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Abstract

The non-equilibrium steady states of integrable models are believed to be described
by the Generalized Gibbs Ensemble (GGE), which involves all local and quasi-local con-
served charges of the model. In this work we investigate integrable lattice models solv-
able by the nested Bethe Ansatz, with group symmetry SU(N), N ≥ 3. In these models
the Bethe Ansatz involves various types of Bethe rapidities corresponding to the “nest-
ing” procedure, describing the internal degrees of freedom for the excitations. We show
that a complete set of charges for the GGE can be obtained from the known fusion hi-
erarchy of transfer matrices. The resulting charges are quasi-local in a certain regime
in rapidity space, and they completely fix the rapidity distributions of each string type
from each nesting level.
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1 Introduction

One of the central problems in theoretical physics is the connection between the fundamental
laws of quantum mechanics and the various classical theories describing physics on macro-
scopic scales. A particularly interesting question is equilibration and thermalization of closed
quantum systems, i.e. the emergence of statistical mechanics from the unitary time evolution
dictated by the Schrödinger equation. This problem has attracted interest since the 1930’s,
and significant understanding has been achieved in the last 15 years (for reviews, see [1,2]).
Furthermore, special attention has been devoted to those systems which do not thermalize,
and one class of such systems are the integrable models.

One dimensional exactly solvable models are known to possess an infinite number of mu-
tually commuting conserved charges. The resulting conservation laws prevent the integrable
systems from thermalization to standard Gibbs ensembles. Instead, the idea of the Generalized
Gibbs Ensemble (GGE) was put forward in [3,4]. The GGE is analogous to the canonical Gibbs
ensemble: it is built on the maximum entropy principle [5], but it involves all the conserved
charges of the model.

Even though the concept of the GGE is only ∼ 10 years old, it has a quite rich history.
Whereas it was fairly quickly proven to be the correct thermodynamic ensemble in the case of
free systems [6–19], the case of interacting lattice models had its twists and turns. After some
early to attempts to construct the GGE for the Heisenberg spin chain [20, 21] it was shown
in [22,23] that the GGE built on the known set of strictly local charges fails to give correct pre-
dictions for the steady states in particular quench situations. This failure was later attributed
to an incompleteness of the known charges, and the work [24] showed that a Complete GGE
can be built by incorporating the recently discovered quasi-local charges [25,26] as well.

After clarifying the GGE for the Heisenberg chains it became widely accepted that there
should be a complete GGE for any integrable model, and the remaining issue is to find the
correct set of conserved charges. Whereas this might seem like a relatively minor problem, it
is far from being trivial in models more complicated than the XXZ spin chain. Ultimately one
would like a general proof for the existence of a Complete GGE, at least after specifying the
integrability structure of the model. However, such a proof is not yet in sight.

The theory of Generalized Hydrodynamics (GHD) also motivates the further study of the
GGE. GHD describes large scale transport properties of integrable models [27, 28], and one

2

https://scipost.org
https://scipost.org/SciPostPhys.8.3.034


SciPost Phys. 8, 034 (2020)

of the main assumptions of the theory is the existence of local (space and time dependent)
GGE’s, for which there exists a complete set of charges. The GHD has been applied already for
more complicated systems such as the Hubbard model [29], where this completeness has not
yet been studied. Therefore it is important to understand the GGE in these more complicated
models.

Here we contribute to the subject by formulating the GGE for a prototypical multi-component
system, namely the SU(3)-symmetric fundamental spin chain, also known as the Lai-Sutherland
model. Furthermore, we present some conjectures about the GGE in the fundamental SU(N)-
symmetric model for any N ≥ 3. These models can be solved by the so-called nested Bethe
Ansatz [30–33]. The eigenstates can be characterized by multiple sets of rapidities: the first set
describes the lattice momenta of the quasi-particles, which are the excitations above a refer-
ence state, whereas the remaining sets describes the wave function amplitudes in the internal
space of the spin waves.

We should note that even though the GGE for these particular models has not yet been
set up, specific quantum quenches in the SU(3) case have already been studied. They all
involve so-called integrable initial states [34], which allow an exact analytic solution due to
certain relations to boundary integrability [35]. A quantum quench from a specific Matrix
Product State (MPS) was already studied in [36], and local two-site states were investigated
in [37, 38]. The light cone spreading of entanglement and correlations was studied in [39].
Nevertheless the question of the existence of a complete GGE in the SU(3)-symmetric model
remained completely open up to now.

In the following subsection we give a more detailed description of the GGE in generic
integrable models and explain the main mechanisms responsible for the emergence of the GGE,
while omitting many technical details. Afterwards, the remainder of the paper is organized as
follows: In section 2 we define the SU(N) symmetric spin chain, and consider the most basic
properties of it. In section 3 we discuss the GGE in the N = 2 case, which is the celebrated
XXX Heisenberg spin chain. This Section includes known results, but we re-derive them using
slightly different techniques, more adequate for later generalizations. Section 3 thus sets the
stage for our investigations of the multi-component models. In section 4 we introduce the
main interest of our paper, the SU(3) symmetric model, and discuss its main properties. In
section 5 we consider two generating functions for conserved charges, which correspond to
the defining and conjugate representations of SU(3). We rigorously prove their quasi-locality.
In section 6 we build two families of charges, and we derive the complete set of string-charge
relations for this model. In section 7 we conjecture the structure of the complete GGE for
generic SU(N). We conclude in 8, and a number of technical computations are collected in
the appendices.

1.1 Generalized Eigenstate Thermalization

Let us consider an integrable lattice model with a local Hamiltonian H, defined in some finite
volume L.

We consider a quantum quench situation, when the system is prepared in the initial state
|Ψ(t = 0)〉= |Ψ0〉. We will consider different volumes and eventually the thermodynamic limit.
Therefore we require, that |Ψ0〉 should be well-defined in any finite volume and also as L→∞.
One possibility is to define |Ψ0〉 as the ground state of a different local Hamiltonian, or as a
Matrix Product State (MPS) [40]. We also require that |Ψ0〉 satisfies the cluster decomposition
principle, namely for two local operators O1,2(x)

lim
|x1−x2|→∞

〈Ψ0|O1(x1)O2(x2)|Ψ0〉= 〈Ψ0|O1(x1)|Ψ0〉〈Ψ0|O2(x2)|Ψ0〉. (1)
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The state of the system at later times is given by

|Ψ(t)〉= e−iH t |Ψ0〉. (2)

We are interested in equilibration and thermalization, to this order we investigate the long
time limit of local observables. Here and in the following we understand that the L →∞ is
taken before the long time limit. However, certain formal expressions are more easily handled
by keeping L finite.

Before turning to the integrable models, let us focus on the more simple non-integrable
case. In generic non-integrable systems equilibration and thermalization to a Gibbs Ensemble
can be argued as follows [1].

A direct finite volume expansion for the time evolution gives

〈O(t)〉=
∑

j,k

〈Ψ0|Ψ j〉



Ψ j

�

�O|Ψk〉〈Ψk|Ψ0〉e−i(Ek−E j)t . (3)

In the long time limit dephasing leads to the emergence of the Diagonal Ensemble:

lim
T→∞

�

∫ T

0

d t 〈O(t)〉
�

=
∑

j

|〈Ψ0|Ψ j〉|2



Ψ j

�

�O
�

�Ψ j

�

. (4)

The Eigenstate Thermalization Hypothesis (ETH) states that for almost all states in a small
energy window [E, E +∆E] the mean values




Ψ j

�

�O
�

�Ψ j

�

will be close to each other [41, 42].
Due to energy conservation the system will be populated only with states that are close to each
other in energy density, therefore the diagonal ensemble has to be equal to the microcanonical
average. In large volumes the microcanonical and canonical averages become equivalent for
local operators, thus we have argued for the emergence of the Gibbs Ensemble:

lim
T→∞

�

∫ T

0

d t 〈O(t)〉
�

= 〈O〉GE ≡
Tr
�

e−βHO
�

Tr
�

e−βH
� . (5)

Here the parameter β has to be chosen such that energy conservation holds:

〈Ψ0|H|Ψ0〉= 〈H〉GE . (6)

In integrable models the situation is different due to the existence of a large family of
additional conserved charges. It has been known since the early days of integrability that the
integrable lattice model possesses a family of commuting operators

[Q j ,Qk] = 0, j, k = 1, . . . ,∞, (7)

such that the Hamiltonian is a member of the series and each Qk is an extensive operator
whose operator density is strictly local. Typically it is possible to choose the charges such that
the density of Qk spans k sites.

The existence of these charges leads to the concept of the Generalized Gibbs Ensemble
(GGE). The main idea is to involve all conservation laws in the standard statistical physical
derivations. Based on the maximum entropy principle we expect that the equilibrated values
of local observables will be given by

〈O〉GGE ≡
Tr
�

e−
∑

j β jQ jO
�

Tr
�

e−
∑

j β jQ j
� . (8)
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Here the generalized inverse temperatures β j are determined by the initial state through

〈Ψ0|Q j|Ψ0〉=



Q j

�

GGE , j = 1, . . . ,∞, (9)

which are a set of coupled non-linear equations.
In analogy with the non-integrable case, where the ETH is the main mechanism for the

emergence of the GE, in integrable models equilibration to the GGE is guaranteed if the Gen-
eralized Eigenstate Thermalization (GETH) holds with the given set of conserved charges [43].
In rough terms the GETH states that in the TDL the mean values of local observables only de-
pend on the global mean values of the conserved charges, and not on any other details of the
state.

It was realized in the case of the Heisenberg spin chains that the GETH does not hold if
we only consider the traditional set of local charges [22, 23, 44, 45]. Instead, it was realized
that the so-called quasi-local charges [25,26] need to be included as well [24,46]. The main
reason for this is the following.

In integrable models solvable by the Bethe Ansatz the finite volume eigenstates are char-
acterized by a finite set of Bethe rapidities. In the thermodynamic limit the equilibrium config-
urations are described by root distribution functions ρα(λ), where λ is the rapidity parameter
and α is an index or multi-index describing particle types. It is a general understanding that
in such models the local correlation functions depend on all root densities; this was proven for
the XXZ chain in [47,48]. According to this picture, a set of conserved operators is complete,
if their mean values completely fix all the Bethe root densities. This is the ultimate form of the
GETH, relevant for interacting integrable models. This idea was further formalized in [49,50],
where it was argued that the GGE should be formulated using root density operators, whose
eigenvalues are the root densities themselves.

In Section 3 we summarize the known results of the XXX chain and show that a complete
set of quasi-local charges indeed fixes all the root densities. It is the goal of our paper to
extend this picture to the SU(N)-symmetric chains with N ≥ 3, and to find a complete set of
quasi-local operators.

We will show that similar steps are needed also in the SU(3)-symmetric model. That model
has a more complicated Bethe Ansatz solution and corresponding fusion hierarchy of transfer
matrices, nevertheless the inversion relations take an identical form, and are equally important
for the derivations of the string-charge relations.

2 The SU(N)-symmetric spin chains - generalities

Let us consider an integer N ≥ 2. We define a spin chain with local Hilbert spaces h j = CN

called quantum spaces such that the full Hilbert space of the chain if length L is
HL = h1 ⊗ h2 ⊗ · · · ⊗ hL =

�

CN
�L

.
We consider the fundamental SU(N)-symmetric model [54, 55] defined on this Hilbert

space, given by the Hamiltonian

H = −L +
L
∑

j=1

Pj, j+1. (10)

Above P ∈ End(CN ⊗ CN ) is the permutation operator, which acts as P(v1 ⊗ v2) =
v2 ⊗ v1, v1, v2 ∈ CN . For simplicity we consider the model under periodic boundary condi-
tions: PL,L+1 = PL,1.

For N = 2 the model is equivalent to the famous Heisenberg XXX spin chain, whereas for
N ≥ 3 it can be considered a higher rank generalization of it.
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One of the most important properties of the Hamiltonian (10) is its SU(N) invariance,
which is understood as follows. Let the local Hilbert spaces h j carry the defining representation
of SU(N), and let us extend the group action to the tensor product. Then the global SU(N)
invariance of the Hamiltonian immediately follows from the fact that it involves invariant local
operators.

The model is integrable for any N : it possesses an infinite family of commuting local
charges, and it can be solved by the Algebraic Bethe Ansatz. The exact real space wave
functions of the eigenstates are given by the so-called nested Bethe Ansatz [30–33]. In the
following we briefly review the standard integrability framework of these models. We focus
on the construction of the commuting set of transfer matrices, and their eigenvalues expressed
in terms of Bethe Ansatz rapidities. We do not treat the actual construction of the Bethe states,
and we refer the reader to [56,57].

Let us consider the following fundamental R-matrix:

R(u) =
1

u+ i
(u+ iP) , R ∈ End

�

CN ⊗CN
�

, (11)

which satisfies the Yang-Baxter equation [58]

R23(v −w)R13(u−w)R12(u− v) = R12(u− v)R13(u−w)R23(v −w), (12)

and the unitarity relation:
R(u)R(−u) = 1. (13)

It is group invariant with respect to GL(N):

G1G2R(u) = R(u)G1G2, Gi ∈ GL(N), i = 1,2. (14)

Let us consider an additional space h0 = CN called the auxiliary space. We define the
transfer matrix (TM) of the model in the usual way:

t(u) = Tr0R10(u)R20(u) . . . RL0(u), (15)

where the trace is taken on the auxiliary space h0. The transfer matrices form a commuting
family:

[t(u), t(v)] = 0. (16)

The commuting set of local charges is built from t(u). Let

Qk = (−i)
dk−1

duk−1
log t(u)

�

�

�

�

u=0
, k ≥ 2. (17)

It can be shown that the Qk are local charges: they are extensive such that their operator
density spans at most k sites [59]. It follows from (16) that they commute with each other:

[Q j ,Qk] = 0, j, k ≥ 2. (18)

Furthermore, the Hamiltonian is a member of this series. Direct computation gives H = −Q2.
In our work a special role will be played by the so-called fusion hierarchy of the transfer

matrices. In the following we briefly introduce these concepts, while omitting many technical
details.

Let Λ1 and Λ2 be two irreducible representations of SU(N). It is known that there exists
an R-matrix RΛ1,Λ2(u) acting on the tensor product of the two representations, which is unique
up to an overall scaling and certain shifts in the rapidity parameter, such that for any three
representations Λ j , j = 1, 2,3 they satisfy the Yang-Baxter equation [60]:

RΛ2,Λ3
23 (v − z)RΛ1,Λ3

13 (u− z)RΛ1,Λ2
12 (u− v) = RΛ1,Λ2

12 (u− v)RΛ1,Λ3
13 (u− z)RΛ2,Λ3

23 (v − z). (19)
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These R-matrices can be obtained by the so-called fusion procedure [60,61].
In our models each local spin variable carries the defining representation of SU(N), there-

fore we will need R-matrices acting on the tensor product of the defining representation and
some other Λ. For these cases we will use the short notation RΛ12(u).

For each representation Λ we define the transfer matrix with auxiliary space carrying Λ as

tΛ(u) = Tr0RΛ10(u)R
Λ
20(u) . . . RΛL0(u). (20)

It follows from (19) that all of these transfer matrices commute:

[tΛ(u), tΛ
′
(v)] = 0. (21)

The representations of SU(N) can be described by Young diagrams. The transfer matrices
corresponding to rectangular Young diagrams play a special role in the theory, and we will show
that they are central also for the GETH. For the Young diagram with a rows and s columns the
corresponding transfer matrix will be denoted as t(a)s (u). These objects satisfy a closed set of
functional relations called the Hirota equation or T -system relations; specific details will be
given later, and for reviews see [62,63].

