
SciPost Phys. 8, 040 (2020)

Quantum coherence from commensurate driving
with laser pulses and decay

Götz S. Uhrig1?

1 Lehrstuhl für Theoretische Physik I, TU Dortmund University,
Otto-Hahn Straße 4, D-44221 Dortmund, Germany

? goetz.uhrig@tu-dortmund.de

Abstract

Non-equilibrium physics is a particularly fascinating field of current research. Generi-
cally, driven systems are gradually heated up so that quantum effects die out. In contrast,
we show that a driven central spin model including controlled dissipation in a highly
excited state allows us to distill quantum coherent states, indicated by a substantial re-
duction of entropy; the key resource is the commensurability between the periodicity of
the pump pulses and the internal processes. The model is experimentally accessible in
purified quantum dots or molecules with unpaired electrons. The potential of preparing
and manipulating coherent states by designed driving potentials is pointed out.
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1 Introduction

Controlling a quantum mechanical system in a coherent way is one of the long-standing goals
in physics. Obviously, coherent control is a major ingredient for handling quantum informa-
tion. In parallel, non-equilibrium physics of quantum systems is continuing to attract signifi-
cant interest. A key issue in this field is to manipulate systems in time such that their properties
can be tuned and changed at will. Ideally, they display properties qualitatively different from
what can be observed in equilibrium systems. These current developments illustrate the inter-
est in understanding the dynamics induced by time-dependent Hamiltonians H(t).

The unitary time evolution operator U(t2, t1) induced by H(t) is formally given by

U(t2, t1) = T exp

�

−i

∫ t2

t1

H(t)d t

�

, (1)

where T is the time ordering operator. While the explicit calculation of U(t2, t1) can be ex-
tremely difficult it is obvious that the dynamics induced by a time-dependent Hamiltonian
maps quantum states at t1 to quantum states at t2 bijectively and conserves the mutual scalar
products. Hence, if initially the system is in a mixed state with high entropy S > 0 it stays in
a mixed state for ever with exactly the same entropy. No coherence can be generated in this
way even for a complete and ideal control of H(t) in time. Hence, one has to consider open
systems.

The standard way to generate a single state is to bring the system of interest into thermal
contact with a cold system. Generically, this is an extremely slow process. The targeted quan-
tum states have to be ground states of some given system. Alternatively, optical pumping in
general and laser cooling in particular [1] are well established techniques to lower the entropy
of microscopic systems using resonant pumping and spontaneous decay. Quite recently, engi-
neered dissipation has been recognised as a means to generate targeted entangled quantum
states in small [2–4] and extended systems [5, 6]. Experimentally, entanglement has been
shown for two quantum bits [7,8] and for two trapped mesoscopic caesium clouds [9].

In this article, we show that periodic driving can have a quantum system converge to
coherent quantum states if an intermediate, highly excited and decaying state is involved. The
key aspect is the commensurability of the period of the pump pulses to the time constants of the
internal processes, here Larmor precessions. This distinguishes our proposal from established
optical pumping protocols. The completely disordered initial mixture can be made almost
coherent. The final mixture only has an entropy S ≈ kB ln 2 corresponding to a mixture of two
states. An appealing asset is that once the driving is switched off the Lindbladian decay does
not matter anymore and the system is governed by Hamiltonian dynamics only.

The focus of the present work is to exemplarily demonstrate the substantial reduction
of entropy in a small spin system subject to periodic laser pulses. The choice of system is
motivated by experiments on the electronic spin in quantum dots interacting with nuclear
spins [10–17]. The model studied is also applicable to the electronic spin in molecular radicals
[18] or to molecular magnets, see Refs. [19–21]. In organic molecules the spin bath is given
by the nuclear spins of the hydrogen nuclei in organic ligands.

2 Model

The model comprises a central, electronic spin S = 1/2 which is coupled to nuclear spins

Hspin = HCS +HeZ +HnZ, (2)
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where HeZ = hS x is the electronic Zeeman term with h = gµBB (ħh is set to unity here and
henceforth) with the gyromagnetic factor g, the Bohr magneton µB, the external magnetic
field B in x-direction and the x-component S x of the central spin. The nuclear Zeeman term is
given by HnZ = zh

∑N
i=1 I x

i where z is the ratio of the nuclear g-factor multiplied by the nuclear
magneton and their electronic counterparts gnuclearµnuclear/(gµB). The operator I x

i is the x-
component of the nuclear spin i. For simplicity we take I = 1/2 for all nuclear spins. Due to
the large nuclear mass, the factor z is of the order of 10−3, but in principle other z-values can
be studied as well, see also below. In the central spin part HCS = ~S · ~A the so-called Overhauser
field ~A results from the combined effect of all nuclear spins each of which is interacting via the
hyperfine coupling Ji with the central spin

~A=
N
∑

i=1

Ji~Ii . (3)

If the central spin results from an electron the hyperfine coupling is a contact interaction
at the location of the nucleus stemming from relativistic corrections to the non-relativistic
Schrödinger equation with a Coulomb potential. It is proportional to the probability of the
electron to be at the site of the nucleus, i.e., to the modulus squared of the electronic wave
function [22,23]. Depending on the positions of the nuclei and on the shape of the wave func-
tion various distributions of the Ji are plausible. A Gaussian wave function in one dimension
implies a parametrisation by a Gaussian while in two dimensions an exponential parametri-
sation is the appropriate [24, 25] distribution. We will first use a uniform distribution for
simplicity and consider the Gaussian and exponential case afterwards.

