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Abstract

We study the wave function localization properties in a d-dimensional model of ran-
domly spaced particles with isotropic hopping potential depending solely on Euclidean
interparticle distances. Due to generality of this model usually called Euclidean random
matrix model, it arises naturally in various physical contexts such as studies of vibra-
tional modes, artificial atomic systems, liquids and glasses, ultracold gases and photon
localization phenomena. We generalize the known Burin-Levitov renormalization group
approach, formulate universal conditions sufficient for localization in such models and
inspect a striking equivalence of the wave function spatial decay between Euclidean ran-
dom matrices and translation-invariant long-range lattice models with a diagonal disor-
der.
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1 Introduction

After more than six decades of successful and intense study of Anderson localization (AL)
passed from Anderson’s seminal work [1] this field still embodies many puzzles and unex-
pected surprises such as the correspondence between many-body localized (MBL) systems and
AL models on hierarchical structures like a random regular graph (RRG), including the pres-
ence in both counterparts of a whole phase of the subdiffusive wavepacket spreading in the fi-
nite range of parameters [2–6], which is absent in single-particle models on finite-dimensional
lattices, and hot debates about the presence of a putative extended phase violating ergodic-
ity [7–16] with non-trivial multifractal wavefunctions, claimed in other papers to be just a
finite-size effect [17–27] due to a critical regime [13] close to the localization transition. An-
other surprise 1 of recent years in AL community is the presence of robust localization of all
bulk eigenstates in long-ranged (e.g., dipolar) systems [32] beyond the convergence of the
standard locator expansion and of the resonance counting [1,33,34]. For lattice models with
diagonal disorder this phenomenon is directly linked in the literature to the effects of coopera-
tive shielding [35] 2 and the emergence of localization due to correlations in hopping [36,37]
of these long-range models. However, this question for the models with off-diagonal disorder
(e.g., due to disordered positions of lattice sites) is still open.

In this work, we address exactly this question via the discussion of the localization prop-
erties of systems described by Euclidean random matrices (ERM) [38], i.e. the systems of
particles randomly distributed in d-dimensional space with the hopping of single-particle ex-
citations, which solely depends on the Euclidean interparticle distance. Due to quite general
description, ERMs cover a considerable class of physical models and arise naturally in vari-
ous systems, e.g., in the ones with non-crystalline structures like gases, liquids, amorphous
materials, and glasses. Although such models sometimes arise in the systems with short-
range interactions, such as elastic networks [39], jammed soft spheres [40] or magnetic vortex
plasma [41], more commonly ERMs are used to describe the long-range models. Indeed, long-
range ERMs are applied to the analysis of the systems of particles with Coulomb interactions
in two-dimensional irregular confinement [42], disordered classical Heisenberg magnets with
uniform antiferromagnetic interactions [43], systems with dipole-dipole interactions such as
dipolar gases [44], systems of ultracold Rydberg atoms [45] and so on. Even the effects of pho-
ton localization in atomic gases [46] are described by a long-range ERM. Although the ERM
model itself was introduced [38] back in 1999 and its spectral properties are studied quite
deeply [47–49], the analysis of the wave function properties, including their spatial structure
and localization, crucial for above mentioned applications to physical models is barely carried
out and represented in the literature only by a couple of numerical works [32,50] or in quite
restricted particular cases [51]. The present paper is aimed to fill this gap providing a generic
analytical approach.

The problem with the analysis of the eigenstate structure in ERMs is caused by the ab-
sence of a small parameter. Indeed, unlike the models with the diagonal disorder, there is no
way to treat the ERMs without the diagonal potential with the locator expansion approxima-
tion even for the infinitesimally small hopping term, due to the ideal resonance of all bare
diagonal levels. This fact can be understood on the example of low-dimensional models with
translation-invariant polynomial hopping which show localization of all bulk wavefunctions
for any finite disorder either in the diagonal potential [32,35,36,52] or in the position of the
lattice sites [32], whereas in the complete absence of the disorder these models are translation-

1There are many other surprises such as emergence of multifractality in long-range static [28–30] or short-range
driven [31] models with quasiperiodic potentials but we focus on the one relevant for our consideration.

2In this case a top energy level keeps delocalized even at strong disorder due to its energy diverging with the
system size and shields the rest levels from the hopping terms.
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invariant and, hence, delocalized. To overcome the above mentioned principal difficulty we
generalized the known renormalization group (RG) approach (developed by Levitov [33,34]
and extended by Burin and Maksimov (BM) in [53] and by Mirlin and Evers in [54]) to the
case of absence of a small parameter and to generic smooth Euclidean hopping term. Conse-
quently, we show that for all ERMs with quite smooth potential 3 the bulk spectral eigenstates
show localization.

The main idea behind this is similar to the one developed in [36], where the presence of
(the measure zero of) delocalized states with energies diverging with the system size (not only
the top energy level) at the either spectral edge gives the main contribution to the hopping
term and is shown not to bring the system to the delocalization. In that case the effective
hopping for the bulk spectral states can be obtained by the matrix-inversion trick developed
in [36]which rewrites the eigenproblem in a special form, non-linear in eigenvalues, inverting
all the high-energy contributions to the hopping term.

In the case of the current work on ERMs, the absence of a small parameter does not allow
us to use the same technique and we have to develop a renormalization group (RG) approach.
The resulting renormalization of the hopping terms is shown to evolve in such a way that the
most of their spectral weight goes to the spectral edge states with energies increasing with
the “renormalization scale” (system size) as in the matrix-inversion trick or the cooperative
shielding. Thus, this significantly reduces the spectral weight of the hopping term in the bulk
of the spectrum and localizes bulk spectral states.

