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Abstract

We investigate the momentum distribution function of a single distinguishable impu-
rity particle which formed a polaron state in a gas of either free fermions or Tonks-
Girardeau bosons in one spatial dimension. We obtain a Fredholm determinant repre-
sentation of the distribution function for the Bethe ansatz solvable model of an impurity-
gas δ-function interaction potential at zero temperature, in both repulsive and attrac-
tive regimes. We deduce from this representation the fourth power decay at a large
momentum, and a weakly divergent (quasi-condensate) peak at a finite momentum.
We also demonstrate that the momentum distribution function in the limiting case of
infinitely strong interaction can be expressed through a correlation function of the one-
dimensional impenetrable anyons.
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1 Introduction

Non-interacting Bose and Fermi systems have markedly different momentum distribution func-
tions at low temperature. Bosons tend towards a macroscopic occupation of the zero-momen-
tum state, and fermions spread over the volume of the Fermi sphere. When interparticle
interactions are present, the distinction becomes not at all evident. We know from exactly
solvable models in one spatial dimension that some observables evolve smoothly from boson-
to fermion-like behavior, as a function of the inter-particle interaction strength. An example
is provided by the Lieb-Liniger model, representing a gas of bosons interacting through a δ-
function potential of an arbitrary strength g [1, 2]. The excitation spectrum of the model in
the g →∞ limit, the Tonks-Girardeau gas, is the same as the one of a free Fermi gas [3, 4].
Furthermore, any excitation in the Lieb-Liniger gas is parametrized by a set of distinct inte-
gers, same way as for a free Fermi gas, giving rise to the notion of the Pauli principle for
one-dimensional interacting bosons [5]. This is consistent with the fact that the low-energy
and momentum excitations of the interacting gapless one-dimensional Bose and Fermi systems
can be interpreted as collective boson modes of a unique effective field theory, the procedure
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called the bosonization [6,7]. Despite of these similarities, the momentum distribution func-
tions of the Tonks-Girardeau and free Fermi gases are radically different, which is seen from
the exact [8,9], as well as asymptotic formulas [10,11].

How do interactions shape the momentum distribution function of a single distinguishable
mobile particle, an impurity, interacting with a one-dimensional system? It has been demon-
strated in Ref. [12] that the function n(k), defined as the probability to find the impurity in the
state having the momentum k, does not have a single-particle delta-peak δ(k) in one spatial
dimension, for any non-zero value of the impurity-gas coupling strength. Instead, n(k)∼ kν in
the k→ 0 limit. The value of ν was found only in the limit of the vanishing impurity-gas cou-
pling strength [12]. Extending this result to an arbitrary coupling strength is a far-from-trivial
problem. This is because the many-body spectrum of the whole system contains low-energy
excitations with quadratic dispersion relation. The application of the bosonization technique
is not straightforward for such a spectrum [13, 14]. The recently developed paradigm of the
non-linear Luttinger liquids [15] could perhaps be used to find ν for an arbitrary interaction
strength. However, this has yet to be done. As for finding the exact shape of n(k) in the
whole range of values of the momentum k, the Bethe ansatz solution remains the only non-
perturbative analytical approach available thus far.

In the present paper we investigate the shape of the momentum distribution function
n(k,Q) of an impurity interacting with a free Fermi gas in one spatial dimension. The system
stays in the polaron state, defined as the minimum energy state at a given total momentum
Q = Pimp +

∑N
j=1 Pj (Ref. [12] is dealing with Q = 0 only). The impurity has the same mass

as the gas particle, and interacts with the gas through a δ-function potential of an arbitrary
(positive or negative) strength g. The Hamiltonian reads

H =
P2

imp

2m
+

N
∑

j=1

P2
j

2m
+ g

N
∑

j=1

δ(x j − ximp). (1)

Here, x j (Pj) is the coordinate (momentum) of a gas particle, j = 1, . . . , N , and ximp (Pimp)
is the one of the impurity. Such a model is Bethe ansatz solvable; its eigenfunctions and
spectrum have been found by McGuire [16, 17]. McGuire’s solution is a special case of the
Bethe ansatz solution for the Gaudin–Yang model [18–20], having a peculiarity that any eigen-
function can be written as a single determinant resembling the Slater determinant for the
free Fermi gas [21–23]. Such a representation, so far not available for any other interacting
Bethe ansatz solvable model, enabled the derivation of an exact analytical expression for the
time-dependent two-point impurity correlation function at zero [24] and arbitrary tempera-
ture [25]. Here, we present an exact analytical expression for n(k,Q) in the limit of infinite
system size, L→∞, valid for an arbitrary (positive or negative) coupling strength g and zero
temperature. The answer is given in terms of the Fredholm determinant of a linear integral
operator of integrable type (see, e.g, section XIV.1 of [5]). We use our exact analytical result
(i) To obtain the large-momentum tails of n(k,Q), and the root mean-square uncertainty of
the average momentum of the impurity. (ii) To extract a quasi-condensate-like divergence of
n(k,Q) at k = Q. (iii) To establish the correspondence between n(k,Q) in the g →∞ limit
and a correlation function of the one-dimensional impenetrable anyons.

The paper is organized as follows. In section 2 we define the model under consideration.
In section 3 we summarize our exact analytical results expressed in terms of the Fredholm
determinants. In sections 4 through 7 we analyze various limiting cases of the formulas from
section 3. Section 8 explains principal steps of the calculation used to get the Fredholm de-
terminant representation of section 3. We conclude in section 9. The appendices are self-
explanatory.
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2 Model

Our objective is to compute the momentum distribution function of an impurity,

n(k,Q) =
L

2π
〈minQ|ψ

†
k↓ψk↓|minQ〉, (2)

interacting with a free one-dimensional spinless Fermi gas at zero temperature. Here, |minQ〉 is
a polaron state, defined as the minimum energy state of the system having the total momentum
Q and containing only one impurity. We discuss the properties of the polaron state later in this
section. Note that our result for the function (2) is also valid for the impurity immersed into the
Tonks–Girardeau gas. This can be explained using the arguments given in the end of section
2 in Ref. [25].

The Hamiltonian of the entire system is

H = H↑ +Himp, (3)

where

H↑ =

∫ L

0

d xψ†
↑(x)

�

−
1

2m
∂ 2

∂ x2

�

ψ↑(x) (4)

is the Hamiltonian of the free Fermi gas, m is the particle mass, and

Himp =

∫ L

0

d x

�

ψ†
↓(x)

�

−
1

2m
∂ 2

∂ x2

�

ψ↓(x) + gψ†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)

�

. (5)

The creation (annihilation) operatorsψ†
σ (ψσ) carry the subscript σ =↑ for the spinless Fermi

gas, and σ =↓ for the impurity. We have

ψ†
σ(x) =

1
p

L

∑

p

e−ipxψ†
pσ, p =

2πn
L

, n= 0,±1,±2, . . . . (6)

The Hamiltonian (3) defines the fermionic Gaudin-Yang model [18–20], in which the number
of the impurity particles,

Nimp =

∫ L

0

d xψ†
↓(x)ψ↓(x) (7)

is arbitrary. However, the states with Nimp > 1 do not contribute to the function (2). The
first-quantized form of the Hamiltonian (3) with Nimp = 1 and N particles from the Fermi gas
is given by Eq. (1). The Planck constant, ~, is equal to one in our units. A commonly used
dimensionless form of the impurity-gas coupling strength g is

γ=
mg
ρ0

, (8)

where
ρ0 =

N
L

(9)

is the gas density. To further simplify notations, we let

m= 1 (10)

and measure all momenta in the units of the Fermi momentum,

kF = πρ0 = 1. (11)
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We restore m and kF in the captions to the figures.
Equation (2) can be written as

n(k,Q) =
1

2π

∫ L

0

d y eik y%(y), (12)

where
%(y) = L〈minQ|ψ

†
↓(y)ψ↓(0)|minQ〉 (13)

is the Q-dependent reduced density matrix of the impurity. The normalization condition
∑

k

n(k,Q) =
L

2π
(14)

is equivalent to
%(0) = 1. (15)

For the system in a finite volume L, periodic boundary conditions are imposed. That n(k,Q)
is real implies the involution

%(−y) = %∗(y), (16)

where the star stands for the complex conjugation. The symmetry

n(−k,Q) = n(k,−Q) (17)

applied to Eq. (16) gives
%∗(y) = %(y), Q = 0. (18)

In order to compute the function (2) we use a form-factor summation approach. We write

n(k,Q) =
∑

p1,p2,...,pN

|〈N |ψk↓|minQ〉|2. (19)

Here,
|N〉=ψp1↑ · · ·ψpN↑|0↑〉 (20)

is the free Fermi gas state containing N fermions with the momenta p1, . . . , pN . The vacuum
|0σ〉, σ =↑,↓, is the state with no particles, ψpσ|0σ〉 = 0. The sum in Eq. (19) is over the
states whose momenta satisfy the constraint

k+
N
∑

j=1

p j =Q. (21)

Periodic boundary conditions imply the quantization of the momenta

p j =
2πn j

L
, n j = 0,±1,±2, . . . , j = 1, . . . , N . (22)

