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Abstract

Unlike the R4 and ∇4R4 couplings, whose coefficients are Langlands–Eisenstein series
of the U-duality group, the coefficient E (d)

(0,1)
of the ∇6R4 interaction in the low-energy ef-

fective action of type II strings compactified on a torus Td belongs to a more general class
of automorphic functions, which satisfy Poisson rather than Laplace-type equations. In
earlier work [1], it was proposed that the exact coefficient is given by a two-loop integral
in exceptional field theory, with the full spectrum of mutually 1/2-BPS states running in
the loops, up to the addition of a particular Langlands–Eisenstein series.
Here we compute the weak coupling and large radius expansions of these automorphic
functions for any d. We find perfect agreement with perturbative string theory up to
genus three, along with non-perturbative corrections which have the expected form for
1/8-BPS instantons and bound states of 1/2-BPS instantons and anti-instantons. The ad-
ditional Langlands–Eisenstein series arises from a subtle cancellation between the two-
loop amplitude with 1/4-BPS states running in the loops, and the three-loop amplitude
with mutually 1/2-BPS states in the loops. For d = 4, the result is shown to coincide with
an alternative proposal [2] in terms of a covariantised genus-two string amplitude, due
to interesting identities between the Kawazumi–Zhang invariant of genus-two curves and
its tropical limit, and between double lattice sums for the particle and string multiplets,
which may be of independent mathematical interest.
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1 Introduction and summary

The scattering of massless excitations of type II superstrings compactified on a torus T d is de-
scribed at low energy by maximally supersymmetric supergravity in dimension D = 10 − d.
The effective action consists of the classical supersymmetric two-derivative action plus an
infinite tower of cut-off dependent higher derivative interactions, which conspire to ensure
ultraviolet finiteness. The coefficients of these interactions are strongly constrained by non-
perturbative dualities [3, 4], which tie together perturbative and non-perturbative (instanton
and anti-instanton) contributions. Combined with supersymmetry, duality invariance some-
times allows determining the exact coefficient of these interactions in terms of automorphic
functions under the U-duality group. Such results offer an invaluable window into the non-
perturbative regime of string theory, including the full spectrum of D-branes, membranes or
supersymmetric black holes, despite the absence of a first principle, non-perturbative formu-
lation of string theory or of its eleven-dimensional parent.

This programme has been pursued most extensively for four-graviton scattering, general-
ising the celebrated lowest order result [5] in ten-dimensional type IIB string theory to lower
dimension D = 10− d and to higher orders in the derivative expansion. Schematically, these
effective interactions take the form E (d)(p,q)(φ)∇

4p+6qR4, where p and q denote powers of the
Mandelstam invariants σ2 = s2+ t2+u2 and σ3 = s3+ t3+u3 of the external momenta in the
corresponding amplitude and R4 denotes the fourth order polynomial t8 t8R4 in the Riemann
tensor that generalises the square of the Bel–Robinson tensor in D dimensions [6,7]. The co-
ordinates φ on the classical moduli space MD = Ed+1/Kd+1 include the constant metric and
gauge potentials on T d , as well as the string coupling constant gD. At weak coupling gD → 0,
E (d)(p,q) admits an asymptotic expansion of the form

E (d)
(p,q)
= E (d),n.an.

(p,q) + g
2d+8p+12q−4

d−8
D

∞
∑

h=0

g−2+2h
D

E (d,h)
(p,q)
+O(e−2π/gD) +O(e−2π/g2

D), (1.1)

where E (d,h)
(p,q) arises at genus h in the perturbative string expansion, while the last two terms

originate from Euclidean D-branes and NS-branes wrapped on T d . The term E (d),n.an.
(p,q) is a non-

analytic function of the string coupling gD, which arises in the process of translating from string
frame to Einstein frame [8]. U-duality requires that E (d)(p,q) should be automorphic, i.e. invariant
under the left-action of an arithmetic subgroup Ed+1(Z) ⊂ Ed+1 on MD, while supersymmetry
imposes further differential constraints when 4p+ 6q < 8 (the so-called F-terms) [9–15].

At leading and subleading order, the coefficients E (d)(0,0), E
(d)
(1,0) are known exactly in all dimen-

sions D ≥ 3, in terms of a special type of automorphic functions known as Langlands–Eisenstein
series [16–23]:

E (d)
(0,0)
=

d≥1
4πξ(d − 2) EEd+1

d−2
2 Λd+1

, E (d)
(1,0)
=

d≥2
d 6=4

8πξ(d − 3)ξ(d − 4) EEd+1
d−3

2 Λd
, (1.2)

where EG
sΛk

is the (regularised) Langlands–Eisenstein series associated to the maximal parabolic

subgroup Pk ⊂ G, in Langlands’ normalisation (in particular, EG
0Λk
= 1), and we denote by

ξ(s) = π−s/2Γ (s/2)ζ(s) the completed Riemann zeta function. Here and elsewhere in this
work, we denote by Λk the kth fundamental weight of the algebra g according to Bourbaki’s la-
belling1, and Pk the associated maximal parabolic subgroup. We recall (see e.g. [24]) that max-
imal parabolic Langlands–Eisenstein series are defined for Re(s) large enough as the Poincaré

1 Note that in formulae which are valid for all d such as (1.2), we use the labelling associated to Ed+1 which
differs from the standard labelling for d ≤ 4 — for example the E5 labelling is

�

21 3 4 5

�

whereas the D5 labelling

is
�

41 2 3 5

�

.

3

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054


SciPost Phys. 8, 054 (2020)

Table 1: U-duality group, particle multiplet (Λd+1) and string multiplet (Λ1); the
constraints on the particle and string multiplets are in Λ1 and Λ6, respectively.

D d GD = Ed+1 M Ed+1

Λd+1
M Ed+1

Λ1
M Ed+1

Λ6

10B 0 SL(2) ; 2 ;

9 1 GL(2) 2(−3)⊕ 1(4) 2(1) ;
8 2 SL(3)× SL(2) (3,2) (3,1) ;
7 3 SL(5) 10 5 ;
6 4 Spin(5,5) 16 10 1
5 5 E6(6) 27 27 27
4 6 E7(7) 56 133 1539
3 7 E8(8) 248 3875 2450240

sum of the canonical multiplicative character yk of Pk,2

EG
sΛk
≡

∑

γ∈Pk(Z)\G(Z)

y−2s
k

�

�

�

γ
=

1
2ζ(2s)

′
∑

Q∈M G
Λk

Q×Q=0

G(Q,Q)−s , (1.3)

and admit a meromorphic continuation to the full complex s-plane. As exhibited in (1.3),
they can be written as a constrained sum over the lattice M G

Λk
transforming in the irreducible

representation R(Λk) of highest weightΛk,3 of the K(G) invariant bilinear form G(Q,Q) raised
to the power minus s. For M Ed+1

Λd+1
and M Ed+1

Λ1
, the constrained lattice sum can be interpreted as a

sum over 1/2-BPS states in string theory, that correspond respectively to particles and strings
in R1,9−d with BPS mass MBPS(Q) = G(Q,Q)

1
2 [26], see Table 1.