2 Renormalization group approach

2.1 Main idea

The cornerstone idea of the renormalization group approach with respect to AL in random
matrix problems [33, 34, 53, 54] is to rewrite the Hamiltonian of the system in such a form
which is invariant under the iterative diagonalization procedure. The latter diagonalization
procedure represents an elementary step of the renormalization scheme and thus should be
done analytically as precise as possible. This often implies an exact diagonalization of certain
2×2 matrix blocks, which take into account most resonant levels hybridizing with the current
one. This diagonalization procedure is crucially based on the assumption of isolated single
resonant pairs of levels, which has a certain range of validity. The approximation can be
formulated as follows: typically, for each iteration i and any energy level represented by a
diagonal matrix element εi

n there is the only resonant level εi
m, m 6= n, such that the absolute

value of the off-diagonal hopping element t i
nm between them is comparable or larger than the

interlevel spacing |εi
n − ε

i
m|. The RG procedure diagonalizing the initial problem is formed by

a set of consecutive elementary diagonalizations of the resonant level pairs.
Further we consider a random matrix Hamiltonian of a general form

H =
∑

i

εi|ci〉〈ci|+
∑

i 6= j

f (ri j)|ci〉〈c j|, (1)

with the deterministic real-valued function f (r)which depends only on the Euclidean distance
ri j = |ri j| = |ri − r j| between some sites in d dimensions, indices i and j numerate all N d-
dimensional sites ri . The randomness in the model is given both by the off-diagonal elements
through the positions of sites ri uniformly distributed in d-dimensional cube with the mean
density equal to unity, and by the random bare on-site energies εi with zero mean, dependent
or independent of f (r) and ri . In particular, εi could be even all equal to zero, as in the

3More rigorous general sufficient conditions are provided in the next sections.
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power-law Euclidean (PLE) model considered in [32] with d = 1 and f (r) = r−a. Unlike
the models with translation-invariant hopping and only diagonal disorder [35–37, 53], the
above model does not necessarily have a small parameter, and, hence, the approximation of
the single resonances does not necessarily applicable from the first steps of RG. In terms of the
wave functions it means that the localized ones (if any) can have extended “heads” of finite
size R0 which will be determined later, where eigenstate do not decay, but may, e.g., oscillate.
These heads have a complex internal structure which cannot be obtained within RG approach,
because at such distances the approximation of single resonances may fail. To overcome this
difficulty, we introduce the following preliminary step before employing RG: we rewrite the
Hamiltonian in a form H = H0+V in such a way that, being expressed in the eigenbasis |ε0

n〉 of
H0, it is invariant under the iterative diagonalization of resonant blocks and the approximation
of single resonances is satisfied. This allows further RG treatment in the form of [33, 53, 54]
and, thus, show the localization of the bulk of the states written in the basis |ε0

n〉. If, in addition,
eigenvectors of H0 are exponentially localized in the initial basis |ci〉, one can equally consider
the localization and the eigenstate spatial structure in either of bases |ε0

n〉 or |ci〉. In this case
one can forget about initial Hamiltonian and use the effective one instead.

To obtain the effective renormalizable Hamiltonian which satisfies all above mentioned
conditions, we consider H0 as the initial H cut at ri j ≤ R0

H0 =
∑

i

εi|ci〉〈ci|+
∑

ri j≤R0

f (ri j)|ci〉〈c j| ≡
∑

n

ε0
n|ε

0
n〉〈ε

0
n| (2)

and rewrite the original Hamiltonian in a form

H =
∑

n

ε0
n|ε

0
n〉〈ε

0
n|+

∑

n,m

t0
nm|ε

0
n〉〈ε

0
m|, (3)

where R0 is a cutoff radius at this zeroth step, and

t0
nm =

∑

ri j>R0

f (ri j)〈ε0
n|ci〉〈c j|ε0

m〉. (4)

Since H0 we used to obtain this form has short-range hopping in the original basis, the states
|ε0

n〉 are assumed to be localized with the localization scale of the order of R0. Here we should
note that even the worst case of the initial bare energies being strictly zero εi = 0, corre-
sponding to all bare sites being in perfect resonance already at the first RG step, is covered
by this method. Indeed, taking R0 = 1 one can easily diagonalize H0 and get (i) exponen-
tially localized eigenstates |ε0

n〉 and (ii) non-singular density of states (DOS) formed by nearly
uncorrelated eigenvalues ε0

n.
Further we restrict our consideration to the most relevant case of smoothly varying hopping

potentials f (r) at the scale R0
4 and neglect the difference between rnm and ri j due to localized

nature of the wavefunctions 〈ε0
n|ci〉 and 〈c j|ε0

m〉 at the cutoff radius R0 � ri j , rnm, see Fig. 1.
Within this approximation

∑

j f (ri j)ψ0
m( j)' f (rim)

∑

jψ
0
m( j), and the effective Hamiltonian,

Eq. (3), takes the form

Heff =
∑

n

ε0
n|ε

0
n〉〈ε

0
n|+

∑

rnm>R0

q0
nq0

m f (rnm)|ε0
n〉〈ε

0
m|. (5)

Here q0
n =

∑

iψ
0
n(i) is an effective “charge” of the state |ε0

n〉, with ψ0
n(i) = 〈ci|ε0

n〉. As we show
below, this Hamiltonian is renormalizable, with the effective charges being the renormalization
parameters. The zeroth-step cutoff radius R0 should be determined in such a way that the
approximation of the single resonances is valid for the first step of the renormalization group.

