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Abstract

Capsule networks are ideal tools to combine event-level and subjet information at the
LHC. After benchmarking our capsule network against standard convolutional networks,
we show how multi-class capsules extract a resonance decaying to top quarks from both,
QCD di-jet and the top continuum backgrounds. We then show how its results can be
easily interpreted. Finally, we use associated top-Higgs production to demonstrate that
capsule networks can work on overlaying images to go beyond calorimeter information.
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1 Introduction

New developments in machine learning have recently started to transform different aspects of
LHC physics. The most visible development is, arguably, deep learning in subjet physics. The
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underlying idea is to replace multi-variate analyses of high-level observables by deep neural
networks with low-level observables. It follows directly from our improved understanding
of subjet physics both experimentally and theoretically, and from the rapid development of
standard machine learning tools [1].

A standard approach to deep learning of jet physics is based on jet images, where we
extract information from heat maps in the rapidity vs azimuthal angle plane [2–5]. Sev-
eral studies have looked at what information a neural network can extract from jets [6–10].
The most relevant measurements come from the calorimeter and need to be combined with
tracking information. Standard benchmarks based on jet images or alternative network se-
tups are quark-gluon discrimination [11–16], W -tagging [17,18], Higgs tagging [19,20], and
top-tagging [21–28]. This relatively straightforward classification task only served as a first at-
tempt of deep learning in LHC analyses [29], and the progress in this field should encourage us
to search for more challenging and transformative applications. One promising line of reserach
is related to ways of training neural networks at the LHC, for instance using weakly supervised
learning [30–34], unsupervised classification [35], or unsupervised autoencoders [36–39].
Alternatively, we can extend our classification task trained on data to include statistical and
theoretical uncertainties [40].

Once we have sufficient control over the network training we can come back to modern
LHC physics, where jets have turned from the main objects of event analyses to a somewhat
arbitrary separation line between subjet analysis and event-level analyses. The question be-
comes how neural network architectures cope with the full event information. We emphasize
that such event information should again be low-level observables rather than a small num-
ber of 4-vectors describing the hard process at this high level [41]. A natural extension of
convolutional networks on event and jet images [42, 43] are capsule networks [44, 45]. For
applications in astrophysics, see e.g. Ref. [46, 47]. The main advantage of capsules is in an-
alyzing structures of objects and simultaneously their geometric layout. It perfectly matches
our task of combining subjet information with the event-level kinematics of jets and other
particles.

In this paper we start with a brief introduction to capsule networks as an extension of con-
volutional networks in Sec. 2. Next, we apply capsule networks to the classification of di-top
events at the subjet level in Sec. 3. This allows us to benchmark our capsule network with
established machine learning top taggers using for example convolutional networks [26, 27].
Next, we separate full events corresponding to a Z ′(→ t t̄) signal from t t̄ and from di-jet back-
grounds in Sec. 4. Here we introduce multi-class capsules to control the different backgrounds.
In Sec. 5 we how these results can be visualized especially well. Finally, in Sec. 6 we consider
a challenging application, the semi-leptonic final state of t t̄Hbb production. It allows us to ex-
plore the full power of capsule networks to extract information from overlaying images, going
beyond calorimeter images and opening a path towards tracking information [48].

We emphasize that in this study we do not discuss the issues related to training networks
for event tagging or the systematic and theoretical uncertainties related to it. They need to
be tackled now that we know how large event images can be efficiently analyzed by capsule
networks — as the natural extension of convolutional networks working on jet images.

2 Capsule networks

In this paper we introduce capsule neural networks (CapsNets) as a natural replacement for
standard convolutional neural networks in LHC physics. We refer to the established convolu-
tional networks as scalar CNNs because they rely on single numbers. CapsNets replaces these
single numbers with capsule vectors describing the feature maps. For example, 24 feature
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maps with 40× 40 entries each could be defined as 1600 capsules of dimension 24, or 3200
capsules of dimension 12, or 4800 capsules of dimension 8, etc. Each capsule can be thought
of as a vector in signal or background feature space, depending on which it describes. The
length of this vector then encodes how signal-like or background-like the image is. The idea
behind these vectors is that they can track the actual geometric position and orientation of
objects, which is useful for images containing multiple different objects. In particle physics,
an entire event image is a perfect example of this.