Besides the spin system there is an important intermediate state given by a single trion state
|T〉 consisting of the single fermion providing the central spin bound to an additional exciton.
This trion is polarised in z-direction at the very high energy ε (≈ 1 eV). The other polarisation
exists as well, but using circularly polarised light it is not excited. A Larmor precession of the
trion is not considered here for simplicity. Then, the total Hamiltonian reads

H = Hspin + ε|T〉〈T|. (4)

The laser pulse is taken to be very short as in experiment where its duration τ is of the
order of picoseconds. Hence, we describe its effect by a unitary time evolution operator
exp(−iτHpuls) = Upuls which excites the | ↑〉 state of the central spin to the trion state or
de-excites it

Upuls = c† + c + | ↓〉〈↓ |, (5)

where c := | ↑〉〈T| and c† := |T〉〈↑ |. This unitary operator happens to be hermitian as well, but
this is not an important feature. One easily verifies UpulsU

†
puls = 1. Such pulses are applied in

long periodic trains lasting seconds and minutes. The repetition time between two consecutive
pulses is Trep of the order of 10 ns.

The decay of the trion is described by the Lindblad equation for the density matrix ρ

∂tρ(t) = −i[H,ρ]− γ(c†cρ +ρc†c − 2cρc†), (6)

where the prefactor γ > 0 of the dissipator term [26] defines the decay rate. The correspond-
ing process with c and c† swapped needs not be included because its decay rate is smaller by
exp(−βε), i.e., it vanishes for all physical purposes. We emphasise that we deal with an open
quantum system by virtue of the Lindblad dynamics in (6). Since the decay of the trion gener-
ically implies the emission of a photon at high energies the preconditions for using Lindblad
dynamics are perfectly met [26].

3
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3 Mathematical Properties of Time Evolution

The key observation is that the dynamics from just before the nth pulse at t = nTrep− to just
before the n+1st pulse at t = (n+1)Trep− is a linear mapping M : ρ(nTrep−)→ ρ((n+1)Trep−)
which does not depend on n. Since it is acting on operators one may call it a superoperator.
Its matrix form is derived explicitly in Appendix A. If no dissipation took place (γ = 0) the
mapping M would be unitary. But in presence of the dissipative trion decay it is a general
matrix with the following properties:

1. The matrix M has an eigenvalue 1 which may be degenerate. If the dynamics of the
system takes place in n separate subspaces without transitions between them the degen-
eracy is at least n.

2. All eigenoperators to eigenvalues different from 1 are traceless.

3. At least one eigenoperator to eigenvalue 1 has a finite trace.

4. The absolute values of all eigenvalues of M are not larger than 1.

5. If there is a non-real eigenvalue λ with eigenoperator C , the complex conjugate λ∗ is
also an eigenvalue with eigenoperator C†.

6. The eigenoperators to eigenvalues 1 can be scaled to be hermitian.

While the above properties can be shown rigorously, see Appendix B, for any Lindblad evolu-
tion, the following ones are observed numerically in the analysis of the particular model (6)
under study here:

(a) The matrix M is diagonalisable; it does not require a Jordan normal form.

(b) For pairwise different couplings i 6= j⇒ Ji 6= J j the eigenvalue 1 is non-degenerate.

(c) The eigenoperators to eigenvalue 1 can be scaled to be hermitian and non-negative. In
the generic, non-degenerate case we denote the properly scaled eigenoperator V0 with
Tr(V0) = 1.

(d) No eigenvalue 6= 1, but with absolute value 1, occurs, i.e., all eigenvalues different from
1 are smaller than 1 in absolute value.

(e) Complex eigenvalues and complex eigenoperators do occur.

The above properties allow us to understand what happens in experiment upon application
of long trains of pulses corresponding to 1010 and more applications of M . Then it is safe to
conclude that all contributions from eigenoperators to eigenvalues smaller than 1 have died
out completely. Only the (generically) single eigenoperator V0 to eigenvalue 1 is left such that

lim
n→∞

ρ(nTrep−) = V0. (7)

The quasi-stationary state after long trains of pulses is given by V0
1. This observation simpli-

fies the calculation of the long-time limit greatly compared to previous quantum mechanical
studies [13,14,17,27]. One has to compute the eigenoperator of M to the eigenvalue 1. Below
this is performed by diagonalisation of M which is a reliable approach, but restricted to small
systems N ¯ 6. We stress that no complete diagonalisation is required to know V0 because
only the eigenoperator to the eigenvalue 1 is needed. Hence we are optimistic that further
computational improvements are possible. If, however, the speed of convergence is of interest
more information on the spectrum and the eigenoperators of M is needed, see also Sect. 5.

1We use the term ‘quasi-stationary’ state because it is stationary only if we detect it stroboscopically at the time
instants t = nTrep−.
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4 Results on Entropy

It is known that in pulsed quantum dots nuclear frequency focusing occurs (NFF) [10,11,28]
which can be explained by a significant change in the distribution of the Overhauser field [12–
17,27]which is Gaussian initially. This distribution develops a comb structure with equidistant
spikes. The difference ∆Ax between consecutive spikes is such that it corresponds to a full
additional revolution of the central spin Trep∆Ax = 2π. A comb-like probability distribution
is more structured and contains more information than the initial featureless Gaussian. For
instance, the entropy reduction of the Overhauser field distributions computed in Ref. [17],
Fig. 12, relative to the initial Gaussians is ∆S = −0.202kB at B = 0.93T and ∆S = −0.018kB
at B = 3.71T. Hence, NFF decreases the entropy, but only slightly for large spin baths. This
observation inspires us to ask to which extent continued pulsing can reduce entropy and which
characteristics the final state has.