4See below for more rigorous conditions.
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Figure 1: Origin of the effective charge approximation. Due to the smooth-
ness of f (r) and the localized nature of ψ0

m( j) one can approximately rewrite
∑

j f (ri j)ψ0
m( j) as f (rim)q0

m = f (rim)
∑

jψ
0
m( j).

First, we proceed to the renormalization group scheme which, from this point, is quite
straightforward and leave the problem of the zeroth-step cutoff radius determination and the
range of validity of the effective charge approximation for a further discussion. Assuming that
on the ith iteration the renormalization group Hamiltonian Hi has a form

Hi =
∑

n

εi
n|ε

i
n〉〈ε

i
n|+

∑

Ri<rnm≤Ri+1

qi
nqi

m f (rnm)|εi
n〉〈ε

i
m|, (6)

with Ri+1 � Ri and the approximation of single resonances is valid, see Fig. 2, the next-step
Hamiltonian Hi+1 can be written in the same form with renormalized eigenvalues εi+1

n and
charges qi+1

n . Indeed, for each bare level both εi+1
n and qi+1

n are (i) either equal to εi
n and

qi
n if at the current step there are no levels resonant with it or (ii) are determined by the

𝑅"#$ ≫ 𝑅"

𝑅"

𝑟'" ≫ 𝑟$"

Figure 2: Sketch of the single-resonance approximation. For each eigenstate
localized at ith step of RG at the radius Ri (orange circles) the next cutoff radius
Ri+1 = r i

1 (blue circle) is determined as the distance to the closest resonant level.
Single-resonant approximation assumes that all other resonant levels are located
much farther r i

2� r i
1.
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diagonalization of the corresponding 2× 2 resonant block coupling εi
n and εi

m levels

εi+1
± =

1
2

�

εi
n + ε

i
m ±

εi
n − ε

i
m

cosθ

�

, (7a)

qi+1
+ = cos

θ

2
qi

n + sin
θ

2
qi

m, qi+1
− = − sin

θ

2
qi

n + cos
θ

2
qi

m, (7b)

tanθ = 2
qi

nqi
m f (rnm)

εi
n − εi

m
, −π/2≤ θ ≤ π/2. (7c)

This forms an elementary step of RG procedure which gives both the spectrum of the effective
Hamiltonian Heff, Eq. (5), and the asymptotic form of tails of its localized eigenstates 5. Indeed,
for Ri � R0, when all the wavefunction heads are eventually formed, the strong resonances are
rare and typical values of θ in (7c) are small. As a consequence, the typical wave functions
transform as |ε±〉 ' |εn〉 ± θ/2|εm〉, with 〈c j|εm〉 being localized at r jm ' Ri , see the right
column of Fig. 3. Since θ ∼ |qi

n|
2 f (Ri) (a typical energy difference εi

n−ε
i
m does not scale with

Ri , see Appendix A), the tails are determined by the effective hopping

t i
eff(ε) = 〈|q

i
ε|

2〉 f (Ri), (8)

where

〈|qi
ε|

2〉=




|qi
n|

2δ(ε − εi
n)
�

νRi
(ε)

(9)

is the squared effective charge for the state with energy ε and averaging (denoted by 〈. . .〉)

𝑅"

𝑅"#$

𝑅"#$

𝑅"
resonant hopping

repeat

average

Figure 3: Formation of the wavefunction tails by RG. At ith step of RG bare eigen-
states localized at distance Ri (shown by orange curves in the top left and as orange
circles on the diagonal of the matrix in the bottom left) are affected by hybridization
via resonant hopping (white circles within blue non-resonant ones in the matrix) with
eigenstates located at distance Ri+1. At later RG steps, Ri � R0, the wavefunction
hybridization is dominated by small angles θ , Eq. (7c), determining the amplitude
of the hybridized eigenstate at the distance Ri+1 with respect to the one localized
at Ri via the effective hopping, Eq. (8) (top right). Further steps of RG (middle
right) and the disorder averaging (bottom right) form the typical wavefunction tails
ψn( j) = 〈c j|εn〉 ∼ teff(r jn), Eq. (10).

5Like the ones in a numerical work [32] which have been found to be symmetric with respect to the critical
value a = d for f (r) = r−a. In that paper it has been called the duality of the wave function power-law decay rate.
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is taken over disorder realizations and index n, and νRi
(ε) = 〈δ(ε − εi

n)〉 is the density of
states (DOS) at ith RG step. Note that the energy dependence of the effective hopping is not
accidental as there are few delocalized states at the spectral edge for which the RG approach
is not applicable.

In determination of the spatial decay we should take into account the difference in wave-
function averaging. For the typical averaging ψ2

n,typ(rm) = exp
�

〈lnψ2
n(rm)〉

�

the eigenstate

decays proportionally to t i
eff(ε), (8)

ψ2
typ(Ri)∼

�

t i
eff(ε)

�2
, (10)

while for the mean averaging one have to take into account strong resonant contributions and
obtain (due to Breit-Wigner-like profile of wavefunctions)

〈ψ2(Ri)〉 ∼ t i
eff(ε). (11)

2.2 Basic equations

To determine the evolution of the effective charges we first write the equation for the proba-
bility P(q,ε; R)dqdε of a state at a certain RG step with the cutoff radius R to have energy and
charge in the intervals (ε,ε+dε) and (q, q+dq), respectively. Due to the hybridization (7) of
resonant pairs the evolution of the probability distribution at one RG step takes the form

P(q,ε; R2)− P(q,ε; R1) =
1
2

∫

dqndεnP(qn,εn; R1)dqmdεmP(qm,εm; R1)

∫ R2

R1

dd rnm

�

δ(ε − ε+)δ(q− q+) +δ(ε − ε−)δ(q− q−)

−δ(ε − εn)δ(q− qn)−δ(ε − εm)δ(q− qm)
�

. (12)

Here, for brevity, we omit upper indices i and i + 1 and, instead of Ri and Ri+1, write R1 and
R2. The integration by dd rnm is carried out over the whole region of the d-dimensional space
in the interval R1 < rnm < R2.

