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Abstract

We study the symmetry resolved entanglement entropies in gapped integrable lattice
models. We use the corner transfer matrix to investigate two prototypical gapped sys-
tems with a U(1) symmetry: the complex harmonic chain and the XXZ spin-chain. While
the former is a free bosonic system, the latter is genuinely interacting. We focus on a
subsystem being half of an infinitely long chain. In both models, we obtain exact expres-
sions for the charged moments and for the symmetry resolved entropies. While for the
spin chain we found exact equipartition of entanglement (i.e. all the symmetry resolved
entropies are the same), this is not the case for the harmonic system where equipartition
is effectively recovered only in some limits. Exploiting the gaussianity of the harmonic
chain, we also develop an exact correlation matrix approach to the symmetry resolved
entanglement that allows us to test numerically our analytic results.
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1 Introduction

Entanglement is a characteristic treat of quantum mechanics since its early days. However,
only in the last two decades it became clear that entanglement is an important concept also
for many-body systems with ramifications to many different lines of research, ranging from
high energy physics and gravity to quantum information and critical or topological extended
quantum systems (see e.g. Refs. [1–4] as reviews). The most successful and used measures
of the bipartite entanglement are surely the Rényi and von Neumann entropies, defined as
follows. Let |Ψ〉 be a pure state of an extended quantum mechanical system and ρ = |Ψ〉 〈Ψ|
its density matrix. Let us consider a bipartition of the system into A and B and define the
reduced density matrix (RDM) of the subsystem A as the partial trace over the degrees of
freedom of B, i.e. ρA = TrBρ. A measure of the entanglement between A and B is the Rényi
entropy of order n

Sn ≡
1

1− n
log Trρn

A. (1)

The Von Neumann entanglement entropy S1 ≡ −TrρA logρA is the limit n → 1 of the Rényi
entropy. In a quantum field theory, Trρn

A for integer n can be expressed in the path integral
formalism as a partition function over suitable n-sheeted Riemann surfaces. For the ground
state of critical one-dimensional systems with an underlying conformal field theory, this led to
a remarkable universal scaling depending only on the central charge c [5–10].

Such a universal behaviour is not strictly a prerogative of the gapless models, but it also
occurs for gapped models in the vicinity of a quantum phase transition in the regime in which
the correlation length ξ is large but finite [5]. Indeed, using ideas from the famous proof of the
c-theorem by Zamolodchikov [11], it has been shown that for a bipartition of an infinite system
into two semi-infinite halves, the leading behaviour of entanglement entropies is generically
[5]

Sn '
c

12

�

1+
1
n

�

logξ. (2)
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This result can be elegantly recovered for integrable lattice models through the Baxter corner
transfer matrix (CTM) [12], as reported (and generalised) in many references [5,13–23]. We
will discuss explicitly this technique in the following sections. The CTM approach provided
exact results not only close to the critical point, but gave generalisations also to the regime
in which the correlation length is small. When the subsystem A is a finite interval of length
`, as long as `� ξ, the Rényi entropies are just twice the value in Eq. (2) as a consequence
of cluster decomposition in the ground-state of these theories. However, as ` becomes of the
order of ξ, a complicated crossover takes place that is not captured by CTM and requires more
complicated techniques, see e.g. Refs. [24–27].

Only in very recent times, it became clear that it is also important to understand the re-
lation between entanglement and symmetries and in particular how entanglement is shared
between the various symmetry sectors of a theory [28,30]. The physical motivations for shad-
ing light on the interplay between symmetry and entanglement are manifold. For example,
one motivation comes from a recent experiment studying the time evolution of the symmetry
resolved entanglement in systems with many body localisation [29]. It has been shown that
entanglement has two different contributions, called configurational and fluctuation entan-
glement (see below, cf. Eq. (4), for a precise definition). These two contributions account
for the entanglement within symmetry sectors and fluctuations thereof, respectively. In the
presence of both disorder and interaction, their dynamics occur over different time scales: the
fluctuation entanglement quickly saturates to an asymptotic value while the configurational
one exhibits a slow logarithmic growth [29], providing a nice physical explanation of an older
finding [31, 32]. The possibility of measuring these quantities sparked the interest in further
studying how the entanglement is related to the internal symmetries of a system, leading to
many results concerning critical ones [30, 33–39]. A surprising finding is that conformal in-
variance forces the entanglement entropy to be equally distributed among the different sectors
of a U(1) symmetric theory [34]. It is an open issue to understand whether and when such
equipartition of entanglement survives away from criticality. However, to date there are no
results concerning gapped systems (with the exception of Ref. [38] for a discrete symmetry,
but here we are interested in continuous ones). The goal of this work is to fill this gap and to
study how the total entanglement splits into the contributions coming from disjoint symmetry
sectors in gapped integrable models, using CTM techniques. We carry out this analysis for
two non-critical quantum lattice models with a U(1) symmetry, namely the double or complex
harmonic chain (which is a free model) and the XXZ chain (which is genuinely interacting). To
this aim, we first calculate the moments of the RDM in the presence of a charge flux, that we
call charged moments, and then obtain the contributions of the sectors by Fourier transform.

The manuscript is organised as follows. In Section 2 we briefly review all the quantities
of interest and we give an overview of how the RDM of an off-critical quantum chain is re-
lated to Baxter’s CTM. For integrable models whose weights satisfy a Yang-Baxter relation, the
eigenvalues of the RDM can be determined exactly. In Sections 3 and 4 we exploit these exact
results for the computation of the symmetry resolved entanglement entropy, for the complex
harmonic chain and XXZ spin-chain respectively. We also benchmark the analytic results in
Section 3 against exact numerical computations. We conclude in Section 5 with some remarks
and discussions. Many technical details of the calculations can be found in four appendices.

2 Symmetry resolution, flux insertion, and corner transfer matrix

We consider a system with a U(1) symmetry, generated by the charge operator Q, which obeys
QA⊕QB =Q, where Q i is the charge in the subsystem i. If the system described by the density
matrix ρ is in an eigenstate of Q, then [ρ,Q] = 0. We are interested in a bipartition of the
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total system into two semi-infinite halves, A and B, and we denote by ρA the reduced density
matrix of A. Taking the trace over B of [ρ,Q] = 0, we find that [ρA,QA] = 0. This means that
ρA is block-diagonal and each block corresponds to a different charge sector labelled by the
eigenvalue q of QA. Therefore we can write

ρA = ⊕qpA(q)ρA(q), (3)

where pA(q) is the probability of finding q in a measurement of QA in the RDM ρA, i.e.
p(q) = TrΠqρA, where Πq is the projector on the sector of charge q. Within this convention,
the density matrices ρA(q) of different blocks are normalised as trρA(q) = 1.

Now, to understand how the total entanglement arranges into contributions coming from
the disjoint charge sectors, we first define the symmetry resolved entanglement entropy as

S1(q)≡ −TrρA(q) logρA(q). (4)

The total von Neumann entanglement entropy associated to ρA in Eq. (3) can be then written
as

S1 =
∑

q

p(q)S1(q)−
∑

q

p(q) log p(q). (5)

Let us describe the physical meaning of the two sums in Eq. (5) [29, 34, 40]. The first con-
tribution is known as configurational entanglement entropy and it depends on the entropy
of each charge sector, weighted with its probability. The second contribution is the fluctua-
tion entanglement entropy which is due, as the name says, to the fluctuations of the charge
within the subsystem. The configurational entropy is related to the operationally accessible
entanglement entropy of Refs. [40–42].

For future use, we also define the symmetry resolved Rényi entropies as

Sn(q)≡
1

1− n
log Trρn

A(q). (6)

In order to compute these quantities, following the approach of Ref. [30] we first define the
normalised charged moments of ρA as

Zn(α)≡ Trρn
AeiQAα. (7)

In a (1+1)-dimensional quantum field theory, this quantity is the partition function on a Rie-
mann surface with the insertion of an Aharonov-Bohm flux α, such that the field acquires a
total phase α when moving on the entire worldsheet. Similar charged moments have been al-
ready considered in the context of free field theories [43–45], in holographic settings [46,47],
as well as in the study of entanglement in mixed states [48,49].

The Fourier transforms of the charged moments are just the moments of the RDM restricted
to the sector of fixed charge [30], i.e.

Zn(q)≡ Tr(Πq ρ
n
A) =

∫ π

−π

dα
2π

e−iqαZn(α). (8)

Hence the symmetry resolved entropies can be obtained as

Sn(q) =
1

1− n
log

�

Zn(q)
Zn

1 (q)

�

, S1(q) = lim
n→1

Sn(q). (9)

Finally, also the probability p(q) is simply related to the moments Zn as

p(q) = Z1(q). (10)
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2.1 The corner transfer matrix and the entanglement entropy

In dealing with the geometric bipartition considered in this paper (i.e. two semi-infinite half
lines) the corner transfer matrix provides an exact form for the reduced density matrix [50]
and hence it is a formidable tool for the derivation of the charged moments and symmetry
resolved entropies. In order to understand how the CTM works, we give a brief review of the
construction of the RDM.

Generally, a direct computation of the density matrix of a system is tough. A trick to address
this problem is to use the fact that the density matrix of the quantum chain is the partition
function of a two-dimensional classical system on a strip [51–53]. The latter can be solved by
means of the transfer matrix T and we can identify the eigenstate |Ψ〉 of T corresponding to
its maximal eigenvalue. Given the Hamiltonian of the quantum chain H and its lattice spacing
a, the transfer matrix is T = e−aH up to a prefactor; hence |Ψ〉 is the ground state of H. One
then obtains the reduced density matrix of a subsystem A of the chain by tracing over all the
coordinates belonging to the complement of A. Therefore ρA is the partition function of two
half-infinite strips, one extending from −∞ to 0 and the other from +∞ to 0.

The CTM plays a crucial role: it connects a horizontal row to a vertical one. Choosing
the lattice in a clever way [12], when the model is isotropic, the four possible corner transfer
matrices [12] are all equivalent and the partition function is just TrÂ4, with Â the CTM. Going
back to our quantum problem, the reduced density matrix is [50]

ρA =
Â4

TrÂ4
. (11)

We will deal with integrable massive models satisfying the Yang-Baxter equations; in this case,
it is possible to show that Eq. (11) has an exponential form given by [50,51]

ρA =
e−HCTM

Tre−HCTM
. (12)

HCTM is known as entanglement or modular Hamiltonian, that in the cases we are interested
in can be diagonalised as [50]

HCTM =
∞
∑

j=0

ε jn j , (13)

where n j are number operators and ε j are the single-particle levels of the entanglement Hamil-
tonian. The result (13) provides exact eigenvalues and degeneracies of the RDM (i.e. the
entanglement spectrum of the system [54, 55]), from which one calculates straightforwardly
the entanglement entropies [5].

However, Eq. (13) contains no information about the distributions of the eigenvalues
ε j into the various symmetry sectors (indeed, it has exactly the same form for models with
discrete and continuous symmetries). In order to use it to compute the symmetry resolved
entropies in gapped integrable models, we should complement Eq. (13) with some other
input providing the symmetry resolution, but this should be done on a case by case basis. The
rest of the manuscript is devoted exactly to solve this problem for two specific 1D integrable
lattice models: the complex harmonic chain and the non-critical XXZ chain in which we will
exploit the results of Refs. [56,57] and [58,59] respectively.