The coordinate representation for |N〉 is the Slater determinant

|N〉=
1

p
LN N !

detN eip j x l , j, l = 1, . . . , N . (23)

All eigenstates of the Hamiltonian (1), |minQ〉 being one of them, have been found in Refs. [16,
17]. Let |Q〉 be an eigenstate having total momentum Q. Such a state is parametrized by the
quasi-momenta k1, . . . , kN+1 satisfying

Q =
N+1
∑

j=1

k j . (24)
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The energy of the state |Q〉 reads

E(Q) =
N+1
∑

j=1

k2
j

2
. (25)

Each k j should satisfy the equation

k j =
2π
L

�

n j −
δ j

π

�

, n j = 0,±1,±2, . . . , j = 1, . . . , N + 1, (26)

where
δ j =

π

2
− arctan(Λ−αk j), 0≤ δ j < π. (27)

Here,

α=
2π
γ

, (28)

where γ is given by Eq. (8). Thus, one has a system of N + 1 equations (26) for the variables
k1, . . . , kN+1 andΛ. These equations, called the Bethe equations, are coupled through Eq. (24).
Any solution to this system has the following properties [17]: (i) Λ is real. (ii) If α≥ 0 all k j ’s
are real. (iii) If α < 0 either all k j ’s are real, or k1, . . . , kN−1 are real, while kN and kN+1 have
a non-zero imaginary part, and kN = k∗N+1.

We will often use the following representation of the Bethe equations (26):

eik j L =
ν−(k j)

ν+(k j)
, j = 1, . . . , N + 1, (29)

where

ν±(q) =
1
α

1
q− k∓

, (30)

and

k± =
Λ± i
α

. (31)

Taking the derivative of Eq. (29) with respect to Λ we get

∂ k j

∂Λ
=

2
L

ν−(k j)ν+(k j)

1+ 2
Lαν−(k j)ν+(k j)

, j = 1, . . . , N + 1. (32)

The point of focus of our paper is n(k,Q) in the thermodynamic limit, defined as the limit
of infinite system size, L→∞, at a constant density

ρ0 =
N
L
= const> 0, N , L→∞. (33)

In what follows, we use L →∞ in place of L, N →∞ for simplicity of the notations. The
choice of the boundary conditions should play no role for n(k,Q) in the thermodynamic limit.
The sum over momenta turns into the integral,

2π
L

∑

k

→
∫ ∞

−∞
dk L→∞, (34)

and the normalization condition (14) becomes
∫ ∞

−∞
dk n(k,Q) = 1. (35)

In sections 2.1 through 2.3 we proceed with solving the system of Eqs. (24) and (26) in the
thermodynamic limit for the state |minQ〉 entering Eq. (2).
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2.1 Defining |minQ〉 for impurity-gas repulsion

In the case of the repulsive interaction, γ≥ 0, the L→∞ limit of Eq. (27) reads

δ j =
π

2
− arctan

�

Λ−α
2πn j

L

�

, j = 1, . . . , N + 1, L→∞. (36)

We adopt the convention that the distinct integers n j are enumerated in the increasing order,
n1 < · · ·< nN+1. Equation (24) turns into the algebraic relation between Λ and Q:

Q =QD +ΛZ +
1
π
[arctan(α+Λ)− arctan(α−Λ)] +αϕ, (37)

where

Z =
arctan(α−Λ) + arctan(α+Λ)

απ
(38)

and

ϕ =
1

2πα2
ln

1+ (α−Λ)2

1+ (α+Λ)2
. (39)

The function QD encompasses all n j ’s:

QD =
2π
L

N+1
∑

j=1

n j − 1. (40)

The energy (25) turns into

E(Q) =
1
2

N+1
∑

j=1

�

2π
L

n j

�2

+ Emin(Q), (41)

where

Emin(Q) =
1
πα
−

1+α2 −Λ2

2α
Z +Λϕ. (42)

Let

n j = −
N + 1

2
+ j, j = 1, . . . N + 1. (43)

Such a choice leads to QD = 0, and corresponds to the minimum energy state |minQ〉 for
−1≤Q ≤ 1. Equation (37) turns into

Q = ΛZ +
1
π
[arctan(α+Λ)− arctan(α−Λ)] +αϕ. (44)

The parameter Λ runs from −∞ to∞ when Q runs from −1 to 1. Equations (42) and (44)
determine Emin as a function of Q for −1 ≤ Q ≤ 1. The minimum energy state for Q outside
of that interval is parametrized by consecutive sets of n j ’s other than given by Eq. (43). The
result is a smooth periodic function of Q, plotted in the left panel of Fig. 1. Note that

Emin(1) = 0, (45)

and

Emin(0) =
α− (1+α2)arctanα

πα2
. (46)

Therefore,
Emin(1)− Emin(0)≥ 0, 0≤ γ≤∞ (47)

decreases from 1/2 to zero when γ increases from zero to infinity.
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(a)

0

1

-2 0 2

repulsion and attraction: gas state

(b)

0

1

-2 0 2

attraction: bound state

Figure 1: Shown is the normalized minimum energy
[Emin(Q) − Emin(0)]/[Emin(kF ) − Emin(0)] as a function of the total momentum
Q for the repulsive, and the attractive gas state (two identical curves, left panel),
and the attractive bound state (right panel). The absolute value of the impurity-gas
interaction strength is |γ|= 10. Note that Emin(Q) is Q-periodic with the period 2kF ,
it is plotted here for the two periods.

2.2 Defining |minQ〉 for impurity-gas attraction: gas state

The gas state is defined for the attractive interaction, γ < 0, as the minimum energy state for
all k j ’s being real. Such a state has been realized experimentally for the Lieb-Liniger gas in
the experiment with ultracold atoms [26]. The analysis following the steps from section 2.1
leads to Eqs. (42) and (44) in which γ is now negative. This results in Emin(Q) being an odd
function of γ. Therefore, the function [Emin(Q)− Emin(0)]/[Emin(1)− Emin(0)] coincide with
the one for the repulsive case, plotted in the left panel of Fig. 1. The function

Emin(1)− Emin(0)≤ 0, −∞≤ γ≤ 0 (48)

decreases from zero to −1/2 when γ increases from minus infinity to zero. This means that
the minimum energy state for a weak repulsion, γ � 1, does not go continuosly to the gas
state for a weak attraction, −γ � 1. Rather, it turns into the weakly attractive bound state,
discussed in section 2.3.

2.3 Defining |minQ〉 for impurity-gas attraction: bound state

The bound state is the true minimum energy state for the attractive interaction, γ < 0. That
is, k j ’s are not required to be real, as it was for the gas state, section 2.2. As a result, the phase
shifts take the form (36) for the real k1, . . . , kN−1, and [17]

kN = k+ +O(e−|g|L), kN+1 = k− +O(e−|g|L), (49)

where k± is defined by Eq. (31). Therefore, Eq. (24) takes the form

Q =QD +ΛZ +
1
π
[arctan(α+Λ)− arctan(α−Λ)] +αϕ + k+ + k−, (50)

where QD is given by Eq. (40) with j running from 1 to N −1. Like in the case γ > 0, we have
QD = 0 for the minimum energy states in the interval −1≤Q ≤ 1:

Q = ΛZb +
1
π
[arctan(α+Λ)− arctan(α−Λ)] +αϕ, (51)
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where

Zb = Z +
2
α

. (52)

The function

Emin(Q) =
1
πα
−

1+α2 −Λ2

2α
Z +Λϕ +

k2
+

2
+

k2
−

2
= 1+

1
πα
−

1+α2 −Λ2

2α
Zb +Λϕ (53)

entering Eq. (41) is plotted in the right panel of Fig. 1, and is a periodic function of Q. Unlike for
the repulsive and the attractive gas state, (i) Λ runs through the finite interval, −ΛF ≤ Λ≤ ΛF ,
when Q runs from 1 to −1 in Eq. (51); (ii) Emin(Q) has cusps at Q = ±1,±2, . . .. One has

Emin(0) = −
1
α2
+
α− (1+α2)arctanα

πα2
. (54)

The function Emin(1) is obtained by substituting ΛF into Eq. (53), and

Emin(1)− Emin(0)> 0, −∞≤ γ≤ 0 (55)

increases from 1/4 to 1/2 when γ goes from minus infinity to zero.

3 Fredholm determinant representation in the thermodynamic
limit

In this section we show the main results of our paper: exact analytic formulas for the impurity
momentum distribution function n(k,Q) at zero temperature and an arbitrary positive and
negative impurity-gas interaction strength g. These formulas contain Fredholm determinants
of linear integral operators. Let V be an M × M matrix with the entries Vjl = V (k j , kl), I be
the identity matrix, and

k j =
2( j − 1)
M − 1

− 1, j = 1, . . . , M . (56)

Then the Fredholm determinant is

det( Î + V̂ ) = lim
M→∞

det
�

I +
2

M − 1
V
�

. (57)

The right hand side of Eq. (57) taken for a large but finite M can be used to evaluate the
Fredholm determinant numerically [27]. An equivalent definition,

det( Î + V̂ ) =
∞
∑

N=0

1
N !

∫ 1

−1

dk1 · · ·
∫ 1

−1

dkN

�

�

�

�

�

�

�

V (k1, k1) . . . V (k1, kN )
...