The common eigenstates of the transfer matrices can be found by the (nested) Bethe
Ansatz. The actual construction, and hence the discussion of the GGE and the GETH strongly
depends on N . In the next section we review the known results for the case N = 2, which corre-
sponds to the XXX Heisenberg spin chain. In 4 we start our discussion of the SU(3)-symmetric
chain, which is the main subject of this paper. However, before going to these special cases we
introduce the notion of quasi-local charges, that are essential for the GETH.

2.1 Quasi-local charges

The set of canonical local charges (17) has been known since the early days of integrability.
On the other hand, the existence and importance of quasi-local charges was only understood
in recent years [25,26]. Here we define quasi-locality following the works [25,26].

Consider the physical Hilbert space HL = h1 ⊗ · · · ⊗ hL =
�

CN
�L

, and consider End(HL),
the space of linear operators over HL . End(HL) possesses a Hilbert space structure, under the
Hilbert-Schmidt scalar product, defined as

〈A, B〉HS = N−LTr
�

A†B
�

, A, B ∈ End (HL) . (22)

The Hilbert-Schmidt norm is defined as

‖A‖2HS = 〈A, A〉HS = N−LTr
�

A†A
�

. (23)

This normalization is such, that for the identity operator ||1||HS = 1.
We define the traceless part of an operator A as

{A}= A− N−LTr(A). (24)

Quasi-locality is defined for traceless operators.
The L-dependent operator {A}(L) ∈ HL is called quasi-local, if it satisfies the following

properties:

1. {A}(L) is translationally invariant for every L.

2. In large volumes ‖{A}‖2HS ∼ L

3. For any locally supported k-site operator b = bk ⊗ 1L−k the overlap 〈b, {A}〉HS is asymp-
totically independent of L in the L→∞.
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Note that the quasi-locality only makes sense in the strictly L → ∞ limit, because it is the
property of the infinite series of operators {A}(L). The strictly local charges obviously satisfy
these requirements.

A quasi-local operator can be written in the form

A(L) =
L
∑

x=1

a(x), (25)

where a(x) is the operator density of A. It does not have to be local, but it has to have a
finite norm. As an effect, the long-range contributions to a(x) have (typically exponentially)
decreasing amplitudes.

3 The Heisenberg spin chain

The SU(2)-symmetric Heisenberg XXX spin chain is defined conventionally by the Hamiltonian

HX X X =
L
∑

j=1

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 +σ

z
jσ

z
j+1 − 1,

�

, (26)

where σαj are the Pauli matrices acting on quantum space j. In this normalization HX X X = 2H,
where H is the Hamiltonian (10) at N = 2.

The exact eigenstates of this model were first found by Bethe [64]. They can be character-
ized by a set of rapidities {λ1, . . . ,λN}, which parametrize the quasi-momenta of interacting
spin waves above the reference state |;〉, which is chosen conventionally as the state with all
spins up. The un-normalized eigenstates can be written as

|λN 〉=
∑

1≤n1<...<nN≤L

Ψ(n1, . . . , nN )
N
∏

s=1

(σ−)ns
|;〉,

Ψ(n1, . . . , nN ) =
∑

P∈SN

�

∏

1≤r<l≤N

λP(l) −λP(r) − i

λP(l) −λP(r)

N
∏

r=1

�

λP(r) +
i
2

λP(r) −
i
2

�nr
�

.

(27)

Here σ− is the spin lowering operator, and the ns describe the positions of the spin waves.
These states are eigenstates of the Hamiltonian if the wave functions are periodic, which

leads to the Bethe equations:

�

λ j +
i
2

λ j −
i
2

�L

=
N
∏

k=1,k 6= j

λ j −λk + i

λ j −λk − i
j = 1, . . . , N . (28)

The lattice momentum and the energy of a Bethe state
�

�

�{λ j}Nj=1

¶

are given by the sum of one

particle momentum and energy, respectively:

P =
N
∑

j=1

p(λ j), p(λ) = i log

�

λ j +
i
2

λ j −
i
2

�

, (29)

E =
N
∑

j=1

ε(λ j), ε(λ) = −
1

λ2 + 1
4

. (30)
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The eigenvalues of the fundamental transfer matrix (15) can be computed using Algebraic
Bethe Ansatz [65]. On the Bethe state |{λ}N 〉 the eigenvalues are

t(u) =
Q1

�

u− i
2

�

Q1

�

u+ i
2

� +
Q0(u)Q1

�

u+ 3i
2

�

Q0(u+ i)Q1

�

u+ i
2

� , (31)

where

Q0(u) = uL , Q1(u) =
N
∏

j=1

(u−λ j). (32)

The Bethe states are highest weight with respect to the global SU(2) symmetry; other states
in the same multiplet can be obtained by global spin lowering operators.

3.1 String hypothesis and Thermodynamic Bethe Ansatz

In order to study the thermodynamic limit of the model it is important to know the positions
of the Bethe roots in the complex plain. It is known that in Bethe Ansatz solvable models the
roots typically arrange themselves into so-called string patterns. A string describes a bound
state of spin waves. The string hypothesis states that in the thermodynamic limit the dynamical
processes can be described by concentrating only on the regular string solutions, neglecting
contributions from the rare outlier states.

In the XXX model an n-string pattern centered around the rapidity x ∈ R takes the form

x` = x + i
�

n+ 1
2
− `
�

+δ`, `= 1, . . . , n. (33)

Here δ` are the so-called string deviations which are exponentially small in large volumes for
regular string solutions.

A Bethe state with Nn number of n-strings thus consists of the rapidities

λn,`
α = λ

n
α + i

�

n+ 1
2
− `
�

+δn,`
α , `= 1, . . . , n, α= 1, . . . , Nn. (34)

The total number of Bethe roots is computed simply as

∞
∑

n=1

nNn = N . (35)

We will be interested in the thermodynamic limit, when N →∞, L→∞with a fixed N/L
ratio. In this limit the string deviations become exponentially small and according to the string
hypothesis it is sufficient to describe the positions of the string centers. Then the string centers
can be described by continuous density functions along the real line. These are denoted by
ρn(u), and are normalized such that in a large volume L the total number of n-strings between
rapidities u and u+∆u is Lρn(u)∆u.

Analogously to a free system we also introduce hole densities. For a Bethe state a hole is a
position in rapidity space which would satisfy the Bethe equations but it is not actually a Bethe
root. Such holes can be defined for each particle type and each string pattern, and in the TDL
they are described by the densities ρh,n.

In the thermodynamic limit the Bethe equations (73) can be transformed into a set of
coupled linear integral equations:

ρt,n(u) = δn,1s(u) + s ?
�

ρ
(1)
h,n−1 +ρ

(1)
h,n+1

�

(u), (36)
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. . .

Figure 1: TBA diagram of the XXX model. Each node corresponds to a string type,
and the links denote the convolution kernels in Eq. (36). The filling of the first node
signals the source term for ρt,1(u).

where ρ( j)t,n, j = 1, 2 are the so-called total root densities, defined by

ρ
( j)
t,n(u) = ρ

( j)
n (u) +ρ

( j)
h,n(u), j = 1,2. (37)

Furthermore, the convolution is understood as

( f ? g)(λ) =

∫ ∞

−∞
dµ f (λ−µ)g(µ), (38)

and the integration kernel is

s(λ) =
1

2 cosh(πλ)
. (39)

The integral equations (36) are symbolically depicted on Fig. 1.

3.2 String-charge relations

The main question of the GETH is to what extent a given set of charges determines the Bethe
root densities. Let us first focus on the set of strictly local charges {Qα} defined in (17). Instead
of dealing with the discrete set it is useful to consider the generating function X1(u) defined
formally as

X1(u) = (−i)∂u log t(u) =
∞
∑

j=2

u j−2

( j − 2)!
Q j . (40)

It was shown in [21,22] that the eigenvalues of this operator are asymptotically

1
2πL

X1(u) = s ? (ρh,1 + a1), (41)

where

a1(u) =
1

2π
1

u2 + 1
4

. (42)

It follows that this set of charges is not sufficient to determine all Bethe root densities: X1(u)
only fixes the hole density of the 1-strings.

This situation was remedied in [24] (see also [46, 49]), where it was shown that the re-
cently introduced quasi-local charges [25, 26] contain just enough information to fix all the
root densities.

The quasi-local charges are obtained from the fusion hierarchy of the transfer matrices.
Let us define the higher spin Lax operators with spin s = m/2, m ∈ N acting on the tensor
product Va ⊗ Vj = C2s+1 ⊗C2 as

Lm
a, j(u) =

u+ i1
2 + iSa ·σ j

u+ i m+1
2

, (43)

where Sa stands for the vector of the spin-s generators of SU(2), and σ j is the vector con-
structed out of Pauli matrices. Our conventions for the Lax operators differs slightly from the
one used in [24,25,46].
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We define the corresponding transfer matrices (TMs)

tm(u) = TraLm
a,1(u)L

m
a,2(u) . . .Lm

a,L(u). (44)

It can be shown that these operators form a commuting family:

[tm(u), tn(v)] = 0. (45)

The spin-s representations correspond to Young diagrams with 1 row and m columns, therefore
using the notations of Section 2 we have the identification tm(u) = t(1)m (u).

These transfer matrices satisfy a set of functional equations called the Hirota equation or
T -system:

tm

�

u+
i
2

�

tm

�

u−
i
2

�

= tm+1(u)tm−1(u) +φm(u). (46)

Here φm(u) is a scalar function (independent of the Bethe state) given by

φm(u) =
Q0

�

u− i m
2

�

Q0

�

u+ i im
2

� . (47)

Furthermore, the initial value for the recursion is t0(u) = 1.
The eigenvalues on the common eigenstates are [66]

tm(u) =
Q1

�

u− i m
2

�

Q1

�

u+ i m+2
2

�

Q0

�

u+ i m+1
2

�

m
∑

k=0

Q0

�

u+ i m+1
2 − ik

�

Q1

�

u+ i m
2 − ik

�

Q1

�

u+ i m+2
2 − ik

� . (48)

It can be checked by direct computation that these eigenvalues satisfy the T -system (46).
A key role is played by the operators Xm(u) defined formally by

Xm(u) = (−i)∂u log tm(u). (49)

It was shown in [25] that the traceless operators {Xm(u)} are quasi-local in the thermodynamic
limit, if u is within the physical strip P defined as

P ≡
§

u ∈ C, |ℑ(u)|<
1
2

ª

. (50)

For a more precise treatment of Xm(u) see the next subsection.
Regarding the eigenvalues of the operators Xm(u) it was obtained in [24]

ρh,n = an −
1

2πL
(X [+]n + X [−]n ), (51)

where

an(λ) =
1

2π
n

λ2 + n2

4

, (52)

and we introduced the short-hand notation:

f [±](u) = lim
ε→0

f
�

u±
i
2
∓ ε
�

. (53)

Making use of the system (36) an equivalent form can be derived:

ρn =
1

2πL

�

X [+]n + X [−]n − Xn−1 − Xn+1

�

. (54)

11

https://scipost.org
https://scipost.org/SciPostPhys.8.3.034


SciPost Phys. 8, 034 (2020)

Thus the higher spin transfer matrices contain just enough information to determine all the
root densities.

Let us comment on some important differences between the finite volume situation and
the thermodynamic limit.

In finite volume it is known that the spectrum of the transfer matrix is simple [67]. This
means that if two states possess the same eigenvalue function t(u) then they belong to the same
SU(2) multiplet. This also implies that if the spin quantum number Sz is also specified, then
the function t(u) uniquely determines all Bethe roots. A practical procedure for recovering
the Bethe roots from t(u) is explained for example in [68].

Based on this, it might seem surprising, that the complete family {tm(u)} of TM’s is needed
in the L →∞ limit. Eq. (46) shows that the higher spin transfer matrices are algebraically
dependent, and they can be expressed using the fundamental t(u), thus the information stored
in the complete family {tm(u)} might seem redundant.

The explanation for this apparent paradox is the following. Even though at finite L the
function t(u) is enough the recover all Bethe roots, typically a large amount of information is
lost by the thermodynamic limit. On a technical level this happens because for almost all u
one of the two terms in the expression (31) becomes dominant, and the other one becomes
exponentially suppressed as L→∞. Thus it becomes impossible to reconstruct the root densi-
ties once the thermodynamic limit has been taken. However, further information is preserved
in the other members of the family {tm(u)}, such that eventually the set {Xm(u)} remains
complete in the TDL.

It is our goal to extend this picture to the higher rank cases. We will show that the situa-
tion is analogous to the SU(2) case: the complete set of charges is obtained from the fusion
hierarchy of the transfer matrices. However, before turning to the SU(3) case we repeat some
of the computations already present in the literature. We will use a slightly different approach,
which is more convenient for later generalizations to the higher rank cases.

3.3 Inversion and quasi-locality

In our computations an important role will be played by certain asymptotic inversion relations.
The main goal is to find some operators that invert the transfer matrices, such that the formal
expressions ∂u log(tm(u)) = (tm(u))−1∂u tm(u) can be made sense using well defined local ob-
jects. The transfer matrices themselves can not be inverted in the desired way, but there exist
asymptotic inversion relations which hold in the L→∞ limit.

Such inversion relations are closely tied to the fusion of transfer matrices. Their study
has a long history, which goes back to the seminal work of Baxter [58]. We do not attempt
a thorough review of this topic, we merely mention a few references. For example, we will
rely on some basic arguments about the inversion that already appeared in the work [69] of
Pearce. Closely related ideas and methods appeared among others in [70,71].

All of the asymptotic inversions that we will treat are based on a local inversion. In the
case of the XXX model the Lax operators (43) satisfy the local inversion

Lm(u)Lm(−u) =
−u2 − (Sa ·σ j +

1
2)

2

−u2 − (s+ 1
2)2

= 1. (55)

This is most easily seen using the relation

Sa ·σ j +
1
2
=
(Sa +σ j)2 − (Sa)2 − (σ j)2 + 1

2
. (56)

From the known values of the Casimir operators we compute the two possible eigenvalues of
the operator in (56) as ±(s+ 1/2), which implies the inversion (55).
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Let us define a new family of transfer matrices, which are obtained simply by space reflec-
tion:

t̄m(u) = Tra

�

Lm
a,L(u)L

m
a,L−1(u) . . .Lm

a,1(u)
�

. (57)

Using partial transpose in auxiliary space they can be expressed as

t̄m(u) = Tra

h
�

Lm
a,1(u)

�ta
�

Lm
a,2(u)

�ta
. . .
�

Lm
a,L(u)

�ta
i

. (58)

Furthermore, they can be related to the standard transfer matrices by a simple crossing trans-
formation. All representations of SU(2) are self-conjugate, therefore there exists a charge
conjugation operator C acting on the auxiliary space, such that it satisfies C2 = 1 and per-
forms conjugation as

St = S∗ = −CSC . (59)

Therefore

�

Lm
a,1(u)

�ta
= Ca

u+ i1
2 − iSa ·σ j

u+ i m+1
2

Ca =
u− i m−1

2

u+ i m+1
2

CaLm
a,1(−u− i)Ca. (60)

The C-operators drop out when we compute the transfer matrices, we thus obtain the global
crossing relation

t̄m(u) =

�

u− i m−1
2

u+ i m+1
2

�L

tm(−u− i). (61)

In the following we will use the direct definition (57), because it is more advantageous for our
purposes.