3 The complex harmonic chain

In this section we use the CTM to derive the symmetry resolved entanglement entropies for a
double or complex harmonic chain that is U(1) symmetric and its continuum limit is a non-
compact massive complex boson, i.e. a Klein-Gordon field theory. We will find an analytic
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expression for the charged moments as functions of α and we will discuss its limit close to the
conformal invariant critical point, when the correlation length ξ is finite but large. Then we
will use this result to compute the symmetry resolved entropies. All the analytical results will
be compared against exact numerical computations based on correlation matrix techniques
[60–62].

3.1 Brief recap of the free complex scalar field and its lattice discretisation

The meaning of the symmetry of a double harmonic chain is clearer in the field theory language
and so we first consider a free complex scalar field φ(x) described by the Euclidean action

S =

∫

d2 x
�

∂µφ
†(x)∂µφ(x) +m2φ†(x)φ(x)

�

. (14)

This action is invariant under U(1), i.e. the field φ can be rotated of an arbitrary phase
φ(x)→ eiθφ(x) leaving the action unchanged. The Hamiltonian of this field theory is

H =

∫

d x
�

Π†(x)Π(x) + ∂xφ
†(x)∂xφ(x) +m2φ†(x)φ(x)

�

, (15)

with Π(x) being the field conjugated to φ(x).
We can as well rewrite the model in terms of two scalar real fields φx(x) and φy(x)

φ(x) =
1
p

2
(φx(x) + iφy(x)), (16)

and the same for Π(x). In these variables the U(1) symmetry is an O(2) rotation in the plane
(φx ,φy). The Hamiltonian (15) in terms of these variables is

H =
1
2

∫

d x
�

Π2
x(x) + (∂xφx(x))

2 +m2φ2
x(x)

�

+
1
2

∫

d x
�

Π2
y(x) + (∂xφy(x))

2 +m2φ2
y(x)

�

= HR(φx) +HR(φy), (17)

where in the second line we stressed that it is a sum of two identical Hamiltonians HR for the
real fields φx and φy . One introduces the modes a†

i (p) and ai(p) for each field i = x , y and
momentum p. The Hamiltonian and the conserved charge are instead better written in terms
of particles and antiparticles modes operators

a(p) =
1
p

2
(ax(p) + iay(p)), b(p) =

1
p

2
(a†

x(p) + ia†
y(p)). (18)

The Hamiltonian is

H =

∫

dp
2π
ε(p)(a†(p)a(p) + b†(p)b(p)), (19)

(with ε2(p) = m2 + p2) while the conserved charge is

Q =

∫

dp
2π
(a†(p)a(p)− b†(p)b(p)), (20)

i.e. the total number of particles minus the number of antiparticles. The conserved charge
can be as well written in real space and its value in a given subsystem A is the same integral
restricted to A, i.e.

QA =

∫

A
d x(a†(x)a(x)− b†(x)b(x)). (21)

6
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For the construction of the RDM for the lattice version of the complex Klein-Gordon field
theory, we start from discretising each of the two real Hamiltonians in Eq. (17). The lattice
discretisation of each of them is the harmonic chain, i.e. a chain of L harmonic oscillators
of mass M = 1 with equal frequency ω0, coupled together by springs with elastic constant k
(hereafter we set ω0 = 1− k), i.e. the lattice discretisation of the Hamiltonian HR is

HHC(q) =
L
∑

i=1

� p2
i

2
+
ω2

0q2
i

2

�

+
L−1
∑

i=1

1
2

k(qi+1 − qi)
2, (22)

where variables pi and qi satisfy standard bosonic commutation relations [qi , q j] = [pi , p j] = 0
and [qi , p j] = iδi j . Hence, the lattice version of the complex field theory is the sum of two of
the above harmonic chains in the variables qx and qy , i.e.

HCHC(qx + iqy) = HHC(qx) +HHC(qy), (23)

which we call complex or double harmonic chain.
The reduced density matrix, ρA, for half of the real harmonic chain was explicitly con-

structed by Peschel and Chung in [57] in the large L limit. The trick is to relate ρA to the
partition function of a two-dimensional massive Gaussian model in the geometry of an infinite
strip of width L with a cut perpendicular to it [56]. Due to the integrability of the Gaussian
model, in the case where L is much larger than the correlation length, the HCTM for the har-
monic chain may be written in a diagonal form as in Eq. (13), where now we explicitly have

HCTM =
∞
∑

j=0

(2 j + 1)εβ†
j β j , ε=

πI(
p

1− k2)
I(k)

. (24)

Here I(k) is the complete elliptic integral of the first kind, i.e.

I(k) =

∫ π/2

0

dθ
p

1− k2 sin2 θ
, (25)

and β j ,β
†
j are bosonic annihilation and creation operators (satisfying [βi ,β

†
j ] = δi, j). They

are related to the ladder operators ai of the original chain by a generalised Bogoliubov trans-
formation [57] as

β j =
∑

i∈A

g jiai + h jia
†
i . (26)

Notice that the transformation mixes a and a† so it does not conserve the number operator.
The RDM for the double chain is clearly factorised in x and y part, i.e. the entanglement

Hamiltonian is the sum of two HC T M in Eq. (24) one with βx ,i and one with βy,i ladder oper-
ators. Now we proceed as follows. First we rewrite these two entanglement Hamiltonians in
terms of the local ladder operators ax ,i and ay,i using the inverse of the Bogoliubov transfor-
mation (26). Then, using the lattice analogue of (18), i.e.

ax ,i =
1
p

2
(ai + bi), a†

x ,i =
1
p

2
(a†

i + b†
i ),

ay,i =
1
p

2i
(ai − bi), a†

y,i =
1
p

2i
(b†

i − a†
i ),

(27)

we rewrite the entanglement hamiltonian in terms of local ladder operators for particles and
antiparticles. This is clearly quadratic (it is the rewriting of a quadratic operator after two
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linear transformations and so it is quadratic) and commute with the charge operator. Hence,
via another Bogoliubov transformation (see Appendix A)

αi =
∑

j∈A

gi ja j + hi j b
†
j , γ†

i =
∑

j∈A

h∗i ja
†
j + g∗i j b j , (28)

which conserve the charge, the entire entanglement Hamiltonian of half-chain is brought into
the form

HA =
∞
∑

j=0

ε(2 j + 1)(α†
jα j + γ

†
jγ j). (29)

The charge operator restricted to the semi-infinite line is just the discretisation of Eq. (21),
i.e.

QA =
∑

j∈A

a†
j a j − b†

j b j . (30)

Once we apply the Bogoliubov transformation in Eq. (28), we have

QA =
∞
∑

j=0

α†
jα j − γ

†
jγ j , (31)

up to an unimportant additive constant that we neglect.
Since the αi and γi operators in Eq. (29) commute, the RDM factorises as

ρA = ρ
α
A ⊗ρ

γ
A, (32)

where we denoted the RDM for αi and γi with ραA and ργA respectively. For the charged mo-
ments, we need to compute Trρn

AeiQAα, but using also that QA is the difference of the number
of αi ’s and γi ’s, see Eq. (31), the trace factorises as

Zn(α) = Trρn
AeiQAα = Tr[(ραA )

neiNαA α]× [Tr(ργA)
ne−iNγAα], (33)

where NαA =
∑

j∈Aα
†
jα j and NγA =

∑

j∈Aγ
†
jγ j . The two factors are equal, except for the sign of

α. It is very instructive to see how this factorisation happens for a chain of two oscillators as
we report in Appendix A.

If for a single harmonic chain, we introduce the quantity

Fn(α) = log[Trρn
AeiNAα], (34)

then we have that the charged moments of the complex boson are given by

log Zn(α) = Fn(α) + Fn(−α). (35)

We stress that Fn(α) is not the log of a local charged moment because in the single harmonic
chain there is no local U(1) symmetry.

In the following we show how to compute Fn(α) by CTM methods for a single harmonic
chain and after we use (35) to get the charged moments.

3.2 Charged moments from CTM

Here we first compute the quantity Fn(α) for a real harmonic chain and from this Zn(α) is
simply derived from Eq. (35). In the above subsection, NA and ρA for the single chain have
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been already written in the same basis and the derivation of Fn(α) amounts to compute the
trace

eFn(α) =
Tre−

∑∞
j=0(ε j n−iα)n j

�

Tre−
∑∞

j=0 ε j n j
�n =

∞
∏

j=0

∞
∑

k=0

e−((2 j+1)εn−iα)k

 

∞
∏

j=0

∞
∑

k=0

e−(2 j+1)ε k

!n =

∞
∏

j=0

(1− e−(2 j+1)ε)n

∞
∏

j=0

(1− e−(2 j+1)εn+iα)

, (36)

whose logarithm is given by

Fn(α) =
∞
∑

j=0

n log[1− e−(2 j+1)ε]−
∞
∑

j=0

log[1− e−(2 j+1)εn+iα]. (37)

This formula is exact and can be easily computed numerically, since it converges very quickly.
It is plotted in Figure 1 as a function of α for various values of ω0 and n, but we will discuss
its properties later.

The charged moments for the complex harmonic chain, cf. Eq. (35), are

Zn(α) = eFn(α)eF∗n(α) =

∞
∏

j=0

(1− e−(2 j+1)ε)2n

∞
∏

j=0

(1− e−(2 j+1)εn+iα)
∞
∏

j=0

(1− e−(2 j+1)εn−iα)

= Zn
θ4(0|e−εn)
θ4(

α
2 |e−εn)

, (38)

where in the last equality we factor out the total partition sum

Zn ≡ Zn(α= 0) =
∞
∏

j=0

(1− e−(2 j+1)ε)2n

(1− e−(2 j+1)εn)2
, (39)

and use the definition (121) for θ4(u|q). Notice that the entire α dependence is encoded in
the denominator of Eq. (38) and that Z1 = 1, but Z1(α) 6= 1. Also the total Rényi entropies of
the complex harmonic chains are

Sn =
1

1− n
log Zn =

2
1− n

∞
∑

j=0

[n log (1− e−(2 j+1)ε)− log (1− e−(2 j+1)εn)], (40)

i.e. the double of a real harmonic chain.

3.2.1 Poisson resummation and critical regime.

A drawback of the form (37) is that it does not directly allow a direct expansion in the critical
regime, i. e. for small ε. Moreover, we cannot perform an Euler Mac-Laurin summation (as for
α = 0, see [5]) since the function f (x) = log(1− e−2x) diverges for x → 0. However, follow-
ing Ref. [14], we can obtain the asymptotic expansion for small ε by using the (generalised)
Poisson resummation formula:

∞
∑

j=−∞
f (|ε(b j + a)|) =

2
εb

∞
∑

k=−∞
f̂
�

2πk
εb

�

e2πika/b, (41)

where

f̂ (y) =

∫ ∞

0

f (x) cos(y x)d x . (42)
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In order to use this resummation formula for Eq. (37), we must choose a = 1/2, b = 1 and

fn,α(x) = − log(1− e−2nx+iα), (43)

which allows us to rewrite the sum (37) as

Fn(α) =
∞
∑

j=0

(nf1,α=0(ε( j + 1/2))− fn,α(ε( j + 1/2)))

=
1
2

∞
∑

j=−∞
(nf1,α=0|(ε( j + 1/2)|)− fn,α(|ε( j + 1/2))|).