Equation (12) provides an exact recipe to calculate the distribution function P(q,ε; R) at
all steps of the renormalization scheme provided the approximations of effective charges and
single resonances are valid. Needless to say that due to this exactness and an overall complex
structure of the equation, its analytical solution is extremely tough to obtain without further
approximations. However, since the quantities of primary interest are few first moments of
the distribution function and not the distribution function itself, we can, using Eq. (12), write
similar equations for the moments and then try to solve them, exactly or approximately. For
example, it can be directly seen from Eq. (12) that the average eigenenergy 〈ε〉 and the mag-
nitude of the average state charge 〈q2〉 do not change with the RG iterations at all

〈ε〉 =
∫

dqdεP(q,ε; R)ε =

∫

dενR(ε)ε = const, (13)

〈q2〉 =
∫

dqdεP(q,ε; R)q2 =

∫

dενR(ε)〈|qε(R)|2〉= const. (14)

Note that the latter equality is exact (even beyond RG consideration) and equal to the unity
〈q2〉 = 1 due to the completeness of the eigenbasis at each ith RG step and for every single
realization. Due to Eq. (13) the value of 〈ε〉 is completely determined by the zeroth-step cutoff
Hamiltonian H0 or, in other words, by the heads of the wavefunctions.
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2.3 Equation for effective charges

In order to determine the effective hopping, one can write the equation for
χε(R) = 〈|qε(R)|2〉νR(ε) =

∫

dqP(q,ε; R)q2 6 which is an energy-dependent second q-moment
of P(q,ε; R), straightforwardly following from Eq. (12)

χε(R2)−χε(R1) =
1
2

∫

dqndεndqmdεmP(qn,εn; R1)P(qm,εm; R1)

∫ R2

R1

dd rnm

�

δ(ε − ε+)q2
+ +δ(ε − ε−)q

2
− −δ(ε − εn)q

2
n −δ(ε − εm)q

2
m

�

.

(15)

Clearly, the last two delta-functions give after integration −χε(R1)Cd(Rd
2 − Rd

1) where
Cd = πd/2/Γ (1 + d/2) is a volume of d-dimensional ball of a radius 1, Γ (x) is the Gamma-
function, so we concentrate on the contributions J± from the first two ones corresponding to
δ(ε − ε±). After changing of integration variables from εn and εm to w = (εn + εm)/2 in both
integrals and t± = ±qnqm f (r) cot(θ/2) in J±, respectively, one can integrate out the remaining
delta-functions and simplify integrands to the identical expressions for J+ and J−,

J± =
1
2

∫

dqndqm

∫ R2

R1

dd r

∫

|t|>|qnqm f (r)|
dt

�

q2
m +

2q2
nq2

m f (r)

t
+

q4
nq2

m f 2(r)

t2

�

×

P (qn,ε − t; R1) P

�

qm,ε −
q2

nq2
m f 2(r)

t
; R1

�

.

(16)

The fact that the integration excludes small values of t allows us to simplify the exact relation in
the approximation of the small charges. Indeed, assuming an existence of R-dependent cutoff
Q(R) for q such that the distribution function P(q,ε; R) is exponentially small for q > Q(R)
and Q2(R) f (R) is small compared to a width of DOS, νR(ε), for R> R0, one can neglect small
terms both in the argument of the second P(q,ε; R) and in the first brackets getting

J± '
1
2

∫

dqndqm

∫ R2

R1

dd r �
∫

dt

�

q2
m +

2q2
nq2

m f (r)

t

�

P (qn,ε − t; R1) P (qm,ε; R1) . (17)

Here �
∫

denotes the principle value integration from −∞ to ∞. The function Q2(R) in the
approximation formulation can be replaced by 〈|qε(R)|2〉 to obtain a sufficient condition for the
validity of the approximation. Thus, the sufficient condition for the approximation to be valid
is to have effective hopping teff(R) = 〈|qε(R)|2〉 f (R) decaying to zero at infinite distances. As
we show below, teff(R) always behave so in the range of validity of RG scheme, i.e. provided
the approximations of effective charges and single resonances are valid.

Assuming r.h.s. of Eq. (15) to be sufficiently small even for significantly different R1 and
R2, one can replace the finite-difference equation for χε by the following differential one as by
taking formally the limit R2→ R1

∂ χε(ξ)
∂ ξ

= 2χε(ξ)�
∫

dzχz(ξ)
ε − z

, ξ=

∫ R

R0

f (r)dd r . (18)

Here, ξ is a natural renormalization scale variable. Solving this equation, one obtains

χε(ξ) =
χ0(ε)

(1− k0(ε)ξ)2
, (19)

6Since the density of states doesn’t depend on cutoff radius, see Appendix A
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where χ0(ε) = χε(ξ= 0) = χε(R= R0), and k0(ε) is determined by the expression

k0(ε) = �
∫

dzχ0(z)
ε − z

. (20)

The condition for replacing the finite-difference equation (15) by the differential one (18) can
be rewritten as

k0(ε)χ0(ε)� 1. (21)

This is the only validity criterion which explicitly differentiate states by their energy 7.The
condition will later lead to the mobility edge estimation.