Just like a scalar CNN, a CapsNet starts with a pixelled image, in our case the calorimeter
image of a complete event with 180×180 pixels. This image is analyzed with a convolutional
filter, for example extracting edges. The size of these kernels is not fixed, so one way of
reducing the size of a sparsely filled image is to choose kernels with at least (n+ 1)× (n+ 1)
pixels and to move n rows or columns per step. This is known as a convolution with stride n, in
contrast to pooling layers which simply decrease the resolution of the image. How significant
the difference is between these approaches depends on the details of the analysis [44, 45,
49]. Our CapsNets include several layers of convolution with multiple feature maps. They
extract the relevant information from the input image, and is so far identical to a scalar CNN.
The advantages and power of the CapsNet come from the additional capsule layers after the
convolutions.

Deep CapsNets consist of several capsule layers. After the convolution part of the CapsNet,
each layer consists of a number of parallel capsules. These capsules have to transfer informa-
tion matching their vector property. In Fig. 1 we illustrate a small, two-layer CapsNet with
three initial capsules ~x ( j) of dimension two linked through routing by agreement [44] to four
capsules, also of dimension two,

x ( j)i −→ v( j
′)

i′ with i = 1, 2 i′ = 1,2 j = 1, 2,3 j′ = 1, 2,3, 4 . (1)

For deeper networks the dimensionality of the resulting capsule vector can, and should, be
larger than the incoming capsule vector. However, in our illustration we keep the dimension-
ality of the capsules at two for clarity. To get from three to four capsules we first define four
combinations of the three initial capsules. Their entries are defined as u( j, j

′)
i′ , and they are

related to the initial capsule vectors ~x ( j) through trainable weights,

u( j, j
′)

i′ =
∑

i=1,2

w( j, j
′)

i′ i x ( j)i , (2)

as indicated by the arrows in Fig. 1. The assignment of lower and upper indices in our de-
scription only serves illustrational purposes. Next, we need to contract the index j to define
the four outgoing capsules. For this purpose we define another set of trainable weights and
write

v( j
′)

i′ =
∑

j=1,2,3

c( j, j
′) u( j, j

′)
i′ . (3)

These weights c( j,k) get normalized through a SoftMax operation
∑

j′=1,2,3,4

c( j, j
′) = 1 ∀ j

c( j, j
′) = SoftMax j′ c′( j, j

′) =
exp c′( j, j

′)
∑

` exp c′( j,`)
, (4)

on a set of general weights c′. This ensures that the contributions from one capsule in the
former to each capsule in the current layer add up to one. Furthermore, the squashing step
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Figure 1: Sketch of a CapsNet module with two simple capsule layers.

applied after each capsule layer ensures that the length of each output capsule vector remains
between 0 and 1,

v( j
′)

i′ = ~v→ ~v
′ =

~v2

1+ ~v2
v̂ (5)

~v→ ~v′ =
|~v|

p

1+ |~v|2
v̂ , (6)

with v̂ defined as the unit vector in ~v-direction. The advantage of Eq.(6) over Eq.(5) is that it
does not iteratively shrink small inputs to zero. This feature becomes important when consid-
ering multiple capsule layers.

Up to now we have constructed a set of four capsules from a set of three capsules through
a number of trainable weights, but not enforced any kind of connection between the two sets
of capsule vectors. We can extend the condition of Eq.(4) to consecutively align the vectors
~u( j, j

′) and ~v( j
′) through a re-definition of the weights c( j, j

′). This means we compute the scalar
product between the vector ~u( j, j

′) and the squashed vector ~v( j
′) and replace

c′( j, j
′) −→ c′( j, j

′) + ~u( j, j
′) · ~v( j

′) , (7)

which converges once ~u( j, j
′) and ~v( j

′) are parallel. We apply this replacement to each capsule,
or fixed j′, individually, before we once again apply the SoftMax operation. We repeated this
for 3 routings, which has been shown in other studies to give the best results [44]. The routing
is illustrated in Fig. 2, where the blue vectors represent the three intermediate ~u( j, j

′) in each
set and the red vector is the combination ~v( j

′). We can see how, with each routing iteration,
the vectors parallel to ~v( j

′) become longer while the others get shorter.