. . .
...

V (kN , k1) . . . V (kN , kN )

�

�

�

�

�

�

�

, (58)

appears in the mathematical literature on the linear integral operators theory (see, e.g., [28],
vol IV, p.24). Naturally, V̂ can be recognized as a linear integral operator with the kernel
V (q, q′) on the domain [−1,1]× [−1,1]. The necessary existence and convergence conditions
are fulfilled for the operators encountered in our paper.

The energy of the state |minQ〉 is a periodic function of Q, and n(k,Q), defined by Eq. (2),
inherits this periodicity. We rewrite Eq. (12) as

n(k,Q) =
1

2π

∫ ∞

−∞
d y eik y%(y) =

1
π

Re

�∫ ∞

0

d y eik y%(y)

�

, L→∞. (59)

In what follows, we write %(y) explicitly for the positive values of y , and use the involu-
tion (16) to get it for the negative values.
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(a)

0

1

2

-2 0 2

repulsion

(b)

-2 0 2

attraction: gas state

(c)

0

1

2

-2 0 2

attraction: bound state

Figure 2: Impurity’s momentum distribution n(k,Q) is shown for different values of
the total momentum: Q = 0 (black solid), Q = 0.8kF (red dashed), and Q = kF (blue
dotted) lines, respectively. Note that n(k,Q) is singular at k =Q. Sections 4 through
7 discuss the features revealed in this plot.

3.1 Impurity-gas repulsion

The Fredholm determinant representation in the case of the repulsive impurity-gas interaction,
γ≥ 0, reads

%(y) = det( Î + K̂ + Ŵ )− det( Î + K̂). (60)

The identity operator is denoted by Î . The kernels of the linear integral operators K̂ and Ŵ ,
on the domain [−1, 1]× [−1, 1], are defined by

K(q, q′) =
e+(q)e−(q′)− e−(q)e+(q′)

q− q′
, (61)

and

W (q, q′) =
e−(q)e−(q′)

πZ
, (62)

respectively. The kernel (61) belongs to a class of integrable kernels [5,29]. The functions e±
are defined as

e+(q) =
1
π

eiq y/2+iδ(q), e−(q) = e−iq y/2 sinδ(q), (63)

and

Z =
δ+ −δ−
απ

, δ± = δ(±1). (64)

Here, the phase shift δ(q) is defined as

δ(k) =
π

2
− arctan(Λ−αk), 0≤ δ < π, (65)

and the value of Λ can be found as a function of Q by using Eq. (44). The behavior of the
momentum distribution function is illustrated in Fig. 2(a).

3.2 Impurity-gas attraction: gas state

All formulas from the section 3.1 are valid for the gas state after letting γ be negative. The
behavior of the momentum distribution function is illustrated in Fig. 2(b).
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3.3 Impurity-gas attraction: bound state

The presence of the bound state qualitatively affects the Fredholm determinant representation
for the function %(y), as compared with Eq. (60):

%(y) = e−i(k++k−)y
�

det( Î + K̂b + Ŵb)− c det( Î + K̂b)
�

. (66)

Here,

c = 1−
2eik− y(α− y)

α2Zb
, (67)

the kernels of the linear integral operators K̂b and Ŵb are defined by

Kb(q, q′) = K(q, q′) +
α

π
e−(q)e−(q

′)(eiq y + eiq′ y), (68)

and

Wb(q, q′) = −
e−(q)e−(q′) f (q) f (q′)

πα2Zb
, (69)

respectively. The function f is defined as

f (q) =
2ieiq y +αeik− y(q− k+)

q− k−
, (70)

k+ and k− are defined by Eq. (31), and

Zb =
δ+ −δ− + 2π

απ
, δ± = δ(±1). (71)

The other functions entering Eqs. (66)–(71) are defined in section 3.1. The typical behavior
of the momentum distribution function is shown in Fig. 2(c).

4 Limit of strong interaction, |γ| →∞

Correlation functions of the model (1) in the γ → ∞ limit has been represented as Fred-
holm determinants in the works [30,31]. Using the Fredholm determinant representation we
demonstrate that the one-body density matrix %(y) in the γ → ∞ limit can be written as
a correlation function of the one-dimensional impenetrable anyons. Such a correspondence
remains valid for the gas state in the γ→−∞ limit.

4.1 Impurity-gas repulsion

We begin with discussing the γ →∞ limit of the impurity-gas repulsion. The kernels (61)
and (62) simplify significantly when compared to arbitrary γ. Using that

δ(q) =
π

2
− arctanΛ+

qα
1+Λ2

+ · · · , α→ 0, (72)

we have in the leading order in α

Z =
2α

1+Λ2
, sinδ(q) =

1
p

1+Λ2
, e2iδ(q) =

iΛ− 1
iΛ+ 1

, α→ 0. (73)

This gives us

K(q, q′) =
λ

π

sin[(q− q′)y/2]
q− q′

, (74)
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with

λ=
2i
Λ− i

(75)

for the kernel (61), and

W (q, q′) =
e−i y(q+q′)/2

2
, (76)

for the kernel (62). The γ→∞ limit of Eq. (44) reads

Q =
2arctan(Λ)

π
. (77)

Substituting this formula into Eq. (75) we get

λ= −1− e−iπQ. (78)

Let us now show how %(y) emerges in the model of one-dimensional impenetrable
anyons [32]. Recall that the anyon field operators satisfy the commutation relations

ψA(x1)ψ
†
A(x2) = e−iπκ sgn(x1−x2)ψ†

A(x2)ψA(x1) +δ(x1 − x2), (79)

and
ψ†

A(x1)ψ
†
A(x2) = eiπκ sgn(x1−x2)ψ†

A(x2)ψ
†
A(x1). (80)

Here, sgn(x) = |x |/x , sgn(0) = 0, and κ is the statistics parameter. The correlation function
〈ψ†

A(y)ψA(0)〉 has the Fredholm determinant representation, given by Eq. (4) from Ref. [32].
The transformation explained in Ref. [5] (see the discussion of the equivalence between
Eqs. (3.12) and (3.13) in Ch. XIII therein) leads us to the equality

〈ψ†
A(y)ψA(0)〉= %(y), (81)

where λ entering the kernel (74) is related to the statistical parameter κ as follows:

λ= −1− eiπκ. (82)

Comparing Eqs. (78) and (82) we get

κ= −Q (83)

for κ and Q in the interval between minus one and one. The left hand side of Eq. (81) has also
been extensively evaluated numerically [33,34]. However, no connection between the mobile
impurity and anyon correlation functions, as suggested by Eqs. (81) and (83), has been given
in the literature. Furthermore, the Jordan-Wigner transformation

ψA(x) = e−iπ(1+κ)N(x)ψF (x), N(x) =

∫ x

−∞
d x ′ψ†

F (x
′)ψF (x

′) (84)

connects the anyon field operators and the fermion operators. Therefore, the right hand side
of Eq. (81) is a correlation function of a free spinless Fermi gas:

%(y) = 〈FS|ψ†
F (y)e

iπ(κ+1)N(y)e−iπ(κ+1)N(0)ψF (0)|FS〉, (85)

where |FS〉 stands for the Fermi sea. Since Eq. (2.19) from Ch. XIII in Ref. [5] gives

det( Î + K̂) = 〈FS|eiπ(κ+1)N(y)e−iπ(κ+1)N(0)|FS〉, (86)

it is ψ†
F and ψF that lead to the emergence of the rank-one operator Ŵ in Eq. (60). Note that

the evaluation of the right hand side in Eqs. (85) and (86) can be done by using the Wick’s
theorem (for Eq. (86) see, e.g., Ref. [35]), without any use of the coordinate representation
of the wave functions of the model. Interestingly, in a recent work [36] a two-dimensional
impurity model has been linked to anyons, albeit in a different manner: There the statistical
parameter is related to the impurity-phonon coupling.
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4.2 Impurity-gas attraction: gas state

We now turn to the case of the gas state for the impurity-gas attraction, introduced in sec-
tion 2.2. The γ→ −∞ limit of the Fredholm determinant representation introduced in sec-
tion (3.2), leads to the same formulas as the γ→∞ limit, discussed in section (4.1).

4.3 Impurity-gas attraction: bound state

Finally, we consider the bound state for the impurity-gas attraction. We take the
γ→−∞ limit in the formulas of section (3.3) and get in the leading order

Zb =
2
α

, Kb(q, q′) = K(q, q′), Wb(q, q′) = 0, γ→−∞. (87)

Furthermore, it follows from Eq. (51)

Λ=
1
2
αQ, −1≤Q ≤ 1, γ→−∞. (88)

Therefore, we write the following asymptotic expression:

%(y) = e y/α
�

1−
y
α

�

, γ→−∞. (89)

Substituting this into Eq. (59) we get

n(k,Q) =
2
π

α

(1+α2k2)2
, γ→−∞. (90)

The γ→∞ expansion (90) is not a uniform estimate of the exact result for n(k,Q), since it
misses the divergence at k = Q, discussed in detail in section 7. Still, it conveys an important
message: the impurity momentum distribution becomes completely flat, and infinitely broad,
in the γ→−∞ limit.

