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Abstract

Variational wave functions have been a successful tool to investigate the properties of
quantum spin liquids. Finding their parent Hamiltonians is of primary interest for the
experimental realization of these strongly correlated phases, and for gathering addi-
tional insights on their stability. In this work, we systematically reconstruct approximate
spin-chain parent Hamiltonians for Jastrow-Gutzwiller wave functions, which share sev-
eral features with quantum spin liquid wave functions in two dimensions. Firstly, we
determine the different phases encoded in the parameter space through their correla-
tion functions and entanglement properties. Secondly, we apply a recently proposed
entanglement-guided method to reconstruct parent Hamiltonians to these states, which
constrains the search to operators describing relativistic low-energy field theories - as
expected for deconfined phases of gauge theories relevant to quantum spin liquids. The
quality of the results is discussed using different quantities and comparing to exactly
known parent Hamiltonians at specific points in parameter space. Our findings provide
guiding principles for experimental Hamiltonian engineering of this class of states.
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1 Introduction

Variational wave functions play a key role in the understanding of quantum phases of mat-
ter [1–8]. A paradigmatic example is Laughlin wave functions [5], which can be formulated
as parametric Jastrow states reproducing several key features of certain fractional quantum
Hall effects [9]. Shortly after this, resonating valence bond (RVB) states have been employed
as effective descriptions of high-temperature superconductors [6, 7, 10], and later on, have
been linked to fractional quantum Hall physics in Ref. [8]. These early successes boosted vari-
ational wave functions as theoretical tools to provide simple pictures for a variety of quantum
phases, including topological matter, low-dimensional systems, and tensor networks [11–15].

Perhaps, among these applications, one of the most fruitful has been in the field of quan-
tum spin liquids [16–22]. These are quantum phases characterized by strong correlations and
long-range entanglement among arbitrary far subregions of the system [23], and for these
reasons, semi-classical pictures fail in describing the phenomena involved. Variational wave
functions have been used to distill generic properties such as correlation functions and entan-
glement [14].

Interestingly, despite the conceptual simplicity of Jastrow wave functions, it is often chal-
lenging to find the corresponding parent Hamiltonians - that is, the Hamiltonians supporting
these wave functions as ground states. The major obstruction is that, given a Hamiltonian on a
lattice (possibly with frustration terms), quantum fluctuations may cooperate and induce an or-
dered ground state. This phenomenon is typically referred to as ”order-by-disorder” [13]. This
problem is of primary importance also due to the latest experimental breakthrough in quantum
engineering of synthetic systems [24–28]. In fact, the high degree of interaction tunability of
these platforms offers new perspectives and possibilities in otherwise hardly achievable phases
of matter, including spin liquids, once parent Hamiltonians are (approximately) identified.

Most of the works in parent Hamiltonian construction studied specific variational states
using insightful analytic manipulations [29–44]. Very recently, a series of novel techniques
based on systematic approaches have been considered in Ref. [45–50]. Indeed, the authors of
the latter works introduced new efficient computational algorithms, which remarkably scale
polynomially in the system size when restricting the search to local Hamiltonians that have a
given initial state as the input eigenstate. To benchmark their techniques, they considered
the ground state of some a priori known Hamiltonian as input and checked if the output
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reconstructed operator coincided with that Hamiltonian. So far, however, there have been no
applications of such methods to generic spin liquid variational wave functions, whose parent
Hamiltonians are still undetermined.

The present work is the first step in this direction. For concreteness, here we study the
class of 1D Jastrow-Gutzwiller variational wave functions [30,51]. These states share two key
features with their two-dimensional cousins employed as effective descriptions of quantum
spin liquids: they describe extensive superpositions over some (spatially local) state basis, and
they have in general as weights analytic functions of the space coordinates. Despite their com-
mon appearance, their parent Hamiltonians are not known except for a few fine-tuned cases,
amenable to exact solutions. We use an entanglement-guided algorithm presented in Ref. [50]
to search local parent Hamiltonians for these states. This method relies on the Bisognano
Wichmann theorem [52, 53], a quantum field theory result that links systematically the local
Hamiltonian density to its ground state reduced density matrix. Its advantage with respect to
the other above-mentioned techniques resides in certifying the input state as the ground state
of the reconstructed parent Hamiltonian. Indeed, although the methods in Ref. [45–49] are
of broader applicability (for instance, they allow for extensions to time-dependent problems),
they typically certify the ansatz state to be a generic eigenstate, and not the ground state, of the
output operator. The main disadvantage is that the method is not applicable in case the wave
function cannot be cast as the ground state of Hamiltonian operator supporting low-energy
relativistic excitations.

Since the Bisognano-Wichmann technique requires the input state to exhibits relativistic
low lying physics, we first investigate the entanglement and correlation properties of these
wave functions, identifying a region where the algorithm is expected to perform better. In this
regime, we obtain local approximate parent Hamiltonian searching through different algebras
of local operators. To check our results, we computed the relative entropy, the correlation func-
tions and the overlap between their ground state and the Jastrow-Gutzwiller wave functions,
obtaining fidelities ranging between 95% to over 99%. In addition, we computed the relative
error between the ground state energy and the Jastrow-Gutzwiller variational energy of the
reconstructed Hamiltonian. In all the considered cases, the relative error is less than 1%, even
in the extrapolated thermodynamic limit. We perform systematic searches by increasing both
system sizes and interaction range. These results suggest that the exact, yet unknown, parent
Hamiltonians of these states exhibit long-range features.

In addition, the method allows us to perform direct parent Hamiltonian searches utiliz-
ing simple long-range interactions in the form of monotonous power-law potentials. We find
that, while considerably improving the parent Hamiltonian search, such simple long-range in-
teractions are not always sufficiently rich to capture the (unapparent) complexity of Jastrow-
Gutzwiller wave functions. These results indicate that the search for exact - albeit long-ranged -
parent Hamiltonians for 2D Jastrow-Gutzwiller might be particularly challenging, a fact which
is compatible with the scarcity of exact results in this context (with some notable exceptions,
see Ref. [29,40]).

The remaining of this paper is structured as follows. In Section 2 we introduce the Jastrow-
Gutzwiller states and discuss their physical content through participation spectrum, entangle-
ment entropy and correlation functions. In Section 3 we summarize the Bisognano-Wichmann
Ansatz method which we employ in Section 4 to reconstruct various parent Hamiltonians for
the above-considered states. The last section is for conclusions and outlooks.
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2 Jastrow-Gutzwiller wave functions

2.1 Model wave functions

The Jastrow-Gutzwiller (JG) wave functions are paradigmatic states appearing in several con-
texts, from integrability to topology (e.g. Laughlin states), to quantum spin liquids. They are
characterized by an extensive superposition of spatially local states, and the local weights of
the wave functions are captured by polynomials. Throughout this paper, we investigate the
one-dimensional case defined on a periodic chain Λ of length L. This setting permits the un-
derstanding of finite-volume effects in a systematic manner, as well as enables comparison to
exact results.