As seen from (19), the renormalization of χε(ξ) and, thus, of the hopping t i
eff, Eq. (8), is

non-trivial only if ξ(R) goes to infinity as R→∞. Otherwise, the effective hopping is propor-
tional to the original one, teff

ε (R)∝ f (R). Instead, in the case of non-trivial renormalization
χε(ξ)∼ χ0(ε)/k0(ε)2ξ2 for k0ξ� 1, and

|ψtyp(R)| ∼ 〈ψ2(R)〉 ∼ teff
ε (R)∼

χ0(ε) f (R)
νR(ε)k0(ε)2ξ2(R)

∝
f (R)

�

∫ R
f (r)dd r

�2 , (22)

which shows that our original model (2) is dual to the other model, with f̃ (R)∝ teff
ε (R) instead

of f (R) and localized eigenstates. This result can be applied to any smooth function f (r) and,
thus, claims the localization of the bulk spectral states for all long-range ERMs with smooth
potential. For example, in a particular case of f (r) = r−a, our result explains the duality of
the wave function decay

|ψtyp(R)| ∼ R−µ(a), µ(a) = µ(2d − a), (23)

with respect to the critical point a = d observed for d = 1 in [32]. The latter model will be
discussed in details in Sec. 3.

Note that from Eq. (19) one can easily see that the latter approximation might break down
at certain small positive k0(ε) due to the presence of a pole which is incompatible with the
requirement (21). Thus, at each cutoff R there is a certain energy ε∗ determined by the vicinity
of the pole k0(ε∗) = 1/ξ(R) at which χε(ξ) can take unbounded values. It signals that the
approximation of single resonances with a given R0 breaks down for these energies and the
states may become delocalized. On the other hand, we know that, due to the general relation
〈q2〉 =

∫

dεχε(R) = 1 working at any R including R0 the function χ0(ε) should be integrable
to unity. As a result, χ0(ε) should have a sharp peak at the energies ε∗(R0) in the following
interval

ε∗min(R0)≤ ε∗(R0)≤ ε∗max(R0), (24a)

ε∗min(R0)∼ 〈ε0〉, (24b)

ε∗max(R0)∼
∫ R0

f (r)dd r . (24c)

Indeed, since χ0(ε) = ν0(ε)〈|qε(R0)|2〉, its maximum lies between the absolute maxima of
the density of states and the squared effective charge function. The lower bound ε∗min(R0) is
of the order of the mean energy which doesn’t scale with R0, while the upper bound ε∗max(R0)

7 Due to the single resonance approximation which forms the very basis of Eq. (12), it is applicable only if its
r.h.s is small, i.e. when the probability density function P(q,ε, R) changes slowly with the renormalization scale.
So, the condition (21) is deeper than just the mathematical trick to go from differences to differentials.
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can be estimated as the energy of the trial state with R0 components all equal to R−d/2
0 with the

same sign (zero-momentum plane wave), eventually leading to (24c). This state is chosen as
an estimate because it gives the maximal possible value of 〈|q(R0)|2〉 for the normalized state
with R0 non-zero components

〈|q(R0)|2〉max ∼ Rd
0. (25)

Moreover, it is natural to assume that such a state is close to the eigenstate of the model for
spatially homogeneous distribution of sites as the fluctuations site positions are averaged out
on this zero-momentum plane wave.

It is important to note that the presence in such a system of the states with the large
effective charge (maybe not only the above mentioned one) which leads to their delocalization
causes the localization of the bulk spectral states (similar to the matrix-inversion trick [36]) as
the main spectral weight of χε(R) is absorbed by these high-energy states. As we will show in
the last section in some models (like in PLE) these delocalized states may be located not at the
very spectral edge and this severely questions an alternative cooperative shielding explanation
present in the literature [35,52].

Now we are in the position when we are ready to check our approximations, find the range
of validity of our method and estimate the size of the wavefunction head R0.

2.4 Effective-charge approximation

We start with the conditions on the hopping function f (r) required for the effective charge
approximation (5). The initial hopping term (4) between states |ε0

n〉 and |ε0
m〉 reads as

t0
nm =

∑

ri j>R0

f (ri j)〈ε0
n|ci〉〈c j|ε0

m〉. (26)

To go from this form to the approximate one with effective charges we have to assume that
f (ri j) differs only slightly from f (rnm) for any such i and j that ψ0

n(i) and ψ0
m( j) have signif-

icantly non-zero values, i.e. for rni , rmj < R0, Fig. 1. Mathematically, for an isotropic model it
gives the following condition:

R0
d f (r)

dr

�

�

�

r=rnm

� f (rnm). (27)

Since the only hopping terms which matter for the RG approach are the ones from the resonant
blocks, the distance rnm in the condition should be of the order of a typical distance between
counted single resonances. As shown in the next subsection, the next cutoff Ri+1 should be
chosen to be much smaller than the average distance between single resonances in the full
(not truncated) Hamiltonian and, hence, 8the validity of the effective charge approximation
is governed by the condition 9

Ri
d f (r)

dr

�

�

�

r=Ri+1

� f (Ri+1). (28)

8 The requirement for the function f (r) to be smooth in points corresponding to the typical distances between
resonances, Eq. (28), limits it to have all its sufficiently strong singularities to be located at small distances deter-
mined by the zero-cutoff radius, r < R0. By the term ’sufficiently strong’ we mean such singularities that alter the
typical distance between resonances moving it from the value Ri+1 towards the vicinity of the pole. Indeed, as soon
as the typical resonance is caused by the singular hopping values rather than by Ri+1 the corresponding hopping
terms cannot be approximated by the effective charges and the whole RG approach fails.