Inspired by the laser experiments on quantum dots [10, 11, 28] we choose an (arbitrary)
energy unit JQ and thus 1/JQ, recalling that we have set ħh = 1, as time unit which can be
assumed to be of the order of 1ns. The repetition time Trep is set to 4π/JQ which is on the one
hand close to the experimental values where Trep = 13.2ns and on the other hand makes it
easy to recognise resonances, see below. The trion decay rate is set to 2γ = 2.5JQ to reflect a
trion life time of ≈ 0.4ns. The bath size is restricted to N ∈ {1,2, . . . , 6}, but still allows us to
draw fundamental conclusions and to describe electronic spins coupled to hydrogen nuclear
spins in small molecules [18–21]. The individual couplings Ji are chosen to be distributed
according to

Ji = Jmax(
p

5− 2)
�p

5+ 2(i − 1)/(N − 1)
�

, (8)

which is a uniform distribution between Jmin and Jmax with
p

5 inserted to avoid accidental
commensurabilities of the different couplings Ji . The value Jmin results from Ji for i = 1. Other
parametrisations are motivated by the shape of the electronic wave functions [22, 23, 29].
Results for a frequently used exponential parameterisation [24]

Ji = Jmax exp(−α(i − 1)/(N − 1)), (9)

with α ∈ {0.5, 1} and for a Gaussian parametrisation, motivated by the electronic wave func-
tion in quantum dots [23],

Ji = Jmax exp(−α[(i − 1)/(N − 1)]2), (10)

are given in the next section and in Appendix D. For both parametrisations the minimum value
Jmin occurs for i = N and takes the value Jmin = Jmax exp(−α).

Figure 1 displays a generic dependence on the external magnetic field h = gµBBx of the
entropy of the limiting density matrix V0 obtained after infinite number of pulses. Two nested
resonances of the Larmor precessions are discernible: the central electronic spin resonates for

hTrep = 2πn, n ∈ Z, (11)

where n is the number of Larmor revolutions that fit into the interval Trep between two pulses.
This means that for an increase of the magnetic field from h to h+∆h with ∆h= 2π/Trep the
central spin is in the same state before the pulse as it was at h.

The other resonance is related to the Larmor precession of the nuclear bath spins which
leads to the condition

zhTrep = 2πn′, n′ ∈ Z, (12)

where n′ indicates the number of Larmor revolutions of the nuclear spins which fit between
two pulses. Upon increasing the magnetic field h, the nuclear spins are in the same state before
the next pulse if h is changed to h+∆h with ∆h= 2π/(zTrep).
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Figure 1: (a) Residual entropy of the limiting density matrix V0 obtained after infinite
number of pulses vs. the applied magnetic field for Jmax = 0.02JQ and z = 1/1000;
1 Tesla corresponds roughly to 50JQ. Resonances of the electronic spin occur every
∆h = 0.5JQ; resonances of the nuclear spins occur every ∆h = 500JQ. The blue
dashed line depicts an offset of ∆h = ±Jmax/(2z) from the nuclear resonance. (b)
Zooms into intervals of the magnetic field where the lowest entropies are reached.
The blue dashed lines depict an offset of ∆h= ±Amax from the electronic resonance.

But the two resonance conditions (11) and (12) for the central spin and for the bath spins
apply precisely as given only without coupling between the spins. The coupled system displays
important shifts. The nuclear resonance appears to be shifted by z∆h ≈ ±Jmax/2, see right
panel of Fig. 1(a). The explanation is that the dynamics of the central spin S = 1/2 creates an
additional magnetic field similar to a Knight shift acting on each nuclear spin of the order of
Ji/2 which is estimated by Jmax/2. Further support of the validity of this explanation is given
in Appendix C.

The electronic resonance is shifted by

∆h= ±Amax, (13)

where Amax is the maximum possible value of the Overhauser field given by Amax := 1
2

∑N
i=1 Ji

for maximally polarised bath spins. This is shown in the right panel of Fig. 1(b).
Fig. 1 shows that the effect of the periodic driving on the entropy strongly depends on

the precise value of the magnetic field. The entropy reduction is largest close to the central
resonance (11) and to the bath resonance (12). This requires that both resonances must
be approximately commensurate. In addition, the precise position of the maximum entropy
reduction depends on the two above shifts, the approximate Knight shift and the shift by the
maximum Overhauser field (13).
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We pose the question to which extent the initial entropy of complete disorder
Sinit = kB(N + 1) ln 2 (in the figures and henceforth kB is set to unity) can be reduced by
commensurate periodic pumping. The results in Fig. 1 clearly show that remarkably low val-
ues of entropy can be reached. The residual value of S ≈ 0.5kB in the minima of the right panel
of Fig. 1(b) corresponds to a contribution of less than two states (S = ln 2kB ≈ 0.7kB) while
initially 16 states were mixed for N = 3 so that the initial entropy is Sinit = 4 ln2kB ≈ 2.77kB.
This represents a remarkable distillation of coherence.
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Figure 2: (a) Residual entropy of the limiting density matrix V0 for various bath sizes;
other parameters as in Fig. 1. The dashed lines indicate the shifts of the electronic
resonance by −Amax. (b) Corresponding normalised polarisation of the spin bath in
the external field direction, i.e. the x-direction.

Hence, we focus on the minima and in particular on the left minimum. We address the
question whether the distillation of coherence still works for larger systems. Unfortunately, the
numerical analysis cannot be extended easily due to the dramatically increasing dimension
D = 22(N+1) because we are dealing with the Hilbert space of density matrices of the spin
bath and the central spin. Yet a trend can be deduced from results up to N = 6 displayed in
Fig. 2(a). The entropy reduction per N + 1 spins is −0.58kB for N = 3, −0.57kB for N = 4,
−0.55kB for N = 5, and −0.52kB for N = 6. The reduction is substantial, but slowly decreases
with system size. Presently, we cannot know the behaviour for N → ∞. The finite value
≈ −0.2kB found in the semiclassical simulation [16, 17] indicates that the effect persists for
large baths. In Appendix D, results for the couplings defined in (9) or in (10) are given which
corroborate our finding. The couplings may be rather close to each other, but not equal. It
appears favorable that the spread of couplings is not too large.