Theorem 1. The following asymptotic inversion identity holds [25]:

t̄m(−u)tm(u)≈ 1, u ∈ P . (62)

Here and in the following an asymptotic identity A≈ B means that

||A− B||=O(e−αL), α ∈ R+. (63)

The above Theorem was treated in detail in [25]. We also sketch the proof using our
conventions. First we shed some light on why the inversion relation holds.

Let us think about a different situation, and consider the monodromy matrices, i.e. the
expressions (44)-(57) without the trace in auxiliary space:

M m(u) = Lm
a,1(u)L

m
a,2(u) . . .Lm

a,L(u),

M̄ m(u) = Lm
a,L(u)L

m
a,L−1(u) . . .Lm

a,1(u).
(64)

In this case, the local inversion identity (55) immediately gives a global and exact inversion:

M̄ m(−u)M m(u) = 1. (65)

The local steps leading to this global inversion are depicted in Fig. 2.
For the transfer matrices (62) the difficulty lies in the fact that the trace has been taken in

auxiliary space. In this case we can not expect an exact inversion. Nevertheless, for certain
values of u and for large enough volumes the “boundary effect” of taking the trace does not
propagate into the bulk of the chain. More precisely, it only causes an exponentially small
effect.
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u

1 2 . . . L

→
u

1 2 . . . L

Figure 2: Graphical representation of the global inversion, which follows from con-
secutive local inversion steps. The product of monodromy matrices is equal to the
identity after disentangling the local Lax operations.

A rigorous proof can be given by computing the norm of the difference

|| t̄m(−u)tm(u)− 1||2 =2−LTr
�

( t̄m(−u)tm(u))
† t̄m(−u)tm(u)

�

− 2−(L−1)ℜ [Tr ( t̄m(−u)tm(u))] + 1.
(66)

The adjoints of the transfer matrices can be computed as

(tm(u))
† = t̄m(−u∗). (67)

Our aim is to show that

2−LTr ( t̄m(−u)tm(u))≈ 1,

2−LTr (tm(u
∗) t̄m(−u∗) t̄m(−u)tm(u))≈ 1,

(68)

which will imply the asymptotic inversion. These two traces can be evaluated conveniently
by building a corresponding 2D vertex model, see Figs. 2- 3. Here the action of the transfer
matrices corresponds to adding a new row to the lattice, therefore we get two lattices of size
2× L and 4× L. These partition functions can be evaluated in the “crossed channel” by build-
ing column-to-column transfer matrices. These are conventionally called Quantum Transfer
Matrices (QTM’s). The traces are evaluated using the eigenvalues of these QTM’s. It follows
from the local inversion relations, that the local delta-states given by |δ〉 =

∑

j | j〉 ⊗ | j〉 and
|δ〉 ⊗ |δ〉 are eigenstates of the two-site and four-site QTM’s, respectively. Their eigenvalues
are simply 2, due to the local inversion and the trace over the physical space, see again Figs.
2-3. The identities in (68) are rigorously proven by showing that the delta-states are the dom-
inant eigenstates. This requires a diagonalization of the QTM’s in question. In the case of the
two-site QTM this was performed in [25] using the SU(2) algebra, whereas for the four-site
case it was done analytically up to s = 3/2 and numerically for larger values of s.

We put forward that essentially the same steps are needed to prove the quasi-locality of
the resulting charges. The reason for this is that based on the inversion we can write the
asymptotic identity

Xm(u)≈ (−i) t̄m(−u)∂u tm(u), (69)

and here the derivation ∂u acts only locally: the resulting operator will be translationally
invariant and formally extensive. It remains to be shown that the HS norm of the traceless
part scales linearly with the volume; this does not follow from (69), and only holds for u ∈ P .
For the computation of the HS norm one needs the same lattices of size 2 × L and 4 × L
which were constructed above. The proof of quasi-locality follows relatively easily once the
leading eigenvectors of the QTM’s are found to be the delta states. This procedure is described
in [25, 26], and we also explain it in Appendix A with the technical details in the case of the
SU(3)-symmetric model.

We note that using the crossing relation (61) the asymptotic inversion (62) can be written
in a form equivalent to the l.h.s. of the fusion relation (46) with a shifted rapidity. In this form
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u

−u∗

1 2 . . . L

u

−u∗

1 2 . . . L

Figure 3: Graphical interpretation of the proof of the second equation in (68). The
trace of the four transfer matrices in question is evaluated in the crossed channel by
building a four-site Quantum Transfer Matrix, which adds one column to the diagram.
A specific eigenvector of this QTM is the product of two delta-states: this state has
eigenvalue 2, which follows from the local inversion as depicted in the graph, after
taking the trace in the vertical direction. The desired identity in (68) holds if this is
the leading eigenvalue.

the asymptotic inversion states that on the r.h.s. the scalar (state independent) part will be
dominant in the thermodynamic limit.

The inversion relation has important consequences for the transfer matrix eigenvalues.
Eq. (62) has to hold on the level of eigenvalues for almost all states. We now analyze the
implications of this, by computing the products t̄m(−u)tm(u).

The eigenvalues of the space reflected TM could be computed from the crossing relation
(61), but there is a more direct way. It is known that in Bethe Ansatz space reflection can be
represented by the change {λ}N → {−λ}N . The TM eigenvalues involve ratios of Q-functions
with certain shifts. Changing the sign of both u and all the rapidities is equivalent to changing
the signs of all the shift parameters. Thus the eigenvalues of t̄m(−u) are immediately found
from (48):

t̄m(−u) =
Q1

�

u+ i m
2

�

Q1

�

u− i m+2
2

�

Q0

�

u− i m+1
2

�

m
∑

k=0

Q0

�

u− i m+1
2 + ik

�

Q1

�

u− i m
2 + ik

�

Q1

�

u− i m+2
2 + ik

� . (70)

Let us now consider the product of the eigenvalues t̄m(−u)tm(u). Expanding the product we
obtain a sum of (m+1)2 terms, each of which involves ratios of Q-functions. Inspection shows
that among these (m+ 1)2 terms there will be a single one which gives identically 1; this will
come from the summands with index k = 0. All the remaining terms are ratios of Q-functions,
which are exponentially increasing or decreasing with L, depending on u. It follows from
the inversion identity that if u is within the physical strip, then all of these terms have to be
exponentially decreasing. This also implies, that from the (m+ 1) terms in the eigenvalues of
tm(u) the k = 0 term has to be the leading one for almost all states if u ∈ P . We can thus write
the explicit formula

tm(u)≈
Q1

�

u+ i m
2

�

Q1

�

u− i m
2

� , u ∈ P , m= 1, 2, . . . (71)

These relations play an essential role in establishing the string-charge identities (51), see the
original papers [24,46].

We will show that similar steps are needed also in the SU(3)-symmetric model. That model
has a more complicated Bethe Ansatz solution and corresponding fusion hierarchy of transfer
matrices, nevertheless the inversion relations take an identical form, and are equally important
for the derivations of the string-charge relations.
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4 The SU(3)-symmetric Lai-Sutherland model

In the SU(3) symmetric Lai-Sutherland model the eigenstates are constructed as excitations
over the reference state, which can be chosen for example as |;〉 = |1〉 ⊗ · · · ⊗ |1〉, where
{|1〉, |2〉, |3〉} is an orthonormal basis ofC3. One-particle excitations are spin waves which carry
an internal degree of freedom corresponding to the polarization, thus carrying the defining
representation of SU(2). General multi-particle excited states can be considered as interacting
spin waves, and each state is described by the momenta of the particles and also by an auxiliary
wave function describing the orientation in the resulting internal space.

Corresponding to this physical picture, the Bethe states of this model can be characterized
by two sets of rapidity parameters {λ j}Nj=1 and {µ j}Mj=1. Here N is the number of physical
particles and the λ j describe their quasi-momenta. Further, the secondary (or magnonic)
rapidities {µ j}Mj=1 describe the orientation in the internal space; they can be understood as the
Bethe rapidities of an auxiliary spin chain problem. The GL(3) global quantum numbers are
(L − N , N −M , M), and it is required that N ≤ 2L/3 and M ≤ N/2.

The un-normalized real space wave functions can be written as

|λN ,µM 〉=
∑

1≤n1<...<nN≤L

∑

1≤m1<...<mM≤N

∑

P∈SN

�

∏

1≤r<l≤N

λP(l) −λP(r) − i

λP(l) −λP(r)

�

×〈m|λP ,µ〉
N
∏

r=1

�

λP(r) +
i
2

λP(r) −
i
2

�nr M
∏

r=1

(E32)mr

N
∏

s=1

(E21)ns
|;〉 ,

where we used the elementary matrices E ji = | j〉〈i|. The wave function amplitudes are given
by

〈m|λP ,µ〉=
∑

R∈SM

A(λR)
M
∏

`=1

FλP (µR(`); m`) ,

Fλ(µ, s) =
−i

µ−λs −
i
2

s−1
∏

n=1

µ−λn +
i
2

µ−λn −
i
2

,

A(λ) =
∏

1≤r<l≤M

µl −µr − i
µl −µr

.

(72)

It follows from the periodicity of the wave function that the two sets of rapidities are solutions
to the following Bethe equations:

�

λ j +
i
2

λ j −
i
2

�L

=
N
∏

k=1,k 6= j

λ j −λk + i

λ j −λk − i

M
∏

k=1

λ j −µk −
i
2

λ j −µk +
i
2

, j = 1, . . . , N

1=
M
∏

k=1

µ j −λk −
i
2

µ j −λk +
i
2

N
∏

k=1,k 6= j

µ j −µk + i

µ j −µk − i
, j = 1, . . . , M .

(73)

The lattice momentum and the energy of a Bethe state
�

�

�{λ j}Nj=1, {µ j}Mj=1

¶

is given by the sum

of one particle momentum and energy, respectively:

P =
N
∑

j=1

p(λ j), p(λ) = i log

�

λ j +
i
2

λ j −
i
2

�

, (74)

E =
N
∑

j=1

ε(λ j), ε(λ) = −
1

λ2 + 1
4

. (75)
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Note that both the momentum and the energy depend only on the Bethe roots of the first type.
The eigenvalues of the fundamental transfer matrices (15) on Bethe states can be computed

as [57]

t(u) =
Q1

�

u− i
2

�

Q1

�

u+ i
2

� +
Q0(u)Q1

�

u+ 3i
2

�

Q2(u)

Q0(u+ i)Q1

�

u+ i
2

�

Q2(u+ i)
+

Q0(u)Q2 (u+ 2i)
Q0(u+ i)Q2 (u+ i)

, (76)

where
Q0(u) = uL (77)

and

Q1(u) =
N
∏

j=1

(u−λ j), Q2(u) =
M
∏

j=1

(u−µ j) (78)

are the Q-functions associated with the first and second level Bethe roots.
The eigenvalues of the local charges Qk can be computed from (76) using the definition

(17). It follows from the presence of the Q0(u) factor in the second and third terms of (76)
that only the first term will contribute to the eigenvalue of Qk as long as k < L. This implies
that the local charges only depend on the first level Bethe roots {λ j}Nj=1. This already indicates
that the local charges cannot give a full description of the states. Note that (75) can be derived
immediately from (76).

4.1 String hypothesis and Thermodynamic Bethe Ansatz

In the Lai-Sutherland model both the first and second type of rapidities can form strings, and
they form the same patterns in the complex plain. A Bethe state with M (1)n and M (2)n number
of n-strings for the first and second type of particles thus consists of the rapidities

λn,`
α = λ

n
α + i

�

n+ 1
2
− `
�

+δn,`
1,α, `= 1, . . . , n, α= 1, . . . , M (1)n ,

µn,`
α = µ

n
α + i

�

n+ 1
2
− `
�

+δn,`
2,α, `= 1, . . . , n, α= 1, . . . , M (2)n .

(79)

Here, λn
α, µn

α ∈ R are the string centers, and δn,`
1,α, δn,`

2,α are the string deviations, exponentially
small in large volumes. The total number of Bethe roots is computed simply as

∞
∑

n=1

nM (1)n = N ,
∞
∑

n=1

nM (2)n = M . (80)

We will be interested in the thermodynamic limit, when N →∞, M →∞, L→∞ while
we keep the ratios N/L and M/L fixed. The string hypothesis states that only Bethe roots in
the form of (79) contribute to thermodynamic behaviour. For the string centers we introduce
the densities ρ(1)n (u), ρ

(2)
n (u), which are normalized such that in a large volume L the total

number of n-strings of the first/second type between rapidities u and u+∆u is Lρ(1/2)n (u)∆u.

Similarly we introduce the hole densities ρ(1)h,n,ρ(2)h,m.
In the thermodynamic limit the Bethe equations (73) can be transformed into a set of

coupled linear integral equations:

ρ
(1)
t,n(λ) = an(λ)−

∞
∑

m=1

an,m ? ρ
(1)
m (λ) +

∞
∑

m=1

bn,m ? ρ
(2)
m (λ),

ρ
(2)
t,n(λ) = −

∞
∑

m=1

an,m ? ρ
(2)
m (λ) +

∞
∑

m=1

bn,m ? ρ
(1)
m (λ),

(81)
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. . .

Figure 4: TBA diagram of the SU(3)-symmetric model. The node in row a and col-
umn m from the top left correspond to the m-string of particle type a = 1, 2. The
links denote the two different convolutions in Eq. (84). The filling of the top left
node signals the source term for ρ(1)t,1(u).

where the total root densities are

ρ
( j)
t,n(u) = ρ

( j)
n (u) +ρ

( j)
h,n(u), j = 1,2. (82)

The kernels are

an,m(λ) = (1−δnm)a|n−m|(λ) + 2a|n−m|+2(λ) + . . . 2an+m−2(λ) + an+m(λ),

bn,m(λ) = a|n−m|+1(λ) + 2a|n−m|+3(λ) + . . . 2an+m−1(λ),
(83)

and an(λ) is defined in (52).
Similarly to the spin-1/2 case, the aforementioned equations can be cast in a partially

decoupled form (for derivation, see e.g. [36]):

ρ
(1)
t,n(λ) = δn,1s(λ) + s ?

�

ρ
(1)
h,n−1 +ρ

(1)
h,n+1

�

(λ) + s ? ρ(2)n (λ),

ρ
(2)
t,n(λ) = s ?

�

ρ
(2)
h,n−1 +ρ

(2)
h,n+1

�

(λ) + s ? ρ(1)n (λ),
(84)

where the following definitions and conventions are understood:

ρ
(r)
h,0(u) = 0, r = 1,2, (85)

and s(u) is defined in (39). The structure of these integral equations is depicted on the “TBA
diagram” 4.

4.2 Strategy towards the string-charge relations

It is our goal to find a set of quasi-local charges, which will uniquely determine all root densities
ρ(1)m (u) and ρ(2)m (u). Based on the XXX chain it is a natural idea to consider the fusion hierarchy
of the transfer matrices.