In the CapsNet framework we use the squashed length of the output vectors ~v( j
′) for classifi-

cation. In complete analogy to the scalar CNN we differentiate between signal and background
images using two output capsules. The more likely the image is to be signal or background, the
longer the output capsule vectors will be. The corresponding margin loss for a set of output
capsules j′ is defined as

L =
∑

j′
L( j

′)

L( j
′) = T ( j

′)max
�

0, m+ − |~v( j
′)|
�2
+λ(1− T ( j

′))max
�

0, |~v( j
′)| −m−

�2
. (8)
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Figure 2: Effects of the routing/squashing combination. In blue we show the inter-
mediate vectors, in red we show the output vector after squashing.

T ( j
′) is the truth label of the input, so for a simple classification task we use T (1) = 1 and

T (2) = 0 and the loss function consists of the two terms

L(1) =max
�

0, m+ − |~v(1)|
�2

L(2) = λmax
�

0, |~v(2)| −m−
�2

. (9)

Using, for example, m+ = 0.9 means that the network will seek signal vectors ~v(1) with length
above 0.9, where the loss vanishes. Similarly, for m− = 0.1 the network prefers background
vectors ~v(2) shorter than 0.1. While these target numbers of the capsule length, 0.9 and 0.1,
sum up to unity, nothing forces the actual length of all capsules in a prediction to do the same.
Using the λ parameter we can scale the importance of the two terms in the loss function. We
chose λ = 0.5, putting the main emphasis on having the correct capsule length being close
to the target number. Although not relevant for the conclusions in this study, the CapsNet
receives an additional term in its loss function from the reconstruction of the initial image
from the outputs.

For a 2-class classification task it should be possible to define a simpler setup where one
output capsule encodes the entire signal vs background information. This also means that
for our setup the capsule length output |~v(i)| cannot be linked to a probability, but as a set of
scores which describe the how signal-like or background-like an event is. Combining them into
a single classifier is not unique, as we will see later. We will also see that the LHC analyses we
propose in this paper are not 2-class classification tasks, so we keep our multi-capsule output
for now.

The advantage of the CapsNet over the scalar CNN is that each entry of the capsule vector
can learn certain features independently of the other entries, and only the combination of all
entries is required to separate signal and background. This flexibility should, for instance, re-
place the pre-processing which is often used for jet images [26,27]. Following the original test
cases for capsule networks, the vector entries can also learn individual patterns independently
from the geometric arrangement. This is precisely what we will exploit in our combination of
subjet and event-level patterns in LHC events. We implement all our CapsNets with the KERAS

PYTHON package [50] and a TENSORFLOW [51] back-end. We also make use of the usual ADAM

optimizer [52].

3 Di-top tagging

Before we use CapsNets to analyze full events, we need to confirm that they successfully ana-
lyze subjet structures. As an experimentally and theoretically safe, established benchmark we
use top tagging [29,53–57], specifically the signal process

pp→ Z ′→ t t̄ (10)
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for mZ ′ = 1 TeV and a narrow width of ΓZ ′ = 1 GeV. A small width is useful when we eventually
extract the narrow resonance from a continuum background. Because this is a BSM process,
we first generated the model with FEYNRULES [58, 59]. This simplified Z ′ model extends the
Standard Model Lagrangian by

LZ ′ = c1

∑

q

cqq̄γµqZ ′µ , (11)

where c1 and cq are freely chosen constants determining the normalization of the signal. The
Z ′ decays to a t t̄ pair, which in turn decay hadronically.

Such a t t̄ resonance search allows us to split the analysis into two steps [60]. First, we focus
on the subjet-level information from the two fat jets and ignore their event-level kinematics.
For this purpose we limit ourselves to the light-flavor di-jet background

pp→ j j with j = g, u, d, c, s, b , (12)

and will add the continuum top pair background in the next section.