Which state is reached in the minimum of the residual entropy? The decisive clue is pro-
vided by the lower panel Fig. 2(b) displaying the polarisation of the spin bath. It is normalised
such that its saturation value is unity. Clearly, the minimum of the residual entropy coincides
with the maximum of the polarisation. The latter is close to its saturation value though not
quite with a minute decrease for increasing N . This tells us that the limiting density matrix V0
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essentially corresponds to the polarised spin bath. The central electronic spin is also almost
perfectly polarised (not shown), but in z-direction. These observations clarify the state which
can be retrieved by long trains of pulses.

Additionally, Fig. 2(b) explains the shift of the electronic resonance. The polarised spin
bath renormalises the external magnetic field by (almost) ±Amax. To the left of the resonance,
it enhances the external field (+Amax) while the external field is effectively reduced (−Amax)
to the right of the resonance. Note that an analogous direct explanation for the shift of the
nuclear resonance in the right panel of Fig. 1 is not valid. The computed polarisation of the
central spin points in z-direction and thus does not shift the external field.

5 Results on Convergence

In order to assess the speed of convergence of the initially disordered density matrix ρ0 = 1/Z
to the limiting density matrix V0 we proceed as follows. Let us assume that the matrices vi are
the eigen matrices of M and that they are normalised ||vi||2 := Tr(v†

i vi) = 1. Since the mapping
M is not unitary, orthogonality of the eigenmatrices cannot be assumed. Note that the standard
normalisation generically implies that there is some factor between V0 with Tr(V0) = 1 and v0.
The initial density matrix ρ0 can be expanded in the {vi}

ρ0 =
D−1
∑

j=0

α j v j . (14)

After n pulses, the density matrix ρn is given by

ρn =
D−1
∑

j=0

α jλ
n
j v j , (15)

where λ j are the corresponding eigenvalues of M and λ0 = 1 by construction. We aim at ρn
being close to V0 within pthresh, i.e.,

||ρn − V0|| ≤ pthresh||V0||, (16)

should hold for an appropriate n. A generic value of the threshold pthresh is 1%. To this end,
the minimum n which fulfills (16) has to be estimated.

Such an estimate can be obtained by determining

n j := 1+ trunc

�

ln(|pthreshα0/α j|)
ln(|λ j|)

�

, (17)

for j ∈ {1,2, 3, . . . , D − 1}. The estimate of the required number of pulses is the maximum of
these number, i.e.,

npuls := max
1≤ j<D

n j . (18)

We checked exemplarily that the number determined in this way implies that the convergence
condition (16) is fulfilled. This is not mathematically rigorous because it could be that there
are very many slowly decreasing contributions which add up to a significant deviation from
V0. But generically, this is not the case.

In Fig. 3 the results are shown for various bath sizes and the parameters for which the data
of the previous figures was computed. Since the entropy minima are located at the positions
of the vertical dashed lines to good accuracy one can read off the required number of pulses at
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Figure 3: Number of pulses for a convergence within 1% (pthresh = 0.01) are plotted
for various bath sizes; couplings given by (8), other parameters as in Fig. 1. The
corresponding residual entropies and magnetisations are depicted in Fig. 2. The
vertical dashed lines indicate the estimates (13) for the entropy minima as before.

the intersections of the solid and the dashed lines. Clearly, about 2 ·1012 pulses are necessary
to approach the limiting, relatively pure density matrices V0. Interestingly, the number of
required pulses does not depend much on the bath size, at least for the accessible bath sizes.
This is a positive message in view of the scaling towards larger baths in experimental setups.

Figure 4 depicts the required minimum number of pulses for the two alternative parametri-
sations of the couplings (9) and (10). Again, the range is about 3 · 1012. Still, there are rele-
vant differences. The value npuls is higher for α= 1 (≈ 4 ·1012) than for α= 1/2 (¯ 2 ·1012).
This indicates that the mechanism of distilling quantum states by commensurability with pe-
riodic external pulses works best if the couplings Ji are similar, i.e., if their spread given by
Jmin/Jmax = exp(−α) is small. The same qualitative result is obtained for the residual entropy,
see Appendix D.

Note that this argument also explains why the Gaussian parametrised couplings (10) re-
quire slightly less pulses than the exponential parametrised couplings (9). The couplings Ji
cumulate at their maximum Jmax in the Gaussian case so that their variance is slightly smaller
than the one of the exponential parametrisation. One could have thought that the cumulated
couplings Ji ≈ Jmax in the Gaussian case require longer pulsing in order to achieve a given
degree of distillation because mathematically equal couplings Ji = Ji′ imply degeneracies pre-
venting distillation, see the mathematical properties discussed in Sect. 3. But this appears not
to be the case.

The total numbers of pulses is rather high. As many as 2 · 1012 pulses for a repetition
time Trep ≈ 10ns imply about six hours of pulsing. This can be achieved in the lab, but the
risk that so far neglected decoherence mechanisms spoil the process is real. If, however, the
pulses can be applied more frequently, for instance with Trep = 1ns, the required duration
shrinks to about 30 minutes. The question arises why so many pulses are required. While a
comprehensive study of this aspect is beyond the scope of the present article, a first clue can
be given.