5 Total momentum Q = 1+ 2× integer

The case
Q = 1+ 2× integer (91)

is particular (recall that kF = 1 everywhere but in the captions to the figures). One finds that
n(k, 1) for the repulsive ground state, section 3.1, and the attractive gas state, section 3.2,
coincide with the momentum distribution of a free Fermi gas. It follows from Eq. (44) that
Λ=∞ at Q = 1. We have in the leading order in Λ

δ(k) =
1
Λ

, Z =
2
πΛ2

, Λ→∞, (92)

therefore

K(q, q′) = 0, W (q, q′) =
1
2

e−i(q+q′)y/2 (93)

and Eq. (60) takes the form

%(y) =
sin(y)

y
, Λ→∞. (94)

Plugging this function into Eq. (59) we indeed get the momentum distribution of a free Fermi
gas.
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This result can also be obtained without using the Fredholm determinants. For the Gaudin-
Yang model, Eq. (3), all three of the Hamiltonian, the spin-ladder operator

S− =

∫ L

0

d xψ†
↓(x)ψ↑(x) =

∑

p

ψ†
p↓ψp↑, (95)

and the total momentum P, commute with each other. Therefore, any state |ΨFF〉 of a free
Fermi gas with N + 1 particles can be turned into an eigenstate

|Ψi〉=
1

p
N + 1

S−|ΨFF〉 (96)

of the Hamiltonian (1), containing N host particles and one impurity, and having the same
energy and momentum as |ΨFF〉. Furthermore,

ni(p,Q)≡ 〈Ψi|ψ
†
p↓ψp↓|Ψi〉=

1
N + 1

〈ΨFF|ψ
†
p↑ψp↑|ΨFF〉. (97)

The state (96) is the minimum energy state |minQ〉 for Q given by Eq. (91) and |ΨFF〉 be-
ing the minimum energy state of a free Fermi gas for the same Q. This can be shown very
straightforwardly by examining the exact eigenfunctions and spectrum of the model (1), see,
for example, section 5 of Supplementary Information in Ref. [37]. Equation (97) gives the
momentum distribution of a free Fermi gas immediately.

The case of the bound state for the attractive interaction, sections 2.3 and 3.3, is different.
The shape of n(k,Q) is qualitatively the same at Q given by Eq. (91) in comparison with
any other value of Q. This is because the state (96) is not the minimum energy state of the
Hamiltonian at any value of Q. We plot n(k, 1) in Fig. 2(c).

6 n(k,Q) in the k→∞ limit

The large k limit of n(k,Q), following Eq. (59), is determined by an expansion of %(y) in the
vicinity of y = 0. It turns out that %, ∂y%, and ∂ 2

y % are continuous at y = 0. Therefore

〈Pimp〉 ≡
∫

dk kn(k,Q) = i∂y%(y), y = 0 (98)

and

〈P2
imp〉 ≡

∫

dk k2n(k,Q) = (i∂y)
2%(y), y = 0. (99)

The third derivative of %(y) has a discontinuity at y = 0. This implies for the leading term of
the large k expansion

n(k,Q) =
1

2π
1
k4
[∂ 3

y %(y = +0)− ∂ 3
y %(y = −0)], k→±∞. (100)

Taking into account the involution (16) we arrive at

n(k,Q) =
C
k4

, k→±∞, (101)

where

C =
1
π

Re∂ 3
y %(y = +0). (102)

Each of Eqs. (98), (99), and (101) has a lot of physics behind. We discuss them one-by-one.
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(a)

0

1

0 1

(b)

0

1

0 1

Figure 3: Average momentum 〈Pimp〉 of the impurity is shown as a function of the
total momentum Q. Panel (a) is for γ > 0 ground state, Eq. (103), panel (b) is for
γ < 0 bound state, Eq. (104). The solid lines are for |γ| = 1, 3, 6, and 10 (top to
bottom). Remarkably, they are continuous in (a), while experiencing a discontinuity
in (b) at Q = kF . They are not straight in (b), but this is barely seen with the unaided
eye. The dotted and dashed lines stand for γ= 0 and |γ|=∞, respectively, and are
straight.

6.1 Analysis of 〈Pimp〉

For the repulsive ground state, and the attractive gas state we have

〈Pimp〉=
Λ

α
+
ϕ

Z
, γ > 0 ground state, and γ < 0 gas state, (103)

where Z is defined in Eq. (64) and ϕ by Eq. (39). Recall that Λ and Q are connected by
Eq. (44). Since 〈Pimp〉 in Eq. (103) is an odd function of γ, it is sufficient to examine the γ > 0
case. For the attractive bound state Z is replaced with Zb, Eq. (71). Hence,

〈Pimp〉=
Λ

α
+
ϕ

Zb
, γ < 0 bound state, (104)

where Λ and Q are connected by Eq. (51). Using the Hellmann-Feynman theorem as explained
in Ref. [38] gives the average momentum of the impurity in terms of the group velocity,

〈Pimp〉=
∂ Emin(Q)
∂Q

. (105)

This leads us to Eqs. (103) and (104) immediately, consistent with the predictions from the
Fredholm determinant representation.

The derivation of Eqs. (103) and (104) from the Fredholm determinant representation
of Eq. (98) is performed in Appendix B. Though Eqs. (60) and (66) look rather different,
Eq. (104) is connected to Eq. (103) by merely a replacement of Z with Zb. Notably, such a
replacement also works for the other observables considered in section 6: 〈P2

imp〉, Eq. (99),
and C , Eq. (102). We show 〈Pimp〉 for several values of γ in Fig. 3. One can see in this figure
that Eq. (103) produces a continuous function of Q, while Eq. (104) exhibits a discontinuity at
Q = 1. Should such a difference persist for any one-dimensional gas interacting with a mobile
impurity, is an open question.
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Figure 4: The ratio of the impurity’s bare and effective masses, m/m∗. The solid line
is for the γ > 0 ground state, Eq. (108), and the dashed line is for the γ < 0 bound
state, Eq. (109). The former line tends to zero, and the latter tends to 1/2, in the
|γ| →∞ limit.

Though the curves in Fig. 3(b) are not straight lines, the difference cannot be seen by a
naked eye. It follows from Eq. (105) that the slope of 〈Pimp〉 at Q = 0,

〈Pimp〉=
Q
m∗

, Q→ 0 (106)

is set by the value of the effective mass m∗ defined by the expansion of E(Q) at Q = 0:

E(Q)− E(0) =
Q2

2m∗
, Q→ 0. (107)

The explicit form of E(Q) is discussed in section 2. The analytic formula for m∗ corresponding
to Eq. (103) is

m∗ =
2
π

(arctanα)2

arctanα−α(1+α2)−1
, γ > 0 ground state, and γ < 0 gas state (108)

(note that m∗ in this equation is an odd function of γ), and the formula for m∗ corresponding
to Eq. (104) is

m∗ =
2
π

(π+ arctanα)2

π+ arctanα−α(1+α2)−1
, γ < 0 bound state. (109)

The analytic expressions (108) and (109) for the effective mass were obtained for the first
time in the works [16] and [17], respectively. The γ →∞ limit of Eq. (108) is m/m∗ = 0:
the impurity becomes infinitely heavy. This is contrasted with the γ→−∞ limit of Eq. (109),
which is m/m∗ = 1/2: the mass of the impurity bound to the gas particles remains finite. A
quantitative comparison between m∗ for γ > 0 from Eq. (108), and m∗ for γ < 0 from Eq. (109)
is made in Fig. 4 .

6.2 Analysis of the coefficient C in the large k expansion n(k,Q) = C/k4

In this section we give the explicit analytic formula for the coefficient C in Eq. (102). For the
repulsive ground state, and the attractive gas state we have

C =
1
π

�

2
πα2

−
Z
α2
−
ϕ2

Z

�

, γ > 0 ground state, and γ < 0 gas state, (110)
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(a)

0.0

0.1

0 1

repulsion and attraction: gas state

(b)

0

3

0 1

attraction: bound state

Figure 5: The contact C as a function of the total momentum Q. Panel (a) is for
γ > 0 ground state (identical to γ < 0 gas state), Eq. (110). Panel (b) is for γ < 0
bound state, Eq. (111). The solid lines are for |γ| = 1, 3, 6, and 10 (bottom to top).
The lines in (b) are not straight, but this is barely seen with the unaided eye. The
dashed line in (a) is C = 2[cos(πQ/2kF )]2/3π2, given for |γ|=∞ by Eq. (112).

where Z is defined in Eq. (64) and ϕ by Eq. (39). Recall that Λ and Q are connected by
Eq. (44), and note that C in Eq. (110) is an even function of γ. For the attractive bound state
Z is replaced with Zb, Eq. (71). Hence,

C =
1
π

�

2
πα2

−
Zb

α2
−
ϕ2

Zb

�

, γ < 0 bound state. (111)

The γ→∞ limit of Eq. (110) reads

C =
2

3π2

�

cos
�

πQ
2

��2

, |γ| →∞. (112)

The γ→ −∞ limit of Eq. (111) is divergent, in consistency with the analysis of section 4.3.
We show C for several values of γ in Fig. 5.