9 The presented condition is sufficient, but far from necessary. An actual necessary and sufficient condition has
to deal with meaning of relative fluctuations of f (r) in the Ri−vicinity of the typical distance between resonances on
the ith step. This fact actually allows the same RG treatment not only for the ERM models with smooth deterministic
f (r), but also for the models with hopping terms of the form t i j = (1+hi j) f (ri j) with hi j being a random variable
with zero mean and relatively narrow distribution function, f 2(ri j)〈h2

i j〉 � r−2d (similar to [37]).
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From this relation it is clear that it puts the restrictions not only on the function f (r) but also
determines how Ri and Ri+1 have to be related for a given f (r). For example, in the case of
PLE, f (r) ∼ r−a, Eq. (28) gives Ri+1 � Ri . If this restriction contradicts to any other one,
then the whole RG approach fails and it may bring the bulk eigenstates of the system to the
delocalization.

2.5 Single-resonance approximation

Next, we consider the range of validity of the single-resonance approximation for the effective
Hamiltonian (5). To justify the approximation, we count the resonances on the ith RG step
and estimate the probability for the multiple resonances to occur. For ith RG step, a number
of states N i

ε(r) separated by a distance r, Ri < r < R, from a certain state with energy ε and
resonant to it can be written as

N i
ε(R) =

∫ R

Ri

pi
ε(r)ρ(r )d

d r , (29)

via

pi
ε(r) =

∫ 〈|qi
ε |

2〉 f (r)

−〈|qi
ε |2〉 f (r)

dε′νi(ε + ε
′), (30)

the probability to have a single resonance at distance r and via the density of states νi(ε) with
energies εi

n at a given ith RG step. Here ρ(r ) is the average density of sites r in the spatial
region of integration. For simplicity we consider the models with uniform spatial density. Thus,
we rescale it to unity, ρ(r )≡ 1, and omit in further expressions.

Probabilities (30) help us to define the typical probability 10to have no resonances in the
layer Ri < r < R,

P i
0,ε(R) = exp

�

∫ R

Ri

ln(1− pi
ε(r))d

d r

�

, (31)

and the typical probability to have exactly one resonance in that layer

P i
1,ε(R) = P i

0,ε(R)

∫ R

Ri

pi
ε(r)

1− pi
ε(r)

dd r . (32)

For the single-resonance approximation to be valid, Ri+1 has to be chosen in such a way that
the probability to have more than one resonance in the layer, Ri < r < Ri+1, is small compared
to the probability to have exactly one resonance, i.e.

1− P i
0,ε(Ri+1)− P i

1,ε(Ri+1)� P i
1,ε(Ri+1). (33)

Assuming the probability pi
ε(r) to be small compared with unity in all points of the layer one

can approximately write

P i
0,ε(R)∼ e−N i

ε(Ri+1), P i
1,ε(R)∼ N i

ε(Ri+1)e
−N i

ε(Ri+1), (34)

which finally gives us the smallness, N i
ε(Ri+1)� 1, of the number of resonant states in the layer,

Eq. (29), as a requirement. The latter requirement can be written solely via renormalization

10 Expressions Eqs. (31) and (32) are valid for quite large layers, Ri < r < R, with sufficiently small fluctuations
of spatial density of sites. An actual probability to have no resonances, of course, is equal to

∏

k(1− pi
ε
(r jk)) and

depends on the particular realization of disorder as well as on the particular choice of rk.
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scales ξ(Ri) and ξ(Ri+1) in the case of the non-singular R-independent DOS (see Appendix A
confirming this assumption) and the decreasing function f (r)

2χε(Ri)(ξ(Ri+1)− ξ(Ri))� 1 ⇒ ξ(Ri+1)� ξ2(Ri). (35)

Here we used the definition χε(R) = 〈|qε(R)|2〉νR(ε), the asymptotic expression for the prob-
ability of single resonances pi

ε(r) ' 2χε(Ri) f (r) for Ri , Ri+1 � 1, and the expression (19).
Equation (35) together with the condition (21) and Eq. (28) form a complete set of require-
ments for the RG to be applicable.

The breakdown of the single-resonance approximation occurs when the typical spectrum
width is comparable with the effective hopping strength. Indeed, in that case, due to the
normalization of the density of states, pi

ε(Ri)∼ 1 (see Eq. (30)) and, consequently, there is no
such Ri+1 > Ri to satisfy the condition N i

ε(Ri+1)� 1. This result can be intuitively understood
as follows: to have a negligible probability of multi-resonance collision we should have low
probability of the two-resonance collision as well. So, from this point of view, the first step
of our renormalization procedure and an introduction of the zero-cutoff radius were made
to remove the singularity of νR(ε) and made it shallow enough on the scale of the effective
hopping.

In the next section we test RG scheme and the above approximations together with wave-
function localization properties for the particular case of the PLE model.