It suggests itself that the slow dynamics in the bath is responsible for the large number of
pulses required for convergence. This idea is corroborated by the results displayed in Fig. 5
where a larger maximum coupling and, importantly, a larger z factor is assumed. Recall that
the z-factor is the ratio of the Larmor frequency of the bath spins to the Larmor frequency of
the central spin. If it is increased, here by a factor of 100, the bath spins precess much quicker.
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Figure 4: Number of pulses for a convergence within 1% (pthresh = 0.01) for N = 5,
Jmax = 0.02JQ, and z = 10−3 for the exponential parametrisation in (9) (legend
“expo”) and the Gaussian parametrisation in (10) (legend “gaus”). The correspond-
ing residual entropies and magnetisations are depicted in Figs. 8 and 9, respectively.
The vertical dashed lines indicate the estimates for the entropy minima which are
shifted from the resonances without interactions according to (13).

Indeed, the range of the required number of pulses is much lower with 2 · 107 which is five
orders of magnitude less than for the previous parameters. The former six hours then become
fractions of seconds. Of course, the conventional g-factors of nuclear and electronic spins do
not allow for z = 0.1. But the central spin model as such, built by a central spin and a bath of
spins supplemented by a damped excitation can also be realised in a different physical system.

Alternatively, optimised pulses can improve the efficiency of the distillation by periodic
driving. One may either consider modulated pulses of finite duration [30] or repeated cycles
of several instantaneous pulses applied at optimised time instants [31] or combinations of
both schemes [32]. Thus, further research is called for. The focus, however, of the present
work is to establish the fundamental mechanism built upon periodic driving, dissipation and
commensurability.

6 Conclusion

Previous work has established dynamic nuclear polarisation (DNP), for a review see Ref. [33].
But it must be stressed that the mechanism of this conventional DNP is fundamentally different
from the one described here. Conventionally, the polarisation of an electron is transferred to
the nuclear spins, i.e., the polarisation of the electrons induces polarisation of the nuclei in the
same direction.

In contrast, in the setup studied here, the electron is polarised in z-direction while the
nuclear spins are eventually polarised perpendicularly in x-direction. Hence, the mechanism
is fundamentally different: it is NFF stemming essentially from commensurability. This is
also the distinguishing feature compared to standard optical pumping. States in the initial
mixture which do not allow for a time evolution commensurate with the repetition time Trep
of the pulses are gradually suppressed while those whose time evolution is commensurate are
enhanced. This means that the weight of the former in the density matrix is reduced upon
periodic application of the pulses while the weight of the latter is enhanced. Note that the
trace of the density matrix is conserved so that the suppression of the weight of some states
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Figure 5: Residual entropies (panel a) and number of pulses (panel b) for a conver-
gence within 1% (pthresh = 0.01) for N = 3, Jmax = 0.1JQ, and z = 0.1 for the equidis-
tant parametrisation in (8) (legend “equidist”), the exponential parametrisation in
(9) (legend “expo”) and the Gaussian parametrisation in (10) (legend “gaus”). The
vertical dashed lines indicate the estimates for the entropy minima which are shifted
from the resonances without interactions according to (13).

implies that the weight of other states is increased. The effect of the pulses on other norms of
the density matrix is not obvious since the dynamics is not unitary, but dissipative.

For particular magnetic fields, there may be only one particular state allowing for a dy-
namics commensurate with Trep. This case leads to the maximum entropy reduction. Such
a mechanism can be used also for completely different physical systems, e.g., in ensembles
of oscillators. The studied case of coupled spins extends the experimental and theoretical
observations of NFF for large spin baths [10–17] where many values of the polarisation of
the Overhauser field can lead to commensurate dynamics. Hence, only a partial reduction of
entropy occurred.

The above established DNP by NFF comprises the potential for a novel experimental tech-
nique for state preparation: laser pulses instead of microwave pulses as in standard NMR can
be employed to prepare coherent states which can be used for further processing, either to per-
form certain quantum protocols or for analysis of the systems under study. The combination of
optical and radio frequency pulsing appears promising because it enlarges the possibilities of
experimental manipulations. Another interesting perspective is to employ the concept of state
distillation by commensurability to physical systems other than localised spins, for instance to
spin waves in quantum magnets. A first experimental observations of commensurability ef-
fects for spin waves in ferromagnets are already carried out [34]. Studies on how to enhance
the efficiency of the mechanism by optimisation of the shape and distribution of the pulses
constitute an interesting route for further research.

In summary, we showed that dissipative dynamics of a highly excited state is sufficient to
modify the dynamics of energetically low-lying spin degrees of freedom away from unitarity.
The resulting dynamic map acts like a contraction converging towards a particular density ma-
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trix upon iterated application. The crucial additional ingredient is commensurability between
the external periodic driving and the internal dynamic processes, for instance Larmor preces-
sions. If commensurability is possible a substantial entropy reduction can be induced, almost
to a single pure state. This has been explicitly shown for an exemplary small central spin model
including electronic and nuclear Zeeman effect. This model served as proof-of-principle model
to establish the mechanism of distillation by commensurability.

Such a model describes the electronic spin in quantum dots with diluted nuclear spin bath
or the spin of unpaired electrons in molecules, hyperfine coupled to nuclear hydrogen spins.
We stress that the mechanism of commensurability can also be put to use in other systems with
periodic internal processes. The fascinating potential to create and to manipulate coherent
quantum states by such approaches deserves further investigation.
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A Derivation of the Linear Mapping

The goal is to solve the time evolution of ρ(t) from just before a pulse until just before the
next pulse. Since the pulse leads to a unitary time evolution which is linear

ρ(nTrep−)→ ρ(nTrep+) = Upulsρ(nTrep−)U
†
puls, (19)

with Upuls from (5) and the subsequent Lindblad dynamics defined by the linear differen-
tial equation (6) is linear as well the total propagation in time is given by a linear mapping
M : ρ(nTrep−) → ρ((n+ 1)Trep−). This mapping is derived here by an extension of the ap-
proach used in Ref. [17].