(44)

The cosine-Fourier transform of fn,α(x) is

f̂n,α(y) =
ieiα

2y

�

Φ(eiα, 1, 1−
i y
2n
)−Φ(eiα, 1, 1+

i y
2n
)
�

, (45)

where Φ is the Lerch transcendent function, defined as

Φ(z, s, a) =
∞
∑

j=0

z j

( j + a)s
. (46)

If α= 0 and n= 1, Eq. (45) simplifies to the known value [14]

f̂1,0(y) =
1
y2
−
π

2y
coth

�πy
2

�

. (47)

Plugging Eq. (45) into the Poisson resummation formula, we rewrite log Zn(α) in such a way
to isolate the contribution of the term k = 0 which gives the leading divergence in the limit
ε→ 0, i.e.

Fn(α) =
Li2(eiα)

2εn
−

nπ2

12ε
+
∞
∑

k=1

�

(−1)k
nε

2π2k2
+ (−1)k+1 n

2k
coth

π2k
ε

�

+

ieiα

2π

∞
∑

k=1

(−1)k

k

�

Φ(eiα, 1, 1−
iπk
εn
)−Φ(eiα, 1, 1+

iπk
εn
)
�

.

(48)

Here we have introduced the polylogarithm of order 2

Li2(z) =
∞
∑

m=1

zm

m2
. (49)

We are now interested in the critical region of the parameter space in which the correlation
length ξ (inverse gap) is large but finite. In the critical regime ξ� 1 (or equivalently ε� 1),
the correlation length of the model behaves like

logξ'
π2

ε
+O(ε0). (50)

Using the results of Ref. [63], the last sum over k in Eq. (48) in the limit ε→ 0 behaves like

ieiα

2π

∞
∑

k=1

(−1)k

k

�

Φ(eiα, 1, 1−
iπk
εn
)−Φ(eiα, 1, 1+

iπk
εn
)
�

→
nε
12

eiα

1− eiα
, (51)
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Figure 1: Charged moments for the harmonic chain: we report the real (top) and
the imaginary (bottom) part of Fn(α), Eq. (37), as function of α for different values
of ω0. Everywhere, the dashed lines are the asymptotic expansions for ε → 0 and
α 6= 0 up toO(ε), cf. Eq. (52). As discussed in the text, the convergence to the critical
result is not uniform and it is slower for smaller α 6= 0. The function log Zn(α) for
the complex chain is twice the real part of Fn(α).

and hence the only non-vanishing terms in the asymptotic expansion close to ε= 0 are

Fn(α) =
Li2(eiα)

2εn
−

nπ2

12ε
+

n
2

log2+O(ε), (52)

whose real part is

Re[Fn(α)] =
�

1
2n

� α

2π

�2
−
|α|

4πn
+

1
12n
−

n
12

�

logξ+
n
2

log 2+O(ε), (53)

because
Re[Li2(eiα)]

n
=

1
n

�α

2

�2
−
π|α|
2n
+
π2

6n
. (54)

The charged moments for the complex harmonic chain are now given by Eq. (35), i.e.
log Zn(α) = Fn(α) + Fn(−α) and, in the limit ε→ 0,

log Zn(α) =
�

1
n

� α

2π

�2
−
|α|

2πn
+

1
6n
−

n
6

�

logξ+ n log 2+O(ε). (55)

Notice that while Fn(α) is generically complex, log Zn(α) for the complex chain is real and
even in α.

3.2.2 Discussions.

We concluded our exact computation of the charged moments and we are now ready to crit-
ically discuss our findings. Eq. (55) is very suggestive. It tells us that the leading term in the
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“charged entropies” diverges logarithmically with ξ but with a non-standard prefactor. Indeed,
in the conformal field theory of the compactified boson, it has been found that when α 6= 0, the
additional term in the logarithm is proportional to α2 [30] , while here we also have a linear
contribution in α. Obviously the two results are not in contradiction, because the continuous
limit of the harmonic chain is non-compact and the prefactor of α2 in Ref. [30] diverges when
the compactification radius is sent to infinity. These results are very intriguing and it would
be interesting to recover them directly in a field theory approach; work in this direction is in
progress [64].

Another interesting fact is that the limit α → 0 and the expansion for ε around 0 do
not commute, as a difference with other known cases (we believe that the origin of the non-
commutativity is the non compact nature of the continuum limit). Indeed, if we consider first
the limit α→ 0 in Eq. (48), the last sum gives

∞
∑

k=1

(−1)k
�

−
εn

2k2π2
+

1
2k

coth

�

kπ2

εn

��

, (56)

leading to the known formula of the Rényi entropies of a real harmonic chain, that in the
critical regime ε→ 0 is [5,14] (see Eq. (40))

Sn =
π2

12ε
1+ n

n
−

log2
2
+O(ε). (57)

On the other hand, if we invert the order of these two operations, we obtain the divergent term
in Eq. (51). Considering now the charged moments of the complex chain, ln Zn(α) = 2ReFn(α),
the divergent term (51) cancels, but the finite part is not the total moment ln Zn in Eq. (39).
This fact implies that the approach of ln Zn(α) to the critical limit ε→ 0 is non-uniform in α:
exactly at α= 0 the charged entropy approaches (40), but for any non-zero α the limit is (52)
that as a consequence is reached for smaller and smaller ε (i.e. ω0) as α gets closer to 0.

All these aspects are evident in Figure 1 where we show (for α≥ 0 since Fn(−α) = F∗n(α))
the exact result Eq. (48) (or equivalently (37)) together with its critical limit, Eq. (52). As
we discussed above, the former converges to the latter as ω0, therefore ε, decreases, but in
a non-uniform way. Indeed, while for large α (i.e. close to π) the two curves are very close
also when ω0 is not so small, for smaller and non-zero values of α, we need much smaller ω0
to approach the critical limit. For α = 0 the limit is different. It is also clear that for higher
values of n, the convergence is slower and starts at smaller values of ω0. The last observation
is a well known fact for α= 0, cf. Ref. [14], and it is not surprising that the effect is amplified
in the presence of a flux.

3.3 Symmetry resolved moments and entropies via Fourier trasform

The symmetry resolved moments Zn(q) are obtained as Fourier transform of Zn(α) in Eq. (38),
i.e.

Zn(q) =

∫ π

−π

dα
2π

e−iqαZn(α) = Znθ4(0|e−εn)

∫ π

−π

dα
2π

e−iqα 1
θ4(

α
2 |e−εn)

. (58)

The integral in the rhs of the above equation can be found in Ref. [65] (exercise 14 at page
489), obtaining

Zn(q)
Zn

=
∞
∏

k=1

�

1− e−nε(2k−1)

1− e−2nεk

�2

e−nε|q|
∞
∑

k=0

(−1)ke−nεk2
e−nε(2|q|+1)k , (59)

which is our final result for the symmetry resolved moments. It is likely that the sum in Eq.
(59) can be rewritten in terms of some special functions, but we did not find any particularly
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useful expression. We define the sum as

Φq(u) = u|q|
∞
∑

k=0

(−1)kuk2
u(2|q|+1)k, (60)

which can be written in few different equivalent ways that are useful for investigating diverse
properties:

Φq(u) =
∞
∑

k=0

(−1)kuk2+k+|q|(2k+1) = u|q|−
1
4

∞
∑

k=0

(−1)ku(k+
1
2 )

2
u2|q|k . (61)

Clearly in terms of this function we have

Zn(q) =
∞
∏

k=1

�

(1− e−ε(2k−1))n

1− e−2nεk

�2

Φq(e
−nε), (62)

where we used the explicit form of Zn in Eq. (39).
The symmetry resolved Rényi entropies are now easily deduced from Eq. (9), obtaining

Sn(q) =
1

1− n
log

� Zn(q)
Z1(q)n

�

=
2

1− n

∞
∑

k=1

�

n log(1− e−2εk)− log(1− e−2nεk)
�

+
1

1− n
log

Φq(e−nε)

(Φq(e−ε))n
. (63)

Taking the limit n→ 1, we get the von Neumann entropy

S1(q) = −2
∞
∑

j=1

�

log(1− e−2ε j)−
2ε je−2ε j

1− e−2ε j

�

+ logΦq(e
−nε) + εe−ε

Φ′q(e
−nε)

Φq(e−nε)
. (64)

The critical limit ε→ 0 is easily understood if one focuses on the variation in q of moments
and entropies, rather than on their absolute values. Indeed from Eq. (62), it is easy to see that

Zn(q)
Zn(q = 0)

=
Φq(e−nε)

Φ0(e−nε)
ε→0
−−→ e−n2q2ε2/2 , (65)

where the last limit is performed by expanding to the second order in ε each term in the sum
(60), making carefully the sum in terms of ζ functions, and finally re-exponentiating the result.
We stress that this critical limit is not the Fourier transform of the critical limit for Zn(α) in
Eq. (55) because the two limiting procedures do not commute. The critical behaviour of the
resolved entropies is then easily worked out as

Sn(q) =
1

1− n
log

Zn(q)
Zn

1 (q)
= Sn(q = 0) +

nε2q2

2
+O(ε3), (66)

which is valid also for n = 1 without any particular limit. Also in the critical limit, it is worth
to mention the behaviour

Sn(q = 0) = Sn − log
8π
ε
+

log n
1− n

+ o(1) , (67)

which signals the presence of a subleading term proportional to logε ∼ log(logξ). Such a
term has not a unique interpretation and origin for the (complex) harmonic chain. Indeed,
we know that the total entropy of a massive free non-compact boson has such subleading
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Figure 2: Symmetry resolved entanglement entropies for the complex harmonic
chain. Panel (a) shows Sn(q) as functions of q for different values of ε and n. Panel
(b) reports Sn(q) − Sn(q = 0) for small values of ε, showing the validity of the ex-
pansion in the critical regime (66). The critical limits in Eq. (66) are also reported
as dashed lines showing its accuracy for small nε. The panel (c) shows the effec-
tive equipartition of entanglement for q ¦ 1/ε (these crossover values are reported
as dashed vertical lines). The panel (d) shows Sn(q) as function of ω0 for different
values of q and n.

terms in log(logξ) [66] in the small mass limit, but even that double logarithmic terms appear
generically in the symmetry resolution, also for the critical compact boson [30,37].

Let us now critically discuss our results. First of all, there is a very important difference
compared to the conformal gapless case [30], i.e. the absence of equipartition of entanglement
[34]: the Rényi entropies (63) depend explicitly on q. This dependence is explicitly reported
in Figure 2 (a) where, in order to show its variation, we plot it as a continuous function of q,
although only integer values are physical. The lack of exact equipartition is not surprising; also
in critical models the leading terms for large ` show equipartition [34], while some subleading
terms depend explicitly on q [30,37]. In panel (b) of Figure 2 we focus on the critical limit of
Rényi entropies (66) plotting Sn(q)− Sn(q = 0). As ε→ 0, the result approaches the critical
form (66), but clearly the convergence is not uniform: it is faster for smaller q and n. Indeed,
since this dependence is all encoded in the function Φq(e−nε), the parameter that must be small
is not ε, but nε. On the other hand, the higher order terms in ε, that have been neglected in
(66), become important for large q.