The coefficients (1.2) satisfy tensorial homogeneous differential equations on MD, reflect-
ing the fact that they are only sensitive to 1/2- and 1/4-BPS instantons, respectively [12,13].
This implies that they are related to unipotent automorphic representations attached to the
minimal and next-to-minimal nilpotent orbit, respectively. Supersymmetry Ward identities and
U-duality determine uniquely the function E (d)(0,0) in (1.2) for d ≥ 3 and E (d)(1,0) for d ≥ 5, up to an
overall coefficient. Using functional relations for Langlands–Eisenstein series, they can then
be written alternatively as

E (d)
(0,0)
=

d≥3
2ζ(3)EEd+1

3
2Λ1

, E (d)
(1,0)
=

d≥5
ζ(5)EEd+1

5
2Λ1

. (1.4)

Remarkably, for d = 1 in the small volume limit (or equivalently, for type IIB strings in
D = 10) these couplings can also be computed in eleven-dimensional supergravity compact-
ified on T2 at one-loop and two-loop, respectively [27, 28]. For d ≥ 2 or for d = 1 at finite
volume, membrane and five-brane degrees of freedom become important, and can be incor-
porated using the framework of exceptional field theory in dimension D = 10 − d [29]. In

2Here and elsewhere in the paper we denote by
∑

γ f (x)|γ the Poincaré sum over coset elements γ acting on
the seed function f by f (x)|γ = f (γ · x), where the action of γ on x is defined by the right action on the group
element g(x) as g(x)γ. A more precise definition of the yk will be given in Section 2.1.

3The constraint can be written in general as [25, (6.17)]

Qi ×Q j = καβ TαQi ⊗ TβQ j + (1− (Λk,Λk))Qi ⊗Q j −Q j ⊗Qi = 0 ,

with καβ the Killing Cartan form and Tα the generators of the algebra g. The constraint selects those charges
Q ∈ R(Λk) whose symmetric square lies in R(2Λk). In practice, the projection of this constraint on the largest
irreducible submodule is usually sufficient to enforce Q×Q= 0.
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this formalism, all 1/2-BPS charges in the ‘particle multiplet’ lattice M Ed+1
Λd+1

are allowed to prop-
agate in the loops. At one-loop, this leads to a ‘constrained lattice sum’ which reproduces
the Langlands–Eisenstein series E (d)(0,0) in (1.2) [1], while at two-loops it leads to a ‘double con-
strained lattice sum’ which again reproduces the Langlands–Eisenstein series E (d)(1,0) in (1.2) [1].
Note that the one-loop amplitude in exceptional field theory also produces a divergent con-
tribution to the ∇4R4 coupling, but this is cancelled by a one-loop amplitude with 1/4-BPS
states running in the loop [30].

At next-to-next-to-leading order, the coefficient E (d)(0,1) of the ∇6R4 coupling is less well un-
derstood. It satisfies a set of inhomogeneous differential equations, the simplest one being the
Poisson equation [2,22,31]
�

∆Ed+1
−

6(4− d)(d + 4)
8− d

�

E (d)
(0,1)
= −

�

E (d)
(0,0)

�2
+40ζ(3)δd,4+

55
3

E (5)
(0,0)
δd,5+

85
2π

E (6)
(1,0)
δd,6 , (1.5)

where ∆Ed+1
is the Laplace–Beltrami operator for the Ed+1-invariant metric on MD, and the

right-hand side involves the square of the R4 coupling, plus anomalous terms when ultraviolet
logarithmic divergences appear in supergravity. As a result, the weak coupling expansion in-
cludes perturbative contributions up to genus three, 1/8-BPS instantons as well as bound states
of 1/2-BPS instantons and anti-instantons. The exact ∇6R4 coupling in ten-dimensional type
IIB string theory was obtained from a two-loop computation in eleven-dimensional supergrav-
ity compactified on a torus T2 in [31] and further analysed using the differential equation
(1.5) in [32]. The same coupling in D = 9 and D = 8 was obtained using similar methods
in [22,33,34], albeit in a rather implicit way.

An explicit proposal for the ∇6R4 coupling in D = 6 was given in [2], by upgrading the
genus-two string theory contribution [35, 36] to an invariant function under the U-duality
group Spin(5, 5,Z),4

E (4)
(0,1)
= 8πR.N.

∫

F2

d6Ω

|Ω2|3
Γ5,5,2(Ω,φ)ϕKZ(Ω) +

16ζ(8)
189

bED5
4Λ5

. (1.6)

Here F2 is the standard fundamental domain of the action of the modular group Sp(4,Z) on
the Siegel upper-half plane and Γd,d,h(Ω,φ) is the genus-h Siegel–Narain theta series for the
even self-dual lattice IId,d of signature (d, d) given by

Γd,d,h(Ω)≡
∑

qi∈IId,d

|Ω2|
d
2 e−πΩ

i j
2 G(qi ,q j)−πiΩi j

1 (qi ,q j) , (1.7)

where i runs from 1 to h, Ωi j = Ωi j
1 + iΩi j

2 is a symmetric h × h matrix with positive imagi-
nary part. Furthermore, G is the symmetric SO(d, d) matrix parametrising the moduli space
SO(d, d)/(SO(d)× SO(d)), ϕKZ(Ω) is the Kawazumi–Zhang invariant [37, 38] for the genus-
two curve with period matrix Ω and R.N. is a particular regularisation prescription for genus-
two modular integrals introduced in [39, 40]. The ansatz (1.6) automatically satisfies the
differential constraint (1.5) and reproduces the known perturbative contributions up to genus
three [2]. Moreover, its decompactification predicts the full SL(5,Z)-invariant∇6R4 coupling
in D = 7,

E (3)
(0,1)
=

4π
3

∫

S+

d3Ω2

|Ω2|
1
2

′
∑

Mi∈MA4
Λ1

e−πΩ
i j
2 G(Mi ,M j)ϕtr

KZ(Ω2) +
5πζ(7)

189
ESL(5)

7
2Λ3

, (1.8)