3 Power-law Euclidean model

To show the validity of our approximations we apply the approach developed in the previous
section to the one-dimensional power-law Euclidean (PLE) model and compare our analytical
results with numerics. The model is defined by a Hamiltonian (1) with εi = 0

HP LE =
∑

i 6= j

|ci〉〈c j|
|ri − r j|a

. (36)

As it follows from the previous numerical studies of this model [32], its wave functions show
a striking duality, a → 2d − a, of the bulk wave function decay rate. These eigenstates are
polynomially localized ψn,t yp(rm)2 ∼ |rn − rm|−2µ with the exponent µ = max{a, 2d − a} for
all positive values of the parameter a. Although this model is very similar to the one of Burin
and Maksimov (BM) [53] considered also in [36, 52, 55], the above wavefunction duality in
PLE model has not yet been explained theoretically as the matrix inversion trick invented by
one of us in [36] breaks down in the absence of diagonal disorder.

The RG approach developed in the present paper provides the desired explanation. In-
deed, for f (r) ∼ r−a, the non-trivial renormalization occurs for a < d, Eq. (18), giving
teff
ε (r) ∝ ra−2d according to (8), while for a > d renormalization scale ξ converges with

R and the standard perturbative approach works giving the polynomial decay of the form r−a.
The results for the spatial decay of typical, Eq. (10), and mean, Eq. (11), wave function tails
for several cutoff values R corresponding to RG procedure are shown in Fig. 4.

Consider this model in more details. First of all, Eq. (35) in case of PLE model give
Ri+1 � R2

i , which is compatible with the approximation of effective charges provided Ri � 1
as R2

i � Ri should be valid. It means that the zero-cutoff radius R0 is finite and large compared
to the unity. Fig. 4 provides the following estimate of the cutoff radius R0 ∼ 30, which is in
full agreement with the above consideration. However, our RG approach is actually applicable
only for a > 0: for negative values of a the approximation of single resonances breaks down
since the original hopping f (r) is no longer a decreasing function. Nevertheless, according
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Figure 4: The spatial decay of mid-spectrum eigenstates in PLE model. (Up-
per row) typical lnψ2

typ(rnm) = 〈lnψ2
n(rm)〉 and (Lower row) mean 〈ψ2

n(rm)〉 wave-
function power-law decay for several powers a (shown in labels) and cutoffs R
(shown in legend). All points are averaged over 103 disorder realizations and shifted
vertically for clarity. Dashed lines show analytical predictions, Eqs. (10) and (11)
(written in panels as equations). The right column shows that the validity of RG
scheme for typical wavefunction decay can be extended also to some spatially in-
creasing (though unphysical) hopping.

to numerical results, this breakdown of the RG approach doesn’t lead to the delocalization
or even to the aforementioned duality breaking for typical wavefunction spatial decay. This
fact may be caused by the destructive interference of the resonances or, in other words, by the
higher-order corrections to the perturbation series.

Figure 5: Density of states for several cutoffs averaged over 103 realizations. All
plots show that DOS saturates at very small cuttoff values R (shown in the legend)
and it is a non-singular function.

After determining the validity range of RG, we check numerically the fact about the density
of states stated in the Appendix A. According to the RG approach, the function νR(ε) barely
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depends on the cutoff radius R, a < d:

dνR(ε)
dR

∝ Ra−2d (37)

and it converges to a non-singular function. Both these statements are clearly seen from Fig. 5
supporting the analysis done in the Appendix A.

Next, although the estimates and numerical results presented above in this section justify
the RG approach for PLE model in general, they do not provide any information about the
approximations we made going from Eq. (15) to Eq. (18), i.e., the small-charge approxima-
tion and the approximation of the finite-difference equation by the differential one. To check
that the effective charges are indeed behave according to Eq. (19), we calculate it explicitly
for a set of different cutoff values, see Fig. 6. The lower row of panels shows the function
〈|qε(R)|2〉ξ2(R) which does not depend on the cutoff value and collapses to a universal curve
with good accuracy. Moreover, the insets show that the above collapse works relatively well
until the maximum of 〈|qε(R)|2〉, but not only in the bulk of the spectrum.

Figure 6: Mean squared effective charge 〈|qε(R)|2〉 versus energy ε. (Up-
per row) energy dependence of 〈|qε(R)|2〉 for several cutoffs (shown in legend) in the
vicinity of the DOS maximum. (Lower row) energy dependence of 〈|qε(R)|2〉ξ2(R)
collapsed by the multiplication by the squared renormalization scale, confirming the
analytical result, Eq. (19). (Insets) the same collapse for all positive energies in log-
log scale. In all panels the data is averaged over 103 realizations.

Finally, our theory predicts that, for a < d, 〈|qε(R)|2〉 as a function of ε must have a sharp
maximum at ε∗max ∼ Rd−a

0 with the magnitude of the order of Rd
0, see (24) and the corre-

sponding discussion. By combining these two estimates we get the one describing the energy
dependence of the maximal magnitude with increasing cutoff R

〈|qε(R)|2〉max ∝ ε
d

d−a . (38)

As shown in the insets to Fig. 7, this is exactly the case, at least for d = 1.
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Figure 7: Energy dependence of the maximal effective charge. The dots show the
same 〈|qε(R)|2〉 for all positive energies in log-log scale as in the insets to Fig. 6, but
without collapsing, black dashed lines show the evolution of the maximal 〈|qε(R)|2〉
and its energy with the increasing cutoff radius according to Eqs. (24c), (25) and
(38). The insets show the same maximal points of 〈|qε(R)|2〉 in linear scale with the
power-law black dashed fitting curves coinciding with the ones in the main panels.
The data is averaged over 103 realizations.