Let us introduce the wave functions of interest, through the variables ni ∈ {0, 1} defined
at each site i ∈ Λ. In the basis {|n1n2 . . . nL〉}, these states read:

|Ψα〉=
∑

PN {n}

ψα({n}) |n1n2 . . . nL〉 , (1)

ψα({n}) =
1
Z
(−1)

∑L
i=1 ini

L
∏

1≤i< j≤L

sin
�π

L
( j − i)

�αni n j
.

Here the sum is over combinations PN{n} constrained by
∑

i ni = N . Pictorially, the {ni} vari-
ables are occupation numbers of hard-core bosons living on the lattice. The real parameter
α and the filling fraction ν= N/L control the properties of the states. For specific combined
values of ν and α, conformal field theory calculations have been used to derive exact results
pertaining the parent Hamiltonians of these states [42–44, 54, 55]. Throughout this paper,
we will consider exclusively the half-filling case ν= 1/2 and L even; the main motivation
being that, in spin language, this regime captures both paramagnetic and antiferromagnetic
phenomenology.

Within this setting, exact results are available only for α ∈ {0,1, 2}. In Ref. [56], it was
proven that α= 0 corresponds to the XXZ chain at ∆= −1, while the state at α= 2 is the
ground state of the Haldane-Shastry Hamiltonian [30, 31]. The case α = 1 corresponds to a
(symmetrized) Slater determinant, and its parent Hamiltonian is a free fermionic one (up to
boundary contributions).

2.2 Participation spectrum

To obtain insights for generic values of α, it is instructive to rephrase Eq. (1) in the language
of participation spectroscopy [58–62]. This consists of rewriting the wave functions Eq. (1) in
a pseudo-energy fashion:

ψα({n}) = 〈n1n2 . . . nL|Ψα〉 (2)

≡
e−Hα[{n}]

Zα
. (3)

In the last equality, we defined the function Hα[{n}]:

Hα[{n}] = α
∑

1≤i< j≤L

nin jV (i, j) + E0[{n}], (4)

V (i, j) = − log
h

sin
�π

L
( j − i)

�i

, (5)

E0[{n}] = log cos
�∑

πini

�

. (6)
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The functional coefficient E0[{n}] is an energy constant, while V (i, j) is a logarithmic inter-
action between occupied particles mediated by chord distances. Thus, we recognize Hα[{n}]
to be a 2D Coulomb gas (classical) Hamiltonian constrained in a 1D circular lattice [54, 57].
Analogously, the wave function normalization Zα is a classical partition function:

Z2
α =

∑

PN ({n})

e−2Hα[{n}]. (7)

The parameter α plays the role of an inverse temperature and controls the leading weights in
the JG states. The modulus squared coefficients in Eq. (1):

pα({n})≡ |ψα({n})|2 =
e−2Hα[{n}]

Z2
α

, (8)

are Boltzmann weights with classical Hamiltonian 2Hα and partition function Z2
α. The pseudo-

energies of 2Hα are collectively named participation spectrum and denoted ε({n}).
The ground state εmin determines the larger weights in the sum Eq. (1). For α > 0, the

Hamiltonian favors repulsion among particles, constrained by the half-filling condition. Thus,
the most probable configurations come from alternating occupation numbers. At negative
inverse temperature α < 0 the dominant coefficients are those maximizing the number of
occupied nearest neighboring sites. For both cases, such configurations are not unique but
degenerate, and for large values of α these states are expected to be the most relevant con-
tributions to the Jastrow-Gutzwiller wave functions. Consequently the JG state are captured
by the coherent superposition of these degenerate configurations, which leads, for α� 1 and
α � −1, respectively to antiferromagnetic and ferromagnetic Greenberger–Horne–Zeilinger
(GHZ) states [63]:

|Ψα〉α�1 '
1
p

2
(|1010 . . . 10〉+ |0101 . . . 01〉) ,

|Ψα〉α�−1 '
1
p

L

L
∑

i=1

�

�. . . 0i−11i1i+1 . . . 1i+L/20i+L/2+1 . . .
�

. (9)

The former state is usually dubbed Néel/anti-Néel state and corresponds to a global
Schrödinger cat state. Apart from these extreme limit, at intermediate values of α the sys-
tem exhibits competing weights, which render rigorous analytical arguments demanding.

To test this heuristic argument, we consider the gap G = εmin − ε1st between the ground
state energy of Eq. (4) and its first excited energy, which we refer to as participation gap.
Let us discuss the case α > 0. It is convenient to introduce the number of ferromagnetic
domain walls as the number of consecutive occupied/unoccupied sites Ndws. For example
Ndws(|010101〉) = 0, while Ndws(|011001〉) = 2. The Néel and anti-Néel states, i.e. the most
probable states, are the only ones with Ndws = 0, and all other pseudo-energy excitations can
be easily labelled with this number. In Fig. 1 we present the participation spectrum of the JG
states for α= 2, 6 and L = 16. The gap G between the most probable and the second most
probable state increases linearly with α, with an exactly computable L-dependent constant gL .
This saturates a thermodynamic value1 g∞ already for modest system sizes.

It is important to emphasize one aspect that is relevant in determining the system proper-
ties in the thermodynamic limit. The ground state pseudo-energy with alternating occupied

1We get an analytic expression for the constant:

g∞ = 2 lim
L→∞

log

�

sin(2π/L)
∏L/2−2

r=1 sin(2rπ/L)

sin(π/L)
∏L/2−2

r=1 sin((2r + 1)π/L)

�

' 0.9031654195 . . . , (10)

where the ellipsis indicate further computable digits.
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Figure 1: (a,b) The participation spectrum ε({n}) for α = 2,6 and L = 16. The
spectrum is indexed using the number of domain walls configurations Ndws. (c) The
participation gap G increases linearly with α, with a coefficient that saturates to a
constant g∞ already at modest system sizes. (d) Pseudo-energy differences between
two domain walls as a function of the domain-wall separation r. This is a measure of
the confining potential between domain walls. The black solid line is the Luttinger
liquid prediction [60] with Luttinger parameter K = 1/α. The fit describe extremely
well our data, for 4≤ L ≤ 64.

sites is doubly degenerate for every system size. Instead, although the configurations with
domain walls are exponentially suppressed in α, their degeneracy scales linearly with system
size. In particular at L ∼ exp (cα) for some constant c, we expect a competing and non-trivial
behavior between the Néel sector and the first excited sector. This has potentially relevant
consequences, which are difficult to predict within the present study. In particular is unclear
what kind of effects this pseudo-energy thermodynamics can induce on quantum observables
such as, e.g., correlation functions.

At a practical level, our results are consistent with the intuition above, that the Néel state
predominately contributes for large α. In order clearly see the effects of the aforementioned
thermodynamic competition for α= 6, we would have needed around L ∼ 104 sites. The large
gap for any computable finite L considered, renders these excited state sectors negligible.