All events in this study are for a 13 TeV LHC. We generate leading-order events with
SHERPA2.2.5 [61] and the COMIX matrix element generator [62], where we enable parton
shower and hadronization effects. We neglect underlying event and pile-up, which we assume
can be removed by dedicated tools [63–65]. We use the 5-flavor LO NNPDF3.0 PDF set [66].
Detector effects are simulated with DELPHES [67] and a standard ATLAS card with a modified
jet radius and jet algorithm for each process. All jets are defined by FASTJET [68, 69]. In this
section jets are defined by the C/A jet clustering algorithm [70], with R= 1.0 and

pT, j > 350 GeV and |η j|< 2.0 . (13)

From this output we extract the calorimeter hits and transform them into a 2D jet image
with ET as the pixel value. The calorimeter images have a size of

180× 180 pixels, (14)

covering |η|< 2.5 and φ = 0 ... 2π. The periodicity in φ is accounted for by phi-padding with
an appropriate depth or number of repeated pixels in both positive and negative φ direction.
We separately choose the amount of padding for each convolutional layer and equal to half
the respective kernel size. For this benchmarking exercise we then remove all event-level
information, such as η and φ positions of the jets. We take the event-level calorimeter images,
pad them with zeros in η and symmetrically in φ and select 40×40 pixel sections around the
axes of the two leading jets. Two such jet images are then pasted back into empty 180× 180
images. This process is illustrated in Fig. 3.

These simplified (180× 180)-pixel event images are what we feed into our CapsNet shown
in the top panel of Fig. 4. Our architecture avoids pooling and instead uses convolutions with
stride two, as outlined in Sec. 2. We produce 32 feature maps and for the first two layers we
use a 9× 9 kernel and a stride of two. Then we reduce the kernel size to 5× 5 for the third
layer, still with a stride of two. Finally, we apply one regular convolution with a stride of one
and a 3× 3 kernel. With this final convolution we also increase the number of feature maps
to 96.

Analogous to the original capsule paper [45], we transition between the convolutional
and capsule parts by re-shaping the output of the convolutional layers into a capsule layer
with j ≤ 5888 capsules of dimension i ≤ 6 and add a second layer with dimension i′ ≤ 8 and
j′ = 1,2 capsules, which are used as outputs for the classification. Here i(

′) and j(
′) run over

the dimensionality and number of capsules, respectively, as described in Sec. 2.
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Figure 3: Processing of the event images to a pair of top images.

If we want to evaluate the performance of our network we need an estimator to build
an ROC curve. In a scalar CNN with SoftMax activation in the final layer we usually use the
output of the signal neuron, because the background neuron does not give an independent
result. The equivalent approach for our CapsNet could rely on the length of the signal capsule,
|~v(s)|. However, our CapsNet does encode additional information in the background capsule,
so based on the output capsules in Eq.(8) we can define estimators of the kind

|~v(S)| or |~v(S)| − |~v(B,1)| − |~v(B,2)| − · · · (15)

This choice affect the tagging performance for realistic training. Throughout the paper we will
use the second choice as the default.

We can now compare the performance of our CapsNet to a combination of two scalar
CNN taggers, specifically the Rutgers DEEPTOP tagger [26, 27]. In contrast to the minimal
pre-processing we use for the event image capsule network, for the Rutgers tagger and the jet
image capsule network we employ the full pre-processing for each jet as described in Ref. [27].
The jets are selected and centered around the pT weighted centroid of the jet, and rotated such
that the major principal axis is vertical. The image is then flipped to ensure that the maximum
activity is in the upper-right-hand quadrant. Finally, the images are pixelated and normalized.

It is shown in the center panel of Fig. 4. We use a total of 500,000 events, split into
three parts training and one part each for testing an validation. For training we use the ADAM

optimizer with a learning rate of 0.001 and a decay of 0.9, and we employ early stopping to
interrupt training once the validation accuracy stops increasing. The result of this comparison
can be seen in the left panel of Fig. 5. The shaded curve represents the two estimators given in
Eq.(15), where in this case the signal capsule alone gives the better results and an ROC curve
more compatible with the 2-class scalar CNN. Within this uncertainty, the CapsNet performs as
well as two copies of a dedicated tagger for the subjet information alone. Given that the CNN
is well-optimized, this is the best we can expect for our relatively straightforward CapsNet.