4We define the regularised Eisenstein series bEG
sΛk

as the O(ε0) term in the Laurent expansion of EG
(s+ε)Λk

at ε= 0,
whenever EG

(s+ε)Λk
has a pole at that point.
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where G is the 5 × 5 unit-determinant positive definite symmetric matrix parametrising the
moduli space SL(5)/SO(5) in D = 7, the sum runs over pairs of non-zero vectors (M1, M2) in
the lattice MA4

Λ1

∼=Z5, and the integral runs over the ‘positive Schwinger space’

S+ =

�

Ω2 =

�

L1 + L3 L3
L3 L2 + L3

� �

�

�

�

L1, L2, L3 ∈R+

�

. (1.9)

Finally, ϕtr
KZ(Ω2) is the supergravity (a.k.a tropical [41]) limit of the Kawazumi–Zhang invari-

ant, as computed in [36, §3.2]

ϕtr
KZ(Ω2) = lim

λ→+i∞
λ−1ϕKZ(Ω1 + iλΩ2) =

π

6

�

L1 + L2 + L3 −
5L1 L2 L3

detΩ2

�

. (1.10)

The result (1.8) has a structure similar to the two-loop supergravity amplitude studied in [28,
31], but the summation variables Mi transform as doublets of vectors of SL(5), corresponding
to the multiplet of string charges in D = 7, while the multiplet of particle charges in D = 7 as
a 10 of SL(5).

Coming back to the exceptional field theory approach [1], the one-loop contribution to the
∇6R4 coupling in exceptional field theory gives5

F (d)
(0,1)
=

8π4

567
ξ(d + 4) EEd+1

d+4
2 Λd+1,

, (1.11)

while the two-loop contribution is

E (d),ExFT
(0,1) =

4π
3

∫

S+

d3Ω2

|Ω2|
6−d

2

′
∑

Γ1,Γ2∈M Ed+1
Λd+1

Γi×Γ j=0

e−πG(Γi ,Γ j)ϕtr
KZ(Ω2) , (1.12)

where ϕtr
KZ(Ω2) now arises from the Symanzik polynomial of the two-loop supergravity ampli-

tude [42], as shown in [28]. G is the symmetric bilinear form on the representation of highest
weight Λd+1, depending on the moduli in MD. The sum runs over pairs Γ1, Γ2 of non-vanishing
vectors in the particle multiplet lattice M Ed+1

Λd+1
, corresponding to the charges running in the two

loops, subject to the 1/2-BPS conditions Γi × Γ j = 0 for i, j = 1,2, where Γi × Γ j denotes the
projection of the tensor product on the representation of highest weight Λ1, see footnote 3.

These two functions are associated to two distinct ∇6R4-type supersymmetry invariants
for 1≤ d ≤ 6 (and d = 0 type IIA) [14]. In particular it was shown in [1] that (1.11) satisfies
not only the differential equation (1.5) for all d ≤ 6, but also the more constraining tensorial
equation (2.10) for d = 4,5, 6, using differential properties of ϕtr

KZ and the lattice sum. This
led to the proposal that the total non-perturbative ∇6R4 coupling should be given by the sum
of these two contributions [1]

E (d)
(0,1)
= E (d),ExFT

(0,1) +F (d)
(0,1)

. (1.13)

One main aim of this work will be to check that this proposal does indeed produce the correct
weak coupling and large radius expansions, and that it agrees with the proposal (1.6) and
(1.8) in D = 6 and D = 7. Before addressing these expansions, a major task will be to provide
a proper definition of the integral (1.12), which is otherwise divergent.

5 For d = 0 and d = 7, there is a single ∇6R4 invariant and F (d)
(0,1) vanishes. For d = 1,2, F (d)

(0,1) are given in
(F.4), (F.8), respectively. For d = 3,4, F (d)

(0,1) coincides with the second term in (1.8) and (1.6), respectively. The
function (1.11) is divergent at the given value of the parameter [1] and we consider instead its regularised version
defined in (1.30).
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Specifically, in this work we shall

1. give a mathematically precise definition of the formal integral (1.12) via dimensional
regularisation;

2. demonstrate that (1.13) (suitably renormalised, cf. point 6 below) coincides with (1.6)
for D = 6, thanks to remarkable properties of double theta series associated to the parti-
cle and string multiplet (Section 2) and of the Kawazumi–Zhang invariant and its tropical
limit (Section A);

3. generalise the string multiplet proposal (1.6) to other dimensions D ≥ 3 and show that
it formally6 agrees with (1.12);

4. extract the weak coupling expansion of (1.13) for D ≥ 4 (Section 3.2) and show agree-
ment with the perturbative corrections in string theory (Section 5.2);

5. extract the large radius limit of (1.13), reproducing the corresponding term in dimension
D+ 1 along with the expected threshold contributions (Sections 5.3, and 5.4);

6. obtain the complete Fourier expansions relative to the weak coupling and large radius
limit for D ≥ 5 (and part of it for D ≥ 3), including instanton-anti-instanton contribu-
tions and the 1/8-BPS instanton measure for generic Fourier coefficients in D = 4 and
D = 3 (Sections 3.3 and E.2);

7. analyse the two-loop amplitude with 1/4-BPS states running in one of the two loops,
and show that it cancels the divergence of the two-loop amplitude in exceptional field
theory, such that the total amplitude including both 1/2-BPS and 1/4-BPS states up to
three loops is finite and gives the exact string theory coupling (Section 5.1)

The upshot of this analysis is that the appropriately renormalised form of (1.13) reproduces
the expected perturbative amplitude in string theory, up to non-perturbative corrections that
have yet not been computed from first principles but take the expected form of D-instanton
corrections. Using similar methods, one could in principle also extract the constant terms with
respect to the other maximal parabolic subgroups, e.g. the one relevant to the limit where
the M-theory torus T d+1 decompactifies keeping its shape fixed, and hence characterise the
behavior at all cusps. Assuming that these constant terms also agree with predictions from M-
theory, one may then apply the the conjecture that the relevant U-duality groups do not admit
cuspidal automorphic representations attached to suitably small nilpotent orbits [43, 44] to
conclude that (1.13), suitably renormalised, is indeed the full exact coupling in any dimension
D ≥ 4.

In the remainder of this introduction, we summarise our main results in view of the points
above, leaving details of the derivation to the body of the paper.

Double lattice sums and regularised integrals

As stressed before, the integral (1.12) is divergent and requires regularisation. In analogy
with dimensional regularisation in QFT, it is natural to replace d → d + 2ε in the exponent of
|Ω2|, and define the integral as the value at ε = 0 after analytic continuation from the region
Re(ε) � 0 where the integral converges. However, we expect the analytic continuation to
have a pole at ε = 0 when d = 4,5, 6, which thus needs to be subtracted appropriately. In
addition, we expect that the exact ∇6R4 coupling also includes the three-loop contribution

6To keep the length of this work within reasonable bounds, we refrain from describing the regularisation of the
string multiplet formula in arbitrary dimensions.
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in exceptional field theory as well as contributions from 1/4-BPS states that play the role
of counterterms in exceptional field theory [30]. As we show in Section 5.1, the one-loop
contribution to ∇6R4 in exceptional field theory is in fact cancelled by a one-loop diagram
with 1/4-BPS states running in the loop, just as in the case of∇4R4, but the same contribution
F (d)
(0,1) reappears at three loops [30], as we shall review later.

