width W = 4 and qualitative data for
cylinders of width W = 6.

In the iPEPS simulation, we use the fast full update (FFU, [11, 12]) to obtain the initial
ground state and perform the subsequent evolution with the simple update (SU). While the
(fast) full update would be able to make better use of the bond dimension of our state, we have
encountered some stability issues [8] resulting from this update method which lead to very
limited time scales. The simple update may not make perfect use of the iPEPS bond dimension
but, given a sufficiently large bond dimension, still provides good results without any of the
stability issues observed with the FFU.

We prepare the initial (ground) state at an initial bond dimension D′ = 4 and create an
excitation density of 10−2. During the subsequent real-time evolution, we allow a range of
bond dimensions D = 4, . . . , 16. We focus on even bond dimensions D, as odd bond dimensions
show slightly worse convergence behaviour due to truncation within spin multiplets. Future
computational and algorithmic advances may make bond dimensions D > 17 possible. We
use a time step size δt = 0.01 together with a second-order Trotter decomposition of the
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Figure 3: Return probability pR(t) calculated using iPEPS with the simple update
and td-MPS on short times from an initial D′ = 4 state excited with a global hole
density of 0.01 and J = 1/3 with various iPEPS bond dimensions D. We observe good
convergence of the initial decay once D ≥ 8. Data is evaluated every δt = 0.05, with
symbols shown only for identification.

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1

E
q

u
a
l-

ti
m

e
 d

ia
g

o
n

a
l 

sp
in

 c
o
rr

e
la

to
r 

zd
ia

g
(t

)

Time t
iPEPS-SU, D=6
iPEPS-SU, D=8

iPEPS-SU, D=10
iPEPS-SU, D=12

iPEPS-SU, D=14
iPEPS-SU, D=16

Figure 4: Equal-time diagonal spin correlator zdiag(t) when a hole is present in the
lower right side of the two spins calculated using iPEPS with the simple update.
The expected zero crossing is observed when increasing the iPEPS bond dimension
around time t ≈ 0.6. Data is evaluated every δt = 0.05, with symbols shown only
for identification.
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time-evolution operator.
Exploratory calculations at D′ = 5 and/or hole density ≈ 10−4 result in decreased hole

mobility at a given evolution bond dimension D as the competition between spin and hole
entanglement during the iPEPS state truncation favour the spin sector disproportionally when
it is initially more strongly entanglend (D′ = 5) or there are fewer holes. Hole mobility still
increases when increasing the evolution bond dimension D, but convergence is much slower
than when starting with D′ = 4.

Expectation values are calculated using the corner transfer matrix at increasing bond di-
mensions χ until the difference between results of two successive dimensions χ and 2χ are
sufficiently small; error bars are smaller than symbol sizes in all cases.

Fig. 3 and Fig. 4 show the short-time dynamics of the return probability pR(t) and diag-
onal spin-spin correlator zdiag(t) calculated with iPEPS. We observe good convergence in the
bond dimension starting from D ≥ 8 for short times. There, the td-MPS results are repro-
duced. In particular, the motion of the hole away from its initial site on times of the order
of the nearest-neighbour hopping is captured well. At the same time, zdiag(t) becomes nega-
tive because the moving hole distorts the original antiferromagnetic background. Hence, spin
correlators between both originally nearest-neighbour and originally next-nearest-neighbour
fermions contribute to zdiag(t). The stronger nearest-neighbour correlators then dominate the
sum and cause the observed sign change. Because the SU(2)-spin symmetry is spontaneously
broken along the preferred z-axis in the iPEPS calculation but still present in the finite td-MPS
calculations, a comparison of numerical values is not meaningful in this case.

For longer times, convergence is very difficult, as our ansatz is inherently limited in entan-
glement and – due to the simple update – does not make optimal use of the available bond
dimension.1 However, the first revival of the return probability observed in the td-MPS data
is still reproduced well by the iPEPS results around t ≈ 1.5, cf. Fig. 5. The iPEPS data also
contains a second, much larger revival at later times t ≈ 3.5 which is not observed in the td-
MPS data and not physically expected either (instead we expect the hole to move away from
its creation point with frustrated spins left behind healed by spin flips [18]). At the moment,
it is unclear whether this revival is due to limited entanglement in the iPEPS ansatz which hin-
ders healing of frustrated spins through spin-exchange interactions and hence increases the
cost of moving the hole further from its origin or a side-effect of the typically overestimated
magnetisation in the iPEPS ground state which may lead to more Ising-like physics.

5 Conclusion

We have shown that both the simulation of local excitations and the evaluation of time-
dependent correlators is possible within the iPEPS formalism. Our predictions, such as the
sign-change of diagonal correlators around the hole in Fig. 4, can already be tested in state-
of-the-art quantum-gas microscopes [36–39]. Future work using an environment-based trun-
cation scheme such as the FFU together with a stabilised environment (e.g. as introduced in
Ref. [40]) will be in a position to make much better use of the available bond dimension than
the simple update employed here and hence will be able to analyse the physics of the system
for longer times, in particular the interactions between holons and spinons. This would also
open an alternative avenue [41] to obtaining spectral functions of two-dimensional systems.

1A further check on convergence may lie in a deeper analysis of the singular value spectrum obtained after
each simple update. While not exact due to missing normalisation of the environment, one might still expect a
flattening of the spectrum as entanglement grows over time. We would like to thank Referee 3 for this suggestion.
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Figure 5: Same as Fig. 3 for longer times t ≥ 1. The return probability shows quali-
tative features common to all calculations at large bond dimensions, but quantitative
convergence is difficult. The revival around t ≈ 3.5 is not expected and likely due to
limited entanglement in our ansatz.
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