In the SU(3)-symmetric model there is a set of fused transfer matrices t(a)m (u)with a = 1,2,
and m = 1, 2, . . . ,∞. They correspond to representations of SU(3) described by the rectan-
gular Young diagram with a rows and m columns. Precise definitions of t(a)m (u) using local
Lax operators will be given in Section 6. We put forward that these TM’s satisfy the Hirota
equation or T -system [62,63]

t(a)m

�

u+
i
2

�

t(a)m

�

u−
i
2

�

= t(a)m+1(u)t
(a)
m−1(u) + t(a−1)

m (u)t(a+1)
m (u),

a = 1,2, m= 1, 2, . . .
(86)

Here t(a)0 (u) = 1 by definition and t(0)m (u) and t(3)m (u) are scalar functions that will be specified
later.

The structure of this T -system is very closely related to the “TBA diagram” 4. The top and
bottom rows correspond to the transfer matrices with a = 1 and a = 2, respectively. Based
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on previous experience we expect to find a relation between the eigenvalues of these fused
transfer matrices and the Bethe root densities. We put forward the formal definition

X (a)m (u) = (−i)
∂

∂ u
log t(a)m (u). (87)

We will show that the X (a)m (u) can be constructed locally, and their mean values are connected
to the root densities by relations analogous to (54). Furthermore, we will prove in two specific
cases that they are quasi-local within the physical strip.

5 Quasi-local charges: the defining and conjugate representations

In this section we investigate two special transfer matrices in the SU(3)-case: the operators
t(1)1 (u) and t(2)1 (u) that correspond to the defining and conjugate representations of SU(3),
respectively.

The first one is the fundamental TM, corresponding to the defining representation with
highest weight (1,0) and the Young diagram with one box. For this TM we will use the notation
t3(u), and the definition is the same as in (15):

t3(u) = Tr0R10(u)R20(u) . . . RL0(u), (88)

where R(u) is given by (11) with N = 3.
The second special TM corresponds to the conjugate (or anti-symmetric tensor) represen-

tation of SU(3), given by highest weight (0,1) and the Young diagram with two rows and one
column. We use the notation t 3̄(u) and the definition

t 3̄(u) = Tr0R3̄
10(u)R

3̄
20(u) . . . R3̄

L0(u), (89)

where R3̄(u) is the R-matrix acting on the tensor product of a fundamental and conjugate
representation. It is given by

R3,3̄(u)≡ R3̄(u) =
u+ 3i

2 − iK

u+ 3i
2

. (90)

Here K is the trace operator (or Temperley-Lieb operator) with matrix elements K cd
ab = δabδcd .

Note that K is the partial transpose of the permutation operator: P t1 = P t2 = K . Therefore we
have the simple relation

R3̄(u) =
u+ i

2

u+ 3i
2

Rt1
�

−u− 3i
2

�

. (91)

This R-matrix also satisfies the unitarity relation:

R3̄(u)R3̄(−u) = 1, (92)

which is easily checked using the Temperley-Lieb property K2 = 3K .
For this special conjugate R-matrix the compatibility conditions are easily derived from the

original Yang-Baxter relation (12). Making use of (91) and (92) it is easy to show that

R23(v −w)R̄13(u−w)R̄12(u− v) = R̄12(u− v)R̄13(u−w)R23(v −w). (93)

It follows that the TM’s {t3
m(u), t 3̄

m(u)} are all commuting with each other.
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The group invariance property of the conjugate transfer matrix follows easily from (14).
Taking a partial transpose in the second space we get

G1(G
t
2)
−1Rt2(u) = Rt2(u)G1(G

t
2)
−1, G ∈ GL(3). (94)

For any G ∈ SU(3) we have (G t)−1 = G∗, thus we see by the relation (91) that the matrix
R3̄(u) is compatible with representations 3⊗ 3̄.

Similar to the case of the XXX chain it is very useful to define the space reflected transfer
matrices corresponding to these two representations:

t̄3(u) = Tr0R3
L0(u) . . . R3

10(u), (95)

t̄ 3̄(u) = Tr0R3̄
L0(u) . . . R3̄

10(u). (96)

The local crossing relation 91 implies the following connections:

t̄ 3̄(u) =

�

u+ i
2

u+ 3i
2

�L

t3
�

−u− 3i
2

�

,

t̄3(u) =
� u

u+ i

�L
t 3̄
�

−u− 3i
2

�

.

(97)

These are simple generalizations of the crossing relation (61) in the SU(2) case. Even though
the space reflected operators are not independent, we keep their definition and this special
notation, because they are very useful to study the inversion relations and quasi-locality prop-
erties of the charges.

For example, the adjoints of the transfer matrices can be expressed simply as

(t3)†(u) = t̄3(−u∗), (t 3̄(u))† = t̄ 3̄(−u∗). (98)

For the details see Lemma 1 in the Appendix.

Theorem 2. For t3(u) and t 3̄(u) the following asymptotic inversion relations hold when u ∈ P

t̄3(−u)t3(u)≈ 1,

t̄ 3̄(−u)t 3̄(u)≈ 1.
(99)

A rigorous proof is presented in Appendix A. The proof is based on the same ideas as
explained in the case of the XXX model. The core relations are the local inversions (13)-(92),
which guarantee the exact inversion of the monodromy matrices. Considering the transfer
matrices, the “boundary effect” of taking the trace does not propagate into the bulk of the
chain, if u is chosen from the physical strip.

Based on the results of the SU(2)-symmetric chain we define the following two generating
functions for the charges:

X (u) = (−i)∂u log t(u),

Y (u) = (−i)∂u log t 3̄(u).
(100)

Due to the asymptotic inversion they can be written in large enough volumes as

X (u)≈ (−i) t̄(−u)∂ t(u),

Y (u)≈ (−i) t̄ 3̄(−u)∂ t 3̄(u).
(101)

The formula (100) is convenient for the treatment of the eigenvalues, whereas the advantage
of (101) is its local construction, enabling the evaluation of mean values in initial states and
the proof of quasi-locality.

It follows from the asymptotic inversion and the adjoint property (98) that for u ∈ R these
operators are Hermitian.
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Theorem 3. The traceless operators {X (u)} and {Y (u)} are quasi-local within the physical strip.

The detailed proof of this Theorem is presented in appendix A. The proof uses the same
techniques as in the original works [25, 26], and the starting point is the existence of local
inversion relations for the R-matrices.

Let us now investigate the consequences of the inversion relation for the eigenvalues of
these transfer matrices.

For the fundamental TM and its space reflected counterpart we have

t3(u) =
Q1

�

u− i
2

�

Q1

�

u+ i
2

� +
Q0(u)Q1

�

u+ 3i
2

�

Q2(u)

Q0(u+ i)Q1

�

u+ i
2

�

Q2(u+ i)
+

Q0(u)Q2 (u+ 2i)
Q0(u+ i)Q2 (u+ i)

,

t̄3(−u) =
Q1

�

u+ i
2

�

Q1

�

u− i
2

� +
Q0(u)Q1

�

u− 3i
2

�

Q2(u)

Q0(u− i)Q1

�

u− i
2

�

Q2(u− i)
+

Q0(u)Q2 (u− 2i)
Q0(u− i)Q2 (u− i)

,

(102)

where the second equality follows simply from the fact that in Bethe Ansatz the space reflection
is described by negating all Bethe rapidities.

Using the relations (97) we obtain further

t 3̄(u) =
Q0

�

u+ i
2

�

Q1 (u+ 2i)

Q0

�

u+ 3i
2

�

Q1 (u+ i)
+

Q1(u)Q2

�

u+ 3i
2

�

Q1(u+ i)Q2

�

u+ i
2

� +
Q2

�

u− i
2

�

Q2

�

u+ i
2

� ,

t̄ 3̄(−u) =
Q0

�

u− i
2

�

Q1 (u− 2i)

Q0

�

u− 3i
2

�

Q1 (u− i)
+

Q1(u)Q2

�

u− 3i
2

�

Q1(u− i)Q2

�

u− i
2

� +
Q2

�

u+ i
2

�

Q2

�

u− i
2

� .

(103)

Let us now investigate the inversion relations (99) on the level of these eigenvalues. Mul-
tiplying the sums we observe that in both cases there will be 9 terms out which only one is
identically equal to 1. The remaining 8 terms will include various ratios of Q-functions. In the
large volume limit these ratios will be exponentially increasing or decreasing, depending on u.
It follows from the inversion relation, that within the individual sums those terms have to be
dominant for u ∈ P which produce the required identity. We thus have the relations for u ∈ P

t3(u)≈
Q1

�

u− i
2

�

Q1

�

u+ i
2

� ,

t 3̄(u)≈
Q2

�

u− i
2

�

Q2

�

u+ i
2

� .

(104)

These are crucial in establishing the thermodynamic limit of the charges and eventually the
string-charge relations.

Notice the symmetry of these relations: exchanging the defining and conjugate represen-
tations simply corresponds to exchanging the two types of Bethe rapidities. This is simply the
conjugation symmetry of the Dynkin diagram of SU(3), which is nicely reflected by the Bethe
Ansatz solution (compare with Fig 4).

It is important that (104) does not necessarily hold for all Bethe states. For example, if
we choose u ∈ R and keep the number of rapidities finite while performing the L →∞ limit
then there will be two remaining finite terms in t 3̄(u). Our proof using the inversion relation
only tells us that (104) will hold for almost all states, where the probability measure is derived
simply from the HS scalar product. This corresponds to the infinite temperature thermal en-
semble. Therefore, in the first instance our statement only concerns the infinite temperature
Bethe states. Nevertheless, it can be argued based on continuity that (104) still holds for Bethe
root densities “close” to the infinite temperature state. We give further comments on this issue
at the end of the next Section.

21

https://scipost.org
https://scipost.org/SciPostPhys.8.3.034


SciPost Phys. 8, 034 (2020)

6 Arbitrary representations and string-charge relations

In this section we treat all the representations of SU(3) that correspond to rectangular Young
diagrams. To this order we define the families t3

m(u) ≡ t(1)m (u) and t 3̄
m(u) ≡ t(2)m (u) with

m = 1, 2, . . . . For m = 1 they coincide with the two transfer matrices t3(u) and t 3̄(u) of
the previous Section.

For a representation of Λ of GL(N) with rectangular Young diagrams the R-matrix acting
on the tensor product of the defining representation and Λ can be expressed as [60,72,73]

RΛ(u) ∼ u+ i
∑

i, j

Ei jΛ ji , (105)

where Ei j are the elementary matrices acting on the defining representation, Λi j are their
representations, and there is an arbitrary normalization factor not included in (105). If Λ is
the defining representation, we get back the usual R-matrix, as P =

∑

i, j Ei j E ji .

Let Λ(m,0)
i j and Λ(0,m)

i j be the representation matrices of GL(3) corresponding to the 1×m
Young diagram with GL(3) highest weight (m, 0, 0) and to the 2×m Young diagram with GL(3)
highest weight (m, m, 0), respectively. For these two families of representations we introduce
the normalized R-matrices

R(m,0)(u) =
u− i m−1

2 + i
∑

i, j Ei jΛ
(m,0)
ji

u+ i m+1
2

,

R(0,m)(u) =
u− i m−2

2 + i
∑

i, j Ei jΛ
(0,m)
ji

u+ i m+2
2

.

(106)

Compared to (105) they involve a scalar factor and a shift in the rapidity, which is equivalent
to adding a constant to all components of the weight vector.

These R-matrices satisfy the local inversion relations

R(m,0)(u)R(m,0)(−u) = 1, R(0,m)(u)R(0,m)(−u) = 1. (107)

This is a general property of R-matrices [72,73], but we also prove it explicitly in Appendix D.
Now we define the transfer matrices

t3
m(u) = TraR(m,0)

1,a (u)R
(m,0)
2,a (u) . . . R(m,0)

L,a (u),

t 3̄
m(u) = TraR(0,m)

1,a (u)R
(0,m)
2,a (u) . . . R(0,m)

L,a (u).
(108)

In analogy with the previous Sections we also define the space reflected transfer matrices

t̄3
m(u) = TraR(m,0)

L,a (u)R
(m,0)
L−1,a(u) . . . R(m,0)

1,a (u),

t̄ 3̄
m(u) = TraR(0,m)

L,a (u)R
(0,m)
L−1,a(u) . . . R(0,m)

1,a (u).
(109)

They are not independent from the TM’s in (108), they are related by crossing transformations
of the type (97). However, these relations are not relevant for our purposes.

Based on our earlier results we formulate the following:

Conjecture 1. For u ∈ P the following asymptotic inversion relations hold:

t̄3
m(−u)t3

m(u)≈ 1,

t̄ 3̄
m(−u)t 3̄

m(u)≈ 1.
(110)
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The main idea behind this is the same as earlier: the global inversion of monodromy matri-
ces follows from the local inversion relations (107). Then the asymptotic inversion of transfer
matrices will hold for u ∈ P if the “boundary effect” of taking the trace does not propagate into
the bulk of the chain. This could be checked by constructing the appropriate 2-site and 4-site
Quantum Transfer Matrices, in analogy with the computations of the previous Sections. At
present we do not have a general proof, except for the two special cases with m= 1, presented
above and in Appendix A.

We define the following two families of generating functions for quasi-local charges:

Xm(u) = (−i)∂u log t3
m(u),

Ym(u) = (−i)∂u log t 3̄
m(u).

(111)

Under the assumption of the above conjecture, they are asymptotically equal to the following
locally constructed quantities:

Xm(u)≈ (−i)t3
m(−u)(∂ t3

m)(u),

Ym(u)≈ (−i)t 3̄
m(−u)(∂ t 3̄

m)(u).
(112)

Conjecture 2. For u ∈ P the traceless operators {Xm(u)} and {Ym(u)} are quasi-local.

We do not have a proof for this conjecture, but the cases of {X1(u)} and {Y1(u)} we treated
in the previous section, together with the known results for the SU(2) case already give strong
motivation for its validity.

Let us now treat the eigenvalues of the transfer matrices and the charges. The eigenvalues
of t3

m(u) and t 3̄
m(u) can be expressed using the Q-functions as

t3
m(u) =

Q1

�

u− i m
2

�

Q2

�

u+ i m+3
2

�

Q0

�

u+ i m+1
2

�

m
∑

k=0

Q0

�

u+ i m+1
2 − ik

�

Q2

�

u+ i m+1
2 − ik

�

Q1

�

u+ i m
2 − ik

�

Q1

�

u+ i m+2
2 − ik

� ×

×
k
∑

`=0

Q1

�

u+ i m+2
2 − i`

�

Q2

�

u+ i m+1
2 − i`

�

Q2

�

u+ i m+3
2 − i`

� ,

t 3̄
m(u) =

Q1

�

u+ i m+3
2

�

Q2

�

u− i m
2

�

Q0

�

u+ i m+2
2

�

m
∑

k=0

Q0

�

u− i m−2
2 + ik

�

Q2

�

u− i m−2
2 + ik

�

Q1

�

u− i m−3
2 + ik

�

Q1

�

u− i m−1
2 + ik

�×

×
k
∑

`=0

Q1

�

u− i m−1
2 + i`

�

Q2

�

u− i m
2 + i`

�

Q2

�

u− i m−2
2 + i`

� .