For the purpose of discussing this regularisation, it will be useful to decompose the period
matrix of the two-loop graph as in [28,31,45],

Ω2 =

�

L1 + L3 L3
L3 L2 + L3

�

=
1
τ2V

�

1 τ1
τ1 |τ|2

�

, (1.14)

such that τ = τ1 + iτ2 runs over six copies of the standard fundamental domain
F = {τ ∈H1, |τ|> 1,0< τ1 <

1
2} for the action of PGL(2,Z) on the upper half plane H1, and

set ϕtr
KZ(Ω2) =

π
6 |Ω2|1/2A(τ) where A(τ) is the modular function defined in the fundamendal

domain F by

A(τ) =
|τ|2 −τ1 + 1

τ2
+

5τ1(τ1 − 1)(|τ|2 −τ1)
τ3

2

, (1.15)

and elsewhere in H1 by enforcing PGL(2,Z) invariance. This function belongs to the class of
local modular functions, which appear at all orders in the derivative expansion of the two-
loop supergravity amplitudes [45] (see [46] for the relation to genus-two string integrands).
Rewriting the measure d3Ω2/|Ω2|3 = 2V 2dVdτ1dτ2/τ

2
2, the integral over V ∈ R+ can be

performed easily, leading to a modular integral over F ,

E (d),ExFT
(0,1) =

8π2

3
Γ (d − 2)
πd−2

∫

F

dτ1dτ2

τ2
2

A(τ)
′
∑

Γ1,Γ2∈M Ed+1
Λd+1

Γi×Γ j=0

�

τ2

G(Γ1 +τΓ2, Γ1 + τ̄Γ2)

�d−2

. (1.16)

The divergence of the integral (1.12) at V →∞ is reflected in the non-convergence of the
double lattice sum in (1.16). We shall regularise the latter by dimensional regularisation, i.e.
by replacing d → d + 2ε in the exponent of |Ω2| appearing in the denominator of (1.12), or
equivalently in the exponent of the summand in (1.16). It is indeed apparent in (1.16) that the
sum will be absolutely convergent for Re (ε) large enough. In order to regulate divergences
due to collinear charges, i.e. pairs of charges such that Γi ∧ Γ j = 0, we further introduce a
cut-off7 τ2 < L on the domain F in the coordinates (1.14), and consider the integral

Id(φ,ε, L) = 8π

∫

R+×F(L)

d3Ω2

|Ω2|
6−d−2ε

2

ϕtr
KZ (Ω2)θ

Ed+1
Λd+1
(φ,Ω2) , (1.17)

where φ parametrises the moduli space Ed+1/Kd+1 and F(L) = F ∩ {τ2 < L}. Here, θ Ed+1
Λk

for k = 1, . . . d + 1 denotes the ‘double theta series’ for the lattice M Ed+1
Λk

transforming in the
representation with highest weight Λk,

θ
Ed+1
Λk
(φ,Ω2) =

′
∑

Qi∈M Ed+1
Λk

Qi×Q j=0

e−πΩ
i j
2 G(Qi ,Q j) . (1.18)

The integral (1.17) is absolutely convergent for Re (ε) sufficiently large. We shall argue that
it admits an analytic continuation to a meromorphic function of ε ∈ C, by relying on similar
analytic properties of the Langlands–Eisenstein series which arise in its constant terms and of

7The cut-off L plays the same rôle as the infrared cut-off µ∼ 1/
p

L introduced in [1,30].
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the functions appearing in its Fourier coefficients. The renormalised value will be defined as
the value at ε = 0, after subtracting a specific Eisenstein series canceling the poles that occur
when d = 4, 5,6 [47].

These poles can be interpreted physically as ultraviolet divergences of the two-loop ampli-
tude in exceptional field theory; they should cancel in the full theory in which all states are
allowed to propagate in the loops. Indeed, we shall show that the sum of the contributions
of 1/2-BPS states (given by the above integral (1.16)) and 1/4-BPS states (which we com-
pute separately in Section 5.1) gives a finite answer. It will also become clear that the 1/4-BPS
states’ contribution is needed to restore supersymmetry Ward identities for d = 5. The remain-
ing L-dependent terms corresponds to infrared effects from the exchange of massless particles,
which must cancel against non-local terms in the 1PI effective action. The apparent ambiguity
in the regularisation drops out in the complete four-graviton amplitude. Since we shall not
compute the full non-local amplitude, we shall not keep track of the cutoff-dependent terms
in the effective coupling E (d)(0,1). It would be interesting to fix these finite terms by analysing the
full genus-two string amplitude.

Performing the integral (1.17) over V leads to the modular integral

Id(φ,ε, L) =
8π2

3

∫

F(L)

dτ1dτ2

τ2
2

A(τ)ΞEd+1
Λd+1
(τ,φ, d − 2+ 2ε), (1.19)

where the ‘double Epstein series’ ΞEd+1
Λk

is defined for any k = 1, . . . , d+1 and Re (r) sufficiently
large8 by

Ξ
Ed+1
Λk
(φ,τ, r) =

Γ (r)
πr

′
∑

Qi∈M Ed+1
Λk

Qi×Q j=0

�

τ2

G(Q1 +τQ2,Q1 + τ̄Q2)

�r

. (1.20)

Although we only analyse in detail the case k = d + 1 in this paper, it should be possible to
use similar methods to show that ΞEd+1

Λk
(φ,τ, r) can generally be analytically continued to a

meromorphic function of r ∈ C for any fundamental weight Λk. We will use these Epstein
series outside the domain of convergence, with the understanding that they are defined by
analytic continuation.