To allow for a direct comparison with many other tools, we also apply our CapsNet to single
top jets from a public dataset [29]∗, based on events generated for the study in Ref. [28]. In
that case there exists no event-level information for the CapsNet shown in the bottom panel of
Fig. 4. Again, the CapsNet turns out competitive with state-of-the-art convolutional networks,
albeit not quite with the leading tools presented in Ref. [29].

4 Di-top resonance

In our second benchmarking step we now consider event-level information. To see how the
CapsNet uses event kinematics in addition to subjet-level information we first study the con-

∗link to top tagging sample, for more information and citation please use Ref. [28].
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Figure 4: Top: convolutional CapsNet architecture based on stride-convolutions,
used for di-Top tagging. Center: scalar CNN di-top tagger using the Rutgers DEEPTOP

architecture [26,27]. Bottom: CapsNet single top jet tagger architecture.

tinuum t t̄ background to our Z ′(→ t t̄) signal,

pp→ t t̄ (SM). (16)

For this classification the subjet information does not help. Only the combination of the con-
tinuum t t̄ and QCD backgrounds then requires the CapsNet to learn both the geometry of the
event and the subjet differences of top and QCD jets.

Now that the signal jets and background jets are both boosted top quarks, the network
needs to rely on the Z ′ kinematics and differences in radiation patterns between signal and
background. On the CapsNet side the increased complexity of the full events leads to a slightly
more involved architecture than the one described in Sec. 3. Our new architecture combines
max-poolings, average-poolings, and convolutions, to make it easier to (also) focus on large-
scale features. It is shown in Fig. 6. The idea behind the setup is that (i) the max-pooling
preserves the highest value pixels, allowing the network to learn both the absolute and relative
jet positions, and (ii) the average-pooling preserves the total transverse energy. Consequently,
we use two different resolutions, 45×45 to learn the jet ET and 9×9 to learn the total energy
in the event. The two different pooling strategies are implemented as two parallel branches
in the network. The average pooling branch is further subdivided into three branches. This
allows for three different kernel sizes to be used in parallel, corresponding to three different
scales of activity.
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Figure 5: Left: comparison between CapsNet and the Rutgers DEEPTOP CNN for
for the di-tops vs QCD di-jets. Right: same comparison for single top jets using a
standard dataset [29]∗.

As the benchmark for the event-level analysis we use a boosted decision tree with the
SCIKIT-LEARN PYTHON package [72] and using ADABOOST [73]. No cuts are placed on the t t̄
final state, and the events are generated according to the procedure described in Sec. 3. We
give the BDT the event-level information

{m j j , pT j1 , pT j2 , η j1 , η j2} . (17)

The BDT has a maximal depth of three and uses 100 estimators. Training and testing of the
BDT are performed with the same samples used for the network training and evaluation. We
use 500,000 events, split into 300,000 training events, 100,000 testing events and 100,000
validation events.

Figure 7 shows that our extended CapsNet architecture performs significantly better than
both the simpler CapsNet and the BDT baseline. Specifically, the convolutional CapsNet slightly
under-performs the BDT, whereas the larger architecture is more able to describe the complex-
ity of a full event, leading to a significant improvement over a simple BDT approach.

Combining these results with those of the previous section, we now have all the building
blocks to discriminate Z ′ → t t̄ signal events from the mixed QCD+t t̄ background. We can
follow two different approaches: consider the problem as signal vs background classification
or think of it as classifying events into one signal and two background categories. For this
comparison, we use the pooling setup shown in Fig. 6, as well as the convolution setup from
Fig. 4. Moving from one common background label to two distinct backgrounds leads us to a
multi-class CapsNet, including the choice of estimators alluded to in Eq.(15). In training the
2-class network we use a sample with half signal and half background events, the background
further divided evenly between t t̄ and QCD background . For the 3-class case we use equal
parts for each label. We considered splitting the backgrounds following their respective rates,
but in this case the background sample would have been entirely dominated by QCD. As in
the previous sections the training sample consists of 300k events combined.