The case Q = 0 can be compared with the existing literature. Equations (110) and (111)
become

C =
2(α− arctanα)

π2α3
, Q = 0, γ > 0 ground state, and γ < 0 gas state, (113)

and

C =
2(−π+α− arctanα)

π2α3
, Q = 0, γ < 0 bound state, (114)

respectively. One can check that

C =
γ2

2π2

∂ Emin

∂ γ
, Q = 0, (115)

where Emin is given by Eqs. (46) and (54), respectively. This result is consistent with the gen-
eral principles determining the coefficient C (sometimes referred to as the contact), developed
in the works [39–42]. Notably, the contact in the Lieb-Liniger gas [43] has the value 2/(3π2)
in the Tonks-Girardeau limit. This coincides with what gives Eq. (112) at Q = 0.

To what extent C could be extracted numerically from the large momentum behavior of
n(k,Q) is illustrated in Fig. (6). We evaluated n(k,Q) from the Fredholm determinant repre-
sentation presented in section 3.
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(a)
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repulsion

(b)

0
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attraction: gas state

(c)

0
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0 10 20
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Figure 6: Shown is the convergence of n(k,Q) to Ck−4 in the large k limit. The plots
are from the numeric evaluation of the Fredholm determinant representation for
n(k,Q) given in section 3, divided by the value of C found analytically in section 6.2.
The solid black lines are for Q = 0. The dotted red, and dashed blue lines are for
Q = 0.8kF : the former is for k > 0, and the latter is for k < 0. Note that the Fredholm
determinants are numerics-friendly, but n(k,Q) decays very fast with increasing |k|,
and this makes the numerical evaluation of C a challenge.

6.3 Analysis of 〈P2
imp〉

The average of P2
imp, Eq. (99), is expressed through 〈Pimp〉 and C:

σ =
Æ

πC(Z−1 −α), (116)

where, by definition,

σ =
Ç

〈P2
imp〉 − 〈Pimp〉2 (117)

is a root-mean-square deviation. Equation (116) is valid for the repulsive ground state and
attractive gas state. The result for the attractive bound state is obtained by replacing Z with
Zb. Exemplary plots of σ are shown in Fig. 7.

7 n(k,Q) in the k→Q limit

In this section we present the y →∞ expansion of %(y). We use it to prove the existence of
the power-law singularity

n(k,Q)∼
1

(k−Q)ν
, k→Q, (118)

seen in Fig. 2, as well as to calculate the exponent ν, and the numerical prefactor. So far, ν
has only been found at Q = 0 and γ→ +0 in Ref. [12]; this result follows from our formulas
as a particular case.

7.1 Large y expansion of %(y) in case of impurity-gas repulsion

The density matrix and the momentum distribution are related by Eq. (59). Both are 2kF -
periodic in Q (recall that kF = 1 everywhere but in the captions to the figures). This property
together with Eq. (17) makes it sufficient to examine % for 0 ≤ Q ≤ 1 only. The large y
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(a)

0

1

0 1

repulsion and attraction: gas state

(b)

0

2

0 1

attraction: bound state

Figure 7: The root-mean-square deviation σ as a function of the total momentum
Q. Panel (a) is for γ > 0 ground state (identical to γ < 0 gas state), Eq. (116). Panel
(b) is for γ < 0 bound state. The solid lines are for |γ| = 1, 3, 6, and 10 (bottom to
top). The lines in (b) are not straight, but this is barely seen with the unaided eye.
The horizontal dashed line at σ/kF = 1/

p
3 in (a) is for |γ|=∞.

expansion of the determinant representation (60) can be obtained by a finite-size analysis of
the form-factors followed by a resummation of the soft modes, along the lines of the works [15,
44–48]. We leave the details for a separate publication. The result is

%(y) =
Ae−iQ y

(2i y)F
2
−(−2i y)(1−F+)2

+
Ãe−i(Q−2)y

(2i y)F̃
2
−(−2i y)(1−F̃+)2

+ · · · , y →∞. (119)

The numerical prefactor

A= (2π)F−−F++1e−∆Z−1G2(F+)G
2(1− F−) (120)

depends on γ and Q through the phase shift (65):

F(k) =
δ(k)
π

, F± = F(±1). (121)

Here,

∆=
1
2

1
∫

−1

dq

1
∫

−1

dq′
�

F(q)− F(q′)
q− q′

�2

+

1
∫

−1

dq
F2
− − F2(q)

−1− q
−

1
∫

−1

dq
(1− F+)2 − [1− F(q)]2

1− q
, (122)

the coefficient Z is given by Eq. (64):

Z =
F+ − F−
α

, (123)

and G stands for the Barnes G-function, defined by the functional equation

G(z + 1) = Γ (z)G(z), (124)

with the normalization G(1) = 1, where Γ (z) is the Euler Gamma function. The function F̃
entering the second term on the right hand side of Eq. (119) is

F̃(k) = F(k) + 1, (125)
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Figure 8: One-particle density matrix %(y) at Q = 0 (black solid) and Q = 0.8kF (red
dotted) lines. Top panels: absolute value of %(y) from the exact formula. Bottom
panels: the absolute value of the ratio of %(y) from the exact and large-y-asymptotic
formulas.

and Ã follows from A by replacing F with F̃ in Eqs. (120), (122) and (123). The second term
on the right hand side of Eq. (119) is, generally, subleading – it decays faster than the first
one:

F̃2
− + (1− F̃+)

2 ≥ F2
− + (1− F+)

2. (126)

However, the inequality turns into an equality at Q = 1, that is, the subleading term becomes
of the same order as the leading one, and their sum in Eq. (119) reproduces the exact formula

%(y) =
sin y

y
, Q = 1. (127)

We show %(y) evaluated from the exact expression (60), and the convergence of the
asymptotic formula (119) to this exact expression in the panels (a) and (d) of Fig. (8), respec-
tively. We would like to emphasize that the decay rates of the leading and the first subleading
terms in Eq. (119) are close to each other when Q is close to one.

7.2 Large y expansion of %(y) in case of impurity-gas attraction: gas state

All formulas from the section 7.1 are valid for the gas state after letting γ be negative. We
show %(y) evaluated from the exact expression (60), and the convergence of the asymptotic
formula (119) to this exact expression in the panels (b) and (e) of Fig. (8), respectively.
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7.3 Large y expansion of %(y) in case of impurity-gas attraction: bound state

In case of the attractive bound state, the explicit expression for %(y) is given by Eq. (66), and
the leading term in the y →∞ expansion reads

%(y) =
Abe−iQ y

(2i y)(1−F−)2(−2i y)F
2
+

, y →∞, (128)

where

Ab =
8(2π)F−−F+

π|Zb|
G2(1+ F+)G2(2− F−)
[1+ (α+Λ)2]2

e−∆b , (129)

with

∆b =
1
2

1
∫

−1

dq

1
∫

−1

dq′
�

F(q)− F(q′)
q− q′

�2

+

1
∫

−1

dq
(1− F−)2 − [1− F(q)]2

−1− q

−

1
∫

−1

dq
F2
+ − F(q)2

1− q
− 4α

1
∫

−1

dq
F(q)(Λ−αq)
1+ (Λ−αq)2

, (130)

and Zb given by Eq. (71). The prefactors A and Ã, Eq. (120), depend on γ and Q through the
phase shift only. By contrast, the prefactor Ab, Eq. (129), depends on γ and Q explicitly.

We show %(y) evaluated from the exact expression (66), and the convergence of the
asymptotic formula (128) to this exact expression in the panels (c) and (f) of Fig. (8), re-
spectively.

7.4 The exponent ν and the prefactor in Eq. (118) for n(k,Q)

The singular part of the momentum distribution, Eq. (118), is fully characterized by the asymp-
totic expressions for %(y). Equation (119) leads to the exponent

ν= 1− F2
− − (1− F+)

2, γ > 0 ground state, and γ < 0 gas state, (131)

and Eq. (128) leads to

ν= 1− (1− F−)
2 − F2

+, γ < 0 bound state. (132)

Both Eqs. (131) and (132) tend to the same value in the |γ| →∞ limit,

ν=
1−Q2

2
, |γ| →∞, (133)

which coincides with the result from Ref. [23]. This limiting value is indicated with the thin
dotted line in Fig. 9. One can also see that ν = 0 when Q reaches the Fermi momentum for
the γ > 0 ground state, and γ < 0 gas state. Recall that n(k,Q) turns into the Fermi function
at Q = 1, as illustrated in the panels (a) and (b) of Fig. 2 and discussed in section 5. The case
γ < 0 bound state is different, there ν is a non-trivial function of γ at Q = 1.

Letting Q = 0 and γ→ +0 in Eq. (131) we get

ν= 1−
γ2

2π4
+ · · · , Q = 0, γ→ +0. (134)

This gives the same dependence on γ as in Ref. [12].
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Figure 9: Exponent ν for the singularity n(k,Q) ∼ (k −Q)−ν in the k → Q limit is
shown as a function of γ. Solid line is for γ > 0 ground state and γ < 0 bound state,
dashed red line is for γ < 0 gas state. Thin dotted line indicates where ν tends in the
|γ| →∞ limit.