The total density matrix acts on the Hilbert space given by the direct product of the Hilbert
space of the central spin comprising three states (| ↑〉, | ↓〉, |T〉) and the Hilbert space of the spin
bath. We focus on ρTT := 〈T|ρ|T〉 which is a 2N × 2N dimensional density matrix for the spin
bath alone because the central degree of freedom is traced out. By ρS we denote the d × d
dimensional density matrix of the spin bath and the central spin, i.e., d = 2N+1 since no trion
is present: ρS|T〉= 0. The number of entries in the density matrix is D = d2, i.e., the mapping
we are looking for can be represented by a D× D matrix.

The time interval Trep between two consecutive pulses is sufficiently long so that all excited
trions have decayed before the next pulse arrives. In numbers, this means 2γTrep � 1 and
implies that ρ(nTrep−) = ρS(nTrep−) and hence inserting the unitary of the pulse (5) yields

ρ(nTrep+) = UpulsρS(nTrep−)U
†
puls (20a)

ρTT(nTrep+) = 〈↑ |ρS(nTrep−)| ↑〉 (20b)

ρS(nTrep+) = | ↓〉〈↓ |ρS(nTrep−)| ↓〉〈↓ | = S−S+ρS(nTrep−)S−S+, (20c)

where we used the standard ladder operators S± of the central spin to express the projection
| ↓〉〈↓ |. The equations (20) set the initial values for the subsequent Lindbladian dynamics
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which we derive next. For completeness, we point out that there are also non-diagonal con-
tributions of the type 〈T|ρ| ↑〉, but they do not matter for M .

Inserting ρTT into the Lindblad equation (6) yields

∂tρTT(t) = −i[HnZ,ρTT(t)]− 2γρTT(t). (21)

No other parts contribute. The solution of (21) reads

ρTT(t) = e−2γt e−iHnZ tρTT(0+)e
iHnZ t . (22)

By the argument 0+ we denote that the initial density matrix for the Lindbladian dynamics is
the one just after the pulse.

For ρS, the Lindblad equation (6) implies

∂tρS(t) = −i[Hspin,ρS(t)] + 2γ| ↑〉ρTT(t)〈↑ |. (23)

Since we know the last term already from its solution in (22) we can treat it as given inhomo-
geneity in the otherwise homogeneous differential equation. With the definition
US(t) := exp(−iHspin t) we can write

∂t

�

U†
S(t)ρS(t)US(t)

�

= 2γU†
S(t)| ↑〉ρTT(t)〈↑ |US(t). (24)

Integration leads to the explicit solution

ρS(t) = US(t)ρS(0+)U
†
S(t) + 2γ

∫ t

0

U†
S(t − t ′)| ↑〉ρTT(t

′)〈↑ |US(t − t ′)d t ′. (25)

If we insert (22) into the above equation we encounter the expression

| ↑〉exp(−iHnZ t) = exp(−iHnZ t)| ↑〉 = exp(−izhI x
tot t)exp(izhS x t)| ↑〉. (26)

where I x
tot := S x +

∑N
i=1 I x

i is the total momentum in x-direction. It is a conserved quantity
commuting with Hspin so that a joint eigenbasis with eigenvalues mα and Eα exists. We deter-
mine such a basis {|α〉} by diagonalisation in the d-dimensional Hilbert space (d = 2N+1) of
central spin and spin bath and convert (25) in terms of the matrix elements of the involved
operators. For brevity, we write ραβ for the matrix elements of ρS.

ραβ(t) = e−i(Eα−Eβ )t
§

ραβ(0+)+

+ 2γ

∫ t

0

ei(Eα−Eβ−zh(mα−mβ ))t ′〈α|eizhSx t ′ | ↑〉ρTT(0+)〈↑ |eizhSx t ′ |β〉d t ′
ª

. (27)

Elementary quantum mechanics tells us that

eizhSx t ′ | ↑〉=
1
2

eia(| ↑〉+ | ↓〉) +
1
2

e−ia(| ↑〉 − | ↓〉), (28)

with a := zht ′/2 which we need for the last row of equation (27). Replacing ρTT(0+) by
〈↑ |ρS(nTrep−)| ↑〉 according to (20b) and inserting (28) we obtain

〈α|eizhSx t ′ | ↑〉ρTT(0+)〈↑ |eizhSx t ′ |β〉= 〈α|eizhSx t ′ | ↑〉〈↑ |ρS(0−)| ↑〉〈↑ |eizhSx t ′ |β〉 (29a)

=
1
2

�

R(0) + eizht ′R(1) + e−izht ′R(−1)
�

αβ
, (29b)
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with the three d × d matrices

R(0) := S+S−ρS(0−)S+S− + S−ρS(0−)S+ (30a)

R(1) :=
1
2
(S+ + 1d)S−ρS(0−)S+(S− − 1d) (30b)

R(−1) :=
1
2
(S+ − 1d)S−ρS(0−)S+(S− + 1d). (30c)

In this derivation, we expressed ket-bra combinations by the spin ladder operators according
to

| ↑〉〈↑ |= S+S− | ↑〉〈↓ |= S+ | ↓〉〈↑ |= S−. (31)

The final step consists in inserting (29b) into (27) and integrating the exponential time
dependence straightforwardly from 0 to Trep. Since we assume that 2γTrep � 1 so that no
trions are present once the next pulse arrives the upper integration limit Trep can safely and
consistently be replaced by∞. This makes the expressions

Gαβ(τ) :=
γ

2γ− i[Eα − Eβ + zh(mβ −mα +τ)]
(32)

appear where τ ∈ {−1, 0,1}. Finally, we use (20c) and summarise

ραβ(t) = e−i(Eα−Eβ )t
¦

(S−S+ρS(0−)S−S+)αβ +
1
∑

τ=−1

Gαβ(τ)R
(τ)
αβ

©

. (33)

This provides the complete solution for the dynamics of d × d matrix ρS from just before a
pulse (t = 0−) till just before the next pulse for which we set t = Trep in (33).