(113)

These explicit formulas can be derived from the more general “tableaux sum” valid in the
SU(N)-symmetric model [74]. The concrete formula for the general “tableaux sum” will be
given in the next Section.

It can be checked by direct substitution that these eigenvalue functions solve the Hirota
equation (86) with boundary conditions t(a)0 = 1 and

t(0)m (u) =
Q0(u− i m

2 )

Q0(u+ i m
2 )

, t(3)m (u) = 1. (114)

These boundary conditions might seem somewhat unnatural: they differ from the most often
used conventions, see for example the comparison on page 18. of [62]. We apply this normal-
ization so that the inversion relations hold without additional “kinematical” Q0 factors. Also,
this normalization is most convenient for the string-charge relations.

The matching of the formulas (113) with the normalization of the Lax matrices (106) is
checked easily by computing the eigenvalues on the reference state |;〉 = |111 . . . 1〉 . This
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amounts to setting Q1(u) =Q2(u) = 1, and comparing the remaining ratios of Q0(u) functions
to the direct application of (106) using the eigenvalues of the representation matrices Λ(m,0)

11

and Λ(0,m)
11 .

In order to derive the string-charge relations, we are interested in the thermodynamic limit
of the above eigenvalues. We will argue that in the thermodynamic limit for u ∈ P the leading
terms in the above sums are:

t3
m(u)≈ lim

TDL

Q1

�

u− i m
2

�

Q1

�

u+ i m
2

� ,

t 3̄
m(u)≈ lim

TDL

Q2

�

u− i m
2

�

Q2

�

u+ i m
2

� ,

(115)

which respectively correspond to the k = 0, `= 0 and the k = m, `= m terms.
Our reasoning is the same as in the previous Sections: we are selecting those terms from the

eigenvalues which automatically produce the asymptotic inversions (110). The eigenvalues of
the space reflected TM’s evaluated at −u are given by formally the same expressions involving
the ratios of Q-functions, with the signs of the various shifts reversed. After some inspection
it can be seen that from the various terms in (113) only the ratios given in (115) lead to the
inversion relations. If they would not be the leading terms, then the asymptotic inversion
could not hold, and this proves their dominance.

Let us now evaluate the mean values of the charges Xm(u), Ym(u). We start from a finite
volume Bethe state with rapidities {λ}N1

, {µ}N2
.

Assuming that the dominant terms are given by (115) we have for the eigenvalues

Xm(u) = −i lim
TDL
∂u log

Q1

�

u− i m
2

�

Q1

�

u+ i m
2

� = −i lim
TDL

N1
∑

j=1

�

1
u−λ j − i m

2
−

1
u−λ j + i m

2

�

,

Ym(u) = −i lim
TDL
∂u log

Q2

�

u− i m
2

�

Q2

�

u+ i m
2

� = −i lim
TDL

N2
∑

j=1

�

1
u−µ j − i m

2
−

1
u−µ j + i m

2

�

.

(116)

These formulas refer to the exact Bethe roots. Making use of the string hypothesis in the TDL
we get the expressions

Xm(u) = 2πL
∞
∑

n=1

∫ ∞

−∞
dλρ(1)n (λ)

min(m,n)
∑

j=1

a|n−m|−1+2 j(u−λ) =

= 2π
∞
∑

n=1

min(m,n)
∑

j=1

(a|n−m|−1+2 j ? ρ
(1)
n )(u),

Ym(u) = 2πL
∞
∑

n=1

∫ ∞

−∞
dλρ(2)n (λ)

min(m,n)
∑

j=1

a|n−m|−1+2 j(u−λ) =

= 2π
∞
∑

n=1

min(m,n)
∑

j=1

(a|n−m|−1+2 j ? ρ
(2)
n )(u).

(117)

Here the summation runs over the possible n strings. We made use of the identity
n
∑

`=1

1

u−
�

λ+ i
� n+1

2 − `
��

− i m
2

−
1

u−
�

λ+ i
� n+1

2 − `
��

+ i m
2

=

=2πi
min(n,m)
∑

j=1

a|n−m|−1+2 j(u−λ).

(118)
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The formulas (117) can be transformed into more compact forms using standard tricks. This
lengthy, but straightforward computation is delegated to appendix B, and the results are the
following.

The hole densities can be expressed using the charges as

ρ
(1)
h,m = am −

1
2πL

�

X [+]m + X [−]m − Ym

�

,

ρ
(2)
h,m = −

1
2πL

�

Y [+]m + Y [−]m − Xm

�

.
(119)

Inverting this relation we find

1
2πL

Xm = −
�

G1 ? (ρ
(1)
h,m + am) + G2 ? ρ

(2)
h,m

�

,

1
2πL

Ym = −
�

G1 ? ρ
(2)
h,m + G2 ? (ρ

(1)
h,m + am)

�

,
(120)

with the kernels

G1(x) =

∫

dk
2π

e−ikx Ĝ1(k) =
1
p

3

cosh(π/3x)
cosh(πx)

=
1
p

3

1
2cosh(2πx/3)− 1

,

G2(x) =

∫

dk
2π

e−ikx Ĝ2(k) =
1
p

3

sinh(π/3x)
sinh(πx)

=
1
p

3

1
2 cosh(2πx/3) + 1

.

(121)

Finally, the root densities can be expressed as

ρ(1)m =
1

2πL

�

X [+]m + X [−]m − Xm−1 − Xm+1

�

,

ρ(2)m =
1

2πL

�

Y [+]m + Y [−]m − Ym−1 − Ym+1

�

.
(122)

This is an immediate generalization of the string-charge relation (54) of the SU(2)-chain. Once
again we can observe the symmetry of the Dynkin diagram of SU(3): exchanging the defining
and conjugate representations is mirrored by the exchange of the two Bethe rapidity types.

The crucial point in our derivation was selecting the dominant term in the transfer ma-
trix eigenvalues. The argument based on the asymptotic inversion only holds for the infinite
temperature states, and some neighborhood of these root distributions. At present we can not
exclude the existence of Bethe root densities, which would select a different term, thus violat-
ing (122). Nevertheless we performed an independent check in a particular case, namely for
the quench problem with initial state

|Ψδ〉=
L/2
∏

j=1

|11〉+ |22〉+ |33〉
p

3
. (123)

This quench was studied in [37, 38] where the exact root densities were determined using
Boundary Quantum Transfer Matrix methods. Now we computed the mean values of the first
two members X1(u) and Y1(u) in this initial state and we checked that the relations (122)
indeed hold. This computation is presented in Appendix C.

7 Generalization to SU(N)

In this section, we consider the generalization of the previous results for SU(N) spin chains.
The construction laid out here is a direct generalization of the case of SU(3). However, most
of our statements here are conjectures, motivated by the earlier results.
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In the SU(N) case the nested Bethe Ansatz involves (N −1) sets of Bethe rapidities, which
will be denoted as {{λ(a)j } j=1,...,Na

}a=1,...,N−1. Correspondingly, the Q-functions of the model
are

Q0(u) = uL , Qa(u) =
Na
∏

j=1

(u−λ(a)j ), QN (u) = 1. (124)

The eigenvalue of the fundamental transfer matrix is

t(u) =
N
∑

j=1

z( j)(u), (125)

where

z(`)(u) =
Q0(u)

Q0(u+ i)

Q`−1(u+ i `+1
2 )Q`(u+ i `−2

2 )

Q`−1(u+ i `−1
2 )Q`(u+ i `2)

, `= 1, . . . , N . (126)

The Bethe equations are

Q`−1(λ
(`)
j + i1

2)

Q`−1(λ
(`)
j − i1

2)

Q`(λ
(`)
j − i)

Q`(λ
(`)
j + i)

Q`+1(λ
(`)
j + i1

2)

Q`+1(λ
(`)
j − i1

2)
= −1,

j = 1 . . . N`, `= 2, . . . , N − 1.

(127)

With our conventions the 1-string solutions to each nesting level are real rapidities.
Fused transfer matrices tΛ(u) can be constructed for every irreducible representation Λ

of SU(N) [60, 74], but a special role is played by those representations that correspond to
rectangular Young diagrams. For the diagram with a rows and m columns the corresponding
transfer matrix is denoted by t(a)m (u). These objects satisfy the Hirota equation

t(a)m

�

u+
i
2

�

t(a)m

�

u−
i
2

�

= t(a)m+1(u)t
(a)
m−1(u) + t(a−1)

m (u)t(a+1)
m (u),

a = 1, . . . , N − 1 m= 1, 2, . . . .
(128)

We specify the boundary conditions to this system motivated by the SU(3) case: we require

t(a)0 = 1, t(0)m (u) =
Q0(u− i m

2 )

Q0(u+ i m
2 )

, t(N)m (u) = 1. (129)

Together with (128) this completely determines the normalization of the local Lax operators
and the fused transfer matrices.

For each t(a)m (u) we define its space reflected variant t̄(a)m (u). By using local crossing re-
lations and the conjugation properties of SU(N) representations we can express each t̄(a)m (u)
using t(N−a)

m (u); the resulting relations are generalizations of (61) and (97). The space re-
flected TM’s are thus not independent, but the precise relation is irrelevant for our purposes.

Based on the previous results we formulate:

Conjecture 3. For u ∈ P the following asymptotic inversion relations hold:

t̄(a)m (−u)t(a)m (u)≈ 1. (130)

In analogy with the earlier results we introduce the operators

X (a)m (u) = (−i)∂u log t(a)m (u)≈ (−i) t̄(a)m (−u)∂u t(a)m (u). (131)
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Conjecture 4. For u ∈ P the traceless operators {X (a)m (u)} are quasi-local.

The string-charge relations can be established if the eigenvalues of the fused transfer ma-
trices are known. General expressions using Young tableaux were derived in [74], see also
Section 7 of the review [63]. The rule to compute the eigenvalues is the following. Let us
consider the (a ×m) Young diagram, and all possible semi-standard Young tableaux, i.e. the
filling of the diagram with numbers 1, . . . , N such that they are increasing from top to bottom
and non-decreasing from left to right. For example, for the Young diagram

(132)

the possible semi-standard tableaux for N = 3 are

1 1
2 2

, 1 1
2 3

, 1 1
3 3

, 1 2
2 3

, 1 2
3 3

, 2 2
3 3

. (133)

In the following let τkl denote the element of a tableau τ in row k = 1 . . . a and column
l = 1 . . . m from the top left. Then the formula for the eigenvalues is [74]

t(a)m (u) =
a−1
∏

j=1

Q0(u+ i m−a+2 j
2 )

Q0(u− i m−a+2 j
2 )

×
∑

τ







∏

k=1...a
l=1...m

z(τkl )
�

u+ i
a−m− 2k+ 2l

2

�






. (134)

Here the sum runs over all allowed semi-standard tableaux of size (a × m) for the given N ,
and the z-functions are defined in (126). The presence of the pre-factor before the sum is a
consequence of our normalization.

In a perhaps more direct way the transfer matrices can be expressed as [74]

t(a)m (u) = det
�

t(1)m−i+ j

�

u+ i
i + j − 1− a

2

�

�

1≤i, j≤a
(135)

= det
�

t(a−i+ j)
1

�

u+ i
m− i − j + 1

2

�

�

1≤i, j≤m
, (136)

using the two series t(1)m or t(a)1 , for which we have the formulas

t(1)m (u) =
∑

1≤i1≤i2≤···≤im≤N

� m
∏

`=1

z(i`)
�

u+ i
−1−m+ 2`

2

�

�

,

t(a)1 (u) =
Q0(u+

a−1
2 i)

Q0(u−
a−1

2 i)
×

∑

1≤i1<i2<···<ia≤N

� a
∏

`=1

z(i`)
�

u+ i
a+ 1− 2`

2

�

�

.

(137)

The latter formulas are special cases of the general tableaux sum.

Theorem 4. For each a = 1 . . . N−1 and m= 1, 2, . . . there is a single term in the expansion (134)
of t(a)m (u) which automatically produces the asymptotic inversion (130). This term corresponds
to the Young tableau where all elements of row k are equal to k for k = 1, . . . , a. The explicit form
of this term is

Qa

�

u− i m
2

�

Qa

�

u+ i m
2

� . (138)

Proof. This can be proven recursively: starting from the bottom right element of the Young
diagram, and afterwards considering the elements in the upper rows. If τam is the element
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in the bottom right corner, then this number can only be present in the bottom row of the
diagram. The corresponding z-factors will involve the Q-functions Q0, Qτam−1 and Qτam

. The
factors of Qτam

in the product can only come from the boxes filled with τam, which can occupy
a number of cells to the left of the bottom right corner. Collecting these factors we see that the
resulting combination of the Qτam

functions can yield a form satisfying the inversion relation
only if τam = a and this number occupies the full bottom row; this is a simple consequence
of the various shifts present in the z-functions and the Q-functions. The proof continues by
considering the element τa−1,m and the corresponding Q-functions, showing that the only
possibility is that τa−1,m = a − 1 and this number has to fills the row a − 1. This is then
repeated for all rows upwards. Collecting all factors of the Q0 functions we see that they just
cancel each other, and we obtain (138).

Using our arguments of the previous Sections it follows that in the thermodynamic limit
this term has to be dominant for u ∈ P:

t(a)m (u)≈
Qa

�

u− i m
2

�

Qa

�

u+ i m
2

� , a = 1, . . . , N − 1, m= 1, 2, . . . (139)

A special case of this statement already appeared in a closely related problem in [74]. Note
that due to our boundary conditions (129) the above relation holds even for a = 0 and a = N ,
using the convention QN (u) = 1.

Based on (139) and the similarities in the derivation of the TBA equations for all N , we
propose the following general pattern:

Conjecture 5. In the SU(N)-symmetric model the string-charge relations are

ρ(a)m =
1

2πL

�

X (a)[+]m + X (a)[−]m − X (a)m+1 − X (a)m−1

�

,

a = 1 . . . N − 1, m= 1 . . .∞,
(140)

where ρ(a)m (u) is the density of m-strings of rapidity type a.

8 Conclusions

We studied the GET (Generalized Eigenstate Thermalization) for higher rank spin models with
SU(N), N ≥ 3 symmetry, with the main focus being on the N = 3 Lai-Sutherland model. We
argued that a complete set of charges is obtained from the known fusion hierarchy of trans-
fer matrices. These fused transfer matrices correspond to the representations of SU(3) with
rectangular diagrams of size 1×m and 2×m, m= 1, . . . ,∞, or equivalently, to symmetrically
fused defining and conjugate representations, respectively. We computed the thermodynamic
limit of these charges: the resulting string-charge relations take essentially the same form as
in the SU(2)-invariant XXX chain, with the simple extension of having two particle types and
two series of fused charges.

These results in the SU(3) chain possess a conjugation symmetry: exchanging the two fam-
ilies of fused transfer matrices corresponds to exchanging the defining and conjugate repre-
sentations of SU(3). On the level of the string-charge relations this is reflected by an exchange
of the two particle types. The final relations (122) are completely symmetric with respect to
this conjugation.

The strictly local charges of the model are only sensitive to the particles of the first type,
and their finite volume mean values are computed as

Qα =
N1
∑

j=1

qα(λ
(1)
j ), (141)
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with qα(u) being the one-particle eigenvalues. This raises the question: are there local or
quasi-local operators which are sensitive only to the second type of particles? Our results
show that the Ym(u) are such operators in the thermodynamic limit, for almost all Bethe states.
There is no local operator whose finite volume eigenvalues would take the form

Y =
N2
∑

j=1

f (λ(2)j ). (142)

The string-charge relations are only found in the thermodynamic limit, and hold only for almost
all Bethe states. The crucial step is the dominance of a prescribed term in the expressions of
the transfer matrix eigenvalues.