The the two panels of Fig. 8 show the rejection of the QCD background (left) and the
continuum t t̄ background (right) by CapsNets trained on mixed background samples. The
number of classes used has different effects for the two architectures.

For the convolutional architecture there appears to be no significant difference between
the two-class and three-class versions. This is because the convolutional setup is very apt at
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Figure 6: Pooling CapsNet architecture. The re-shaping of the final convolution re-
sults into capsules with dimension i ≤ 6 is not detailed.

extraction subjet features, but not good at event-level information. Given that the combined
background capsule of the two-class setup encodes subjet features efficiently, a dedicated QCD
capsule offers little improvement. Consequently, the convolutional CapsNet performs very
weakly for the t t̄ background rejection, and moving from two to three classes helps very little
with this structural deficit.

The situation is different for the more carefully constructed pooling CapsNet. In QCD
background rejection it very clearly benefits from the 3-class setup. The reason is that the
pooling setup is designed with event-level kinematics in mind, so when one capsule faces
both backgrounds it will focus on the event-level features and deliver a poor QCD background
rejection. In its 3-class version the pooling setup can train a dedicated QCD capsule on the
subjet features extremely well. For the t t̄ background rejection the pooling CapsNet the third
class leads to no improvement, because the 2-class network already learns the event-level
information.

Altogether, we find that a 3-class pooling CapsNet is best suited for extracting the t t̄ reso-
nance signal from a mixed t t̄ and QCD background. When comparing its performance to the
that from a pure t t̄ background in the right panel of Fig. 8, we still notice a slight drop in per-
formance for the t t̄ background rejection. This has two contributing factors: first, the network
needs to learn 50% more features in going from a 2-class to a 3-class problem with the same
number of weights. Second, the additional output class adds more possibilities for mis-stating.
The first issue can be fixed by adding more weights up to the point where computing power
becomes the limiting factor, the second is inherent to multi-class problems.
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Figure 7: ROC curves for two capsule networks and the BDT benchmark, trained and
tested on Z ′(→ t t̄) signal and continuum t t̄ background events.

5 Inside capsules

Before moving to even more complex problems, we want to understand what the capsule
vectors learn. For this visualization aspect we again separate Z ′(→ t t̄) from QCD di-jet events.
The signal and background events then differ in event-level kinematics and in jet substructure.
To further simplify the problem we reduce the resolution of input images from 180 × 180
to 45 × 45 pixels using sum-pooling with a kernel size 4. This brings us close the size of
MNIST digits of 28×28 pixels and allows us to use an architecture very similar to the original
CapsNet [44,45].

The detailed architecture is illustrated in Fig. 9. The network has two output capsules Z ′

(signal) and QCD (background) with two dimensions each. Inputs to the simplified model are
scaled with a logarithmic function. As in Sec. 4, we train on 150,000 Z ′ events and 150,000
QCD events with a total of 100,000 events reserved each for validation and testing. In complete
analogy to the full implementation, we use a combination of margin loss for the capsules and
MSE loss for the reconstruction network, where for the visualization task the reconstruction
network becomes relevant. The reconstructing network achieves a classification accuracy of
95.6%, close to the approximately 96% obtained by the full network for the same problem.

In Fig. 10 we show a density plot of the two output entries in the 2-dimensional signal
capsule on true signal events. Each event corresponds to one point in the 2D plane. If the
classification output is proportional to the length of the capsule vector it corresponds to the
distance of each point from the origin. This explains why many events are distributed in a filled
circle segment distribution. A large fraction of events sits on the boundary which corresponds
to the most signal-like examples. The rotation of the circle segment is not fixed a priori, each
training is not guaranteed to fill the full circle, and multiple trainings will reproduce the same
shape with different orientations.