Another interesting feature of the symmetry resolved entropies for this complex harmonic
chain is an effective equipartition in two limits. The first one is the limit of large q. Indeed, in
Eq. (63) the entire q-dependence is encoded in the function Φq(e−nε). Looking at Eq. (61),
it should be clear that all the terms with qnε � 1 are exponentially suppressed. Practically,
the total sum is more or less the same for all q such that nεq ¦ 1 (from Eq. (50) this is
equivalent to nqπ2 ¦ logξ in the critical region). Hence, there is an effective equipartition
among all q ¦ 1/(nε). Actually, since the only physical values of q are the integers, this fact
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implies that there is an almost exact equipartition (with the exception of Sn(0)) of the entropy
if nε ¦ 1, which corresponds to ω0 ¦ 10−4 (for n = 1). In panel (c) we report the von
Neumann entropies S1(q) for several values of ω0, showing that, as q becomes large enough,
the entropies Sn(q) do not depend on q anymore. We also explicitly report the (approximate)
crossover values for q ∼ 1/ε (as function of ω0 is given by Eq. (24)), showing that it correctly
captures the change of behaviour. Finally, we have effective equipartition also in the critical
regime, but in this case also for small q. In fact, Eq. (66) shows that the q-dependent term is
proportional to ε2, while the leading term of Sn(q) (say for q = 0) diverges as ε−1. Thus the
q-dependence is suppressed as ε3 and there is an effective equipartition. Even if for large q,
the expansion (66) breaks down, we do not expect that Sn(q) − Sn(0) becomes of the order
Sn(0) and so there is an effective equipartition for all q: the numerical analysis of Eq. (63)
seems to confirm this expectation. The functional form of the leading q-dependent term in Eq.
(66) is reminiscent of the one found for free fermions [37].

3.3.1 The total entanglement entropy as a consistency check.

As a non-trivial consistency check of our results, we compute the total von Neumann entangle-
ment entropy starting from the symmetry resolved ones using Eq. (5). The probability p(q) is
given by Eq. (62) with n= 1 and Eq. (64) provides the symmetry resolved entropies. Plugging
these two results into Eq. (5) leads to

S1 = −2
∞
∑

j=1

log
�

1− e−ε2 j
�

+
∞
∑

j=1

4ε j
e2ε j − 1

+

− 2 log
∞
∏

j=1

(1− e−(2 j−1)ε)
(1− e−2ε j)

+
∞
∑

q=−∞
εe−ε

∞
∏

j=1

(1− e−(2 j−1)ε)2

(1− e−2ε j)2
Φ′q(e

−ε). (68)

The last sum over q above can be written as the following derivative

−2ε
d
dε

�

∞
∑

j=1

log
(1− e−2 jε)
(1− e−ε(2 j−1))

�

, (69)

where we have used that

∞
∑

q=−∞
Φq(e

−ε) =
∞
∏

j=1

(1− e−2 jε)2

(1− e−ε(2 j−1))2
, (70)

reflecting that Z1(q) is normalised to 1. Taking now the derivative with respect to ε, we finally
obtain

S1 = 2
∞
∑

j=1

�

ε(2 j − 1)
eε(2 j−1) − 1

− log
�

1− e−ε(2 j−1)
�

�

, (71)

which is the entanglement entropy of a complex harmonic chain (i.e. the double of a real one).

3.4 Numerical checks

In this subsection we test the validity of the results in the previous ones against exact numerical
computations. We work only with an infinite real harmonic chain (22) with finite ω0. For the
complex case, we just combine the results for two real chains. Let us consider a bipartition
where the subsystem A is given by ` contiguous lattice sites. Let us call XA and PA the ` × `
matrices of the correlators restricted to the subsystem A, where X i j = 〈qiq j〉 and Pi j = 〈pi p j〉.
The explicit forms of these correlators in the ground state of the gapped harmonic chain have
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Figure 3: Numerical results for the charged moments for an interval of length `
embedded in the infinite harmonic chain. We report the real (left) and the imaginary
(right) parts of Fn(α) as a function of the subsystem length `, for different values of
n= 1,2, 3 and fixedω0 = 0.1. The numerical data for an interval of length ` (divided
by 2) are compared to the analytic CTM prediction (37): as ` is moderately large,
the agreement is perfect. The charged moments are just log Zn(α) = 2Re[Fn(α)].

been already reported many times in the literature (see e.g. Refs. [3, 62, 67]) and we are
not going to rewrite them here. Let us denote by σk, with k = 1, . . . ,`, the eigenvalues of
the matrix

p

XAPA. We introduce the vectors |n〉 ≡
⊗`

k=1 |nk〉, products of Fock states of the
number operator in the subsystem A, namely NA.

The reduced density matrix of A can be written as [68,69]

ρA =
∑

n

∏̀

k=1

1
σk + 1/2

�

σk − 1/2
σk + 1/2

�nk

|n〉〈n|, (72)

where the non-negative integer nk is the k-th element of the `-dimensional vector n. Since
NA =

∑

j∈A n j is the number operator in the orthonormal basis made of the states |n〉, we can
write

Tr[ρn
AeiNAα] =

∑

n

∏̀

k=1

�

1
σk + 1/2

�

σk − 1/2
σk + 1/2

�nk
�n

einkα. (73)

Summing over the possible occupation numbers nk from 0 to∞, we get

Tr[ρn
AeiNAα] =

∏̀

k=1

1
�

σk +
1
2

�n − eiα
�

σk −
1
2

�n . (74)

This relation holds also in higher dimensions and for a generic shape of the subsystem A pro-
vided that ` is the number of sites in A. Notice the similarity of Eq. (74) with the analogous
result for fermions (cf. Refs. [30, 37]): there are only some different signs, reflecting the
different statistics. The formula (74) allows us to check numerically the results obtained via
the CTM approach. Finally, the charged moments for an arbitrary subsystem A for a complex
harmonic lattice model are

Zn(α) =
�

�Tr[ρn
AeiNAα]

�

�

2
=
∏̀

k=1

1
�

σk +
1
2

�n − eiα
�

σk −
1
2

�n
1

�

σk +
1
2

�n − e−iα
�

σk −
1
2

�n . (75)

We now consider Fn(α) = log Tr[ρn
AeiNAα] for a real harmonic chan. The numerical data for

Fn(α) for an interval of length ` should converge to the double (because of the two end-points)
of the CTM prediction for the semi-infinite line (with one-endpoint) as soon as ` becomes larger
than the correlation length ξ. In Figure 3 we report the numerical data for (half of) the real
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Figure 4: Numerical results for the symmetry resolved moments for the complex
harmonic chain. (a): (Square root of the) symmetry resolved partition sums Zn(q)
as function of q. The numerical data for n = 1, 2,3 are compared with the CTM
prediction (59) for two values of ω0. (b): The same quantity is plotted against the
subsystem size ` for different values of q = 20,40 and fixed ω0 = 0.1, showing the
convergence towards the CTM prediction (59) for n= 1, 2,3.

and the imaginary parts of Fn(α) for different values of n and α. We have setω0 = 0.1, so that
after a short crossover in `, the data saturate. The CTM prediction (37) is also reported for
comparison, showing that the analytical result perfectly describes the saturation values. The
charged moments for the complex harmonic chain are just log Zn(α) = 2Re[Fn(α)] both for
numerics and analytics and so Figure 3 is a direct test also for them.

We now take the Fourier transform of the numerical data for Zn(α) to test the validity
and the accuracy of the CTM predictions for the symmetry resolved moments and entropies.
In Figure 4 we report the (square roots of the) numerically calculated symmetry resolved
partition sums Zn(q). We compare the data for n= 1,2, 3 with the CTM prediction (59). The
latter perfectly captures the q-dependence, as shown in the panel (a), and gives the value at
which the data saturate when studied as functions of `, panel (b). Finally, in Figure 5 we report
the symmetry resolved entropies for several values of q, n,ω0. For large `, the numerical data
converge to (twice) the CTM predictions in Eqs. (63) and (64). Notice that for the larger
values of ω0 the saturation values do not depend on q because of the effective equipartition,
but for smaller ω0 they clearly do. As ω0 becomes much smaller (such that ε ∼ 0.1), we
expect again effective equipartition, although we do not report such data here because they
require very large `.

4 Gapped XXZ spin-chain

In this section we study the symmetry resolved entanglement in the anisotropic Heisenberg
model in the gapped antiferromagnetic regime using the CTM approach. The resolved mo-
ments are computed starting from the explicit expressions for the eigenvalues of the RDM
and their degeneracies. Then the symmetry resolved entropies are deduced and their critical
regime is investigated. The discrete Fourier transform of the resolved moments allows us to
compute the charged moments and to discuss their behaviour in the critical regime.

4.1 Symmetry resolved moments and entropies

The Hamiltonian of the anisotropic Heisenberg model (also known as XXZ chain) is

HXXZ =
∑

j

�

σx
j σ

x
j+1 +σ

y
j σ

y
j+1 +∆σ

z
jσ

z
j+1

�

, (76)
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Figure 5: Numerical results for the symmetry resolved entropies for the complex
harmonic chain. The numerical data for q = 1,2, n= 1,2 andω0 = 0.1 and 0.01 are
compared with the CTM predictions (63) and (64), to which they clearly approach.
Notice that the convergence is slower for smaller ω0. For ω0 = 0.1 we have an
approximate equipartition, but this is not the case for ω0 = 0.01.

where σi , i = x , y, z are the Pauli matrices. The model has a conformal quantum critical point
for∆= 1, it is gapless when |∆| ≤ 1 and gapped when |∆|> 1. We consider this model in the
antiferromagnetic gapped regime with ∆> 1.

The XXZ chain is solvable by Bethe Ansatz techniques; unfortunately this framework is
not very effective to study the entanglement properties both in the coordinate [9] and in the
algebraic [70–78] approach. On the other hand, the CTM solution for the XXZ chain is a
powerful tool to compute the entanglement entropies; in this approach, the reduced density
matrix is related to the partition function of the six-vertex model on a strip with a cut. In
Ref. [50] HCTM has been found to be of the form (13) with

ε j = 2ε j, ε= arccosh∆, (77)

and n j being some fermionic number operators. Since in the thermodynamic limit, the ground-
state of the gapped XXZ spin-chain is doubly degenerate we should clarify which state we are
going to deal with in this section. The entanglement Hamiltonian (13) together with (77)
selects by construction the ground state that does not break the inversion symmetry, i.e. the
one that in the limit of large∆ is (|N1〉+ |N2〉)/

p
2 where |Ni〉 are the two possible Néel states.

However, we prefer to work with the more physical symmetry breaking state |Ni〉. In CTM
approach this can be constructed with an entanglement Hamiltonian of the form (13) where
the sum over j starts from 1 rather than 0, i.e.

HCTM =
∞
∑

j=1

ε jn j , ε j = 2ε j, ε= arccosh∆. (78)

In the remaining part of this section we always focus on the symmetry breaking ground state
with the above HCTM. If one is interested into the other state, analogous results may easily be
derived.