Based on the derivation for N = 2, 3 we conjectured generic results for arbitrary N . In
particular, we conjectured that the complete GGE is formed by the charges built on the transfer
matrices corresponding to the (a×m) Young diagrams with a = 1 . . . N − 1 and m= 1 . . .∞.

In some sense these results are not surprising. It is known that in an integrable model with
symmetry group G the structure of the nested Bethe Ansatz (for example, the set of the Bethe
equations) mirrors the Dynkin diagram of G. The fusion rules for the transfer matrices also
closely follow the Dynkin diagram. It is thus not surprising that the T -system and the set of
TBA equations determining the Bethe root densities are so closely related. This correspondence
was noted and used in a large number of works already at the end of the 80’s and beginning
of the 90’s; for concrete references see the thorough review [63]. The new addition to the
theory was the discovery that in the XXX model the formal expressions of the type ∂u log(tm(u))
yield quasi-local operators for u ∈ P [25, 26], and that in the TDL they contain just enough
information to fix all root densities. What we have performed in this work is to extend this
observation to the SU(N)-symmetric fundamental models.

In accordance, the crucial points of our work are the proofs of the inversion relations
and the quasi-locality. We argued that the quasi-locality property follows once the inversion
relation is established on the level of the operators. We computed a detailed proof in two
cases, namely for the operators t(1)1 (u) and t(2)1 (u) for SU(3), which correspond to the defining
and conjugate representations. Although these are just two particular cases, we believe they
constitute strong justification for the remaining conjectures. Also, we remind that even in the
SU(2) case complete analytical proofs are available only up to s = 3/2 [25,26].

Naturally, it would be desirable to have explicit proofs in more cases, possibly for the whole
fusion hierarchy. On the technical level, the task to be performed is the diagonalization of a
4-site transfer matrix, where these 4 sites carry some fused representations of the symmetry
group. Such transfer matrices can be diagonalized by the Bethe Ansatz, and a quite general
and completely analytical approach is detailed for example in [75]. It remains to be seen
whether this or any alternative techniques prove to be useful for the problem at hand.

Also, it would be interesting to find a more general prescription for the GGE. Based on our
results it seems plausible that the string-charge relations are always encoded in the known
fusion hierarchy of the theory [61,63].
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A Derivation of the asymptotic inversion and the quasi-locality
property

We present here the derivation of the asymptotic inversion and quasi-locality property for
t(u) and t 3̄(u). The two computations are quite similar, using same techniques and the same
objects.

We need the adjoints of transfer matrices, hence we start with expressing them.

Lemma 1. The adjoints of the t, t 3̄ transfer matrices, and their respective space reflected pairs
are the following:

t†(u) = t̄(−u∗),
�

t 3̄
�†
(u) = t̄ 3̄(−u∗), (143)

t̄†(u) = t(−u∗),
�

t̄ 3̄
�†
(u) = t 3̄(−u∗). (144)

Proof. Denote by A∗ the complex conjugate of A, for any matrix or complex number. If A is
matrix, the complex conjugation is considered element-wise.

Direct computation shows that the R-matrices satisfy:

(R(u))∗ = R(−u∗),
�

R3̄(u)
�∗
= R3̄(−u∗). (145)

Taking transposition before partial trace reverses the order of R-matrices, from where the
statement follows.

Proof of asymptotic inversion. To prove the (99) asymptotic inversion, we prove the
following two statements regarding the norms of the operators:

‖t(u) t̄(−u)− 1‖2HS ≈ 0,

‖t 3̄(u) t̄ 3̄(−u)− 1‖2HS ≈ 0.
(146)

Expanding the l.h.s. of these expressions leads to the following:

‖t(u) t̄(−u)− 1‖2HS = 3−LTr t(u∗) t̄(−u∗)t(u) t̄(−u)− 3−L2ℜTr t(u) t̄(−u) + 1,

‖t 3̄(u) t̄ 3̄(−u)− 1‖2HS = 3−LTr t 3̄(u∗) t̄ 3̄(−u∗)t 3̄(u) t̄ 3̄(−u)−

− 3−L2ℜTr t 3̄(u) t̄ 3̄(−u) + 1.

(147)

As explained in Section 3.3 the traces can be expressed as a partition function of a 2D lattice
model, which can be alternatively evaluated by the Quantum Transfer Matrices acting in the
“crossed channel”. See also [26].

We thus get

‖t(u) t̄(−u)− 1‖2HS = 3−LTr tAB(u, u, u∗, u∗)L − 3−L2ℜTr tA(u, u)L + 1,

‖t 3̄(u) t̄ 3̄(−u)− 1‖2HS = 3−LTr t̄AB(u, u, u∗, u∗)L − 3−L2ℜTr t̄A(u, u)L + 1,
(148)

where

tAB(u1, u2, v1, v2) = TraRa,1(v2)R
t
a,2(−v1)Ra,1(u1)R

t
a,2(−u2),

tA(u1, u2) = TraRt
a,2(−u2)Ra,1(u1),

t 3̄
AB(u1, u2, v1, v2) = TraR3̄

a,1(v2)(R
3̄
a,2)

t(−v1)R
3̄
a,1(u1)(R

3̄
a,2)

t(−u2),

t 3̄
A(u1, u2) = Tra(R

3̄
a,2)

t(−u2)R
3̄
a,1(u1).

(149)
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The traces in (148) can be expressed using the eigenvalues of the above matrices. Let us
denote by λAB, j(u1, u2, v1, v2), j = 1 . . . 34 and λA, j(u1, u2), j = 1 . . . 32 the eigenvalues of
tAB(u1, u2, v1, v2) and tA(u1, u2), respectively. Similarly, we denote by λ̄AB, j(u1, u2, v1, v2),
j = 1 . . . 34 and λ̄A, j(u1, u2), j = 1 . . . 32 the eigenvalues for t̄AB(u1, u2, v1, v2) and t̄A(u1, u2),
respectively.

Then the squared norms are the following:

‖t(u) t̄(−u)− 1‖2HS = 3−L
34
∑

j=1

λL
AB, j(u, u, u∗, u∗)− 3−L2

32
∑

j=1

λL
A, j(u, u) + 1,

‖t 3̄(u) t̄ 3̄(−u)− 1‖2HS = 3−L
34
∑

j=1

λ̄L
AB, j(u, u, u∗, u∗)− 3−L2

32
∑

j=1

λL
A, j(u, u) + 1.

(150)

As explained in Sec. 3.3, the local inversion relations imply that the delta-states are eigenvec-
tors of the QTM’s with trivial eigenvalues equal to 3. If the eigenvalue 3 is non-degenerate
and dominant for all of these matrices, then (150) implies (146). Hence, what remains is to
prove that 3 is indeed a leading, non-degenerate eigenvalue for all of these matrices, as long
as u ∈ P .

This will be proven somewhat later in this Section. First we consider the quasi-locality
property, because its proof also involves the same QTM construction.

Proof of quasi-locality. Starting from the definitions

X (u) = (−i) t̄(−u)∂ t(u),

Y (u) = (−i) t̄ 3̄(−u)∂ t 3̄(u)
(151)

we compute the adjoints of the generator functions:

X †(u) = (−i) (∂ t̄(v)t(−v))|v=−u∗ = (−i) (t(−v)∂ t̄(v))|v=−u∗ ,

Y †(u) = (−i)
�

∂ t̄ 3̄(v)t 3̄(−v)
�

�

�

�

v=−u∗
= (−i)

�

t 3̄(−v)∂ t̄ 3̄(v)
�

�

�

�

v=−u∗
.

(152)

Here we used the commutativity of the transfer matrix with it derivative. Using

‖{A}‖2HS = 3−LTr
�

A†A
�

− 3−2LTr
�

A†
�

Tr
�

A
�

(153)

we get

‖X (u)‖2HS = −3−LTr t(u∗)∂ t̄(−u∗) t̄(−u)∂ t(u) + 3−2LTr t(u∗)∂ t̄(−u∗)Tr t̄(−u)∂ t(u),

‖Y (u)‖2HS = −3−LTr t(u∗)∂ t̄(−u∗) t̄(−u)∂ t(u) + 3−2LTr t(u∗)∂ t̄(−u∗)Tr t̄(−u)∂ t(u).
(154)

We consider these traces once more in the rotated channel. In fact, we consider them as two
special points of the more general expressions

K(u1, u2, v1, v2) = ∂v1
∂u1

�

3−LTr t(v2) t̄(−v1) t̄(−u2)t(u1) −

−3−2LTr t(v2) t̄(−v1)Tr t̄(−u2)t(u1)
�

,

K̄(u1, u2, v1, v2) = ∂v1
∂u1

�

3−LTr t 3̄(v2) t̄
3̄(−v1) t̄

3̄(−u2)t
3̄(u1)−

−3−2LTr t 3̄(v2) t̄
3̄(−v1)Tr t̄ 3̄(−u2)t

3̄(u1)
�

,

(155)

such that

‖X (u)‖2HS =K(u, u, u∗, u∗), ‖Y (u)‖2HS = K̄(u, u, u∗, u∗). (156)
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We compute K and K̄ in the rotated channel, similarly as before in the proof of the asymptotic
inversion relations. Using the QTM’s the quantities K and K̄ can be expressed as

K(u1, u2, v1, v2) = ∂v1
∂u1

�

3−LTr (tAB(u1, u2, v1, v2))
L −

−3−2LTr (tA(u1, u2))
L Tr (tA(v1, v2))

L� ,

K̄(u1, u2, v1, v2) = ∂v1
∂u1

h

3−LTr
�

t 3̄
AB(u1, u2, v1, v2)

�L
−

3−2LTr
�

t 3̄
A(u1, u2)

�L
Tr
�

t 3̄
A(v1, v2)

�Li

.

(157)

As before, we consider these expressions in the eigenbases of the respective matrices:

K(u1, u2, v1, v2) = 3−L
34
∑

j=1

LλL−1
AB, j(∂v1

∂u1
λAB, j) + L(L − 1)λL−2

AB, j(∂v1
λAB, j)×

× (∂u1
λAB, j)− 3−2L

32
∑

j=1

LλL−1
A, j ∂u1

λA, j

32
∑

j=1

LλL−1
A, j ∂v1

λA, j ,

K̄(u1, u2, v1, v2) = 3−L
34
∑

j=1

Lλ̄L−1
AB, j(∂v1

∂u1
λ̄AB, j) + L(L − 1)λ̄L−2

AB, j(∂v1
λ̄AB, j)×

× (∂u1
λ̄AB, j)− 3−2L

32
∑

j=1

Lλ̄L−1
A, j ∂u1

λ̄A, j

32
∑

j=1

Lλ̄L−1
A, j ∂v1

λ̄A, j .

(158)

In the notations above we suppressed the dependence of the eigenvalues on the spectral pa-
rameters. For the partial derivatives of λA, j , λ̄A, j , the following arguments are understood:

∂u1
λA, j ≡ ∂u1

λA, j(u1, u2), ∂v1
λA, j ≡ ∂v1

λA, j(v1, v2), (159)

∂u1
λ̄A, j ≡ ∂u1

λ̄A, j(u1, u2), ∂v1
λ̄A, j ≡ ∂v1

λ̄A, j(v1, v2). (160)

Let us assume that for each matrix above there is a non-degenerate dominant eigenvalue with
index j = 1. Then the leading terms in the above sums are

K(u1, u2, v1, v2)≈ L2
�

3−LλL−2
AB,1∂u1

λAB,1∂v1
λAB,1 − 3−2LλL−1

A,1 ∂u1
λA,1λ

L−1
A,1 ∂v1

λA,1

�

+

+ L
�

3−LλL−1
AB,1∂v1

∂u1
λAB,1 − 3−LλL−2

AB,1∂v1
λAB,1∂u1

λAB,1

�

,

K̄(u1, u2, v1, v2)≈ L2
�

3−Lλ̄L−2
AB,1∂u1

λ̄AB,1∂v1
λ̄AB,1 − 3−2Lλ̄L−1

A,1 ∂u1
λ̄A,1λ̄

L−1
A,1 ∂v1

λ̄A,1

�

+

+ L
�

3−Lλ̄L−1
AB,1∂v1

∂u1
λ̄AB,1 − 3−Lλ̄L−2

AB,1∂v1
λ̄AB,1∂u1

λ̄AB,1

�

.

(161)

The operators {X (u)} and {Y (u)} are quasi-local if the norm is of O(L), i.e. the O(L2) terms
cancel. This will be investigated at the point u1 = u2, v1 = v2, which has to be substituted after
taking the partial derivatives. As we will see, the eigenvalue 3 is leading and non-degenerate
at u1 = u2 = u, v1 = v2 = u∗, u ∈ P , therefore we need to prove that the relations

∂u1
λ̄AB,1∂v1

λ̄AB,1 − ∂u1
λ̄A,1∂v1

λ̄A,1 = 0,

∂u1
λ̄AB,1∂v1

λ̄AB,1 − ∂u1
λ̄A,1∂v1

λ̄A,1 = 0
(162)

hold at u1 = u2, v1 = v2. As explained in [26], this follows from the factorizability of the
leading eigenvector and the Hellmann-Feynman theorem.
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We thus obtain the final result

K(u1, u2, v1, v2)≈ L
�

1
3
∂u1
∂v1
λAB,1 −

1
9
∂u1
λAB,1∂v1

λAB,1

�

,

K̄(u1, u2, v1, v2)≈ L
�

1
3
∂u1
∂v1
λ̄AB,1 −

1
9
∂u1
λ̄AB,1∂v1

λ̄AB,1

�

.
(163)

What remains to be proven is that the delta-states with eigenvalues 3 are indeed dominant
for tAB, t̄AB, tA and t̄A and u ∈ P .

A.1 The eigensystem of tA and t̄A

Here we determine the eigenvalues of tA and t̄A by a direct computation.
Let us denote the auxiliary spaces of the original physical transfer matrices t(u) and t̄(u)

by 0 and 0̄, respectively. The monodromy matrix in the crossed channel is

MA(u) = Rt0̄

A,0̄
(−u)RA,0(u). (164)

Here A stands for the auxiliary space of the rotated transfer matrix, which is identical to the
original physical quantum space.