In order to set up the linear mapping M as D × D dimensional matrix with D = d2 we
denote the matrix elements Mµ′µ where µ is a combined index for the index pair αβ and µ′

for α′β ′ with α,β ,α′,β ′ ∈ {1,2 . . . , d}. For brevity, we introduce

Pαβ := [(S+ + 1d)S−]αβ Qαβ := [(S+ − 1d)S−]αβ . (34)

Then, (33) implies

Mµ′µ =
1
2

e−i(Eα′−Eβ′ )Trep
¦

2(S−S+)α′α(S
−S+)ββ ′

+ 2Gα′β ′(0)
�

(S+S−)α′α(S
+S−)ββ ′ + S−α′αS+ββ ′

�

+
�

Gα′β ′(1)Pα′αQ∗β ′β + Gα′β ′(−1)Qα′αP∗β ′β
�©

. (35)

This concludes the explicit derivation of the matrix elements of M . Note that they are relatively
simple in the sense that no sums over matrix indices are required on the right hand side of
(35). This relative simplicity is achieved because we chose to work in the eigenbasis of Hspin.
Other choices of basis are possible, but render the explicit respresentation significantly more
complicated.

B Properties of the Time Evolution

Preliminaries Here we state several mathematical properties of the mapping M which hold
for any Lindblad dynamics over a given time interval which can be iterated arbitrarily many
times. We assume that the underlying Hilbert space is d dimensional so that M acts on the
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D = d2 dimensional Hilbert space of d × d matrices, i.e., M can be seen as D× D matrix. We
denote the standard scalar product in the space of operators by

(A|B) := Tr(A†B), (36)

where the trace refers to the d × d matrices A and B.
Since no state of the physical system vanishes in its temporal evolution M conserves the

trace of any density matrix
Tr(Mρ) = Tr(ρ). (37)

This implies that M conserves the trace of any operator C . This can be seen by writing
C = (C + C†)/2+ (C − C†)/2 = R+ iG where R and G are hermitian operators. They can be
diagonalised and split into their positive and their negative part R= p1 − p2 and G = p3 − p4.
Hence, each pi is a density matrix up to some real, positive scaling and we have

C = p1 − p2 + i(p3 − p4). (38)

Then we conclude

Tr(MC) = Tr(M p1)− Tr(M p2) + i(Tr(M p3)− Tr(M p4)) (39a)

= Tr(p1)− Tr(p2) + i(Tr(p3)− Tr(p4)) = Tr(C). (39b)

Property 1. The conservation of the trace for any C implies

Tr(C) = (1d |C) = (1d |MC) = (M†1d |C), (40)

where 1d is the d × d-dimensional identity matrix and M† is the D×D hermitian conjugate of
M . From (40) we conclude

M†1d = 1d , (41)

which means that 1d is an eigenoperator of M† with eigenvalue 1. Since the characteristic
polynomial of M is the same as the one of M† up to complex conjugation we immediately see
that 1 is also an eigenvalue of M . If the dynamics of the system takes place in n independent
subspaces without transitions between them, the n different traces over these subspaces are
conserved separately. Such a separation occurs in case conserved symmetries split the Hilbert
space. For instance, the total spin is conserved in the dynamics given by (6) if all couplings
are equal. Then, the above argument implies the existence of n different eigenoperators with
eigenvalue 1. Hence the degeneracy is (at least) n which proves property 1. in the main text.

Properties 2. and 3. As for property 2, we consider an eigenoperator C of M with eigenvalue
λ 6= 1 so that MC = λC . Then

Tr(C) = Tr(MC) = λTr(C), (42)

implies Tr(C) = 0, i.e., tracelessness as stated. Since all density matrices can be written as
linear combinations of eigenoperators there must be at least one eigenoperator with finite
trace. In view of property 2., this needs to be an eigenoperator with eigenvalue 1 proving
property 3. The latter conclusion holds true if we assume that M cannot be diagonalised, but
only has a Jordan normal form. If dJ is the dimension of the largest Jordan block, the density
matrix M dJ−1ρ will be a linear combination of eigenoperators while still having the trace 1.
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Property 4. Next, we show that no eigenvalue λ can be larger than 1 in absolute value. The
idea of the derivation is that the iterated application of M to the eigenoperator belonging to
|λ|> 1 would make this term grow exponentially∝ |λ|n beyond any bound which cannot be
true. The formal proof is a bit intricate.

First, we state that for any two density matrices ρ and ρ′ their scalar product is non-
negative 0≤ (ρ|ρ′) because it can be viewed as expectation value of one of them with respect
to the other and both are positive operators. In addition, the Cauchy-Schwarz inequality im-
plies

0≤ (ρ|ρ′)≤
Æ

(ρ|ρ)(ρ′|ρ′) =
Æ

Tr(ρ2)Tr((ρ′)2) ≤ 1. (43)

Let C be the eigenoperator of M† belonging to λ; it may be represented as in (38) and
scaled such that the maximum of the traces of the pi is 1. Without loss of generality this is the
case for p1, i.e., Tr(p1) = 1. Otherwise, C is simply rescaled: by C → −C to switch p2 to p1,
by C → −iC to switch p3 to p1, or by C → iC to switch p4 to p1. On the one hand, we have
for any density matrix ρn

|(C |ρn)| ≤ |ℜ(C |ρn)|+ |ℑ(C |ρn)| ≤ 2, (44)

where the last inequality results form (43). On the other hand, we set ρn := M np1 and obtain

2≥ |(C |ρn)|= |((M†)nC |p1)|= |λ∗|n|(C |p1)|= |λ|n
Æ

(ℜ(C |p1))2 + (ℑ(C |p1))2 (45a)

≥ |λ|n|ℜ(C |p1)|= |λ|n(p1|p1), (45b)

where we used (p1|p2) = 0 in the last step; this holds because p1 and p2 result from the same
diagonalisation, but refer to eigenspaces with eigenvalues of different sign. In essence we
derived

2≥ |λ|n(p1|p1), (46)

which clearly implies a contradiction for n → ∞ because the right hand side increases to
infinity for |λ|> 1. Hence there cannot be eigenvalues with modulus larger than 1.