The results for α < 0 are analogous to the latter, whereas the most probable configurations
are the ferromagnetic ones and the excited pseudo-energy states are obtained as functions of
antiferromagnetic domain walls, i.e. number of alternating occupied/unoccupied sites. How-
ever the most probable states there are L-degenerate: in the thermodynamics of the Coulomb
gas this implies the low-lying pseudo-energy excitation are negligible even at small negative
values of α.

Finally, from the substructure of the Ndws = 2 sector we can extract how these domain
walls interact. In particular, the pseudo-energy difference∆ε2dw = ε2dw(r)− ε2dw(2) between
domains separated by a distance r and those close together (r = 2) has been used for local
antiferromagnetic quantum Hamiltonian systems to distinguish between critical and symmetry
broken phases of matter. In the former case, the domain walls are logarithmically confined
with the separation distance; instead, in the latter this confining is linear. Moreover, the pre-
factor of this potential for 1D Luttinger liquids [66, 67] is related to the Luttinger parameter.
This has been tested in Ref. [60], where its authors analyze the XXZ chain.
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Figure 2: We plot the entanglement entropy SvN(ρJG) at different values of α for
L = 12,20, 24,28. Here ρJG is the half-system reduced density matrix of the JG state.
The results in green line are obtained through ED using symmetry restrictions. The
red lines are the ferromagnetic GHZ predictions for the corresponding system sizes,
while the black one is the Néel/anti-Néel cat state entanglement entropy.

Because of the explicit form of the classical Hamiltonian density Eq. (6), the interaction
between two domain walls is expected to be logarithmic with their separation distance (Fig. 1,
panel (d)). By analogy with the XXZ phenomenology, one is tempted to conclude the JG
states are ’critical’. If furthermore one assumes these states are representatives of Luttinger
liquids, the fitted pre-factor suggests a Luttinger parameter K = 1/α. The latter statement
has been recently conjectured [64]. This hypothesis is supported by CFT arguments [56] and
from studies on the Resta polarization [65]. Here the authors estimate αc = 4 as critical value
separating a conducting Luttinger phase to an insulating Néel ordered phase. Our data do not
exhibits any transition point in the participation gap, nor a clear distinction between a gapped
and a gapless phase. As remarked earlier, this may be due to a finite size effect, which we are
not able to resolve at computationally affordable system sizes. In fact it is possible that the
Ndws = 2 domain walls sector results as decoupled for physical observables of the system, after
a critical value of α. At present, however, the consequences of the participation spectroscopy
to physical observables are unclear, and further studies are needed in this direction. In the
next two subsections we improve our understanding of the Jastrow-Gutzwiller wave functions
by numerically studying the entanglement entropy and the correlation functions. We focus
on these properties among others because they serve in the reconstruction technique and its
quality checks. The considered system sizes suggests the existence of a critical phase between
a Néel and a ferromagnetic GHZ regimes. Using finite size scaling we can bound the former
in the interval α ∈ (0, 4.3).

2.3 Entanglement entropy

In this subsection, we discuss the entanglement entropy properties of the JG states (for related
studies of Rényi entropies in 2D, see Ref. [14]). Entanglement is a fundamental quantity
measuring quantum correlations among subregions of the system [68–73]. For pure states,
this is determined by the spectrum of the reduced density matrix [74, 75]. This operator is
defined by giving a bipartition of the chain Λ= A∪ Ā and a state |Φ〉:

ρA = trĀ |Φ〉 〈Φ| . (11)
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Figure 3: (Left) The function S̃vN(ρJG) is plotted versus the parameter α for different
L. Here ρJG is the half-system reduced density matrix of the JG state. The shaded
area corresponds to states in the critical regime. (Right) Entanglement entropy of
the JG reduced density matrix. The critical region extends for α ∈ (0, 4.30).

Given its spectrum σ(ρA), we define the von Neumann entropy by:

SvN(ρA) = −trAρA logρA = −
∑

λ∈σ(ρA)

λ logλ. (12)

This function is a bona fide measure of entanglement for pure states when the Hilbert space
factorizes in a tensor product form, H =HA⊗HĀ, and for this reason is usually referred to as
entanglement entropy [76, 77]. Fixing A= {1,2, . . . , L/2}, we compute through exact diago-
nalization (ED) the von Neumann entropy for the state Eq. (1). We check the GHZ limits by
comparing with the analytic calculations for the states in Eq. (9):

Sα<0(ρA)' log L, Sα�1(ρA)' log2. (13)

The agreement is shown in Fig. 2. We isolate an intermediate region between the GHZ regimes
by introducing the function:

S̃vN ≡
SA(ρJG)− log2

log L − log 2
. (14)

We plot this function in Fig. 3. Within this interval, S̃vN is logarithmic, with a pre-factor close
to 1/3. This is consistent with exact solutions, where the systems display a critical regime.
For instance, at α = 1 the system is a linear combination of Slater determinant. At this point
the JG state correspond to a free fermion gas and the entanglement entropy can be computed
analytically [78,79]:

Sα=1 =
c
3

log
�

L
2

�

+ o(1). (15)

Here c is the central charge (c = 1 for free fermions) and the sub-leading term is a constant.
The same scaling holds at α = 2, since the Haldane-Shastry Hamiltonian share the same uni-
versality class of the Heisenberg antiferromagnet [30, 56]. By continuity, we argue the same
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critical behavior extends to the whole intermediate region. This is in line with the Luttinger
liquid conjecture (see Sec. 2.2). Since the latter is of interest for the subsequent analysis,
we estimate its bounding transition points. From Fig. 3 is clear that there is a transition in
parameter space at α= 0.

We perform finite-size scaling on our data to estimate the critical value αc of the JG wave
functions separating a critical phase with respect to a Néel ordered state. This is a phenomeno-
logical finite-size scaling procedure, since it is inherently related to a parameter characterizing
the variational wave functions, and not associated to a coupling term in a Hamiltonian. Nev-
ertheless, it is useful to bound the region of validity of the reconstruction method (Sec. 3),
which relies on relativistic invariance. We consider the scaled entanglement entropy S̃(α) as
an order parameter, as well as its derivative:

χ(α) =
d

dα
S̃(α), (16)

which is roughly a susceptibility. We choose to consider both these quantities since the scaling
we have is very mild with system size. From Fig. 3, introducing t = log(L) and α̃= (α−αc)/αc ,
we use the following simplified scaling ansatz:

χ(α)tγ = g(α̃t1/ν), (17)

S̃(α)tβ = G(α̃t1/ν). (18)

To perform the finite size scaling we vary the exponents ν,γ and the critical value αc over
a suitable range of parameters. The fit is the best over different degrees of polynomials, test
with a least-square method against the data [104]. By requiring the exponents to obey scaling
relations γ = β − 1/ν we are able to reduce the fitting regime. We estimate the transition
at αc = 4.3 ± 0.1 with ν = 2.1 ± 0.2 and β = −0.15 ± 0.03. Value and error bars are the
average and standard deviations of the best fits varying the range of system sizes considered.
In Fig. 4 we plot both the order parameters of interest and the optimal data collapse. While
the quality of the collapses is generically good, the modest system size are not able to resolve
more efficiently the exponent landscape, which results quite flat. We believe a more systematic
analysis is needed to better characterize the entanglement entropy and its phase transition for
the JG wave functions. This would be a useful test also for the Luttinger liquid conjecture
in Ref. [65], where it is argued the transition is around the value αconj

c = 4. In this paper
we choose to follow a more restrictive and cautious approach, focusing on subintervals of
α ∈ (0,4) in the rest of the paper.