It follows simply from the unitarity relation (13) that the delta-state is an eigenvector of
tA(u) = TrAMA(u) with eigenvalue 3. Now we compute the full spectrum directly. Writing out
the operators and taking the trace in A we get

tA(u) =
−u23− K00̄

−1− u2
. (165)

The eigenvalues of K are 3 for the trace vector and 0 otherwise, so the eigenvalues are thus

3, 3
u2

1+ u2
. (166)

The trace vector is the leading eigenvector whenever |u2/(1 + u2)| < 1. This is true until
ℜ(u2)> −1/2. Writing u= a+ ib the condition is

a2 − b2 > −1/2. (167)

In the second case, we need to construct the monodromy matrix

M̄A(u) = R̄t0
A,0(−u)R̄A,0̄(u) =

�

−u+ i
2

� �

u+ i
2

�

�

−u+ 3i
2

� �

u+ 3i
2

�RA,0(u−σ)Rt
A,0̄
(−u−σ). (168)

More explicitly it reads

M̄A(u) =

�

u− i
2 + PA,0

� �

−u− 3i
2 + iKA,0̄

�

�

−u+ 3i
2

� �

u+ 3i
2

� . (169)

The trace becomes

tB(u) =
3
�

�3i
2

�2
− u2

�

+ 3− K00̄
�3i

2

�2
− u2

. (170)

Hence the eigenvalues are

3, 3
32

4 + u2 − 1
32

4 + u2
. (171)

The first one, corresponding to the delta state, is the leading eigenvalue if

ℜ(u2)> 1/2− 32/4= −
7
4

. (172)

Out of the two conditions (167) and (172), the first one is more restricting, and it holds in the
physical strip.
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A.2 The eigensystem of tAB and t̄AB

Here we compute the spectrum of the 4-site QTM’s tAB(u1, u2, v1, v2) and t̄AB(u1, u2, v1, v2) at
u1 = u2 = u, v1 = v2 = v. Both matrices correspond to inhomogeneous, integrable 4-site
spin chains, therefore their spectrum can be determined by Bethe Ansatz techniques. One
possibility would be the application of the T−Q relations, in the spirit of [75]. However, these
are still relatively small matrices of size 81× 81, therefore a direct method is perhaps faster.
An exact diagonalization of the matrices is not possible, because the entries are functions
of two parameters u, v, and the diagonalization lies beyond the capabilities of the symbolic
manipulation programs such as Mathematica. Nevertheless, the direct diagonalization is
possible after simplifying the matrix using some group theory arguments.

Both transfer matrices are SU(3)-invariant, therefore their spectrum can be analyzed by
constructing the Clebsch-Gordan series. The transfer matrix tAB acts on the tensor product
space

3⊗ 3̄⊗ 3⊗ 3̄, (173)

whereas t̄AB acts on
3̄⊗ 3⊗ 3̄⊗ 3, (174)

where we used the standard notations for the defining and conjugate representations. In terms
of Young diagrams they are denoted as

3= , 3̄= . (175)

In the following we perform a simple permutation for the vector spaces of t̄AB such that it also
acts on the space given by (173).

The Clebsch-Gordan series can be computed with standard methods. We obtain

⊗ ⊗ ⊗ = ⊕ ⊕ ⊕ 4 · ⊕ 2 · 1. (176)

An easy check-back on the dimensions is

3 · 3 · 3 · 3= 27+ 10+ 10+ 4 · 8+ 2 · 1. (177)

Altogether there are 9 irreducible representations, so both tAB and t̄AB can have at most 9
different eigenvalues. Of course, there can be some further degeneracies.

We compute the eigenvalues by focusing on the highest weight states. If there is a rep-
resentation in the Clebsch-Gordan series with multiplicity one, then the highest weight states
have to be eigenstates, and the eigenvalue is found simply by acting with the matrix on the
given highest weight state. For the representations with non-trivial multiplicities we have to
perform an explicit diagonalization on the finite set of highest weight vectors for that given
representation. This will be detailed in the following.

The global GL(3) generators are

Λ jk = E(1)jk − E(2)k j + E(3)jk − E(4)k j . (178)

This follows from the conjugation symmetry. Accordingly, the highest weight vectors in the
individual factors in the tensor product (173) can be chosen as

|1〉1, |3〉2, |1〉3, |3〉4. (179)

Now we consider all components in the Clebsch-Gordan series separately.
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• with dimension 27.

This representations has multiplicity one, so the highest weight vector has to be an eigen-
vector of the transfer matrices. The highest weight vector is

|1313〉. (180)

• with dimension 10. Once again, this representation is multiplicity free. The
highest weight state is

|1213〉 − |1312〉. (181)

• with dimension 10, multiplicity free. The highest weight state is:

|1323〉 − |2313〉. (182)

• 4 copies of . Here we have 4 highest weight vectors, and the transfer matrices are

closed in the subspace formed by the 4 vectors. A basis in this 4 dimensional space can
be formed by taking one delta-state for one product 3⊗ 3̄ and taking the highest weight

vector for the rep in the other product 3⊗ 3̄. There are indeed 4 ways to do this.

The basis is thus:

v1 = (|11〉+ |22〉+ |33〉)⊗ |13〉,
v2 = |13〉 ⊗ (|11〉+ |22〉+ |33〉),
v3 = |1311〉+ |2312〉+ |3313〉,
v4 = |1113〉+ |1223〉+ |1333〉.

(183)

Note that this is not an orthonormal basis. The matrix elements of tAB and t̄AB in this
space can be computed by taking into account also the scalar products between the basis
vectors. Let Gi j = 〈vi|v j〉. Then we have explicitly

G =







3 0 1 1
0 3 1 1
1 1 3 0
1 1 0 3






. (184)

The actual matrix elements can be computed using the inverse G−1, so that within this
space we have a 4x4 matrix T̃ such that

T̃i j = G−1
ik 〈vk|T

�

�v j

�

. (185)

We need to compute the eigenvalues of T̃ , which can be done using for example
Mathematica.

• Finally, there are two singlet representations. A basis is obtained by taking the delta-
state |δ12〉⊗

�

�δ34

�

and its permutation, formally written as
�

�δ14

�

⊗ |δ23〉. The first delta
state is an eigenstate, but the permuted one is not. A further simple diagonalization is
needed to find the second eigenvector as a linear combination

|δ12〉 ⊗
�

�δ34

�

+α
�

�δ14

�

⊗ |δ23〉, α ∈ C. (186)
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Table 1: Table of the eigenvalues of tAB and t̄AB for the different representations in
the Clebsch-Gordan series.

tAB t̄AB

uv(3uv−2)
(u2+1)(v2+1)

48u2v2+60(u2+v2)−32uv+99
(4u2+9)(4v2+9)

3u2v2

(u2+1)(v2+1)
3(16u2v2+20(u2+v2)+4i(u+v)+9)

(4u2+9)(4v2+9)

3u2v2

(u2+1)(v2+1)
3(16u2v2+20(u2+v2)−4i(u+v)+9)

(4u2+9)(4v2+9)

4 · 3v2

v2+1 3− 12
4v2+9

3u2

u2+1 3− 12
4u2+9

3uv(uv+1)
(u2+1)(v2+1)

3
�

16u2v2+20(u2+v2)+16uv−8
p

4−5(u−v)2+29
�

(4u2+9)(4v2+9)

3uv(uv+1)
(u2+1)(v2+1)

3
�

16u2v2+20(u2+v2)+16uv+8
p

4−5(u−v)2+29
�

(4u2+9)(4v2+9)

2 · 1 3 3

uv(3uv+2)
(u2+1)(v2+1)

3(16u2v2+20(u2+v2)+32uv+65)
(4u2+9)(4v2+9)

The eigenvalues obtained with this method are listed in Table 1. We now analyze the
resulting rational functions, and show that the eigenvalue 3 is indeed the dominant one in the
physical strip, for both matrices tAB and t̄AB.

We are interested in the eigenvalues on the physical strip P with the restriction v = u∗.
The main idea to prove that 3 is dominant is to first consider the special point u= 0, for which
this is seen immediately, and then to determine the algebraic curves on which the magnitudes
of the other eigenvalues reach 3. It can be shown that all of these curves are on or outside
the boundaries of the physical strip. We will see that in both cases it is the other singlet state
which reaches the dominant eigenvalue 3 exactly on the boundary of P .

In the case of tAB six eigenvalues are of the form 3uv(uv−C)
(1+u2)(1+v2) , with C = 2/3, 0,−1,−2. The

solution to the equation
3uv(uv − C)
(1+ u2)(1+ v2)

= 3 (187)

given that v = u∗, u= a+ ib is

b = ±

√

√2+ C
2− C

a2 +
1

2− C
. (188)

It can be seen that with these values of C the minimum distance between u and the real axis is
always equal to or bigger than 1/2, thus the eigenvalue crossings do not occur in the physical
strip. The other singlet state corresponds to C = −2, for which we obtain simply b = ±1/2:
this state becomes degenerate with the delta state exactly at the boundary of the physical strip.
The remaining two eigenvalues of tAB can be treated in a similar way, and it can be seen that
they do not become dominant within P .

Regarding t̄AB we can see that at u = v = 0 3 is the dominant eigenvalue. Once again we
analyze the intersections where the magnitude of the different eigenvalues becomes equal to
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3, and we show one by one that these curves lie outside or on the boundary of the physical
strip.

• For the first eigenvalue in the Table 1 the substitution u = v∗ = a + ib leads to the
following equation for the intersection:

9+ 8a2 − 4b2 = 0. (189)

The solution to this equation is b = ±1
2

p

8a2 + 9, which shows that the intersection is
outside of P .

• The second and third eigenvalues are a complex conjugate pair, hence it is sufficient to
consider the absolute value of only one of them. Substituting u = a + ib, v = a − ib,
considering the magnitude of the eigenvalue and setting it equal to 3 leads to a 6th order
polynomial equation in b. However, it only contains even powers of b, hence leading to
the following 3rd order equation of the intersection in B = b2:

64a6+(368+64B)a4+(620−64B2−160B)a2+405−64B3+368B2−684B = 0. (190)

It can be seen that within the physical strip with 0 ≤ B ≤ 1/4 all coefficients of the
various powers of a2 are strictly positive, therefore there is no intersection within the
physical strip.

• The 4th and 5th eigenvalues also form a complex conjugate pair, hence we only consider
the first one. The direct substitution u= v∗ = a+ ib shows that the magnitudes of these
eigenvalues are smaller than 3 for |b| ≤ 1/2.

• The 6th and 7th eigenvalues on the list are not complex conjugate pairs, but they have a
quite similar structure, and we discuss them together. Substitution and simple algebraic
manipulation leads to the following equations:

4a2 + 13= 12b2 ± 4
p

5b2 + 1. (191)

It can be seen that the r.h.s. is always smaller than the minimum of the l.h.s. given by
13, if |b| ≤ 1/2. Thus there is no intersection in P .

• Finally, regarding the 9th eigenvalue a direct computations shows that this becomes
degenerate with 3 if b = 1/2, i.e. just on the boundary of the physical strip.

With this we have proven that on the physical strip 3 is indeed a non-degenerate dominant
eigenvalue for both tAB and t̄AB.

B TBA derivation of the string-charge relations

Here we compute a compact form for the mean values of the operators Xm(u) and Ym(u). We
start from the expressions (117).

We will use the following convention for the Fourier transform:

f̂ (k) =

∫ ∞

−∞
du f (u)eiku, (192)

f (u) =
1

2π

∫ ∞

−∞
dk f̂ (k)e−iku. (193)
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For the elementary function an(λ) defined in (52) we have

ân(k) = e−
n
2 |k|. (194)

We need to express

lim
TDL

1
L

Xm(u) =
∞
∑

n=1

∫ ∞

−∞
dk ρ̂(1)n (k)e

−iku
min(n,m)
∑

j=1

â|n−m|−1+2 j(k), (195)

lim
TDL

1
L

Ym(u) =
∞
∑

n=1

∫ ∞

−∞
dk ρ̂(2)n (k)e

−iku
min(n,m)
∑

j=1

â|n−m|−1+2 j(k). (196)

We apply the summation of the geometric series

min(m,n)
∑

j=1

â|n−m|−1+2 j(k) =
min(m,n)
∑

j=1

e−
|k|
2 (|n−m|−1+2 j) =

=
1

2sinh
�

|k|
2

�

�

e−
|k|
2 |n−m| − e−

|k|
2 (n+m)

�

,

(197)

to simplify the previous equations to

lim
TDL

1
L

Xm(u) =
∞
∑

n=1

∫ ∞

−∞
dk ρ̂(1)n (k)e

−iku 1

sinh
�

|k|
2

�

�

e−
|k|
2 |n−m| − e−

|k|
2 (n+m)

�

,

lim
TDL

1
L

Ym(u) =
∞
∑

n=1

∫ ∞

−∞
dk ρ̂(2)n (k)e

−iku 1

sinh
�

|k|
2

�

�

e−
|k|
2 |n−m| − e−

|k|
2 (n+m)

�

.

(198)

To proceed, we consider the decoupled TBA equations (84) in Fourier space:

ρ̂
(1)
n,t (k) = δn,1ŝ(k) + ŝ(k)

�

ρ̂
(1)
h,n−1(k) + ρ̂

(1)
h,n+1(k)

�

+ ŝ(k)ρ̂(2)n (k),

ρ̂
(2)
n,t (k) = ŝ(k)

�

ρ̂
(2)
h,n−1(k) + ρ̂

(2)
h,n+1(k)

�

+ ŝ(k)ρ̂(1)n (k),
(199)

where

ŝ(k) =
1

2cosh
� k

2

� , ρ̂
(r)
h,0(k) = 0. (200)

For simplicity we will not denote the k argument in the following.
Using the TBA equation in Fourier space, we express the ρ(r)m , r = 1,2 root densities with

the ρ(r)h,m, r = 1, 2 hole densities:

ρ̂(1)n =
1

1− ŝ2

�

ŝ
�

δn,1 + ρ̂
(1)
h,n−1 −

1
ŝ
ρ̂
(1)
h,n + ρ̂

(1)
h,n+1

�

+ ŝ2
�

ρ̂
(2)
h,n−1 −

1
ŝ
ρ̂
(2)
h,n + ρ̂

(2)
h,n+1

��

,

ρ̂(2)n =
1

1− ŝ2

�

ŝ
�

ρ̂
(2)
h,n−1 −

1
ŝ
ρ̂
(2)
h,n + ρ̂

(2)
h,n+1

�

+ ŝ2
�

δn,1 + ρ̂
(1)
h,n−1 −

1
ŝ
ρ̂
(1)
h,n + ρ̂

(1)
h,n+1

��

.
(201)

We make use of the following identity:

∞
∑

n=1

�

δn,1 + ρ̂
(r)
n−1,h −

1
ŝ
ρ̂
(r)
n,h + ρ̂

(r)
n+1,h

�

�

e−
|k|
2 (m+n) − e−

|k|
2 |m−n|

�

=

2sinh
�

|k|
2

�

�

ρ̂
(r)
m,h − e−

|k|
2 m
�

.

(202)
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Substituting this and performing some algebraic manipulations we end up with:

−
1

2πL

�

2cosh
�

k
2

�

X̂m − Ŷm

�

= ρ̂(1)m,h − e−
|k|
2 m,

−
1

2πL

�

cosh
�

k
2

�

Ŷm − X̂m

�

= ρ̂(2)m,h.
(203)

After inverse Fourier transformation:

1
2πL

�

−Xm

�

u−
i
2

�

− Xm

�

u+
i
2

�

+ Ym(u)
�

= ρ(1)m,h(u)− am(u),

1
2πL

�

−Ym

�

u−
i
2

�

− Ym

�

u+
i
2

�

+ Xm(u)
�

= ρ(2)m,h(u),
(204)

or in a more compact form:

ρ
(1)
h,m = am −

1
2πL

�

X [+]m + X [−]m − Ym

�

,

ρ
(1)
h,m = −

1
2πL

�

Y [+]m + Y [−]m − Xm

�

.
(205)

This is the first form of our main result, which concerns the hole densities. It is also useful to
express the root densities.