The entanglement spectrum is obtained by filling in all the possible ways the single particle
levels in (78) (i.e. setting all n j equal either to 0 or 1). The resulting levels are equally spaced
with spacing 2ε and highly degenerate. The degeneracy of the level 2εs, with s =

∑

j j (see
(77)) is Q(s), the number of partitions of s into smaller non-repeated integers (including zero).
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(Notice we use the non-standard symbol Q(s) instead of q(s) to avoid confusion with q, the
charge sector.)

We want to characterise how the entanglement of the semi-infinite line A with respect to its
complement splits into the different sectors with fixed magnetisation Sz ≡

∑

j σ
z
j/2. We indi-

cate with q the possible values, in the subsystem A, of the difference of the magnetisation with
respect to the antiferromagnetic Néel state chosen as a reference configuration. Such variable
q is quantised in terms of integer numbers (each spin flip leads to a change of magnetisation
of ±1), i.e. q ∈ Z. With a slight abuse of language, we will refer to q as the magnetisation,
although it is a magnetisation difference. To derive the symmetry resolved entanglement, we
first write Zn(q), defined in (8), as

Zn(q) =
∑

s∈Sq

λn
s , (79)

where λs are the eigenvalues of the RDM and the sum is restricted to the levels with fixed
value of q. Using Eq. (12) and the explicit expression of the entanglement spectrum from Eq.
(78), we can write

Zn(q) =

∑

s

F(q, s)e−2nεs

�∑

s

Q(s)e−2εs
�n , (80)

where F(q, s) is the number of eigenvalues at level s with magnetisation q. The degeneracies
F(q, s) have been studied in Ref. [58] with a combination of perturbation theory and integra-
bility arguments. The final result for the bipartition of our interest is F(q, s) = P( s−m(q)

2 ) [58],
with P(n) the number of integer partitions of n and m(q) = q(2q − 1). Using this result and
changing variable in the sum of the numerator in Eq. (80) as (s−m(q))/2→ s, we obtain

Zn(q) = e−2nεq(2q−1)

∑

s

P(s)e−4nεs

�∑

s

Q(s)e−2εs
�n , (81)

where we have also exploited that P(n) is non vanishing only if n is a positive integer.
The two sums in (81) can be conveniently rewritten in terms of generating functions

∑

s=0

P(s)x s =
∞
∏

k=1

1
1− xk

,
∑

s=0

Q(s)y s =
∞
∏

k=1

(1+ yk). (82)

Setting x = e−4nε and y = e−2ε in (82) and plugging them into (81) we obtain

Zn(q) =
e−2nεq(2q−1)

∞
∏

k=1

�

1− e−4nεk
�

∞
∏

k=1

�

1+ e−2εk
�n

. (83)

We remark that Z1(q) is normalised to one, i.e.
∑

q∈ZZ1(q) = 1, as it should be from the
definition (79). This is consistent with the interpretation of Z1(q) as a probability, see Section
2. The denominator of Eq. (83) can be expressed in terms of elliptic theta functions (see
Appendix C) and then Zn(q) reads

Zn(q) =
2

1+n
3
�

κ(e−ε)
�

n
12 e−4nε(q− 1

4 )
2

[κ(e−2εn)κ′(e−2εn)]
1
6

¦

[κ′(e−ε)]−
2
3 − [κ′(e−ε)]

4
3

©
n
8
θ3 (e−2εn)

, (84)
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where κ and κ′ are defined in (124). Notice that q = 1/4 is exactly the mean magnetisation
of the subsystem in the critical limit ε→ 0, as we can check by computing q̄ =

∫

dqqZ1(q),
since we are dealing with the symmetry breaking ground state. Notice that the dependence
on q in Eq. (84) is entirely encoded in the Gaussian factor and it is symmetric for q→ 1/2−q.
Moreover, exploiting the asymptotic behaviours in (130) and (131) in appendix C, we have
that in the critical regime Zn(q) becomes

Zn(q)'

√

√21+nεn
π

e−
π2
24ε(n− 1

n)e−4nε(q− 1
4 )

2
, (85)

where we keep the Gaussian factor in order to have a meaningful result. Once the resolved mo-
ments Zn(q) have been worked out, the symmetry resolved entropies follow straightforwardly

Sn(q) =
1

1− n

∞
∑

k=1

�

n log
�

1− e−4εk
�

− log
�

1− e−4nεk
��

, (86)

and, taking the limit n→ 1,

S1(q) =
∞
∑

k=1

�

4εk
e4εk − 1

− log
�

1− e−4εk
�

�

. (87)

Notice that as ∆ � 1, Sn(q) → 0 (see also Figure 6), since in this limit the selected antifer-
romagnetic ground state is a product state. If we would have considered the non-symmetry
breaking ground state (|N1〉+ |N2〉)/

p
2,∆� 1 we would have found Sn(q)→ log2, as for the

total entropy [5,14,23]. We stress that although there is entanglement equipartition, the func-
tions Sn(q) are not equal to the total entropies Sn because there is a non-vanishing fluctuation
term like in Eq. (5) for n= 1.

Remarkably, the expressions (86) and (87) for the symmetry resolved Rényi and von Neu-
mann entanglement entropies do not depend on q for any value of n, i.e. they exactly satisfy
the equipartition of entanglement for any value of∆. In the critical case, only the leading terms
satisfy such equipartition [34,37].

The relation between the correlation length of the model and ε, in the critical regime
ξ� 1, is [12]

logξ'
π2

2ε
+O(ε0) , (88)

which combined with Eqs. (85) provides the expansions of the symmetry resolved entropies
in the critical regime

Sn(q) =
1
12

�

1+
1
n

�

logξ−
1
2

log
�

logξ
π

�

+
1
2

log2+
log n

2(1− n)
,

S1(q) =
1
6

logξ−
1
2

log
�

logξ
π

�

+
log2− 1

2
.

(89)

We notice that the term −1
2 −

1
2 log(logξ/π) appearing in S1(q) in Eq. (89) is canceled exactly

by the fluctuation entanglement entropy once we consider the total von Neumann entangle-
ment entropy. Indeed, using that the probability is p(q) = Z1(q), we write the fluctuation
entropy as −

∫

dqZ1(q) logZ1(q). Using (84), computing the gaussian integral in q and then
taking the critical limit, we find

−
∫ ∞

−∞
dqZ1(q) logZ1(q) =

1
2
+

1
2

log(logξ/π), (90)
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Figure 6: Magnetisation resolved moments and entropies for the XXZ spin-chain.
The left panel shows the results for Zn(q), Eq. (83), against q for different values
of n = 1,2, 3 and ∆ = 1.1, 3. In the middle panel, we report again Zn(q) at fixed
q and as function of ∆ (full lines). As a comparison, we also report the asymptotic
expansion (85) for∆ close to 1 (dashed lines). In the right panel, we report Sn(q) and
its critical limit, respectively Eq. (86) and Eq. (89), as function of ∆ for n = 1, 2,3.
We recall that Sn(q) does not depend on q because of entanglement equipartition.

which exactly cancels the contribution from the configurational entropy. This is in complete
analogy with what has been found for critical systems for the log log` term [37].

As for the harmonic chain, another useful check is to recover the total von Neumann en-
tanglement entropy from S1(q) in Eq. (87). Using the expression of Z1(q) = p(q) in Eq. (83)
once we set n= 1, the total von Neumann entropy is

S1 =
∑

q

Z1(q)S1(q)−
∑

q

Z1(q) logZ1(q). (91)

Let us introduce the constants
∏∞

k=1

�

1− e−4εk
�

= N1 and
∏∞

k=1

�

1+ e−2εk
�

= N2. Because
of normalisation of Z1(q), the first term in Eq. (91) just gives S1(q) (since, as already stressed,
it does not depend on q), while the second one leads to

∞
∑

q=−∞
Z1(q) logZ1(q) =

1
N1N2

ε∂ε(N1N2)−
∞
∑

j=1

log(1− e−4ε j)−
∞
∑

j=1

log(1+ e−2ε j). (92)

Performing explicitly the derivative with respect to ε and summing all contributions in Eq. (91),
we obtain

S1 =
∞
∑

j=1

log(1+ e−2ε j) +
∞
∑

j=1

2ε j
e2ε j + 1

, (93)

which is the known entanglement entropy found in Refs. [5, 23] for the symmetry breaking
ground state.
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In Figure 6 we report symmetry resolved moments and entropies. The possible values of q
are just integers, but since Zn(q) becomes quickly small as q increases, we consider arbitrary
real values. As anticipated, Zn(q) has a peak at q = 1/4 and shows a clear Gaussian shape
for all ∆. The exact result (83) is well approximated by its critical limit (85) for ∆ close to 1,
but the approach is not uniform and it is worse for larger q (as well as larger n). Clearly, the
maximum of Zn(q) is a decreasing function of n. In the last panel of Figure 6, we report the
symmetry resolved entropies as functions of ∆ (as we stressed because of equipartition, they
do not depend on q). Notice that the window of ∆ for which the critical limit of Sn(q) in Eq.
(89) is a good approximation of the exact expression (86) is wider for smaller values of q.

4.2 Charged moments via Fourier series

The charged moments are obtained from the resolved ones Zn(q) by inverting the formula (8),
i.e.

Zn(α) =
∞
∑

q=−∞
Zn(q)e

iqα. (94)

Plugging in the above equation the result for Zn(q) in Eq. (83) and using the definition of the
elliptic function θ3(z|u) (see Eq. (121) in appendix C), we obtain

Zn(α) =
θ3(

α
2 − inε|e−4εn)

∞
∏

k=1

�

1− e−4nεk
�

∞
∏

k=1

�

1+ e−2εk
�n

. (95)

Setting α= 0 and exploiting the infinite product representation (129) of θ3(z|u), we get

Zn(0) =

∞
∏

k=1

�

1+ e−2εnk
�

∞
∏

k=1

�

1+ e−2εk
�n

, (96)

as found in [5]. As for Zn(q) in Section 4.1, we can express Zn(α) in terms of elliptic functions
obtaining

Zn(α) =
2

1+n
3 e−

n
4 ε
�

κ(e−ε)
�

n
12

[κ(e−2εn)κ′(e−2εn)]
1
6

¦

[κ′(e−ε)]−
2
3 − [κ′(e−ε)]

4
3

©
n
8

θ3(
α
2 − inε | e−4εn)

θ3 (e−2εn)
. (97)

Zn(α) in the critical regime is obtained using the asymptotic expansions reported in appendix
C (i.e. Eqs. (134), (130) and (131)), finding

Zn(α)' 2−
1−n

2 e−
π2
24ε(n− 1

n)e−
α2

16nε+i α4 . (98)

Taking the logarithm of Zn(α) and using (88) we have

log Zn(α)'
�

1
12

�

1
n
− n

�

−
α2

8π2n

�

logξ+ i
α

4
− (1− n)

log 2
2

. (99)

Here, the linear term in α is just the mean magnetisation in A, q̄ = 1/4.
The leading term in Eq. (99) is very suggestive. Indeed, for the critical compact boson

(aka, Luttinger liquid), in the case of A being an interval of length ` embedded in an infinite
1D system, log Zn(α) diverges logarithmically with ` as [30]

log Zn(α)'
�

1
6

�

1
n
− n

�

−
α2

2π2n
K

�

log`+ . . . , (100)
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Figure 7: Charged moments for the XXZ spin chain. Top and Bottom plots correspond
to real and imaginary parts respectively. In the left panels, the plots are against α for
different values of ∆, while in the right panels are against ∆ at fixed α. The dashed
lines are the expansions close to the critical points (Eq. (98)) that are approached
only for ∆ very close to 1.

where K is the Luttinger liquid parameter (related to compactification radius). The prefac-
tor of Eq. (99) is exactly half of the conformal result (100) for K = 1

2 , which is the Lut-
tinger parameter at ∆ = 1. The multiplicative factor 1/2 is simply understood because in
our geometry there is a single endpoint instead of two as in the conformal case. It is natu-
ral to wonder under what hypotheses this can happen since we have seen that it is not true
for the harmonic chain. Moreover, for the symmetry resolved entropies, the CFT result is
Sn(q)− Sn = −

1
2 log((2K/π) log`) +O(`0) [30,34], which is the same as in Eq. (89) with the

replacement `→ ξ and with K = 1/2.
In Figure 7 we report the plots of the charged moments as functions of α and ∆. Also in

this case, the approach to the critical regime is not uniform and it is faster for α closer to 0 (and
n close to 1). This is very different compared to what we have seen in the previous section
for the harmonic chain for which the limit α → 0 is singular. This is a further confirmation
that the anomalous behaviour of the harmonic chain is due to its non-compact nature of the
continuum limit.