A concluding remark, which will be useful later, is about the α= 0 point. As previously
discussed in the context of participation spectrum, this point is peculiar since the JG state
is in an equal-weight combinatorial superposition. Its exact entanglement entropy can be
computed [80]:

Sα=0 =
1
2

log
�

πL
2

�

+
1
2
− log 2+ o(1). (19)

We see that the pre-factor is different from the one in Eq. (15), signal that the state is not
representative of the same phase. One can see this by investigating the properties of the exact
parent Hamiltonian at α = 0: the XXZ chain at the ferromagnetic transition [56, 80]. This
Hamiltonian has a gapless quadratic spectrum, thus it breaks relativistic invariance due to
a different dynamical exponent2 z = 2. This observation will be important when trying to
reconstruct local Hamiltonians using a relativistic ansatz. Indeed, as we shall comment in
Section 4, for α= 0 the algorithm will not be able to return a correct parent Hamiltonian, as
expected.

2 This quantity measures the scaling ratio of space and time after a scale transformation. For relativistic theories
z = 1.
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Figure 4: In the top panels we plot S̃(α) and χ(α) nearby the expected transition
αc . The results of the data collapse for the ansatz Eq. (17) are plotted in in the lower
panels. The best fit gives an estimate of αc = 4.3(1) while ν= 2.1(2), β = −0.15(3).
We consider the interval α ∈ (2,7) and L = 8,12, 16,20, 24,28.

2.4 Correlation functions

To further characterize the Jastrow-Gutzwiller states, we compute the one-body and two-body
spin correlation functions {σz ,σ+,σ−}. Their scaling properties resolve the nature of the state
being critical or not.

Due to the binary nature of the ni variables, for notational convenience we introduce the
unary-not operator Fi j acting on the site i, j, whose action on basis state is defined by logical
negation on ni and n j . Since the system exhibits a U(1) symmetry related to number conser-
vation, we compute only U(1) invariant correlation functions. Recalling σz = 2n− 1 with n
the number operator we have:

〈σz
i 〉=

∑

PN ({n})

(2ni − 1)
�

�ψα({n})
�

�

2
,

〈σz
iσ

z
j 〉=

∑

PN ({n})

(2δ(ni , n j)− 1)
�

�ψα({n})
�

�

2
, (20)

〈{σ+i ,σ−j }〉=
∑

PN ({n})

(1−δ(ni , n j))ψα({n})ψα(Fi j{n}).

At half-filling the first one is identically zero. The latter ones can be easily implemented numer-
ically. The correlation length can be extrapolated through finite size scaling of the connected
correlation function 〈σz

iσ
z
i+L/2〉c:

〈σz
iσ

z
j 〉c ≡ 〈σ

z
iσ

z
j 〉 − 〈σ

z
i 〉〈σ

z
j 〉= a

e|i− j|/ξ

|i − j|γ
, (21)

1
ξ
= − lim

L→∞

log
�

〈σz
iσ

z
i+L/2〉c

�

L/2
≡ lim

L→∞

1
ξL

. (22)

Here a is a constant, while γ characterize the algebraic decay. In all the above equations, we
exploited periodic boundary conditions.

Let us stress that the definition Eq. (22) is meaningful only when the cluster decomposi-
tion principle holds. This requires the connected correlation function to decay to zero with
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Figure 5: (Left) Connected correlation function against 1/L. The seemingly alge-
braic decay suggests the the cluster decomposition requirement is fulfilled for the
considered α. These are chosen representatives of the critical phase. (Right) Inverse
correlation length for different values of α in the critical phase. For both plots, we
considered chains of lengths 4≤ L ≤ 36. To avoid odd/even effects, we present only
L multiples of four.

the distance between the spins. This definition is used throughout in the literature of crit-
ical phenomena, where the phase is defined through the ground state manifold of specific
Hamiltonians [82]. In this context, symmetry broken phases at finite system size manifest
themselves as a coherent superposition of the ground states in the different symmetry sectors
(GHZ states) [23]. The latter are a remarkable example of states which do not respect the
cluster decomposition.

Having the above remark in mind, we consider the definition Eq. (22) to also characterize
the parameter space of the JG wave functions. Here we first check the system is fulfilling the
cluster decomposition principle condition. When this is not the case, we expect the JG state to
be representative of a finite size symmetry broken phase. Within this setting, if the parameter
ξ is finite, the exponential behavior dominates on the algebraic one and the system is gapped,
while if ξ→∞ the system behaves as critical.

In Fig. 5, we show the results of our fitting procedure, plotting the inverse correlation
length versus 1/L. For the chain lengths considered, the thermodynamic limit is difficult to
estimate since at finite size the inverse correlation length 1/ξL can be trusted upon the value
1/L. However, all values α < 4.0 are compatible with an infinite correlation length.

For large positive values and negative values of α, the cluster decomposition principle fails.
The corresponding GHZ states (introduced in Sec. 2.2), representatives of symmetry broken
phases, are confirmed to reproduce the correlation functions of the JG wave functions. A
detailed discussion is given in Appendix A.

3 Entanglement guided search for parent Hamiltonians

In this section we summarize the scheme we employ to reconstruct parent Hamiltonians [50].
As previously remarked, this method requires additional conditions to work. This in contrast
to other techniques [45, 46] based on the quantum covariance matrix (QCM). The latter are
simpler to implement since are based on requiring the input state to satisfy the zero energy vari-
ance condition. Thus, those methods generically guarantee that the input state is an eigenstate
(not the ground state) of the parent Hamiltonian. Here comes the reason we have chosen to
use the Bisognano-Wichmann Ansatz (BWA) scheme: the additional physical constraints guar-
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antee the parent Hamiltonian of the input state as the ground state. This condition is at the core
of eventual simulation protocols, since excited state are less robust in analogue experiments.
Nevertheless, the relativistic requirement can be applied only to a narrow number of settings:
for example if non-translational system are considered, such as disordered systems, BWA fails
while QCM still gives meaningful results [103], provided a a fortiori analysis is done on the
parent Hamiltonian space and their spectra. The method we adopt is based on the Bisognano
Wichmann (BW) theorem, which for convenience we recap in the first subsection. Then, we in-
troduce the common ingredients shared with other aformentioned techniques [45–47,49,50].
We conclude this section by presenting the algorithm and our chosen implementation.

3.1 Bisognano-Wichmann theorem and lattice models

By definition, reduced density matrices are positive operators with bounded spectrum
σ(ρA) ⊂ [0,1]. Consequently, it is always possible to find a lower bounded operator KA such
that ρA ∼ exp(−KA). This object is usually referred to as entanglement or modular Hamilto-
nian, and in general is highly non-local, being the logarithm of the non-local operator ρA.