One may notice that the maximum of the effective charge 〈|qε|2〉 in Fig. 7 occurs at the edge
of the spectrum for a < d/(d+1) = 1/2, while for a > 1/2 the maximal energy corresponds to
the constant R-independent value of 〈|qε|2〉 = O(1) 11.The explanation of this is based on the
fact that on top of the trial delocalized state there are rare states localized at few adjacent sites.
For Rd

0 sites the minimal distance between such sites, typical for each disorder realization, is
given by rmin = R−d

0
12and thus the energy of the state localized on this pair of states scales as

ε ∼ f (rmin) ∼ Rda
0 and at a > d/(d + 1) these states will form the edge of the spectrum. The

corresponding effective charges for these states are given by the expression limε→∞〈|qε|2〉= 2.
As mentioned in the first section, the presence of the delocalized states with large energies

scaling with the system size (or cutoff value) causes the localization in long-range Euclidean
matrices in the similar way as in the models with diagonal disorder and translation-invariant
hopping terms [36] due to the leakage of most of the charge spectral weight to large ener-
gies (and measure zero of states). The lesson which one should take from this is the follow-
ing: it is not the ground (or anti-ground) state with the energy diverging with the system
size which matters for the localization of the bulk spectrum (like in the cooperative shielding
approach [35, 52]), but the presence of high-energy delocalized states (with high effective
charges) do this job. The latter high energy states do not need to be at the very spectral edge,
see the right panel of Fig. 7.

11 Note that the case a < d/(d + 1) = 1/2 characterized by the delocalized eigenstates at the very spectral edge
is an artefact of finite statistics in our numerical simulations. Indeed, in the renormalization group written for
the infinite system with a certain cutoff, see, e.g., the bottom left of Fig. 3, has to be determined by the infinite
number of states localized at few very close sites, which, in turn, form the very spectral edge. In numerics instead
of the cutoff Ri of the infinite matrix we diagonalize full Ri ×Ri matrices removing many two-site localized states.
Another effect of such numerics is that it forces the localization radii to be not larger than Ri at each ith RG step
and reduces the corresponding finite-size effects for the wavefunction tails (shown in Fig. 1).

12 This estimate is given by solution of the equation Rd
0 P(rmin) = 1, with the distribution of distances between

adjacent sites, homogeneously distributed in d-dimensional space with unit density, given by Poisson formula,
P(r)∼ re−r .
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4 Conclusion and discussions

To sum up, in this work we develop a generic renormalization group (RG) approach appli-
cable to a wide range of Euclidean random matrix models, which shows localization of the
bulk mid-spectrum states and provides the wave function decay for these states in an ex-
plicit form, Eq. (8). The range of validity of the above statements is governed by three con-
ditions: the applicability of effective charge approximation (28) restricting the hopping po-
tential f (r) to be smooth, the single-resonance approximation (35) which is satisfied, e.g., for
the bounded monotonically decaying function f (r), and the slow probability density evolution
condition (21) which is deeply interconnected with the single resonances approximation.

The above mentioned requirements allow us to get rid of any small parameter, which is
crucial for the standard RG approach [33, 34, 53, 54], and show the renormalization to the
localization for all spectral bulk eigenstates. This localization is solely caused by the drastic
spectral flow of the renormalized effective hopping to high-energy delocalized states (forming
measure zero of all states in low dimensions d ≤ 2). The developed RG has many similarities
to the so-called matrix inversion trick developed by one of us in [36] and complements and
extends it to the case of Euclidean matrices with off-diagonal disorder (with or even without
diagonal disordered part).

Moreover, the developed approach shows the equivalence between Euclidean models and
translation invariant models with diagonal disorder and smooth hopping potential f (r) not
only in the localization properties, but also in the spatial decay of bulk mid-spectrum eigen-
states. We believe that this equivalence can be generalized to non-smooth and even anisotropic
hopping which is recently under the spotlight [52, 55], but this is the topic of further investi-
gation.
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A The RG evolution of the density of states

To make sure that the shape of the density of states νR(ε) barely depends on the renormal-
ization scale, we write its renormalization equation in the similar way as for the effective
charges (15)

νR2
(ε)− νR1

(ε) =

�∫

dqndqm

∫ R2

R1

dd r

∫

|t|>|qnqm f (r)|
dt

�

1+
q2

nq2
m f 2(r)

t2

�

P(qn,εn; R1)P

�

qm,εm −
q2

nq2
m f 2(r)

t
; R1

�

− νR1
(ε)Cd(R

d
2 − Rd

1)

�

.

(39)

The point is that the r.h.s. of the latter equation vanishes in the first-order approximation
in small charges giving the first indication of the fact how weak the renormalization scale
dependence is. To proceed further, one needs to make tricky assumptions about an analytical
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structure of the distribution function P(q,ε; R) and expand it up to at least the first order of the
Taylor series assuming q2

nq2
m f 2(r)/t to be small. As a result, we get the differential equation

∂ νR(ε)
∂ R

= −
Rd−1 f 2(R)

4χε(R)
∂ χe(R)
∂ ε

∂ χe(R)
∂ ξ(R)

. (40)

After substituting here the approximate expression for χε from Eq. (19), we find that, in case
of large ξ(R) for large R, the derivative ∂RνR(ε)∼ Rd−1 f 2(R)/ξ3(R), i.e.,

∂ νR(ε)
∂ R

∝ f (R)
d

dR
ξ−2(R). (41)

As long as f (R) goes to zero with increasing R, the r.h.s of the latter expression does the same.
This concludes that, for R� R0, the function νR(ε) is saturated and only slightly differs from
its limiting value ν(ε) = ν∞(ε).
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