Equivalence of particle and string multiplet formulae

The proof of the equivalence of the exceptional field theory computation (1.13) and the co-
variantised string theory answer (1.6) rests on two main claims. The first is a remarkable
property of the Kawazumi–Zhang invariant ϕKZ, namely that it coincides with the Poincaré
series seeded by its tropical limit

ϕKZ(Ω) = lim
ε→0





∑

γ∈(GL(2,Z)nZ3)\Sp(4,Z)

�

|Ω2|εϕtr
KZ(Ω2)

�

�

�

�

γ



 , (1.21)

where the limit ε → 0 is to be taken after analytic continuation from the region Reε > 5
2

where the sum converges. Using the theta lift representation of ϕKZ established in [48], we
trace the relation (1.21) to a similar property (Eq. (A.16) of Appendix A) relating genus-one
Siegel–Narain theta series for lattices of signature (3, 2) and (2, 1). Inserting (1.21) inside the

8For the particle multiplet k = d + 1, we shall argue that ΞEd+1

Λd+1
(τ,φ, r) converges for Re (r) > 4, 6,9, 29

2 for

d = 4,5, 6,7, respectively; for the string multiplet k = 1, that ΞEd+1
Λ1
(τ,φ, r ′) converges for Re (r ′)> 4, 6, 17

2 , 23
2 .
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genus-two modular integral in (1.6) and unfolding the integration domain, one immediately
arrives at

8πR.N.

∫

F2

d6Ω

|Ω2|3
Γ5,5,2ϕKZ =

4π
3

R.N.

∫

S+

d3Ω2

|Ω2|1/2

′
∑

Q1,Q2∈M D5
Λ1

(Qi ,Q j)=0

e−πΩ
i j
2 G(Qi ,Q j)ϕtr

KZ(Ω2) , (1.22)

where Qi runs over pairs of vectors in the even self-dual lattice M D5
Λ1

∼= II5,5 of SO(5, 5), which
are null and mutually orthogonal.

In order to match (1.22) with (1.12) for D = 6, which involves a sum over pairs of spinors
under Spin(5, 5), we invoke the special case d = 4 of a second remarkable property, namely

Γ (d − 2)
πd−2

′
∑

Γ1,Γ2∈M Ed+1
Λd+1

Γi×Γ j=0

�

τ2

G(Γ1 +τΓ2, Γ1 + τ̄Γ2)

�d−2

=
d≥3

Γ (3)
π3

′
∑

Q1,Q2∈M Ed+1
Λ1

Qi×Q j=0

�

τ2

G(Q1 +τQ2,Q1 + τ̄Q2)

�3

,

(1.23)
where Γi runs over pairs of vectors in the particle multiplet (the spinor for D = 6), whileQi runs
over pairs of vectors in the string multiplet (the vector for D = 6). As in (1.12), Γi×Γ j denotes
the projection of the product on the representation of highest weight Λ1, while Qi×Q j denotes
the projection of the product on the representation of highest weight Λ6, which is trivial for
d < 4 and understood as a singlet for d = 4 (see the last column in Table 1). While both sides
of (1.23) are in general divergent, the identity should be understood as a statement about
the analytic continuation of the sums ΞEd+1

Λd+1
(φ,τ, r) and ΞEd+1

Λ1
(φ,τ, r ′) defined in (1.20) as

(r, r ′)→ (d − 2,3). We do not expect that a similar relation holds for generic values of (r, r ′).
When the analytic continuations happen to have a pole at the required value (r, r ′)→ (d−2, 3),
we shall argue that the equality (1.23) still holds for appropriately renormalised expressions.

In order to justify this claim, we shall show in Section 2 that the integral of both sides
of (1.23) against SL(2,Z) Eisenstein series and cusp forms agree, thanks to Langlands’ func-
tional equation for Eisenstein series of Ed+1. This can be viewed as a spectral justification
of the claim (1.23). Identities similar to (1.23) for double lattice sums associated to vector
and spinor representations of orthogonal groups are also established using similar methods in
Section 2.8.

Formally inserting (1.23) into (1.22) and restoring the integral over V , we obtain the first
term in (1.13), hinting at the equivalence of the two proposals for D = 6. This equivalence can
be established more rigorously after regularising both (1.22) and (1.23). Conversely, we can
insert (1.23) inside (1.16), and obtain an alternative representation of the two-loop amplitude
(1.12) involving a sum over pairs of 1/2-BPS string charges,

E (d),ExFT
(0,1) =

d≥3

8π2

3

∫

F

dτ1dτ2

τ2
2

A(τ)
′
∑

Q1,Q2∈M Ed+1
Λ1

Q×Q=0

�

τ2

G(Q1 +τQ2,Q1 + τ̄Q2)

�3

=
4π
3

∫

S+

d3Ω2

|Ω2|1/2
ϕtr

KZ(Ω2)
′
∑

Q1,Q2∈M Ed+1
Λ1

Qi×Q j=0

e−πΩ
i j
2 G(Qi ,Q j) . (1.24)

For d = 4 we recover (1.22), for d = 3 (1.8); for d = 1 (and d = 0 type IIB) the constraint
Qi ×Q j = 0 is trivially satisfied and the r.h.s. of (1.24) reproduces the two-loop supergravity
integral of [31]. Note however that the first equality (1.24) only holds for d ≥ 3. For example,
for d = 1 the constraint Γi × Γ j = 0 admits two independent solutions, and the sum over
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Γi ∈Z2+1 splits into the sum over eleven-dimensional supergravity Kaluza–Klein momenta on
T2, which is equal to the right-hand-side of (1.24), along with an additional sum over M2
branes wrapping T2 which has no analogue on the string multiplet side.

Finally, as a by-product of this analysis, we obtain two alternative representations of E (d),ExFT
(0,1)

as Poincaré series for the parabolic subgroups Pd and P3 of Ed+1, whose seed involves a special
function eAs on the Poincaré upper half-plane,9

E (d),ExFT
(0,1) =

d≥2

8π2

3

∑

γ∈Pd+1\Ed+1

�

y2−d
d

eA d−2
2
(U)

�

�

�

�

γ
=

d≥3

8π2

3

∑

γ∈P3\Ed+1

�

y−3
3
eA 3

2
(U)

�

�

�

�

γ
. (1.25)

The function eAs, defined in (2.43) below, satisfies the differential equation (2.44). For s = 3/2,
it coincides (up to the overall factor 8π2

3 in (1.25)) with the exact ∇6R4 coupling in ten-
dimensional type IIB string theory considered in [31,32]. Thus, the second equation in (1.25)
can be summarised by saying that the exact ∇6R4 coupling in D dimensions is the sum of
the covariantisation of the S-duality invariant coupling in D = 10 under U-duality and the
homogeneous solution F (d)

(0,1) in (1.11), which is separately U-duality invariant. Unfortunately,
while conceptually pleasing, the identities (1.25) do not seem to be convenient for obtaining
asymptotic expansions.