5 Conclusions

In this manuscript we found exact results for the symmetry resolved entanglement entropies
of half line in infinite integrable systems in the gapped regime. We considered two models for
which the RDM (and therefore the entanglement spectrum) of the subsystem can be obtained
through the Baxter CTM.

In Section 3 we considered the massive regime of the complex harmonic chain that has a
U(1) symmetry corresponding to the conservation of the electric charge. In order to obtain
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the symmetry resolved entanglement entropies, we first computed the charged moments of the
RDM in Eqs. (35), (37), and (48). Their critical behaviour is also discussed and an interesting
discontinuity for α → 0 has been pointed out. Then we computed the Fourier transform of
the charged moments and the symmetry resolved entanglement entropies (see Eqs. (63) and
(64)); we also discussed their leading behaviour in the critical regime, see (66). Interestingly
we found that there is no entanglement equipartition, i.e. the symmetry resolved entropies
Sn(q) explicitly depend on q. However, entanglement equipartition is effectively recovered in
two limits: i) for large q, i.e. as soon as q becomes larger than the logarithm of the correlation
length and ii) in the critical region for nε� 1.

We also derived an exact expression for the charged moments valid for a generic harmonic
system in the correlation matrix approach [62]. The final results are the formulas (74) and
(75)) which hold in any dimension and for any shape of the subsystem. Here we limit ourselves
to use these relations to check numerically the results derived in the CTM approach. We
considered a finite interval of length ` in an infinite chain and we found that for large ` the
results converge to the CTM predictions.

In Section 4 the symmetry resolved entanglement entropies have been computed for the
XXZ chain in the antiferromagnetic gapped regime (Eqs. (86) and (87)). Here, the conserved
U(1) symmetry corresponds to the rotations in the plane perpendicular to the anisotropy.
Somehow surprisingly, for this model, the symmetry resolved entropies exactly satisfy the
equipartition of entanglement for any anisotropy ∆ ≥ 1. We found this result very remark-
able, although its physical origin is not clear: it would be very interesting to establish a priori
which properties guarantee an exact equipartition of entanglement and how they are related
to integrability. The computation has been performed exploiting the explicit expressions of
the elements of the entanglement spectrum and the degeneracies of each level in a given mag-
netisation sector [58]. We also computed the charged moments (Eq. (95)) checking that for
α = 0 the result of [5, 23] was retrieved. We found that Zn(α) have no discontinuities, as a
difference with the complex harmonic chain.

Let us conclude this manuscript with some possible directions for future investigations
motivated by the results we have found. A first and natural question is whether some of
the results we found here may be also recovered in massive two-dimensional field theories
both free and integrable. Work in this direction is in progress [64]. It is also interesting
to understand what happens when integrability is absent: while a general treatment seems
impossible, the results for the entanglement spectrum in Refs. [58, 79] suggests that in some
non-trivial regimes general results may be derived. Another natural extension is to study
symmetry resolved entanglement in higher dimension for which there are only few works for
free fermions [38,39]. Our Eq. (74) paves the way for general numerical studies in arbitrary
dimension for bosonic systems as well, also in the presence of a spherical constraint [80].
In some cases, also analytical results can be explicitly worked out [81]. Finally, one expects
that the symmetry resolved entanglement should help in reconstructing the entanglement (or
modular) Hamiltonian, but it is still unclear how. This issue is very timely given the large
current effort devoted to understand the structure of the entanglement Hamiltonians both in
field theories [82–85] and lattice models [86–90].
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Appendices

Appendix A Details for the complex harmonic chain

A.1 A two-site chain with complex oscillators

For a single harmonic chain with two sites, the RDM has been worked out e.g. in [57]. The
entanglement Hamiltonian of one site is

HA = εβ
†β . (101)

For this site, the β ’s are related to the a’s as

β = a coshθ + a† sinhθ , (102)

which is the specialisation of Eq. (26) to the case of A being one site. Here eθ = (1+ω2
0/4)

1/4,
but its explicit value is unimportant. Hence, in terms of the ladder operators a, a†, HA can be
rewritten as

HA = ε
�

1
2
(a†2 + a2) sinh 2θ + a†a cosh2 θ + aa† sinh2 θ

�

. (103)

Rather then one real harmonic oscillator, we consider a complex one, which is the same as two
real harmonic oscillators described by the ladder operators a†

i , ai , i = x , y such that the only
non-vanishing commutators are [ai , a†

i ] = 1, i = x , y . Therefore, the entanglement Hamilto-
nian of these two real harmonic oscillators is simply the sum of two single ones:

HA =
∑

i=x ,y

ε

�

1
2
(a†2

i + a2
i ) sinh 2θ + a†

i ai cosh2 θ + aia
†
i sinh2 θ

�

. (104)

Let us rewrite Eq. (104) in terms of the particle and antiparticle ladder operators a and b in
Eq. (27), i.e.

ax =
1
p

2
(a+ b), a†

x =
1
p

2
(a† + b†),

ay =
1
p

2i
(a− b), a†

y =
1
p

2i
(b† − a†).

(105)

One can check that [a, a†] = [b, b†] = 1, while all other commutators vanish. Plugging
Eqs. (105) into Eq. (104), we obtain

HA = ε
�

(a† b† + ab) sinh2θ + (a†a+ b† b) cosh2 θ + (aa† + bb†) sinh2 θ
�

, (106)

or, equivalently (up to an additive constant we can absorb in the normalisation factor of the
RDM)

HA = ε
�

(a† b† + ab) sinh 2θ + (a†a+ bb†) cosh 2θ
�

. (107)

One can bring Eq. (107) into a diagonal form through Bogoliubov transformations, i.e.

α= coshθ a+ sinhθ b†, α† = coshθ a† + sinhθ b,

γ= sinhθ a+ coshθ b†, γ† = sinhθ a† + coshθ b,
(108)

where [α,α†] = [γ,γ†] = 1, while [α,γ] = 0. As a result, one finds that the RDM for one
single complex harmonic oscillator ρ1 has the form

ρ1 = Ke−HA, HA = ε
�

α†α+ γ†γ
�

. (109)

Since the operators γ and α commute, we can rewrite Eq. (109)

ρ1 = Ke−H
(α)
A ⊗ e−H

(γ)
A . (110)
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A.2 The Bogoliubov transformation for a chain of arbitrary length

For a real harmonic chain of arbitrary length 2L, the entanglement Hamiltonian for half system
is [57]

HA =
L−1
∑

j=0

ε jβ
†
j β j , (111)

where the eigenvalues ε j depend on L and in the thermodynamic limit are given by Eq. (24)
while for L = 1 by Eq. (101).

The ladder operator β j as function of the local ladder operators are given by Eq. (26), i.e.

β j =
∑

i∈A

g jiai + h jia
†
i . (112)

Hence, the entanglement Hamiltonian in terms of local operators is

HA =
∑

j

ε j

∑

i1,i2

�

g∗i1 j g ji2 a†
i1

ai2 + g∗i1 jh ji2 a†
i1

a†
i2
+ h∗i1 j g ji2 ai1 ai2 + h∗i1 jh ji2 ai1 a†

i2

�

. (113)

Therefore, the entanglement Hamiltonian of a complex chain is just the sum of two real ones
with local ladder operators aa, j with a = x , y as in the case of two oscillators in the previous
subsection. Such HA can be rewritten in terms of the particle and antiparticle ladder operators
in Eq. (27), obtaining (up to constants)

HA =
∑

j

ε j

∑

i1,i2

�

(g∗i1 j g ji2 + h∗i1 jh ji2)(a
†
i1

ai2 + b†
i1

bi2) + g∗i1 jh ji2 a†
i1

b†
i2
+ h∗i1 j g ji2 ai1 bi2

�

, (114)

which we can put in the diagonal form

HA =
∞
∑

j=0

ε j(α
†
jα j + γ

†
jγ j), (115)

by the transformation (28).

Appendix B A generalisation of the binomial theorem

In this Appendix we report a proof (based on Refs. [91,92]) of a generalisation of the binomial
theorem that has been used in Eq. (135). We also discuss some corollaries of the theorem used
in the main text.

The generalisation of the binomial theorem is:

n−1
∏

j=0

(1+ x t j) =
n
∑

k=0

tk(k−1)/2
�

n
k

�

t
xk, (116)

where
�n

k

�

t is the generating function (in the variable t) for the number of integer partitions
with at most k parts, whose largest part is at most n− k, i.e.

�

n
k

�

t
=

k−1
∏

`=0

(1− tn−`)
(1− t`+1)

. (117)

We give a combinatorial proof of Eq. (116). Take the left hand side of Eq. (116) and think
of it as a polynomial in x (of degree n) with coefficients being polynomials in t, i.e. rewrite
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it as
∑n

k=0 ak(t)xk. Clearly, ak(t) is the generating function for partitions with exactly k parts
not exceeding n. In fact, expanding the product on the left hand side, the term xk comes from
taking x t j exactly in k factors. In each of them, x comes together with some power of t, which
is different for each factor and does not exceed n; hence they are parts of our partition. These
partitions can be thought as Young tableaux with k rows and at most n columns. Choosing a
given partition, denote as λ j the length of the row j (starting from the bottom). We then have
1 ≤ λ1 < λ2 . . .λk−1 < λk ≤ n. From this partition, we can produce another one with k rows
and at most n−k columns. Just proceed as follows: remove zero boxes from the first row, one
box from the second row and, in general, i−1 boxes from the i-th row. So we obtain a partition
of µ’s, 1 ≤ µ1 < µ2 . . .µk−1 < µk ≤ n− k, where µ1 = λ1, µ2 = λ2 − 1, . . .µk = λk − (k − 1).
The generating function for µ’s is exactly

�n
k

�

t . On the other hand, the generating function for
λ’s is obtained from the generating function on µ’s by multiplying it by tk(k−1)/2, which takes
into account the total number of removed boxes. Therefore we have

ak(t) = tk(k−1)/2
�

n
k

�

t
, (118)

which proves Eq. (116).
When n→∞, the limit of Eq. (116) is [92]

∞
∏

j=0

(1+ x t j) =
∞
∑

k=0

tk(k−1)/2

∏k−1
`=0(1− t`)

xk. (119)

Another useful property derived from this theorem is the identity [91]

n−1
∏

j=0

(1+ x t j)−1 =
∞
∑

k=0

�

n+ k− 1
k

�

t
xk,

n→∞
−−−→

∞
∏

j=0

(1+ x t j)−1 =
∞
∑

k=0

xk

∏k
j=1(1− t j)

, (120)

that we used to derive Eq. (135).
A final observation is that, through this binomial theorem, one can prove that

e−εnq(q−1)/
∏q−1

j=0(1− e−2εn( j+1)) is the generating function of the partitions of an integer into
q distinct parts. This result will be useful in appendix D.