Remarkably, Bisognano and Wichmann proved that the entanglement Hamiltonian acquire
a local density when considering the ground state of a relativistic quantum field theory parti-
tioned into two half-spaces [52,53,77,81]. Moreover, the density of this modular operator is
proportional to the one of the theory Hamiltonian. The statement is the following.

Theorem (Bisognano Wichmann) Given a local relativistic QFT in d + 1 spacetime dimen-
sions, described by an Hamiltonian H =

∫

dd xH(x) the half-space reduced density matrix of
the vacuum |Ω〉 is:

ρA = trB |Ω〉 〈Ω|=
e−(2π/ν)KA

ZA
, (23)

KA =

∫

A
dd x x1H(x), ZA = trAρA. (24)

Here A and B are respectively the manifolds A = {x ∈ Rd : x1 ≥ 0} and its complementary,
while v is the sound velocity of the relativistic excitations. Sometimes, the pre-factor β ≡ 2π/v
is dubbed entanglement temperature due to the analogy with respect to thermal density ma-
trices.

More recently, this result has been revisited in the context of holography and many-body
physics [83–94]. In particular, the theorem has been extended for theories with conformal in-
variance [83,85,86]. Given the subsystem A= {x ∈ Rd |0≤ r ≤ R, r = ||x ||}, its entanglement
Hamiltonian reads:

KA =

∫

A
dd x r

�

1−
r
R

�

H(x). (25)

Interestingly, when considering lattice systems exhibiting relativistic low-lying excitations, the
discretisation of Eq. (23) and Eq. (25) gives a fine approximation of their reduced density
matrices [78, 93, 95–100], with even exact results for specific models [101, 102]. Moreover,
the discrepancies due to the lattice structure disappear in the thermodynamic limit.

This motivates the core idea behind the BWA method: to find optimal BW entanglement
Hamiltonian describing the reduced density matrix of state of interest, in our case the Jastrow-
Gutzwiller wave functions. For concreteness, in the remaining of this paper we make use of
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the discrete version of Eq. (25) in 1D system of size L and A= {1,2, . . . , L/2}:

ρBW
A =

e−KA

ZA
, ZA = trAρA, H =

∑

r=1,2,...,L/2

hr , (26)

KA =
∑

r=1,2,...,L/2

r
�

1−
2r
L

�

hr . (27)

Here r label the sites, hr is the lattice density of the Hamiltonian H, while KA the corresponding
modular operator. Conventionally, we chose to absorb the entanglement temperature in the
Hamiltonian density couplings hr .

3.2 Basis of local operators

To quantitatively describe the theory and entanglement Hamiltonians on the lattice we in-
troduce the basis of local operators. As previously mentioned, these fully characterize the
operator space of the parent Hamiltonian search.

We say an operator is k-local if either (1) it has finite domain k-nearby few body operators,
or (2) it is written as a linear combination of the latter. Furthermore, we require k to be
constant for any finite system size L we consider. If these conditions are not fulfilled, we say
the operator is non-local.

We define a basis of k-local operators as the set of matrices {Oµ,r}µ∈I ,r∈Γ . Here I is a set of
internal indices, while Γ ⊂ Λ is a set of sub-lattice ones. Depending on the values of I and Γ ,
these basis span different vector spaces of local operators, whose generic element is:

H =
∑

α∈I ,r∈Γ
wα,rOα,r . (28)

The dimension of these spaces is thus given by the combined cardinality of the label sets
D = |I ||Γ |.

Before moving on, we clarify the above notation through few examples. Let us first consider
the Pauli algebra at each site r ∈ Γ = Λ:

B1 = {1r ,σ
x
r ,σ y

r ,σz
r}r∈Λ with O0,r = 1r , O1,r = σ

x
r , O2,r = σ

y
r , O3,r = σ

z
r . (29)

The generic linear combination is:

H =
∑

r∈Λ

3
∑

α=0

wα,rOα,r . (30)

We see the total dimension is D = 4L in this case. A less trivial example is the two-body nearest
neighboring interactions:

B2 = B1 ∪ {σx
rσ

x
r+1,σ y

r σ
y
r+1, . . . ,σz

rσ
z
r+1}r∈Λ. (31)

Here α covers, in addition to the elements in Eq. (31), the following two-body operators at
each site r:

O4,r = σ
x
rσ

x
r+1, O5,r = σ

x
rσ

y
r+1, . . . , O10,r = σ

z
rσ

y
r+1, O11,r = σ

z
rσ

z
r+1. (32)

The linear space has dimension D = 12L. Imposing symmetries one can reduce the dimen-
sion D of the operator space, in the same fashion symmetry constraints can be used to block
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diagonalize observables. For example, imposing U(1) and translational symmetry, a possible
operator basis is the following:

BNN(2) =

¨

∑

r∈Λ
(σ+r σ

−
r+1 +σ

−
r σ
+
r+1),

∑

r∈Λ
(σz

rσ
z
r+1),

∑

r∈Λ
σz

r

«

≡ {h1, h2, h3}. (33)

Here, the index α takes three values (D = 3) and the Hamiltonian is:

H =
∑

α

wαhα ≡
∑

α

wα

�

∑

r∈Λ
Oα,r

�

. (34)

In the second step of the above equation, we wrote the operators hα in terms of Eq.(31). Thus,
the freedom of choosing the operator basis enables us to specify the required symmetries of
the parent Hamiltonian, and it allows a reduction of complexity (for translational invariant
systems, D ∼O(1) in system size).

Motivated by the symmetries of the JG states, we will consider the following basis for
k ≥ 2:

BNN(2) =

¨

∑

r∈Λ
(σ+r σ

−
r+1 +σ

−
r σ
+
r+1),

∑

r∈Λ
(σz

rσ
z
r+1),

∑

r∈Λ
σz

r

«

, (35)

BNN(k+1) = BNN(k) ∪

¨

∑

r∈Λ
(σ+r σ

−
r+k +σ

−
r σ
+
r+k),

∑

r∈Λ
(σz

rσ
z
r+k)

«

.

Varying the value of k we consider an increasing number of nearest-neighboring hopping and
exchange operators. Finally, since the physics of the JG state at α = 2 is captured by a long
range model, we shall consider the basis of non-local operators:

BLR =

¨

∑

r<m∈Λ

π2

L2

σ+r σ
−
m +σ

−
r σ
+
m

sin2(π(r −m)/L)
,
∑

r<m∈Λ

π2

L2

σz
rσ

z
m

sin2(π(r −m)/L)

«

. (36)

These basis are both U(1) and translationally invariant, thus exhibits coefficients wα not de-
pending on lattice sites. In literature, non-translational invariant basis have been employed
in the reconstruction of disorder system Hamiltonians [45, 48, 103], or to enlarge the set of
Hamiltonians having the input state as an eigenstate [46].