Weak coupling expansion

In Section 3 we compute the asymptotic expansion of (1.16) at weak coupling by generalising
techniques introduced in [1, 50], whereby the constraints Qi × Q j = 0 are solved step by
step for a suitable graded decomposition of Ed+1 which keeps T-duality manifest. Using this
method, we find the expected perturbative contributions, up to instanton corrections:

E (d),ExFT
(0,1) = g

2d+8
d−8

D

�2ζ(3)2

3g2
D

+
4πζ(3)

3
ξ(d − 2) EDd

d−2
2 Λ1
+ g2

D
E (d,2)
(0,1)
+

4ζ(6)
27

g4
D
bEDd

3Λd−1
+O(e−1/gD)

�

.

(1.26)
Here, the first term reproduces the tree-level contribution, the second term and fourth term
reproduce part of the genus one (3.2) and genus three (3.4) contribution (the second part
coming from the homogeneous solution (1.11) while the third term reproduces the full genus-
two contribution (3.3), involving the Kawazumi–Zhang invariant ϕKZ. This fact relies on the
key equality (1.21) between ϕKZ and the Poincaré series seeded by its tropical limit ϕtr

KZ.
We are also able to extract the contributions to the constant term from bound states of

instantons and anti-instantons for any d ≤ 6. For d = 0, our approach provides a powerful
computational method, alternative to the one used in [31], which reproduces the results found
in [32] by integrating the differential equation.

Our method also allows us to analyse the non-zero Fourier modes of E (d),ExFT
(0,1) that corre-

spond to contributions to the scattering amplitude in the background of D-brane or NS-brane
instantons. In Section 3.3 we express the D-instanton contribution in terms of nested orbit
sums. The result is complete for E5 = D5 = Spin(5,5), we argue that it is also complete for E6
and we compute the generic Fourier coefficients (3.89) for E7. The generic Fourier coefficients
in d = 6 are particularly interesting because they are expected to be proportional to the helicity
supertrace Ω14 counting 1/8-BPS D-brane bound states. We find agreement with [51–53] for
the simplest D-brane configurations, but further analysis is required to understand the general
case.

9Another proposal for E (3)(0,1) was given in [49], based on a Poincaré sum over P1\SL(5), which can be rewritten as
a single lattice sum. In contrast, the double lattice sum in (1.8) can be rewritten as a Poincaré sum over P2\SL(5),
see (1.25) below.
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Large radius/decompactification expansion

In Section 4 we study in the large radius limit using similar methods and obtain the expected
expansion [2,22]

E (d),ExFT
(0,1) = R

12
8−d

�

E (d−1),ExFT
(0,1) +

5
π
ξ(d − 6)Rd−7 E (d−1)

(1,0)
+

2π
3
ξ(d − 2)Rd−3 E (d−1)

(0,0)
(1.27)

+
20π

3
ξ(6)ξ(d + 4)Rd+3 +

16π2[ξ(d − 2)]2

(d + 1)(6− d)
R2d−6 +O(e−R)

�

,

where R is the radius measured in D-dimensional Planck units. The first line in this formula
represents the contribution from the decompactification of the ∇6R4 term on T d to the one
on T d−1 along with threshold effects coming from the ∇4R4 and R4 interactions. The second
line, containing pure powers of the decompactifying radius R, represents one-loop and two-
loop threshold effects in supergravity.

Our method also allows us to analyse the non-zero Fourier modes of E (d),ExFT
(0,1) , which can

now be interpreted as instanton effects from Euclidean black holes wrapping the Euclidean
time circle. The result is complete for E5 = Spin(5,5) and E6, we argue that it is also complete
for E7 and we compute the generic abelian Fourier coefficients for E8 in Appendix E. The
generic abelian Fourier coefficients in d = 7 are also particularly interesting because they are
expected to be proportional to the helicity supertrace counting 1/8-BPS black holes. We do
find agreement with [51–53] for the simplest black hole charge configurations, but further
analysis is required to understand the general case.

1/4-BPS contributions and renormalised function

The couplings derived from the two-loop exceptional field theory calculation alone diverge in
dimension d = 4,5, 6 whereas the full string theory amplitude is supposed to be finite. This
discrepancy can be traced back to the fact that in exceptional field theory only 1/2-BPS states
are allowed to propagate in the loops. However, the full theory also involves 1/4- and 1/8-BPS
states as well as non-BPS states. For specific BPS protected couplings such as ∇6R4, one may
hope that only 1/2- and 1/4-BPS states contribute at two-loop. Indeed, the perturbative genus-
two∇6R4 coupling in string theory [35,36] exhibits precisely such contributions. The result of
our analysis shows that the contributions from 1/2- and 1/4-BPS states up to three-loop indeed
reproduces the exact low energy effective action up to ∇6R4, leading to the conclusion that
1/8-BPS states do not contribute to this coupling.

A similar issue was already encountered in [30] in the context of the∇4R4 coupling where
both 1/2- and 1/4-BPS states happen to contribute. The contribution of the latter was inferred
in [30] by taking the perturbative one-loop string calculation, extracting the contribution of
perturbative 1/4-BPS states, and covariantising this result under U-duality so as to obtain
the contribution of the full non-perturbative spectrum of 1/4-BPS states. Following the same
strategy for ∇6R4, we find that the two-loop amplitude with 1/4-BPS charges running in the
loops is given by a similar integral as in (1.12), where ϕtr

KZ(Ω2) is replaced by −ESL(2)
−3Λ1

(τ)/V
in the variables (1.14). Combining this with the exceptional field theory result, we get

E (d)2-loop
(0,1) =

4π
3

∫

S+

d3Ω2

|Ω2|
6−d−2ε

2

�

ϕtr
KZ −

π

36

ESL(2)
−3Λ1

(τ)

V

�

θ
Ed+1
Λd+1
(φ,Ω2) . (1.28)

We will give strong evidence that this expression has a finite limit as ε→ 0 for all values of d. At
three-loops, the structure of the perturbative genus-three superstring amplitude [54] suggests
that only 1/2-BPS states run in the loop. The resulting three-loop contribution in exceptional
field theory [30] produces the sum of two Eisenstein series (5.18), one of which formally
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cancels the 1/4-BPS contribution in (1.28), while the other reproduces the contribution (1.11)

E (d)3-loop
(0,1) =

π2

27

∫

S+

d3Ω2

|Ω2|
6−d

2

ESL(2)
−(3+2ε)Λ1

(τ)

V
θ

Ed+1
Λd+1
(φ,Ω2) +

8π4

567
ξ(d + 4+ 2ε) EEd+1

d+4+2ε
2 Λd+1

. (1.29)

The regularised Eisenstein series (1.11) is defined by

ÒF (d)
(0,1)
=

8π4

567
ξ(d + 4+ 2ε) EEd+1

d+4+2ε
2 Λd+1

�

�

�

ε0
=

8π4

567
ξ(d + 4) bEEd+1

d+4
2 Λd+1

, (1.30)

where |ε0 denotes the zeroth order term in the Laurent series in ε, which amounts to a min-
imal subtraction prescription. According to the discussion below (1.18), we shall not keep
track of the finite terms proportional to the residue at the pole, which is similar to the differ-
ence between minimal substraction (MS) or modified minimal subtraction (MS) regularisation
schemes in quantum field theory. We shall use the hat notation for similar zeroth order terms
of any Eisenstein series throughout this work.