Appendix C Some properties of the Jacobi theta functions

In this Appendix we report and discuss some properties of the Jacobi theta functions that we
exploited to get some results in the main text.

The Jacobi theta functions θr(z|u), r = 2,3, 4 are defined as [65]

θ2(z|u) =
∞
∑

k=−∞
u(k+

1
2)

2

ei(2k+1)z ,

θ3(z|u) =
∞
∑

k=−∞
uk2

e2ikz ,

θ4(z|u) =
∞
∑

k=−∞
(−1)k uk2

e2ikz ,

(121)

and we use the standard shorthand θr(u)≡ θr(0|u), r = 2,3, 4. The functions θr(u), r = 2,3, 4
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can be expressed in terms of infinite products [65]

θ2(u) = 2u
1
4

∞
∏

k=1

�

(1− u2k)(1+ u2k)2
�

,

θ3(u) =
∞
∏

k=1

�

(1− u2k)(1+ u2k−1)2
�

,

θ4(u) =
∞
∏

k=1

�

(1− u2k)(1− u2k−1)2
�

.

(122)

These three relations allow us to write some particular infinite products in terms of ratios of
Jacobi theta functions. An example of such relations is

∞
∏

j=0

(1− u(2 j+1)) =

�

16uκ′4

κ2

�
1
24

, (123)

where we defined

κ(u)≡
θ2

2 (u)

θ2
3 (u)

, κ′(u) =
Æ

1−κ(u)2 =
θ2

4 (u)

θ2
3 (u)

(124)

that can be obtained properly combining the equations in (122). Other formulas that can be
derived in this way are

θ3(u)
θ2(u)

=
2

u1/4

∞
∏

j=0

�

1+ u2 j+1

1+ u2 j

�2

,
θ4(u)
θ2(u)

=
2

u1/4

∞
∏

j=0

�

1− u2 j+1

1+ u2 j

�2

, (125)

and
∞
∏

j=0

(1+ u2 j+1) =
�

16u
κ2κ′2

�
1
24

, (126)

where κ and κ′ are defined in Eq. (124). Combining (125) with the relation [65] θ4
3 = θ

4
2+θ

4
4 ,

we find
∞
∏

j=0

(1+ u2 j) =







16
u





∞
∏

j=0

(1+ u2 j+1)8 −
∞
∏

j=0

(1− u2 j+1)8











1/8

. (127)

Then, using (123) and (126) we get

∞
∏

j=0

(1+ u2 j) =

�

164/3

(uκ)2/3
(κ′−2/3 − κ′4/3)

�1/8

. (128)

The denominator of the Eq. (83) can now be written in terms of Jacobi theta functions using
(122), (126) and (128), allowing us to obtain (84).

We also report the infinite product representation of θ3(z|u) that was useful to retrieve the
result of [5] in Eq. (96) [65]

θ3(z|u) =
∞
∏

k=1

�

(1− u2k)(1+ u2k−1e2iz)(1+ u2k−1e−2iz)
�

. (129)
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C.1 Some asymptotic properties of the Jacobi theta functions

In this subsection we report some asymptotic expressions of θr(z|u), r = 2, 3,4 in the limit in
which the variable u → 1. These formulas are useful to derive results in the critical regime,
namely for ε→ 0. Let us consider first the case in which the variable z in the theta functions
is 0. At the leading order when u→ 1, we can write [93]

θ2(u)'
√

√ π

log (1/u)
, θ3(u)'

√

√ π

log (1/u)
, θ4(u)' 2

√

√ π

log (1/u)
e

π2
4 log u . (130)

From the definition (124) we therefore obtain at the leading order

κ(u)' 1, κ′(u)' 4 e
π2

2 log u . (131)

Two examples in which these asymptotic formulas have been employed in the main text are,
setting u= e−ε,

�

16e−εκ′4

κ2

�
n

24

' 2
n
2 e−

π2n
12ε , (132)

that has been exploited to obtain (141), and

�

164/3

(qκ)2/3
(κ′−2/3 − κ′4/3)

�n/8

' 2
n
2 e

π2n
24ε , (133)

involved in the computation of the critical limit of (84).
The asymptotic expression for u→ 1 of θ3(z|u) is [93]

θ3(z|u)'
√

√ π

log (1/u)
e

z2
log u , (134)

which reduces to the second identity of (130) when z = 0. Plugging (134), setting z = −inε
and u= e−4nε, into Eq. (97) we obtain (98).

Appendix D The CTM symmetry resolution

In the main text of the paper, we derived the symmetry resolved entropies for the most inter-
esting case of the conserved charges QA being the “electrical” charge of the complex harmonic
chain and magnetisation of the XXZ chain (equivalently the number operator in fermion lan-
guage). Being these models integrable, there are many other conservation laws that can be
used in place of these, but usually are very difficult to calculate. However, a quantity we can
easily deal with in the CTM approach is QA =

∑

j n j =
∑

j β
†
j β j , although it has not a clear

physical meaning, if it has one at all. Indeed, since [ρA, n j] = 0 for each j, QA is conserved
and the symmetry resolved entanglement for the sectors with different values of this quantity
may be studied. We will refer to QA =

∑

j n j as the CTM charge. Although these results have
most likely no physical meaning at all, the details of the calculations are rather interesting and
worth being presented.

D.1 The CTM symmetry resolution in the harmonic chain

For a single real harmonic chain, the flux resolved partition sum for the CTM charge is just
Zn(α) = eFn(α). Before performing the Fourier transform to get the symmetry resolved mo-
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ments, it is useful to rewrite eFn(α) as

eFn(α) =

∞
∏

j=0

(1− e−(2 j+1)ε)n

∞
∏

j=0

(1− e−(2 j+1)εn+iα)

=
∞
∏

j=0

(1− e−(2 j+1)ε)n
∞
∑

k=0

e−kεn+ikα

∏k−1
j=0(1− e−2( j+1)εn)

, (135)

where in the last equality we have used the generalisation of the binomial theorem reported
in Appendix B. In addition, Eq. (123) allows us to rewrite the denominator in Eq. (135) in
such a way that the Fourier transform Zn(q) is

Zn(q) =

∫ π

−π

dα
2π

e−iqαZn(α) =

�

16e−εκ′4

κ2

�
n

24 ∞∑

k=0

e−εnk

∏k−1
j=0(1− e−2nε( j+1))

∫ π

−π

dα
2π

e−iα(q−k).

(136)
Since q and k are both integer numbers, Eq. (136) simplifies to

Zn(q) =

�

16e−εκ′4

κ2

�
n

24 e−εnq

∏q−1
j=0(1− e−2nε( j+1))

. (137)

We also provide the analytic continuation of Eq. (136) to real q

Zn(q) =

�

16e−εκ′4

κ2

�
n

24 e−εnq

Γe−2εn(q+ 1)
(1− e−2εn)−q, (138)

where we expressed the finite product in terms of the infinite products:

1
∏q−1

j=0(1− e−2nε( j+1))
=

∏∞
j=0(1− e−2nε( j+q+1))

∏∞
j=0(1− e−2nε( j+1))

, (139)

and we introduced the generalised gamma function

Γm(x) =

∏∞
k=0(1−mk+1)

∏∞
k=0(1−mk+x)

(1−m)1−x . (140)

Eq. (140) reduces to the ordinary gamma function in the limit ε→ 0.
In the critical regime ε→ 0, as showed in Appendix C, Eq. (137) becomes

Zn(q)'
2

n
2

Γ (q+ 1)
e−

π2n
12ε

(2nε)q
. (141)

The symmetry resolved Rényi entropies are easily deduced from Eq. (9), obtaining

Sn(q) =
1

1− n
log

� Zn(q)
Z1(q)n

�

=
1

1− n
log

q
∏

j=1

(1− e−2ε j)n

(1− e−2nε j)

=
1

1− n

q
∑

j=1

�

n log(1− e−2ε j)− log(1− e−2nε j)
�

.

(142)

Taking the limit n→ 1, we get the von Neumann entropy

S1(q) = −
q
∑

j=1

�

log(1− e−2ε j)−
2ε je−2ε j

1− e−2ε j

�

. (143)
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Figure 8: Symmetry resolved entanglement entropies for the CTM charge in the har-
monic chain. The panels (a) and (b) show S1(q) and Sn(q) as functions of q for
different values of ω0 and n. The critical limits in Eq. (146) are also reported as
dashed lines. In the limitω0→ 0, Sn(q) converge non-uniformly to the results in Eq.
(146). The panel (c) reports S1(q) in log-log scale to manifest the effective equipar-
tition of entanglement for q ¦ 1/ε (these crossover values are reported as dashed
vertical lines). The panel (d) shows Sn(q) as function of ω0 for different values of q
and n.

The analytic continuations of Sn(q) and S1(q) to real q are respectively

Sn(q) =
1

1− n
log
(1− e−2ε)nq

(1− e−2nε)q
Γe−2ε(q+ 1)n

Γe−2nε(q+ 1)
, (144)

S1(q) = −q log(1− e−2ε)− log Γe−2ε(q+ 1) +
2εq

e2ε − 1
−
∂nΓe−2nε(q+ 1)|n=1

Γe−2ε(q+ 1)
, (145)

with the leading behaviour for ε→ 0 given by

Sn(q) = −q log 2ε−
q log n
1− n

+ a(q) +O(ε), S1(q) = −q log2ε+ b(q) +O(ε), (146)

where we introduced the functions a(q) = − log Γ (q+ 1) and b(q) = a(q) + q.
The symmetry resolved entropies do not satisfy entanglement equipartition, like the one

for the true charge of the complex chain. However, the breaking of equipartition is rather
different: in this case the leading term for ε→ 0 which grows linearly in q and is proportional
to logε, while for the complex chain the first term breaking equipartition is subleading and
goes like ε2 (the sums for the entanglement entropies are finite because the probabilities decay
fast with q, cf. Eq. (141) for n = 1). Anyhow, from the expressions as sums over q in Eqs.
(142) and (143), it is clear that all the terms with 2ε j � 1 are exponentially suppressed.
Practically, the total sum is more or less the same for all q such that εq ¦ 1 (from Eq. (50) this
is equivalent to qπ2 ¦ logξ in the critical region). Hence, there is an effective equipartition
among all q ¦ 1/ε. Actually, since the only physical values of q are the integers, this fact
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implies that there is an almost exact equipartition (with the trivial exception of Sn(0) = 0) of
the entropy if ε¦ 1, which corresponds to ω0 ¦ 10−4.