8 Determinant representation for finite N

In this section we present the impurity momentum distribution function n(k,Q) for a finite
particle number N through determinants of finite-dimensional matrices. This result is crucial
for deriving the Fredholm determinant representation of section 3. Recall that we stick to the
notations of the paper [25], whenever possible.

Our starting point is Eq. (19). We write the form-factor as given by Eq. (5.23) from
Ref. [25]:

|〈N |ψk↓|minQ〉|2 =
�

2
L

�N

|det D|2
�

�

�

�

�

N+1
∑

j=1

∂ k j

∂Λ

�

�

�

�

�

−1 �
�

�

�

�

N+1
∏

j=1

∂ k j

∂Λ

�

�

�

�

�

. (135)

Here, ∂ k j/∂Λ is defined by Eq. (32), and

det D =

�

�

�

�

�

�

�

�

�

�

�

�

1
k1 − p1

. . .
1

kN+1 − p1
...

. . .
...

1
k1 − pN

. . .
1

kN+1 − pN
1 . . . 1

�

�

�

�

�

�

�

�

�

�

�

�

(136)

for the determinant of the (N+1)×(N+1)matrix. The momentum Q of the state |minQ〉 is the
sum of the quasi-momenta k1, . . . , kN+1, Eq. (24). How these quasi-momenta are specified is
discussed in sections 2.1 through 2.3. The momentum of the state |N〉 is the sum of p1, . . . , pN .
Combining Eqs. (21) and (24) implies the constraint

k+
N
∑

j=1

p j =
N+1
∑

j=1

k j (137)

for the sum over p1, . . . , pN in Eq. (19).
We transform Eq. (19) by replacing the constraint (137) with the Kronecker delta:

n(k,Q) =
1
N !

∑

p1

· · ·
∑

pN

δk+
∑N

j=1 p j ,
∑N+1

j=1 k j
|〈N |ψk↓|minQ〉|2. (138)
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The summations over p1, . . . , pN on the right hand side of Eq. (138) run independently from
each other. One can see from Eqs. (135) and (136) that 〈N |ψk↓|minQ〉 = 0 if p j = pl at
j 6= l. The factor 1/N ! is to compensate counting the form-factor multiple times upon the
permutations of p1, . . . , pN . Equations (12) and (16), and the representation

δk+
∑N

j=1 p j ,
∑N+1

j=1 k j
=

1
L

L/2
∫

−L/2

d y exp



i y

 

k+
N
∑

j=1

p j −
N+1
∑

j=1

k j

!



 (139)

imply for Eq. (138)

n(k,Q) =
1
L

L/2
∫

−L/2

d y eik y%(y) =
2
L

L/2
∫

0

d y Re[eik y%(y)], (140)

where

%(y) =
1
N !

∑

p1

· · ·
∑

pN

ei y
�

∑N
j=1 p j−

∑N+1
j=1 k j

�

|〈N |ψk↓|minQ〉|2. (141)

The terms on the right hand side of Eq. (141) are determined by Eq. (135), and p1, . . . , pN are
quantized as given by Eq. (22).

We now take the sum over p1, . . . , pN in Eq. (141). Let us consider the function

S =
1
N !

∑

p1

· · ·
∑

pN

(det D)2
N
∏

j=1

f (p j), (142)

where det D is defined by Eq. (136), f is an arbitrary function, and p js are quantized as given
by Eq. (22). After some elementary transformations (used, for example, to get the identities
in appendix B.3 from Ref. [25]) we come at the following representation for Eq. (142):

S =
N+1
∑

m=1

det[α(m) jl]. (143)

Here,

α(m) jl =















∑

p

f (p)
(k j − p)(kl − p)

1≤ j 6= m≤ N + 1,

1 j = m,

(144)

and p = 2πn/L, n= 0,±1,±2, . . ..
For γ > 0 repulsive ground state and γ < 0 attractive gas state the quasi-momenta

k1, . . . , kN+1 are real. This implies

|det D|2 = (det D)2. (145)

Furthermore, one can show that

∂ k j

∂Λ
> 0, −∞< Λ<∞, j = 1, . . . N + 1 (146)

for any real-valued k j (see, for example, section 5.2 from Ref. [25]). We, therefore, can use
the identity (143) for the function (141), and get

%(y) = ∂ξ det(A+ ξB)|ξ=0, (147)
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where

A jl =
2
L

∑

n

e2πi yn/L

(k j − 2πn/L)(kl − 2πn/L)
e−i y(k j+kl )/2

�

�

�

�

∂ k j

∂Λ

�

�

�

�

1/2 �
�

�

�

∂ kl

∂Λ

�

�

�

�

1/2

(148)

and

B jl =

�N+1
∑

m=1

∂ km

∂Λ

�−1

e−i y(k j+kl )/2

�

�

�

�

∂ k j

∂Λ

�

�

�

�

1/2 �
�

�

�

∂ kl

∂Λ

�

�

�

�

1/2

. (149)

The matrix B has rank one, and we can write Eq. (147) as

%(y) = det(A+ B)− det A. (150)

We now turn to the γ < 0 bound state. Here, k1, . . . , kN−1 are real, and kN = k∗N+1 are
complex. This implies

|det D|2 = −(det D)2. (151)

It follows from Eq. (24) that
N+1
∑

j=1

∂ k j

∂Λ
=
∂Q
∂Λ

. (152)

Since Q and Λ are connected by Eq. (51), we get

N+1
∑

j=1

∂ k j

∂Λ
= −

�

�

�

�

�

N+1
∑

j=1

∂ k j

∂Λ

�

�

�

�

�

< 0. (153)

Using the identity (143) for the function (141) we come at Eqs. (147)–(149).
Later, we will use the following representation for the entries of the matrix (148):

A jl = −
c(k j)− c(kl)

k j − kl
e−i y(k j+kl )/2

�

�

�

�

∂ k j

∂Λ

�

�

�

�

1/2 �
�

�

�

∂ kl

∂Λ

�

�

�

�

1/2

, (154)

where

c(k) =
2
L

∑

n

e2πi yn/L

k− 2πn/L
. (155)

The uncertainty in Eq. (154) at j = l can be resolved by L’Hôpital’s rule, which amounts to
making use of the expansion

c(kl) = c(k j) + (kl − k j)
∂ c(k)
∂ k

�

�

�

�

k=k j

. (156)

That is,

A j j = −e−i yk j

�

�

�

�

∂ k j

∂Λ

�

�

�

�

∂ c(k)
∂ k

�

�

�

�

k=k j

, (157)

where c(k) is given by Eq. (155) and ∂ k j/∂Λ by Eq. (32).
Let us represent the function c from Eq. (155) as

c(k) =

∮

Γ

dz
π

eiz y

ei Lz − 1
1

k− z
, (158)

where Γ is a union of counter-clockwise-oriented contours around the points z = 2πn/L.
Assuming that k is real, we deform Γ into a contour encircling the point z = k, and two
straight lines infinitesimally above and below the real axis:

c(k) = 2i
eik y

ei Lk − 1
−

∞+i0
∫

−∞+i0

dz
π

eiz y

ei Lz − 1
1

k− z
+

∞−i0
∫

−∞−i0

dz
π

eiz(y−L)

1− e−i Lz

1
k− z

. (159)
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We assume 0< y < L; the result for y = 0 and y = L follows from the continuity of %(y). The
first integral is equal to zero, which is seen by using Cauchy’s residue theorem (the integration
contour is extended to the closed one by adding a half-circle in the upper half-plane). The
second integral is equal to zero for the same reason (the integration contour is extended to
the lower half-plane). Therefore, we get for Eq. (155):

c(k) = 2i
eik y

eikL − 1
. (160)

We now introduce the function

e(k) =
eik y

ν−(k)
. (161)

Substituting the Bethe equations (29) into Eq. (160) we find

c(k j) = e(k j), j = 1, . . . , N + 1. (162)

Furthermore,
∂ c(k)
∂ k

= ic(k)
�

y −
L

1− e−ikL

�

, (163)

and
∂ e(k)
∂ k

= ie(k)[y − iαν−(k)]. (164)

Using Eqs. (161)–(163) we get for Eq. (157)

A j j = −i

�

�

�

�

∂ k j

∂Λ

�

�

�

�

1
ν−(k j)

�

y −
L
2i

1
ν+(k j)

�

. (165)

This expression can be represented as follows

A j j = 1− e−ik j y

�

�

�

�

∂ k j

∂Λ

�

�

�

�

∂ e(k)
∂ k

�

�

�

�

k=k j

. (166)

Thus, we can write the matrix (154) as

A jl = δ jl −
e(k j)− e(kl)

k j − kl
e−i y(k j+kl )/2

�

�

�

�

∂ k j

∂Λ

�

�

�

�

1/2 �
�

�

�

∂ kl

∂Λ

�

�

�

�

1/2

. (167)

Equation (166) can be obtained from Eq. (167) by making use of the L’Hôpital’s rule.
Let us represent Eq. (167) as

A jl = δ jl +
2π
L

K(k j , kl), j, l = 1, . . . , N + 1, (168)

where

K(k j , kl) =
e+(k j)e−(kl)− e−(k j)e+(kl)

k j − kl
, j, l = 1, . . . , N + 1. (169)

Here,

e+(k j) = −
1
π

eik j y/2

ν−(k j)

�

�

�

�

L
2

∂ k j

∂Λ

�

�

�

�

1/2

, e−(k j) = e−ik j y/2

�

�

�

�

L
2

∂ k j

∂Λ

�

�

�

�

1/2

, (170)

where ∂ k j/∂Λ is defined by the exact formula (32). The uncertainty in Eq. (169) at j = l can
be resolved by L’Hôpital’s rule. The matrix (149) can be written as

B jl =
2π
L

W (k j , kl), j, l = 1, . . . , N + 1, (171)
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where

W (k j , kl) =
1
π

�N+1
∑

m=1

∂ km

∂Λ

�−1

e−(k j)e−(kl), j, l = 1, . . . , N + 1. (172)

Using Eqs. (168)–(172) we get for Eq. (150)

%(y) = det
�

δ jl +
2π
L

K(k j , kl) +
2π
L

W (k j , kl)
�

− det
�

δ jl +
2π
L

K(k j , kl)
�

. (173)

Recall that we are working at a finite constant density, Eq. (9). The expression (173) is valid
in the interval 0≤ y ≤ L.