Property 5. The matrix M can be represented with respect to a basis of the Krylov space
spanned by the operators

ρn := M nρ0, (47)

where ρ0 is an arbitrary initial density matrix which should contain contributions from all
eigenspaces of M . For instance, a Gram-Schmidt algorithm applied to the Krylov basis gen-
erates an orthonormal basis ρ̃n. Due to the fact, that all the operators ρn from (47) are
hermitian density matrices ρ̃n = ρ̃†

n, we know that all overlaps (ρm|ρn) are real and hence the
constructed orthonormal basis ρ̃n consists of hermitian operators. Also, all matrix elements
(ρm|Mρn) = (ρm|ρn+1) are real so that the resulting representation M̃ is a matrix with real
coefficients whence

M̃ c = λc (48a)

implies
M̃ c∗ = λ∗c∗, (48b)

by complex conjugation. Here c is a vector of complex numbers cn which define the corre-
sponding eigenoperators by

C =
D
∑

n=1

cnρ̃n. (49)

Thus, c and c∗ define C and C†, respectively.
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Property 6. In view of the real representation M̃ of M with respect to an orthonormal basis of
hermitian operators derived in the previous paragraph the determination of the eigenoperators
with eigenvalue 1 requires the computation of the kernel of M̃ − 1D. This is a linear algebra
problem in RD with real solutions which correspond to hermitian operators by means of (49).
This shows the stated property 6..
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Figure 6: (a) Residual entropy as function of the applied magnetic field for
N = 3, Jmax = 0.02JQ, and z = 1/1000 to show the position at h = 2π/(zTrep) and
the shift, dashed line at ≈ (0.5JQ+Jmax/2)/z of the nuclear magnetic resonance. (b)
Same as (a) for z = 1/500. (c) Same as (a) for z = 1/250.

C Shift of the Nuclear Resonance

In the main text, the shift of the nuclear resonance due to the coupling of the nuclear spins
to the central, electronic spin was shown in the right panel of Fig. 1(a). The effect can be
estimated by

z∆h≈ ±Jmax/2. (50)

This relation is highly plausible, but it cannot be derived analytically because no indication for
a polarisation of the central, electronic spin in x-direction was found. Yet, the numerical data
corroborates the validity of (50).

In Fig. 6, we show that the nuclear resonance without shift occurs for

zhTrep = 2πn′, (51)

where n′ ∈ Z. But it is obvious that an additional shift occurs which is indeed captured by
(50).

In order to support (50) further, we also study various values of Jmax in Fig. 7. The estimate
(50) captures the main trend of the data, but it is not completely quantitative because the
position of the dashed lines relative to the minimum of the envelope of the resonances varies
slightly for different values of Jmax. Hence, a more quantitative explanation is still called for.
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Figure 7: Residual entropy as function of the applied magnetic field for
N = 3, z = 1/1000 and various values of Jmax. The shifts indicated by the dashed
lines correspond to the estimate (50).

D Entropy Reduction for Other Distributions of Couplings

In the main text, we analszed a uniform distribution of couplings, see Eq. (8). In order to
underline that our results are generic and not linked to a special distribution, we provide
additional results for two distributions which are often considered in literature, namely an
exponential parameterisation as defined in (9) and a Gaussian parametrisation as defined in
(10).
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Figure 8: Residual entropy as function of the applied magnetic field for various bath
sizes N for the exponentially distributed couplings given by (9); panel (a) for α = 1
and panel (b) for α= 0.5 and hence smaller ratio Jmin/Jmax.

The key difference between both parametrisations (9) and (10) is that due to the quadratic
argument in (10) the large couplings in this parametrisation are very close to each other, in
particular for increasing N . Hence, one can study whether this feature is favorable of unfavor-
able for entropy reduction.

Additionally, the difference between α = 0.5 and α = 1 consists in a different spread of
the couplings. For α = 1, one has Jmin/Jmax = 1/e in both parametrisations while one has
Jmin/Jmax = 1/

p
e for α= 0.5, i.e., the spread is smaller.

Figure 8 displays the results for the exponential parametrisation (9) while Fig. 9 depicts the
results for the Gaussian parametrisation (10). Comparing both figures shows that the precise
distribution of the couplings does not matter much. Exponential and Gaussian parametrisation
lead to very similar results. They also strongly ressemble the results shown in Fig. 2a in the
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Figure 9: Residual entropy as function of the applied magnetic field for various bath
sizes N for the Gaussian distributed couplings given by (10); panel (a) for α= 1 and
panel (b) for α= 0.5 and hence smaller ratio Jmin/Jmax.

main text for a uniform distribution of couplings. This is quite remarkable since the Gaussian
parametrisation leads to couplings which are very close to each other and to the maximum
coupling. This effect does not appear to influence the achievable entropy reduction.

The ratio Jmin/Jmax between the smallest to the largest coupling appears to have an impact.
If it is closer to unity, here for α = 0.5, the reduction of entropy works even better than for
smaller ratios.
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