3.3 Parent Hamiltonian reconstruction method

We are now in position to present the BWA scheme. Let ρinput
A be the half-system reduced

density matrix of the the input state. We want to find optimal coefficients wα in Eq. (34) such
that:

ρ
input
A ' ρBW

A ({wα}). (37)

This optimization can be implemented using any estimator of distance between ρinput
A and

the model reduced density matrix ρBW
A ({wα}). For example one can use the Kullback-Leibler

divergence between the participation spectra of the reduced density matrices [60]. This es-
timator has the advantage of being easy to implement even for larger spacetime dimensions,
but has the drawback of leading in general to a non-convex optimization. Such obstacle can
be anyway surpassed using stochastic optimization algorithms. Instead, for the class of models
described by the basis in Eq. (35) and Eq. (36), it can be proven that any convex estimator
acting on the space of density matrices leads to a convex optimization problem (with a unique
solution). Among these, we have found particularly useful for numerical implementations the
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relative entropy, which we adopt in the remaining of this paper. Given two density operators
ρ and σ, it is defined as:

S(ρ|σ) = Tr(ρ logρ)− Tr(ρ logσ). (38)

This function quantifies the distance between between ρ and σ, it is non-negative S(ρ|σ)≥ 0
(with the equality holding only if ρ = σ) and it is jointly convex. In particular, its restriction
to a single argument is a convex function. As already stated, the relative entropy leads to a
convex optimization admitting, up to numerical precision, a unique solution [50]:

~w? = argmin
~w

S(ρ|σBW(~w)). (39)

The relative entropy value express a ”distance” in the reduced density matrix manifold, and
quantify the difference between the initial wave function and the closer one fulfilling the BW
theorem.

We implement a gradient descent on the relative entropy. Introducing the notation
∂α = ∂ /∂ wα and:

〈O〉GS ≡ Tr(OρA), 〈O〉BW,~w ≡ Tr(OρBW
A (~w)), (40)

the gradient of the relative entropy reads

∂αS(ρA|ρBW
A (~w)) = 〈hα〉GS − 〈hα〉BW,~w(n) . (41)

We remark that the actual input needed are just the expectation values over the ground state
and over the ”thermal” BW density matrix. The former can be sometimes computed analyti-
cally, as in the JG states (see Section. 2), while the latter can be implemented with different
numerical methods, including quantum Monte Carlo when no sign problem is present.

4 Reconstruction of Jastrow-Gutzwiller parent Hamiltonians

In this section, we apply the entanglement based reconstruction technique to JG wave func-
tions, considering different choices for the operator basis. We quantify the quality of the recon-
struction utilizing (1) relative entropies between reduced density matrices, (2) wave function
overlaps, and (3) correlation functions. In view of the discussion in section Sec. 2, we focus
here on the regime 0< α < 4; the regimes where the wave functions are captured by GHZ
states are instead discussed in Appendix A.

4.1 Models for reconstruction

We consider two paradigmatic classes of operators as candidates for the parent Hamiltonian
reconstruction. The first one are the k-local Hamiltonians constructed from the basis BNN(k)
introduced in Eq. (35):

Hk =
∑

r

k−1
∑

p=1

Jp

2
(σ+r σ

−
r+p + h.c.) +∆pσ

z
rσ

z
r+p + hσz

r . (42)

These Hamiltonians for k ≤ 4 are archetypal for the study of strongly correlated matter in
1D and 2D, and have been used for ab initio numerical studies of quantum spin liquid phases
in different lattices [18–21, 51, 104]. We notice that these operators contains the XXZ and
the J1 − J2 model as particular cases. The second class are long-range XXZ Hamiltonians con-
structed from the basis BLR in Eq. (36):

HLR =
π2

L2

∑

r<m

1

sin2 (π(m− r)/L)

�

J1

2
(σ+r σ

−
m + h.c.) +∆1σ

z
rσ

z
m

�

. (43)
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Figure 6: Scaling of the ratio of the converged coefficient ∆1/J1 over different basis
for different values of the parameter α. The shaded region corresponds to the critical
values of the XXZ chain.

The reason in the latter choice is twofold: on one hand J1 =∆1 is the Haldane-Shastry Hamil-
tonian, the exact parent Hamiltonian at α= 2. On the other hand, in Ref. [54] Shastry con-
jectured that α 6= 2 is the ground state of Eq. (43). We remark that the parent Hamiltonian is
defined up to an overall multiplicative constant which sets the energy scales, and an additive
zero energy value. Thus, without loss of generality, we factor out the J1 term and we are
interested in the values {w/J1}.

Numerical implementation We search parent Hamiltonians of the above form through the
BWA technique. The implementation is based on exact diagonalization (ED) routines in For-
tran, using standard libraries and LAPACK [105]. We performed gradient descents with various
threshold error εth = 10−3 − 10−6. In the considered region, we notice no qualitative change
in the observable behavior, although a smaller threshold error requires more steps in the gra-
dient descent convergence. For convenience, we present the results only for εth = 10−4. At
this value, the observables are determined with a precision of around 0.1%.

The initial value of the couplings is drawn by a uniform random distribution on the interval
[−2, 2]. Here the spreading plays a minimal role: since the optimal solution is unique (see
Section 3), the only ambiguity is numerical and due to the truncation to εth. The resulting un-
certainty is in the last sensible digit of the relative entropy and of the other observables, which
we lift through averaging over 50 initial configurations. As argued in Sec. 2, in the thermody-
namic limit the system should exhibit a critical regime in the region α ∈ (0, 4.30). However, for
the modest values considered L ∈ {4, 6, . . . , 20}, we chose to focus on the subregion α ∈ (0,4),
where finite-size effects are less severe.

4.2 Diagnostics for reconstruction

Let us introduce the observables we use to access the quality of the parent Hamiltonian re-
construction. Firstly, we evaluate the relative entropy S(ρjas|ρBW ) between the converged BW
reduced density matrix ρBW and the exact JG one ρjas. Since this function is a ”distance” in the
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Figure 7: Relative entropy of the JG reduced density matrix and the BW converged
one. We see that enlarging the domain of the operator involved, the quality of the
results increases. The line α= 1 corresponds to a free fermions gas.

density matrix space, it quantifies how much the BW density matrix approximates the input
state.

We then introduce the module of the overlap |〈ψjas|ψrec〉| between the JG wave function
|ψjas〉 and the ground state of the reconstructed Hamiltonian:

Hrec|ψrec〉= EGS|ψrec〉. (44)

We stress that this quantity is meaningful only for finite size systems, since it decays to zero
in the thermodynamic limit, for any arbitrary small difference between two vector states (in
analogy with orthogonality catastrophe [106]).