That the exact function %(y) is L-periodic and satisfies the involution (16) implies the
exact identity

%(L − y) = %∗(y). (174)

We have verified numerically that Eq. (173) with the kernels (169)–(172) satisfies Eq. (174)
for any N , and y in the interval 0 ≤ y ≤ L. We have also verified it by performing symbolic
computations using MATHEMATICA package for N = 2.

Let us now discuss the case of the complex quasi-momenta: Im(kN )< 0 and Im(kN+1)> 0,
Eq. (49). The representation (158) leads to

c(k) = −

∞+i0
∫

−∞+i0

dz
π

eiz y

ei Lz − 1
1

k− z
+

∞−i0
∫

−∞−i0

dz
π

eiz y

ei Lz − 1
1

k− z
. (175)

The first (second) integral gives non-zero contribution for Im(k) > 0 (Im(k) < 0). In both
cases one arrives at Eq. (160). Further analysis is the same as for the real quasi-momenta, it
leads to Eqs. (169)–(173). Note that

c(kN+1, L − y) = c∗(kN , y), (176)

and the involution (174) holds true.
We plot %(y) in Fig. 10. The top panels show that it oscillates if Q 6= 0. The bottom

panels (d) and (e) demonstrate that the oscillations are largely, but not fully, suppressed for the
function eiQ y%(y). Since the number of the gas particles, N = 40, used in the plot, is large, the
residual oscillations seen in the bottom panels (d) and (e) can be attributed to the subleading
term written explicitly on the right hand side of Eq. (119), valid in the thermodynamic limit.
There are no visible oscillations in the bottom panel (f), consistent with the small contribution
of the subleading terms to the asymptotic formula (128). Note that the oscillations of the
function eiQ y%(y) can be seen in Fig. 4 from Ref. [23], though the thermodynamic limit have
not been taken in the analytic formulas used therein, and the period of the oscillations has not
been identified.

The transition from Eq. (173) to the Fredholm determinant representations (60) and (66)
is straightforward, the details are given in appendix A.

9 Conclusion

The main result of the present paper is the Fredholm determinant representation, Eqs. (60)
and (66), for the momentum distribution function, n(k,Q), of an impurity which formed a po-
laron state with a free Fermi gas (or the Tonks-Girardeau gas [3,4]). Using this representation
we examined how the properties of the impurity depend on the strength g of the impurity-
gas δ-function interaction potential, and on the value of the total momentum Q of the system
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(a)

0
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0 1
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0
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Figure 10: The reduced density matrix %(y) is examined for a gas with N = 40
particles. The red dotted lines are for %(y) at the total momentum Q = 0. The black
solid (dashed) lines are for the real (imaginary) part of %(y) in the upper panels,
and of eiQ y%(y) in the lower panels, at Q = 0.8kF . Note how well the term eiQ y

suppresses the oscillations of %(y).

(which is the same as the momentum of the polaron). We have found that the formation of
the bound state strongly affects the behavior of n(k,Q). In the absence of the bound state
n(k,Q) turns into the Fermi function at Q = 1 (recall that the momenta are given in the units
of the Fermi momentum kF everywhere except for the captions to the figures). This can be
seen in Fig. 2(a) and 2(b). In the presence of the bound state n(k,Q) has a weak singularity at
k =Q for any Q, including Q = 1, and the Fermi function does not emerge. This can be seen in
Fig. 2(c). The distinct role the bound state plays in the behavior of the impurity’s momentum
distribution function is reflected at the level of the dispersion relation of the polaron. Indeed,
the group velocity of the polaron vanishes at Q = 1 in the absence of the bound state, see
Fig. (1)(a). Such a vanishing velocity is consistent with the impurity spreading over the Fermi
sea and mimicking the distribution of the gas particles in the momentum space. In the pres-
ence of the bound state the group velocity of the polaron does not vanish at Q = 1, therefore
the momentum distribution of the impurity cannot have the shape of the Fermi distribution
function. Another distinct feature of the polaron in the presence of the bound state is almost
linear dependence of the group velocity on Q for all values of the coupling strength, Fig. 3(b).
That is, the impurity can be viewed as a free particle having the effective mass m∗, and its
momentum is 〈Pimp〉 ' Q/m∗. This is also seen from perturbative calculations, Ref. [49], not
limited to the exactly solvable case considered in our paper.

We have used the exact wave functions and spectrum of the model. In a number of papers
the mobile impurity problem is investigated by using approximate wave functions. Being con-

27

https://scipost.org
https://scipost.org/SciPostPhys.8.4.053


SciPost Phys. 8, 053 (2020)

structed from a few particle-hole excitations, Refs. [50,51], these functions predict rather ac-
curately some static properties, Ref. [52], and time dynamics, Fig S4 in Ref. [37], of the mobile
impurity in one dimension. The momentum distribution function has not been treated using
the aforementioned basis of the variation functions, to the best of our knowledge. Other natu-
ral ways to construct variation functions, by taking solely a product of coherent states [53–55],
including Gaussian state correlations between different momentum modes [56], or correla-
tions to an arbitrarily high order [57], are also promising. How to perform a resummation of
the excitations containing arbitrary number of the particle-hole pairs for a weak impurity-gas
coupling is discussed in Refs. [58–60].

An exciting development of ultracold atomic physics made it possible to setup experiments
on diffusion and drag of quantum impurities embedded in a degenerate ultracold gas. Special
to one dimension is the observation of the Bloch oscillations of a mobile impurity moving
through a quantum fluid in the absence of a periodic lattice [61]. The momentum distribution
function of the impurity has been measured in that experiment. However, there the impurity
neither started out in the equilibrium ground state, nor reached such a state in the course of
the temporal evolution.
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A The L → ∞ limit of Eq. (173): transformation to Eqs. (60)
and (66)

In this appendix we explain how we arrive at the Fredholm determinant representation (60)
and (66), valid for N →∞, starting from Eq. (173), valid for any finite N . Recall that we are
working at a finite gas density, therefore N →∞ implies L→∞.

Combining the definitions (30) and (65) we write

eiδ(q) = −
�

ν+(q)
ν−(q)

�1/2

, sinδ(q) = [ν+(q)ν−(q)]
1/2. (177)

The L→∞ limit of Eq. (32) reads

∂ k j

∂Λ
=

2
L
ν−(k j)ν+(k j), j = 1, . . . , N + 1, L→∞ (178)

for the real k1, . . . , kN+1. This way, we get the kernel (61) from Eq. (169). Combining Eqs.
(152) and (44) we have

N+1
∑

j=1

∂ k j

∂Λ
= Z . (179)

This way, we get the kernel (62) from Eq. (172). This completes the derivation of the Fredholm
determinant representation (60).
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Now let us turn to the derivation of Eq. (66). The quasi-momenta kN and kN+1 are now
complex, k∗N = kN+1. Combining Eqs. (152) and (51) we have

N+1
∑

j=1

∂ k j

∂Λ
= Zb. (180)

Recall that Zb < 0. The L →∞ limit of kN and kN+1 is given by Eq. (49). The leading term
in the large L expansion of Eq. (160) in the interval 0≤ y ≤ L is

c(kN )→ c(k+) = e(k+) = 2ieik+(y−L), L→∞, (181)

and
c(kN+1)→ c(k−) = e(k−) = −2ieik− y , L→∞. (182)