Although the two functions in (1.29) satisfy the same Ed+1 invariant differential equa-
tion (up to inhomogeneous terms), they do not satisfy the same differential equations [14]
and correspond mathematically to distinct automorphic representations [47]. Physically this
means that instantons with generic charges in a given limit may contribute to one function and
not to the other. In particular ÒF (6)

(0,1) obtains contributions from generic Euclidean black holes
instantons in the decompactification limit whereas the first term in (1.29) and the two func-
tions in (1.28) do not, while these latter receive corrections from generic D-brane instantons
in the weak-coupling limit whereas ÒF (6)

(0,1) does not. It is therefore more natural to combine the
first component of (1.29) with the two-loop contribution (1.28) to define the renormalised

coupling bE (d),ExFT
(0,1) = E (d),ExFT

(0,1),ε

�

�

�

ε0
as the finite part of

E (d),ExFT
(0,1),ε =

4π
3

∫

S+

d3Ω2

|Ω2|
6−d

2

�

|Ω2|εϕtr
KZ −

π

36

ESL(2)
−3Λ1

(τ)

V 1+2ε
+
π

36

ESL(2)
−(3+2ε)Λ1

(τ)

V

�

θ
Ed+1
Λd+1
(φ,Ω2) (1.31)

as ε → 0. The two additional terms cancel each other for d ≤ 3 and we shall see that the
function (1.31) has the correct behaviour in d = 4,5, 6,7. In d = 4, 5,6, these contributions
are individually divergent, but the total result is well-defined and satisfies all expected weak
coupling and decompactification limits. The sum of (1.31) and (1.30) defines the complete
non-perturbative function

E (d)
(0,1)
= bE (d),ExFT

(0,1) + ÒF (d)
(0,1)

, (1.32)

which gives a precise definition to the formal formula (1.13).

Outline

The remainder of this work is organised as follows. In Section 2 we establish the central
identity (1.23) that relates the double lattice sums in the string and particle multiplets to show
the equivalence (1.22) between the particle and string multiplet representations of the ∇6R4

coupling E (d)(0,1). In Sections 3 and 4, we analyse the weak string coupling and single circle
decompactification limits of E (d)(0,1), respectively. In particular, we compute the corresponding
Fourier expansion of Id(φ,ε, L) defined in (1.17), and find that it is a meromorphic function
of ε. In Section 5, we discuss in detail the renormalisation of the function E (d)(0,1) due to the
contribution of 1/4-BPS states at two-loop order and show that their contribution cancels the
divergences coming from the 1/2-BPS sector, leading to the well-defined total result (1.32).
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Several appendices contain additional technical details. In Appendix A, we present evidence
for (1.21) that expresses the Kawazumi–Zhang invariant as a Poincaré series seeded by its
tropical limit while Appendices B–D discuss certain integrals and auxiliary Fourier expansions
that are used in the main body of the paper. Most of our calculations apply to 4 ≤ D ≤ 8.
Appendix E contains details for the special case of D = 3 with U-duality group E8 that are also
relevant to 1/8-BPS black holes and Appendix F summarises the cases D ≥ 8.

2 From particle to string multiplet

In this section, we give very strong evidence for the identity (1.23) relating double Epstein
sums in the particle and string multiplets of Ed+1. This is done by first including arbitrary
parameters (r, r ′) on either sides to obtain convergent expressions, and analytically continuing
to the desired values (r, r ′)→ (d−2,3) at the end. In Sections 2.1 and 2.2, we show that both
sides satisfy the same differential equations invariant under SL(2)×Ed+1. The representation-
theoretic origin of the differential equations is discussed in Section 2.3. In the remaining
subsections, we provide a spectral argument for (1.23) by computing the integral of both
sides against Maaß cusp forms and Eisenstein series of SL(2,Z), and showing that the two
results are equal by virtue of Langlands’ functional relation.

2.1 Laplace identities

We first establish that the lattice sum (1.20) in the particle multiplet representation satisfies
�

∆Ed+1
−∆τ −

r[(d − 10)r − 20+ 18d − d2]
d − 8

�

Ξ
Ed+1
Λd+1
(φ,τ, r) = 0 , (2.1)

where ∆Ed+1
is the Laplace operator on M= Ed+1/Kd+1, and ∆τ = τ2

2(∂
2
τ1
+ ∂ 2

τ2
) is the SL(2)

Laplace operator on the upper-half plane. To prove this, we proceed as in [1] and write the
sum over doublets of charges Γ1, Γ2 such that Γi×Γ j = 0 as a Poincaré sum over Pd\Ed+1, where
Pd is the maximal parabolic subgroup with Levi subgroup GL(2)× Ed−1. Under this subgroup,
the particle multiplet decomposes as [1, (4.28)] 10

M Ed+1
Λd+1

∼= (2,1)(10−d) ⊕ (1, M Ed−1
Λd−1
)(2) ⊕ (2, M Ed−1

Λ1
)(d−6) ⊕ . . . (2.2)

corresponding to the various charges arises upon compactifying from dimension D+2= 12−d
down to D = 10 − d on a torus T2: the Kaluza–Klein charges on T2, particle charges in
dimension D+2, strings in dimension D+2 wrapped on a circle in T2, while the dots correspond
to membranes wrapped on T2 and Kaluza–Klein monopoles. The superscripts in (2.2) denote
the scaling degree with respect to the action of GL(1) ⊂ GL(2), normalised so as to take
integer values. The representations of SL(2)× Ed−1 are denoted as (2 j + 1, M Ed−1

λ ) with 2 j + 1
the dimension of the SL(2) representation and λ the highest weight of the Ed−1 representation.