Finally, we compute the following quantity, a cumulative estimate of how much the corre-
lation functions over the reconstructed state differ from the exact ones:

V (rec|jas)≡
1
p

L

�

�

�

�

�

�〈σz
0σ

z
j 〉rec − 〈σz

0σ
z
j 〉ex

�

�

�

�

�

�=
1
p

L

√

√

√

√

L−1
∑

j=1

�

〈σz
0σ

z
j 〉rec − 〈σz

0σ
z
j 〉ex

�2
. (45)

Here the first term is the correlation function respectively on the ground state of the recon-
structed parent Hamiltonian and on the JG state eq (20). The 1/

p

(L) factor renders this object
non-extensive, which is desirable when comparing different system sizes. For convenience, we
call this operator the cumulative correlation difference.

Equipped with these tools, in the following subsections we separately present the analysis
for the previously introduced basis Eq. (42) and Eq. (43). On the former, we first discuss over-
laps and relative entropies for different basis choices, and finally discuss correlation functions.
On the latter, we focus the analysis only on the relative entropy.

4.3 Reconstruction with NN(k)

We begin by considering the models in Eq. (42) for k = 2,3, 4. If a p-local Hamiltonian exists,
we expect the terms k > p to be finite size terms and to decay to zero enlarging the system
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Figure 8: Overlap matrix between the ground state of the reconstructed parent
Hamiltonian and the input JG state. As in Fig. 7, NN(k) labels the model used.
(Left) Using only nearest neighbors interactions, the reconstruction is faithful at
α= 1. However, enlarging the nearest neighboring operators and fixing the error
at ε∼ 10−4 the superposition is susceptible to finite size effects, as shown in panel
(Center),(Right).

size. We anticipate that our result suggests that an exact local parent Hamiltonian exists only
for α = 1 (see, e.g., the scaling of the overlap depicted in Fig. 8), which corresponds to free
fermions 2-local Hamiltonian. At different values of α, the reconstruction is only approximate,
although it improves considerably increasing the basis NN(k). We deduce that the exact parent
Hamiltonian should involve long-range interactions.

Search for nearest-neighbor Hamiltonians. - Let us first restrict the easiest setting, that
is choosing the NN(2) basis. In this case, the Hamiltonian Eq. (42) corresponds to the XXZ
model. The value of interest is ∆1/J1. When this is zero, the model reduces to the XX chain,
which is a free fermion model up to a Jordan Wigner transformation. Moreover, it is interesting
to compare our results with those of Ref. [56]. There, the authors considered the inverse varia-
tional problem, optimizing the parameterαwith respect to the fixed ratio of∆1/J1. They argue
that for α ∈ [0, 2] the wave functions are representatives of the critical phase ∆1/J1 ∈ [−1,1]
characterizing the spin-1/2 XXZ chain. Our results are compatible with their findings and the
analytic results (Fig. 6).

For larger values of α, our results still indicate a very clear convergence to the thermo-
dynamic limit. Moreover, the extrapolated values (Table 1) always indicate that ∆1 > J1 in
this regime: this is compatible with an antiferromagnetic state with a very large correlation
length. This finding is highly non-trivial, as there is no guarantee that our method shall return
the correct parent Hamiltonian even in the presence of strong finite-volume effects, that have
to be expected in this regime since, in the XXZ model, the transition to an antiferromagnetic
phase belongs to the Berezinskii-Kosterlitz-Thouless universality class.
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Table 1: Converged couplings using the NN(2) basis for different α and L. Here
we present the results for an unconstrained optimization in order to benchmark the
algorithm. The data indicate the symmetry is always preserved, while the relative
ration of the couplings are consistent with the exact cases: α= 1 with the X X -chain
and α= 2 with the Haldane-Shastry Hamiltonian.

α L h ∆1 J1

0.2 12 0.0000 -4.4250 5.4065
0.2 16 0.0000 -4.3136 5.1752
0.2 20 0.0000 -3.9237 4.7028
1.0 12 0.0000 -0.0014 1.7919
1.0 16 0.0000 -0.0006 1.7751
1.0 20 0.0000 -0.0004 1.7636
2.0 12 0.0000 1.1066 1.1066
2.0 16 0.0000 1.0823 1.0823
2.0 20 0.0000 1.0477 1.0576
2.8 12 0.0000 1.5227 0.8700
2.8 16 0.0000 1.4258 0.8371
2.8 20 0.0000 1.3371 0.7973

Search beyond nearest-neighbor Hamiltonians. - It is important to test the stability of
these findings both with respect to enlarging the basis, considering NN(k > 2), and to system
size. We thus considered the reconstruction also NN(3) and NN(4), and studied the behav-
ior of the couplings {wα/J1}. As shown in Fig. 7 and Fig. 8, both the relative entropy and
the overlap improve including higher-k terms. In addition, the magnitude of the couplings
corresponding to the latter seems to increase with system size (see Fig. 9), suggesting that
the exact Hamiltonians for the Jastrow-Gutzwiller states are long-ranged. An exception is the
point α= 1, whose reconstructed Hamiltonian converges to the XX chain. As argued in Sec. 2,
this is expected due to analytic arguments.

Ferromagnetic JG wave function. - Another particular point is α = 0. There, the cor-
responding JG wave function is the exact ground state of the ferromagnetic transition point
XXZ. The BWA in principle should not work being this point described by a non-relativistic field
theory [80]. However, the converged coupling is flowing toward the correct ∆1/J1 = −1 en-
larging the system size. Importantly, this result is strongly dependent on the basis chosen, and
we see that it is unstable adding larger hopping terms (NN(3) and NN(4)). Here the modulus
of the couplings corresponding to (k > 2)-local terms increases, signal that a relativistic exact
parent Hamiltonian for this point, if it exists, it is strongly long-range.

Correlation functions. - Finally, we present in Fig. 11 the results for the cumulative corre-
lation difference V (rec|jas). At fixed system size L, it slightly increases when including higher
k-terms. This is counterintuitive, since we observe that a larger basis NN(k) leads to states
that are more similar to the JG wave functions (see Fig. 7 and Fig. 8). With the present anal-
ysis, we are not able to fully characterize if this trend is due to finite size effects or it has a
more systematic nature. A possible explanation would be hidden in the BWA algorithm: since
it optimizes over the short-k correlations (see Eq. (41)), the large distance correlators are less
controlled and are subject to frustration effects. Within this interpretation, these discrepancies
may suggest that longer range terms are required in the optimization to faithfully reconstruct
an exact parent Hamiltonian.
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Figure 9: Ratios of the converged couplings ∆2/J1 and J2/J1 versus inverse system
size. We see that α= 1 is flowing toward the XX Hamiltonian (see also Fig. 6), while
the other converged values are stationary in non-null values, suggesting long range
2-body physics for the JG states.

Figure 10: Ratios of the converged couplings ratios versus inverse system size using
the NN(4) basis. As for the previous cases, we see that α = 1 is flowing toward
the XX Hamiltonian (see also Fig. 6,Fig. 9). Other values of α suggest a long range
2-body physics for the JG states.