Consider (203) and rewrite it in matrix notation:

�

2 cosh(k/2) −1
−1 2cosh(k/2)

��

X̂m
Ŷm

�

= −2πL

�

ρ̂
(1)
h,m − e−

|k|
2 m

ρ̂
(2)
h,m

�

. (206)

Consider the inverse matrix,

1
ek + e−k + 1

�

2cosh(k/2) 1
1 2cosh(k/2)

�

. (207)

With the help of it we can express the charges with the root densities:

Xm = −2πL
�

G1 ? (ρ
(1)
h,m + am) + G2 ? ρ

(2)
h,m

�

,

Ym = −2πL
�

G1 ? ρ
(2)
h,m + G2 ? (ρ

(1)
h,m + am)

�

,
(208)

where G1(u), G2(u) are the inverse transformed versions of

Ĝ1(k) =
ek/2 + e−k/2

ek + e−k + 1
,

Ĝ2(k) =
1

ek + e−k + 1
,

(209)

and their explicit form can be computed using standard techniques:

G1(x) =

∫

dk
2π

e−ikx Ĝ1(k) =
1
p

3

cosh(π/3x)
cosh(πx)

=
1
p

3

1
2cosh(2πx/3)− 1

,

G2(x) =

∫

dk
2π

e−ikx Ĝ2(k) =
1
p

3

sinh(π/3x)
sinh(πx)

=
1
p

3

1
2cosh(2πx/3) + 1

.

(210)
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Consider the (84) TBA equation, and after Fourier transformation, construct a similar matrix
form out of it:

�

1 −ŝ
−ŝ 1

��

ρ̂
(1)
t,m

ρ̂
(2)
t,m

�

=

 

δm,1ŝ+ ŝ
�

ρ
(1)
h,m−1 +ρ

(1)
h,m+1 −ρ

(2)
h,m

�

ŝ
�

ρ
(2)
h,m−1 +ρ

(2)
h,m+1 −ρ

(1)
h,m

�

!

. (211)

After taking the inverse matrix Fourier inverse transformation, we arrive at the following form:

ρ
(1)
t,m = δm,1G1 + G1 ? (ρ

(1)
h,m−1 +ρ

(1)
h,m+1 −ρ

(2)
h,m) + G2 ? (ρ

(2)
h,m−1 +ρ

(2)
h,m+1 −ρ

(1)
h,m),

ρ
(2)
t,m = δm,1G2 + G1 ? (ρ

(2)
h,m−1 +ρ

(2)
h,m+1 −ρ

(1)
h,m) + G2 ? (ρ

(1)
h,m−1 +ρ

(1)
h,m+1 −ρ

(2)
h,m).

(212)

Using (208) and (204) we get

ρ(1)m = δm,1G1 −
1

2πL

�

Xm−1 + Xm+1 − X [+]m − X [−]m

�

− G1 ? (am−1 + am+1) + G2 ? am − am,

ρ(2)m = δm,1G2 −
1

2πL

�

Ym−1 + Ym+1 − Y [+]m − Y [−]m

�

− G2 ? (am−1 + am+1) + G1 ? am.

(213)

Making use of the identities:

s ? (an−1 + an+1) = an, n> 1

s ? a2 = a1 + s,

G2 = G1 ? s,

−G1 ? a2 + G2 ? a1 + a1 = −G1,

(214)

we express the string-charge relations in a uniform, source term free way:

ρ(1)m =
1

2πL

�

X [+]m + X [−]m − Xm−1 − Xm+1

�

,

ρ(2)m =
1

2πL

�

Y [+]m + Y [−]m − Ym−1 − Ym+1

�

.
(215)

C Checking the string-charge relations for a particular quench

Let us consider the quantum quench in the SU(3)-invariant model with the specific initial state

|Ψδ〉=
L/2
∏

j=1

|11〉+ |22〉+ |33〉
p

3
. (216)

This quench has been treated in detail in the works [37,38] using Boundary Quantum Transfer
Matrix techniques. In particular, the following exact results were computed there.

In the long time limit the system is populated by Bethe states with root densities
{ρ(1)m (u),ρ

(2)
m (u)}, such that the total densities (sums of the densities of roots and holes)

ρ
(a)
t,m(u) = ρ

(a)
m (u) +ρ

(a)
h,m(u) are

ρ
(1)
t,1(u) =

1
2π

16(80u4 + 168u2 + 53)
(4u2 + 1)(8u2 + 3)(4u2 + 9)2

,

ρ
(2)
t,1(u) =

1
2π
(4u2 + 1)(5u4 + 18u2 + 8)
(u2 + 1)2(u2 + 4)2(8u2 + 3)

.

(217)
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The ratios of root and hole densities are given by the so-called Y functions defined as

η(a)m (u) =
ρ
(a)
h,m(u)

ρ
(a)
m (u)

. (218)

We use this notation in order to avoid confusion with the Y (u) charge operators.
The exact Y -functions for the 1-strings of the first and second type were computed as

1+η(1)1 (u) = 1+η(2)1 (u) =
3(4u2 + 1)

4u2
. (219)

From the above equations we can compute the first two hole densities as

ρ
(1)
h,1 =

η
(1)
1 (u)

1+η(1)1 (u)
ρ
(1)
1 =

1
2π

16(80u4 + 168u2 + 53)
3(4u2 + 1)2(4u2 + 9)2

,

ρ
(2)
h,1 =

η
(2)
1 (u)

1+η(2)1 (u)
ρ
(2)
1 =

1
2π

(5u4 + 18u2 + 8)
3(u2 + 1)2(u2 + 4)2

.

(220)

In the following we compute the mean values of the charges X1(u) and Y1(u) in |Ψδ〉 using
their definition:

X1(u) = −i
∂

∂ λ
〈Ψδ| t̄(−u)t(λ)|Ψδ〉

�

�

�

�

u=λ
,

Y1(u) = −i
∂

∂ λ
〈Ψδ|( t̄ 3̄(−u)t 3̄(λ)|Ψδ〉

�

�

�

�

u=λ
.

(221)

From this we will compute the hole densities directly from the string-charge relations (119),
which will be compared to (220).

The above mean values can be evaluated using standard methods, by building the corre-
sponding 2D partition functions, and evaluating them with double row transfer matrices in
the crossed channel [21,37,38], see also Fig. 5. In the TDL we have

〈Ψδ| t̄(−u)t(λ)|Ψδ〉 →
�

Λ
(1)
δ
(λ, u)

�L/2
,

〈Ψδ|( t̄ 3̄(−u)t 3̄(λ)|Ψδ〉 →
�

Λ
(2)
δ
(λ, u)

�L/2
,

(222)

where Λ(1,2)
δ
(λ, u) are the leading eigenvalues of the corresponding double row QTM’s.

The double row QTM’s can be diagonalized in a relatively simple way. Due to the boundary
conditions they are only SO(3)-symmetric, and the 9 dimensional Hilbert space on which they
act splits into the SO(3)-representations

3⊗ 3= 5+ 3+ 1. (223)

The singlet representation corresponds to the delta state, and it follows from the inversion
relations that at u= λ the corresponding eigenvalue is

Λ
(1)
δ
(λ,λ) = Λ(2)

δ
(λ,λ) = 1. (224)

We checked that the other two eigenvalues are indeed sub-leading in the physical strip, for
both QTM’s.
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00 00 00

−u

λ

00 00 00

−u

λ

Figure 5: Evaluation of the mean values of X1(u) and Y1(u) in the delta state. The
solid and dashed lines stands for auxiliary spaces carrying the defining and conjugate
representations of SU(3), respectively, and the arrows denote the direction of the
action of the R matrices. The horizontal lines with spectral parameters λ and u stem
from the action of the various transfer matrices. The vertical lines correspond to
the physical spaces of the homogeneous chain, thus their spectral parameter is equal
to zero. We have periodic boundary conditions in the horizontal direction. These
partition functions can be evaluated in the crossed channel, by building the QTM’s
which act from the left to the right.

−u

λ

00

−u

λ

00

A(λ, u) : B(λ, u) :

Figure 6: Evaluation of the leading eigenvalues of the QTM’s, which belong to the
delta state in the crossed channel. The eigenvalue is computed by sandwiching the
QTM between the eigenvector from the left and right. We thus obtain the partition
functions above, where the boundary conditions are given by the delta states in all 4
directions. These partition functions can then be evaluated as a single trace, which is
obtained for example in an anti-clockwise manner leading to the expressions (226).

The mean values of the X1(u) and Y1(u) operators are thus

X1(u) = −
iL
2
∂

∂ λ
Λ
(1)
δ
(λ, u)

�

�

�

�

u=λ
,

Y1(u) = −
iL
2
∂

∂ λ
Λ
(2)
δ
(λ, u)

�

�

�

�

u=λ
.

(225)

Even though the simple result (224) holds at u= λ, the leading eigenvalue is some non-trivial
rational function at u 6= λ, which we now compute. The simplest way is perhaps to draw the
partition function corresponding to the eigenvalue, and to evaluate it as a single trace, see Fig.
6. This leads to

X1(u) = −
iL
2

1
9
∂λTr

�

Rt(λ)Rt(−u)R(−u)R(λ)
�

�

�

�

�

u=λ
,

Y1(u) = −
iL
2

1
9
∂λTr

�

R̄t(λ)R̄t(−u)R̄(−u)R̄(λ)
�

�

�

�

�

u=λ
.

(226)

Here the extra normalization factor of 1/9 comes from the normalization of the physical delta
states.
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Using the definitions (11)-(90) we have to compute the quantities

A(λ, u)≡ Tr
�

Rt(λ)Rt(−u)R(−u)R(λ)
�

=

=
Tr ((λ+ iK)(−u+ iK)(−u+ iP)(λ+ iP))

(λ+ i)2(−u+ i)2
,

B(λ, u)≡ Tr
�

R̄t(λ)R̄t(−u)R̄(−u)R̄(λ)
�

=

=
Tr
�

(λ+ i3
2 − iP)(−u+ i3

2 − iP)(−u+ i3
2 − iK)(λ+ i3

2 − iK)
�

(λ+ i3
2)2(−u+ i3

2)2
.

(227)

Direct computation of the traces gives

A(λ, u) = 3
3− (4i)λ−λ2 + (4i)u+ 8λu− (2i)λ2u− u2 + (2i)λu2 + 3λ2u2

(λ+ i)2(−u+ i)2
(228)

and

B(λ, u) =
3
16

75− (188i)λ− 172λ2 − (172i)u− 304λu+ (176i)λ2u− 76u2 + (112i)λu2 + 48λ2u2

(λ+ i3
2)2(−u+ i3

2)2
.

(229)
For the derivatives we get

X1(λ) =
−iL
18
∂λA(λ, u)

�

�

�

�

u=λ
=

1
3

1+ 2λ2

(λ2 + 1)2
,

Y1(λ) =
−iL
18
∂λB(λ, u)

�

�

�

�

u=λ
=

4
3

5+ 4λ2

(4λ2 + 9)2
.

(230)

And finally, we compute the one-string hole densities via

ρ
(1)
h,1 =

1
2πL

�

X [+]1 + X [−]1 − Y1

�

− a1,

ρ
(2)
h,1 =

1
2πL

�

Y [+]1 + Y [−]1 − X1

�

,
(231)

where

a1 =
1

2π
1

u2 + 1/4
. (232)

After substitution we get the same results (220) as obtained previously.
It is important that our check is independent from the derivation of [37, 38], which was

built on the fusion hierarchy of the Boundary QTM’s. Even though the methods of [37, 38]
also involved double row, two-site transfer matrices, a close inspection shows that the actual
construction there is different, for example the rapidities involved are chosen in a different
way. Our present check is thus an independent confirmation of the string-charge relations in
the SU(3)-symmetric chain.

D Proof of the local inversion relations

Here we perform an explicit computation of the product

RΛ(u)RΛ(−u), (233)

where Λ is an irreducible representation of GL(N) described by a rectangular Young diagram,
and the R-matrix is given generally as

RΛ(u) =
u+ iα+ iEi jΛ ji

u+ iα′
, (234)
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with some shift parameters α,α′ ∈ R.
The R-matrix acts on the tensor product of two representations. Let us consider the Clebsch-

Gordon series
Λ1 ⊗Λ= ⊕kΛk, (235)

where Λ1 is the defining representation. Generally the R-matrix can be decomposed as

RΛ(u) =
∑

k

ρk(u)Pk, (236)

where Pk are the projectors onto the invariant subspaces. It follows that the inversion relation
can be satisfied if

ρk(u)ρk(−u) = 1 (237)

holds for all components.
In order to compute ρk(u) we first compute the eigenvalues of Ei jΛ ji which can be ex-

pressed using quadratic Casimir operators

C2 = Λi jΛ ji (238)

as

Ei jΛ ji =
1
2

�

(Ei j +Λi j)(E ji +Λ ji)− Ei j E ji −Λi jΛ ji

�

. (239)

The quadratic Casimir for the representation Λ of GL(N) with highest weight (h1, . . . , hN )
is

C2 =
N
∑

j=1

h2
j +

∑

j<k

(h j − hk). (240)

We consider some examples of this formula. For the defining representation the highest weight
is (1,0, . . . , 0) and the Casimir is

C2 = N . (241)

For the symmetrically fused representation with highest weight (m, 0, 0, . . . ) (corresponding
to the (1×m) Young diagram)

C2 = m(m+ N − 1). (242)

For the anti-symmetric tensor with highest weight (1, 1,0, . . . ) (corresponding to the (2× 1)
Young diagram)

C2 = 2N − 3. (243)

For symmetrically fused anti-symmetric representations with highest weight (m, m, 0, . . . ) (cor-
responding to the (2×m) Young diagram)

C2 = 2m(m+ N − 2). (244)

Let us now focus on the GL(3) representations described by rectangular Young diagrams.

• Let us take (m, 0, 0). The Clebsch Gordan series (235) has two terms:

(1,0, 0)⊗ (m, 0, 0) = (m+ 1, 0,0)⊕ (m, 1, 0). (245)

For the component (m+ 1, 0,0) we have

Ei jΛ ji = m. (246)

For the component (m, 1, 0) we have

Ei jΛ ji = −1. (247)
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It follows that the eigenvalues of the R-matrix

R(m,0)(u) =
u− i m−1

2 + iEi jΛ ji

u+ i m+1
2

(248)

are
u− i m−1

2 + im

u+ i m+1
2

= 1,
u− i m−1

2 − i

u+ i m+1
2

=
u− i m+1

2

u+ i m+1
2

. (249)

• Let us now take (m, m, 0). There are two components in the Clebsch-Gordan series
(235):

(1, 0,0)⊗ (m, m, 0) = (m+ 1, m, 0)⊕ (m, m, 1). (250)

For the component (m+ 1, m, 0) we have

Ei jΛ ji = m, (251)

whereas for (m, m, 1, 0) we have

Ei jΛ ji = −2. (252)

It follows that the eigenvalues of

R(1,0),(0,m)(u) =
u− i m−2

2 + iEi jΛ ji

u+ i m+2
2

(253)

are
u− i m−2

2 + im

u+ i m+2
2

= 1,
u− i m−2

2 − 2i

u+ i m+2
2

=
u− i m+2

2

u+ i m+2
2

. (254)

We can see that both R-matrices satisfy the local inversion relation.
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