Some results for the symmetry resolved moments and entropies are reported in Figure 8 as
continuous functions of real q, although only the integer values are physical. It is evident from
the figure that, as q becomes large enough, the entropies Sn(q) do not depend on q anymore, as
from the previous argument about effective equipartition. In panel (c) we explicitly report the
(approximate) crossover values for q ∼ 1/ε (as function of ω0 is given by Eq. (24)), showing
that it correctly captures the change of behaviour. In panels (a) and (b) we report S1(q) and
Sn(q) respectively, together with the critical limit (146). As expected, the approach to the
critical behaviour is highly non-uniform in q: as q becomes larger we need smaller values of
ε.

As a final non-trivial consistency check of our results we compute the total von Neumann
entanglement entropy starting from the symmetry resolved ones using Eq. (5). The probability
p(q) is given by Eq. (137) with n= 1 while the symmetry resolved entropies are in Eq. (143).
Plugging these two results into Eq. (5) leads to

S1 = −
∞
∑

j=0

log
�

1− e−ε(2 j+1)
�

+
∞
∏

j=0

�

1− e−ε(2 j+1)
�

∞
∑

q=0

�

εe−εq
∏q

k=1 (1− e−2εk)

�

q+
q
∑

k=1

2k
e2εk − 1

��

. (147)

The sum over q in (147) can be written as the following derivative

e−εq
∏q

k=1(1− e−2εk)

�

q+
q
∑

k=1

2k
e2εk − 1

�

= −
d
dε

� e−εq
∏q

k=1 (1− e−2εk)

�

. (148)

Using (148) in (147) and exchanging the derivative with respect to ε with the sum over q, we
can exploit that

∞
∑

q=0

�

e−εq
∏q

k=1 (1− e−2εk)

�

=
1

∏∞
j=0

�

1− e−ε(2 j+1)
� , (149)

reflecting that Z1(q) is normalised to 1. Taking now the derivative with respect to ε, we finally
obtain

S1 =
∞
∑

j=0

�

ε(2 j + 1)
eε(2 j+1) − 1

− log
�

1− e−ε(2 j+1)
�

�

, (150)

which is the known result from the CTM calculation in Ref. [5], i.e. Eq. (37) for α= 0.

D.2 The CTM charge for the XXZ spin chain

D.2.1 Charged CTM moments.

We now consider the CTM charge in the XXZ spin chain. As a difference compared to the
main text, in this appendix we focus on the state that does not break the symmetry, i.e. with
entanglement Hamiltonian given by Eq. (13) with the sum over j starting from 0. As usual,
we first compute the charged moments Zn(α):

Zn(α) =
Tre−

∑∞
j=0(ε j n−iα)n j

�

Tre−
∑∞

j=0 ε j n j
�n =

∞
∏

j=0

∑

k=0,1

e−(2ε jn−iα)k

 

∞
∏

j=0

∑

k=0,1

e−2ε jk

!n =

∞
∏

j=0

(1+ e−2ε jn+iα)

∞
∏

j=0

(1+ e−2ε j)n
, (151)
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where we used that for this model the n j ’s are fermionic number operators. Taking the loga-
rithm of Eq. (151) we have

log Zn(α) =
∞
∑

j=0

log[1+ e−2 jnε+iα]−
∞
∑

j=0

n log[1+ e−2 jε]. (152)

The asymptotic expansion for small ε is obtained applying the Poisson resummation for-
mula (41). Defining fn,α(x) as

fn,α(x) = log(1+ e−2nx+iα), (153)

we can write (152) as

log Zn(α) =
∞
∑

j=0

�

fn,α(ε j)− nf1,0(ε j)
�

=
1
2

∞
∑

j=−∞

�

fn,α(|ε j|)− nf1,0(|ε j|)
�

+
log

�

eiα + 1
�

− n log 2

2
,

(154)

where we used fn,α(0) = log(eiα + 1)/2. The cosine-Fourier transform (42) of (153) is

f̂n,α(y) =
ieiα

2y

�

Φ(−eiα, 1, 1+
i y
2n
)−Φ(−eiα, 1, 1−

i y
2n
)
�

, (155)

with the function Φ defined in (46). For α= 0 and n= 1, it reduces to

f̂1,0(y) =
1
y2
−
π

2y
csch

�πy
2

�

. (156)

We now apply to (154) the Poisson resummation formula (41) with b = 1 and a = 0 and we
isolate the term k = 0, finding

log Zn(α) = −
Li2(−eiα)

2εn
−

nπ2

24ε
+

log
�

eiα + 1
�

− n log 2

2
+

∞
∑

k=1

�

n
2k

csch
π2k
ε
−

nε
2π2k2

+
ieiα

2πk

�

Φ(−eiα, 1, 1+
iπk
εn
)−Φ(−eiα, 1, 1−

iπk
εn
)
�

�

. (157)

For ε→ 0, the leftover sum over k is vanishing. In particular, the last part behaves as

ieiα

2π

∞
∑

k=1

(−1)k

k

�

Φ(−eiα, 1, 1−
iπk
εn
)−Φ(−eiα, 1, 1+

iπk
εn
)
�

→
nε
6

eiα

1+ eiα
. (158)

Thus, we get

log Zn(α) = −
Li2(−eiα)

2εn
−

nπ2

24ε
+

log
�

eiα + 1
�

− n log2

2
+O(ε). (159)

It is worth to observe that, for this model, the limit α → 0 can be taken after the expansion
close to ε= 0 retrieving the result found in [14]

log Zn =
�

1
n
− n

�

π2

24ε
+ (1− n)

log 2
2
+O(ε). (160)

In Figure 9, we report the α dependence of the charged moments for different values of
∆ and n. We also shows the comparison between the exact result (157) and its critical limit
(159). As expected, the latter gets very close to the former as ∆, therefore ε, is close to its
critical value.
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Figure 9: Charged moments for the CTM number in the XXZ spin chain. The real and
the imaginary part of log Zn(α) as functions of α for different values of ∆ and n. As
∆ approaches its critical value, i.e. ∆→ 1, the exact result (157) is well described
by the asymptotic expansion (159), the dashed lines. The rightmost panels show the
same results as functions of ∆ for different α and n.

D.2.2 Resolved moments via Fourier trasform.

The Fourier transform of Zn(α) is obtained by first rewriting (151) exploiting Eqs. (119) and
(128)

Zn(α) =

�

164/3

(qκ)2/3
(κ′−2/3 − κ′4/3)

�−n/8 ∞
∑

k=0

e−εnk(k−1)+iαk

∏k−1
j=0

�

1− e−2εn( j+1)
�

. (161)

The Fourier transform (8) then reads

Zn(q) =

�

164/3

(qκ)2/3
(κ′−2/3 − κ′4/3)

�−n/8 ∞
∑

k=0

e−εnk(k−1)

∏k−1
j=0

�

1− e−2εn( j+1)
�

∫ π

−π

dα
2π

e−iα(q−k)

=

�

164/3

(qκ)2/3
(κ′−2/3 − κ′4/3)

�−n/8
e−εnq(q−1)

∏q−1
j=0

�

1− e−2εn( j+1)
�
.

(162)
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The analytic continuation of Zn(q) to real q is achieved by using Eq. (140):

Zn(q) =

�

164/3

(qκ)2/3
(κ′−2/3 −κ′4/3)

�−n/8
e−εnq(q−1)

Γe−2εn(q+ 1)
(1− e−2nε)−q. (163)

In the critical regime ε→ 0 we get (see Appendix C)

Zn(q)'
2−

n
2 e−

π2n
24ε

Γ (q+ 1) (2εn)q
. (164)

We can check Eqs. (163) and (164) computing Zn(q) directly from the entanglement
spectrum, as done in Sec. 4.1 for the case of QA being the magnetisation. In the symmetry
sector with charge q, the degeneracy of the level 2εs is Pq(s), i.e. the number of partitions of
an integer s in exactly q parts, not exceeding s. The partition function Zn(q) then is

Zn(q) =

∑∞
s=0 Pq(s)e−2εsn

�∑∞
s=0 2Q(s)e−2εs

�n , (165)

which is equivalent to (162):
∏∞

j=0(1+ e−2ε j)−n, as already said, is linked to the partitions of

integers into distinct parts, while e−εnq(q−1)
∏q−1

j=0(1−e−2εn( j+1))
is the generating function for the number of

partitions of s into q positive integers (see Appendix B). Therefore

e−εnq(q−1)

∏q−1
j=0

�

1− e−2εn( j+1)
�
=
∑

s

Pq(s) e
−2εns. (166)

For n = 1 Eq. (165) is normalised since
∑∞

q=0 Pq(s) = 2Q(s), as it should since Z1(q) is a
probability.

From Zn(q), we compute the symmetry resolved entropies (9)

Sn(q) =
1

1− n
log

q
∏

j=1

(1− e−2ε j)n

(1− e−2nε j)
=

1
1− n

q
∑

j=1

[n log(1− e−2ε j)− log(1− e−2nε j)]. (167)

These symmetry resolved entropies have the same form as the ones for the harmonic chain in
Eq. (142) except for the explicit expression of ε. Thus, the analytic continuation to real q, the
von Neumann limit, and the behaviour in the critical regime are the same as those obtained in
the previous section and we do not report here. Notice that these symmetry resolved entropy
do not satisfy entanglement equipartition. However, as for the harmonic chain, equipartition
is effectively recovered as q ¦ 1/ε.

Finally, notice the similarity between these symmetry resolved entropies and the ones for
the magnetisation in Eq. (86). Apart from a reparametrisation and an additive term, the main
difference is that in the case of the CTM charge the sum is up to q and in the magnetisation case
it is up to∞ (and that is why the former does not satisfy equipartition while the latter does).
When the upper limits in the former do not matter, the two become practically equivalent.

In Figure 10 we plot Zn(q), showing also a comparison between the exact result (163) and
its critical limit, Eq. (164). It is interesting to observe that the maxima of Zn(q) are increasing
or decreasing with n depending on the considered values of ∆. In the last panel we report
the exact expression of Sn(q) and its critical limit, respectively Eq. (144) and Eq. (146), as
function of ∆ for different q. The agreement improves for ∆ close to 1, as it should.
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Figure 10: Symmetry resolved moments and entropies for the CTM number in the
XXZ spin chain. The top two panels report the exact results for Zn(q) (163)–full
lines– for ∆ close to 1 and the comparison with the critical limit, Eq. (164)–dashed
lines–, as a function of q, for different values of n= 1, 2,3. At fixed ∆, the approach
is not uniform and the smaller values of q converges faster. In the third panel, we
report Zn(q) for ∆ far from the critical point, where a peak at q = 1/2 is developed.
In the last panel, the exact and critical limit of Sn(q), respectively Eqs. (144) and
(146), are shown against ∆ for different q.
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