Instead, at a fixed value of k, the cumulative correlation difference seems to saturate at
some finite value. Being such an object deviation measure from a standard value (see Eq. (45)),
it roughly gives how much on percentage the correlation functions change at a fixed site. In the
worse scenario of our results, this has a value of around 10%. One may compare our findings
with the exact results of the Haldane-Shastry model and the antiferromagnetic Heisenberg
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Figure 11: Norm of the cumulative correlation difference V (rec|jas), defined in
Eq. (45), for different chain lengths L.

chain [30,31,107]:

〈σz
iσ

z
j 〉=











j JG(α= 2) XXZ

1 − 0.5894 −0.5908

2 0.225706 0.2427

. (46)

From the latter equations, we read the relative error of the nearest neighboring correlators
and next-nearest neighboring ones, respectively of 2% and of 8%.

Combining the above reasonings, we state the reconstructed parent Hamiltonians are only
approximate and the true parent Hamiltonians for the JG states require non-local terms. This
further confirms our previous analysis. The exception is the point α= 1, where the cumulative
correlation difference improves both with system size and by including larger NN(k).

Relative error of the variational energy - As a last check we compute the variational energy
of the parent Hamiltonian with respect to the Jastrow-Gutzwiller input state:

Evar = 〈ψjas|H|ψjas〉, (47)

and compare with the exact ground state energy Egs. The results are quantitatively compared
via the relative error:

err=
|Evar − Egs|
|Egs|

. (48)

We present the our results in figure Fig. 12. At fixed value of NN(k), our data suggest a mild
linear growth of the relative error with system size. A linear extrapolation of the thermody-
namic limit is given. All the considered cases lie within 1% of relative error in the energy
landscape. Interestingly, at fixed L the relative error increases including larger NN(k), in a
similar fashion to what we observe in the correlation functions. At present we cannot fully
understand and characterize such counterintuitive behavior. As already mentioned in the pre-
vious paragraph, this may be due to the algorithm forcing the optimization on a finite size
landscape and creating frustration effects. The latter likely explain the case α= 2, which
should converge to the Haldane-Shastry pre-factors. Another possibility is that a new operator
content is needed, and the chosen basis cannot grasp the thermodynamic properties of the
systems. Further investigations on this problem are left for future studies.
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Figure 12: Relative error (in percentage) as a function of 1/L on the parent Hamilto-
nian constructed from the NN(2) basis (panel (a)) and from the NN(3) basis (panel
(b)). The figure shows a very modest error even in the thermodynamic limit. (c)
Relative error (in percentage) as a function of 1/k, the number of nearest neighbors
included in the reconstruction basis. At present we cannot infere a clear thermody-
namic behavior for k→∞, as the number of points is too modest to fit. Nonetheless,
the error seems bounded within 1%-2%.

4.4 Reconstruction with the long range model

We investigate the reconstruction when considering the model Hamiltonian Eq. (43), limiting
our discussion to the relative entropy detector (see Sec. 4.2). The couplings are reported in
Fig. 6, compared with the NN(k) cases. For the chain lengths considered, only at α= 2 the
relative entropy shows a decreasing trend with system size (Fig. 13). This indeed corresponds
to the exact Haldane-Shastry parent Hamiltonian. However, except at this fine-tuned point,
the relative entropy grows with system size, suggesting the parent Hamiltonian Eq. (43) is no
the exact parent Hamiltonian for α 6= 0, and other more intricated terms must be added.

5 Conclusion and outlooks

In this work, we reconstructed approximate parent Hamiltonian for the one-dimensional
Jastrow-Gutzwiller wave functions. We identified a region in parameter space where these
wave functions display critical properties. Outside this interval, they are effectively described
by Schrödinger cat states. Most likely, they are representatives of symmetry broken phases
and their parent Hamiltonian is classical and constrained by the half-filling condition on the
states.

For the reconstruction technique, first we considered k-local Hamiltonians. We confirm
the exact point α= 1 corresponding to free fermions, obtaining the XX Hamiltonian. At α= 0
the method fails to find local and relativistic parent Hamiltonians. This is due to a breakdown
in the relativistic invariance in the wave function, whose exact parent Hamiltonian manifest
gapless quadratic spectrum [56,80].

Our findings suggest the exact parent Hamiltonian for α 6= 1 should involve more compli-
cated U(1)-invariant interactions, potentially with larger support. We checked the hypothesis
of Shastry (Ref. [54]) of considering long-range XXZ chains with square secant couplings. Up
to the considered system size there is a slow trend toward larger relative entropy, thus sug-
gesting the ansatz is likely to be insufficient. Nevertheless, finite-size results are of value for
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Figure 13: Relative entropy between converged BW density matrix and the JG one
for the long range model Eq. (43) for L = 8,12, 16,20. The results show a decreasing
relative entropy for α = 2, which suggests the algorithm is approaching thermody-
namic convergence. Instead, even points close to this Haldane-Shastry point exhibits
increasing entropy, and certifying only an approximate reconstruction.

Hamiltonian engineering and quantum simulations. Indeed, the BWA method provides inher-
ently finite-size optimization and control on the basis chosen and on the quality of the outputs.
In particular one can choose experimentally suitable operators in the basis, such as two-body
operators. The fact that our technique is easily adaptable to include fully-long-ranged interac-
tions may also be used in a different manner, that is, to certify and validate quantum simulators
aimed at finding ground states of spin models including slowly-decaying power-law interac-
tions, which are realized in both trapped ions [27] and Rydberg atom experiments [25,108].

It is of primary interest to apply similar techniques and considerations to two dimen-
sional wave functions, such as the Laughlin wave functions. In fact, being the only computa-
tional demanding part of the algorithm the calculation of the ground state and the Bisognano-
Wichmann expectation values, in principle one can tackle also higher dimensions by using
Monte Carlo techniques. From the quantum engineering viewpoint, another intriguing per-
spective is to search for Liouvillians that have Jastrow-Gutzwiller wave functions as unique
steady states [109, 110]. In particular, dissipation may considerably soften the requirement
for long-range couplings thanks to correlations induced by the bath.
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Figure 14: Difference between numerical correlation functions computed on the JG
states and the analytic formulae Eq. (49). The different system sizes show a scaling
to zero, confirming the correctness of the GHZ limit.

A Correlation functions and parent Hamiltonian for the GHZ
regimes

We argued that the JG states at α < 0 and α� 1 corresponds to ferromagnetic and antifer-
romagnetic cat states. A first check is given by means of the participation spectrum and of
the entanglement entropy (see Fig 2 in Section 2). Given the simple form of these GHZ states
Eq. (9), we can compute their analytic correlation functions:

〈σ0σ j〉α<0
c = 2

�

�

�1− 2
j
L

�

�

�− 1, 〈σ0σ j〉α�1
c = (−1) j . (49)

In Fig. 14 we check the agreement between the above equations and the numeric correla-
tion functions computed on the exact JG states. Our results suggest the state is in a symmetry
broken phase [23]. Intuitively, we can guess classical parent Hamiltonians having these states
as the ground state. For example, a ferro/antiferro-magnetic Ising model with the constraint
of having zero magnetization. In practice, one can represent these states as MPS and use
well-known results [11,23] to reconstruct local parent Hamiltonians.
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