In this 2-dimensional capsule plane we select five representative regions indicated by semi-
transparent squares. For each region we identify the contributing events and super-impose
their detector images in the η − φ plane in the right panels of Fig. 10. For the signal we
observe bands for given rapidities and smeared out in the azimuthal angle, indicating that the
network learns an event-level correlation in the two η j as an identifying feature of the signal.
Figure 11 gives the same information for background capsule outputs on true background
events. We observe the same radial pattern, but the mapping on event image reveals a very
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Figure 8: Left: ROC curve for the QCD di-jet background for pooling and convolu-
tional CapsNets, each with two or three classes. Right: corresponding ROC curves
for the continuum t t̄ background. The t t̄ training line quotes the best CapsNet result
from Fig. 7. We always train on both backgrounds and only separate the testing.

different pattern with a clear back-to-back correlation in the rapidity vs azimuthal angle plane.

To better understand this behavior we transform the capsule outputs into polar coordinates,
where the radius r encodes the discrimination following Eq. (15) and ϕ refers to different
instantiations which do not matter for classification. The signal-background discriminator
returns rS − rB ≡ |~v(S)| − |~v(B)| = +1 for maximally signal-like events and rS − rB = −1 for
maximally background-like events. In Fig. 12 we first confirm that the network identifies the
large jet mass for the top signal, where the secondary peak in the leading jet mass arises from
cases where the jet image only includes two of the three top decay jets and learns either mW or
the leading m j b ≈ mW [57]. Next, we see that the capsules also learn to identify the peak in the
dijet invariant mass at approximately 1 TeV as identifying feature of signal events opposed to
the kinematically falling spectrum for background-like events. As already observed in Figs. 10
and 11, signal jets typically have a lower separation in η than background jets, reflected by
the lower left panel of Fig. 12. Finally, we confirm that the polar angle ϕS for signal events
perfectly learns the absolute jet positions in η. We have checked that for background events
the jet position in φ is learned by the corresponding background polar angle ϕB.

6 t̄tH production

Finally, we need to show how CapsNets can go beyond single images to supplement calorimeter
information for example with tracking information. We illustrate this feature with one of the
most complex Standard Model signatures, namely associated top-Higgs production. It allow
us directly measure the Higgs-top interaction, which is, arguably, the most interesting Higgs
property accessible at the LHC. The experimental challenge is that this production process
comes with a low production rate and a particularly complex final state. We consider this
signal combined with the dominant Higgs decay for a sizeable rate and one leptonic top decay
for triggering,

pp→ t t̄H → t t̄ (bb̄) . (18)
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Figure 9: Simplified Capsule architecture.

The leading continuum background is

pp→ t t̄ b b̄ , (19)

making the classification an ideal task for event-level machine learning and our a CapsNet
tagger. An event-level Lorentz boost network has been applied to the same signal process
in Ref. [74]. This network is designed to construct useful Lorentz-invariant quantities and
observables from the particle 4-momenta. It is a very different approach to that considered
here and serves as an excellent benchmark for our study.

We generate this process with the same setup as described in Sec. 3. We enforce decays
for both processes, namely H → bb̄, t → b`+ν` and t̄ → b̄ j j with j = d, u, s, c and `= e,µ. To
analyze the event-level kinematics and relate our study to standard LHC analyses we also re-
construct jets with R= 0.4, even though the CapsNet analyses the calorimeter images without
reference to jets. We select events with

1. exactly one muon or electron with pT` > 5 GeV and |η`|< 2.5;
2. at least 6 jets (anti-kT [75], R= 0.4) with pT j > 20 GeV and |η j|< 2.3; and
3. each of the 4 b-jets truth-matched to a b-parton within ∆R= 0.4.
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signal events. Right: average event images in the η−φ plane.
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Because both signal and background contain four b-jets we do not consider a finite b-tagging
efficiency, as it will have no significant impact on our conclusions. Assuming four b-tags
we then reconstruct the hadronic top by combining one b-jet with two light-jets and mini-
mizing |m( jb + j1 + j2) − mt |. Because we know that the significance is dominated by the
boosted regime [56], we require the reconstructed hadronic top jet to have pT jt > 200 GeV
and |m jt − mt | < 30 GeV, to avoid producing a large number of events with little sensitivity.
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Figure 12: Correlation between capsule outputs rS − rB and the leading jet mass,
the di-jet m j j , and ∆η j j for true signal and background events. Finally we show the
correlation of the signal ϕ vs the the mean η j for true signal events.
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Our results should not depend on this slight simplification.
For illustration, Fig. 13 shows some kinematic properties of the signal and background pro-