Substituting equation (49) into (32) we obtain

∂ kN

∂Λ
=
∂ kN+1

∂Λ
=

1
α
+O(e−|g|L) (183)

in place of Eq. (178) for j = N , N + 1. Further, we limit y to the interval 0 ≤ y ≤ L/2, which
implies e(k+) = 0 for Eq. (181). This gives

e+(kN )→ e+(k+) = 0, e+(kN+1)→ e+(k−) =
2i
π

eik− y/2

�

�

�

�

L
2α

�

�

�

�

1/2

, (184)

and

e−(kN )→ e−(k+) = e−ik+ y/2

�

�

�

�

L
2α

�

�

�

�

1/2

, e−(kN+1)→ e−(k−) = e−ik− y/2

�

�

�

�

L
2α

�

�

�

�

1/2

(185)

for the L→∞ limit of the functions e± defined by Eq. (170). Evidently,

e+(k j) = −
1
π

eik j y

ν−(k j)
e−(k j), e+(k−) =

2i
π

eik− y e−(k−). (186)

Therefore, we get for the L→∞ limit of the function (169)

K(k j , kN ) = −
1
π

eik j y

ν−(k j)

e−(k j)e−(k+)

k j − k+
, j = 1, . . . , N − 1, (187)

and

K(k j , kN+1) = −
1
π

�

eik j y

ν−(k j)
+ 2ieik− y

�

e−(k j)e−(k−)

k j − k−
, j = 1, . . . , N − 1, (188)

and
K(kN , kN+1) = −

α

π
eik− y e−(k+)e−(k−). (189)

For the diagonal terms we use Eq. (165)

ANN = 0, AN+1N+1 =
2y
α

(190)

and combine it with Eq. (168). This gives

K(kN , kN ) =
α

π
eik+ y[e−(k+)]

2, K(kN+1, kN+1) =
α

π
eik− y[e−(k−)]

2
�

1−
2y
α

�

. (191)
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Using the identity

det(M + ξR) = (1− ξ)det M + ξdet(M + R), (192)

where ξ is a number, and R is a rank one matrix, we write Eq. (173) as

%(y) = ∂ξ det
�

I +
2π
L

K + ξ
2π
L

W
�

�

�

�

�

ξ=0
. (193)

The two last rows and columns of this matrix are special because kN and kN+1 are complex:

det
�

I +
2π
L

K + ξ
2π
L

W
�

= [e−(k−)e−(k+)]
2 det













A A+ A−

A+ a b
A− b d













. (194)

Here,

A jl = δ jl +
2π
L

K jl +
2π
L
ξ

Zb

e−(k j)e−(kl)

π
, j, l = 1, . . . , N − 1, (195)

A+j =
2π
L

e−(k j)

π

�

−αeik j y +
ξ

Zb

�

, j = 1, . . . , N − 1, (196)

A−j =
2π
L

e−(k j)

π

�

− f1(k j) +
ξ

Zb

�

, j = 1, . . . , N − 1, (197)

and

D ≡
�

a b
b d

�

= −
2π
L
α

π
eik− y

�

0 1
1 2y

α

�

+
2π
L

ξ

πZb

�

1 1
1 1

�

, (198)

where

f1(q) =
e(q)− e(k−)

k j − k−
. (199)

We calculate the determinant and the inverse of D omitting the terms which are higher
than the first order in ξ:

detD =
�

2π
L

�2

eik− y α
2

π2

�

−eik− y +
ξ

Zb

2
α

�

1−
y
α

�

�

(200)

and

D−1 =
L

2π
π

α
e−ik− y

�

� 2y
α −1
−1 0

�

−
ξ

Zb

e−ik− y

α

� �

1− 2y
α

�2
1− 2y

α

1− 2y
α 1

��

. (201)

Suppose A, B, C, and D are arbitrary matrices of dimension n×n, n×m, m×n, and m×m,
respectively. When D is invertible, one has the identity

det

�

A B
C D

�

= det(D)det(A−BD−1C). (202)

We use this identity for the determinant (194), where D is given by Eq. (198). We have

[BD−1C] jl =A+j D
−1
11 A

+
l +A−j D

−1
21 A

+
l +A+j D

−1
12 A

−
l +A−j D

−1
22 A

−
l . (203)
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This gives

[BD−1C] jl =
2π
L

e−(k j)e−(kl)

π
e−ik− y

�

− f1(k j)e
ikl y − eik j y f1(kl) + 2yeik j y eikl y

−
ξ

Zb

e−ik− y

α2
[ f2(k j) f2(kl)−α2e2ik− y]

�

, (204)

where
f2(q) = αeik− y − (α− 2y)eiq y − f1(q). (205)

This leads to the following representation of Eq. (193) in the L→∞ limit:

%(y) = e−ik+ y ∂ξ

§�

−eik− y +
ξ

Zb

2
α

�

1−
y
α

�

�

det
�

Î + K̂1 + ξV̂1

�

ª

�

�

�

�

ξ=0
. (206)

Here,

K1(q, q′) = K(q, q′) +
e−(q)e−(q′)

π
e−ik− y

�

f1(q)e
iq′ y + f1(q

′)eiq y − 2yei(q+q′)y
�

, (207)

and

V1(q, q′) =
e−2ik− y

πα2Zb
e−(q)e−(q

′) f2(q) f2(q
′). (208)

Using the identity (192) we transform Eq. (206) to

%(y) = e−i(k++k−)y
�

det( Î + K̂1 + Ŵ1)− c det( Î + K̂1)
�

= e−i(k++k−)y(1− c)det
�

Î + K̂1 +
1

1− c
Ŵ1

�

, (209)

where

W1(q, q′) = −
1

πα2Zb
e−(q)e−(q

′) f2(q) f2(q
′), (210)

and

c = 1−
2eik− y(α− y)

α2Zb
. (211)

One has

K1(q, q′) +
1

1− c
W1(q, q′) = Kb(q, q′) +

1
1− c

Wb(q, q′), (212)

where
Kb(q, q′) = K(q, q′) +

α

π
e−(q)e−(q

′)(eiq y + eiq′ y), (213)

Wb(q, q′) = −
e−(q)e−(q′) f (q) f (q′)

πα2Zb
, (214)

and
f (q) = α(eik− y + eiq y)− f1(q). (215)

We get for Eq. (209)

%(y) = e−i(k++k−)y(1− c)det
�

Î + K̂b +
1

1− c
Ŵb

�

. (216)

Using the identity (192) we arrive at the expression

%(y) = e−i(k++k−)y
�

det
�

Î + K̂b + Ŵb

�

− c det
�

Î + K̂b

��

. (217)

This is the desired representation (66).
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B Small distance expansion of the reduced density matrix

In this appendix we derive formulas presented in section 6. We start from the finite-size ex-
pression for the reduced density matrix, Eq. (173). This way the repulsive ground state, the
attractive gas state, and the attractive bound state are treated all at once.

The expansion of the kernels (169) and (172) up to order three in y reads

2π
L

�

�

�

�

∂ k j

∂Λ

∂ kl

∂Λ

�

�

�

�

−1/2

K(k j , kl) = −α+ i(i +Λ)y −
i
2

yα(k j + kl)

+
�

α

8
y2 −

i
24
(i +Λ)y3

�

(k2
j − 2k jkl + k2

l ) +
i

48
αy3(k3

j − k2
j kl − k jk

2
l + k3

l ) + · · · , (218)

and

2π
L

�N+1
∑

m=1

∂ km

∂Λ

�
�

�

�

�

∂ k j

∂Λ

∂ kl

∂Λ

�

�

�

�

−1/2

W (k j , kl) = 1−
i
2

y(k j + kl)

−
1
8

y2(k2
j + 2k jkl + k2

l ) +
i

48
y3(k3

j + 3k2
j kl + 3k jk

2
l + k3

l ) + · · · , (219)

respectively.
After substituting the expansions (218) and (219) into the determinants on the right hand

side of Eq. (173) we use the following identity

detN (I + UV T ) = dets(I + V T U). (220)

Here, U and V are N × s matrices with the columns formed by N + 1-component vectors
u1, . . . , us and v1, . . . vs, respectively. As a result (MATHEMATICA package has been used to
evaluate the determinants) we expanded Eq. (173) up to order three in y:

%(y) = 1+
−i y
S0

S1 +
(−i y)2

2S0

�

S2 −αS0S2 +αS2
1

�

+
(−i y)3

6S0

�

S3 − (Λ+ i)(S0S2 − S2
1)−αS0S3 +αS1S2

�

+ · · · , (221)

where

Sn =
N+1
∑

j=1

kn
j

∂ k j

∂Λ
. (222)

We now take the thermodynamic limit in Eq. (222). For the repulsive ground state and the
attractive gas state we have

S0 = Z , (223)

S1 =
Λ

α
Z +ϕ, (224)

S2 =
Λ2 − 1
α2

Z +
2
πα2

+
2Λ
α
ϕ, (225)

S3 =
Λ3 − 3
α3

ΛZ +
4Λ
πα3

+
3Λ2 − 1
α2

ϕ. (226)

Here,

ϕ =
1

2πα2
ln

1+ (α−Λ)2

1+ (α+Λ)2
, (227)
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and Z is given by Eq. (64). Notably, the result for the attractive bound state follows by just
replacing Z with Zb, Eq. (71).

Finally, the expansion (221) gives for Eqs. (98), (99), and (102)

〈Pimp〉=
S1

S0
, (228)

〈P2
imp〉=

S2 +α(S2
1 − S0S2)

S0
, (229)

and

C =
S2S0 − S2

1

πS0
, (230)

respectively. This leads us to the results discussed in section 6.
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