cesses. The small differences are difficult to exploit in a cut-based analysis. A reconstruction of
the Higgs mass peak is at least seriously challenging because of the b-combinatorics [76,77],
which is the main motivation of a boosted analysis of this process [56, 78]. To fully exploit
these signal features we employ our CapsNet, to show that it can both identify objects and
explore their geometric correlations.

From the previous sections we already know that we can choose a pooling or a convolu-
tional CapsNet to analyse the event-level information for the complex t t̄H final state. We have
seen that the convolutional CapsNet well-suited for subjet studies, but we also know that the
pooling setup is superior for combining subjet and event-level information. Because the t t̄H
analysis does not involve subjet information and the challenge will be to combine overlaying
images all on the event level the convolutional CapsNet with its minimized loss of information
and resolution turns out the better-suited approach.

We illustrate this CapsNet architecture in Fig. 14. We use it to analyze our usual (180×180)-
pixel calorimeter image which pixel-wise encodes the ET . Moreover, we want to include infor-
mation from the particle identification, such as the position of identified leptons or b-tags. This
information is included in the form of additional feature maps for each physically distinct par-
icle class also shown in Fig. 14 [48]. We also add a feature map with the light jet axes, which
does not include any additional information but can help the network with its sparsely filled
pixels. These feature maps are first combined through a 3-dimensional convolution, before
each of them is independently passing through the CapsNet with its 2-dimensional convolu-
tions. This combination of 2-dimensional and 3-dimensional convolutions allows the network
to extract information both from the individual feature maps as well as correlations between
them.

To understand what information the network is using for its signal vs background classifica-
tion, in Fig. 15 we compare three different levels of information. First, we consider calorimeter
information only, which is comparable to one of the setups in Ref. [74]. For this set-up we find
comparable performance to Ref. [74], with an AUC of 0.715, which is slightly above their up-
per limit. The network performance is extremely poor, also because the already challenging
combinatorics of b-jets is worsened by the many additional light-flavor jets. We can improve
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Figure 13: Left: minimum ∆Rbb between any two b-jets. Right: invariant mass mbb
of these two closest b-jets.
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Figure 14: t t̄H CapsNet 3D convolution architecture with additional jet flavor and
lepton information.

upon this by adding feature maps for the b-jets, the lepton, and potentially also the light jet
axes. Figure 15 shows how this information improves the background rejection by a factor
two to three and gives an area under the ROC curve of AUC=0.792. To understand where the
limitations of our analysis lies and what our network is technically capable to handle we also
add MC truth information. Specifically, we remove the combinatorics by labelling where each
b-jet originates. Including this unphysical information show that our analysis is not limited by
the CapsNet performance and gives us a ceiling in perormance of AUC=0.927.

7 Outlook

We have demonstrated the power of capsule networks for the particle physics task of LHC event
tagging. Their unique representation of information makes them an ideal tool for identifying
similar patterns when the convenience of regularizing images is removed.

While sparsely filled large number of pixels in calorimeter images are a limiting factor
for convolutional networks, CapsNets are designed to go beyond those limitations. They are
optimized to extract, both, low-level subjet information and event-level kinematics at the same
time. We have illustrated the capabilities of simple CapsNets using three processes:

• tagging of a t t̄ pair using subjet information;

• tagging and reconstructing a Z ′→ t t̄ resonance adding event-level information;

• extracting t t̄H production using overlaying event-level images.

We have employed different CapsNets, based on convolutions as well as based on pooling,
and shown that LHC signatures typically benefit from multi-class architectures. In all of these
aspects, capsules are a natural way to go beyond standard convolutional networks. Finally,
we have shown how the CapsNet output is much more readily interpreted than other deep-
learning architectures.
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