As explained in [1], one can always rotate a pair of vectors Γ1, Γ2 using Ed+1 into the top
degree space (2,1)(10−d) (i.e. the eigenspace in (2.2) of maximal GL(1) eigenvalue), thereby

10For d = 5,6, 7, this follows from embedding GL(2)× Ed−1 in a dual pair inside Ed+1,

E6 ⊃ SL(2)× SL(6) : 27 ∼= (2,6)⊕ (1,15)

E7 ⊃ SL(2)× Spin(6,6) : 56 ∼= (1,32)⊕ (2,12)

E8 ⊃ SL(3)× E6 : 248 ∼= (8, 1)⊕ (1,78)⊕ (3,27)⊕ (3,27)
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allowing a rewriting of (1.20) as

πr

Γ (r)
Ξ

Ed+1
Λd+1
(φ,τ, r) =

∑

γ∈Pd\Ed+1







∑

M∈Z2×2

det M 6=0

�

τ2U2 y−1
d

|(1,τ)M(1, U)|2 + 2τ2U2 det M

�r







�

�

�

�

�

�

�

γ

+
∑

γ∈Pd+1\Ed+1

 

′
∑

(m1,m2)∈Z2

�

τ2

|m1τ+m2|2 y 2
d+1

�r!�
�

�

�

�

γ

(2.3)

corresponding to non-collinear and collinear pairs of vectors, respectively, and where yk is the
multiplicative character for the parabolic subgroup Pk, normalised11 such that the Langlands–
Eisenstein series is EG

sΛk
=
∑

γ∈Pk\G y−2s
k |γ. Note that the second term can be viewed as the

contribution of matrices M with det M = 0 in the first sum; moreover, it is recognised as
ζ(2r) ESL(2)

rΛ1
(τ) EEd+1

rΛd+1
.

Next, we use the fact that upon acting on functions depending only on the GL(2)/U(1)
factor parametrised by U = U1 + iU2 ∈ H1 and yd , the Laplacian on Ed+1 reduces to to [1,
(4.65)]

∆Ed+1
=

1
(8− d)

yd∂yd

�

(10− d)yd∂yd
+ (20+ d(d − 18))

�

+∆U . (2.4)

Acting on the seed in the first term on right-hand side of (2.3) immediately leads to (2.1).
The same is true using y 2

d+1 = yd U −1
2 for the sum in the second line of (2.3), which morally

extends the sum on the first line to all non-zero matrices M , thus establishing (2.1).

Similarly, for any 4≤ d ≤ 7, we claim that the lattice sum in the string multiplet satisfies

�

∆Ed+1
−∆τ −

dr ′(2d − 1− r ′)
d − 8

�

Ξ
Ed+1
Λ1
(φ,τ, r ′) = 0 . (2.5)

To establish this, we proceed as before and write the constrained lattice sum as a Poincaré sum
over P3\Ed+1, where P3 is the maximal parabolic subgroup with Levi factor GL(2) × SL(d).
Under this subgroup, the string multiplet decomposes as12

M Ed+1
Λ1

∼= (2,1)(1) ⊕ (1,∧2V )(
2d−8

d ) ⊕ (2,∧4V )(
3d−16

d ) ⊕ (1, V ⊗∧5V )(
4d−24

d ) ⊕ . . . , (2.6)

corresponding to the various string charges appearing in the large volume limit of type IIB
string theory compactified on T d : (p, q) strings, D3-branes, (p, q) 5-branes, and Kaluza–Klein,
with V =Zd . Using Ed+1, one can always rotate any pair of vectors Q1,Q2 into the top degree
space (2,1)(1), obtaining

11The normalisation of the character is defined such that the action of the Cartan torus element on the lowest
weight representation Λk is normalised to yk. In other words, we write the torus element as exp(−

∑

i log(yi)hi),
where the hi are the canonical Chevalley generators that need to be evaluated in the lowest weight representation.
For example for SL(2) this leads to the matrix diag(y1, y−1

1 ).
12For d = 6,7, this follows by embedding GL(2)× SL(d) inside a dual pair,

E7 ⊃ SL(3)× SL(6) : 133 = (8,1)⊕ (1,35)⊕ (3,15)⊕ (3,15)

E8 ⊃ SL(2)× E7 : 3875 = (1,1539) + (3,133) + (2,56) + (2,912) + (1,1)
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πr ′

Γ (r ′)
Ξ

Ed+1
Λ1
(φ,τ, r ′) =

∑

γ∈P3\Ed+1







∑

M∈Z2×2

det M 6=0

�

τ2U2 y −1
3

|(1,τ)M(1, u)|2 + 2τ2U2 det M

�r ′






�

�

�

�

�

�

�

γ

+
∑

γ∈P1\Ed+1

 

′
∑

(m1,m2)∈Z2

�

τ2

|m1τ+m2|2 y 2
1

�r ′
!�

�

�

�

�

γ

. (2.7)

We then use the fact that the Laplacian on Ed+1 acting on functions depending only on the
GL(2)/U(1) factor reduces to

∆Ed+1
=

d
8− d

�

y3∂y3
+ 2d − 1

�

y3∂y3
+∆U . (2.8)

Acting with this operator on the seed terms in (2.7) establishes (2.5). For d = 5, the two
equations (2.7) and (2.3) are of course identical since the particle and string multiplets 27
and 27 are related by conjugation.

For r = d−2, r ′ = 3, the two eigenvalues in (2.1) and (2.5) agree and the two lattice sums
satisfy the differential equation

�

∆Ed+1
−∆τ +

6d(d − 2)
8− d

�

ΞEd+1 = 0 , (2.9)

where ΞEd+1 stands for either the string multiplet double Epstein series ΞEd+1
Λ1

or the particle

multiplet double Epstein series ΞEd+1
Λd+1

.

2.2 Tensorial differential equations

For the same values (r, r ′) = (d − 2, 3), it turns out that the two lattice sums satisfy a much
stronger system of differential equations beyond the Laplace equation (2.9). This system of
equations is given compactly for d = 4, 5,6 as

�

TαTβTγDαDβDγ −
3
2
(d + 4− 34

9−d )T
αDα

�

ΞEd+1 = 0 , (2.10)

where Tα are the generators of Ed+1 written in the highest weight representation R(Λd+1)
and Dα = Vα

M (∂M +ωM ) the covariant derivative in tangent frame, where Vα
M denotes the

inverse vielbein on the Riemannian symmetric space Ed+1/K(Ed+1) and ωM is the K(Ed+1)
connection defined by the K(ed+1) component of the Maurer–Cartan form [12, 47]. To prove
(2.10) for the particle multiplet sum, one uses the same Poincaré sum representation (2.3),
and the restriction of the tensorial equation (2.10) on functions of GL(2), which appeared in
Eqs. (4.94) and (4.96) of [1]. For the string multiplet sum, (2.10) also holds for d = 5 since the
particle and string multiplets are conjugate. For d = 6, additional work is required. Using the
same techniques as in [1], one finds that for a function of the Levi subgroup GL(2) ⊂ P3 ⊂ E7,

TαDα =





















y3∂y3
16 0 0 0 0 0 0

0 1
2(y3∂y3

+ U2∂U2
)16

1
2 U2∂U1

16 0 0 0 0
0 1

2 U2∂U1
16

1
2(y3∂y3

− U2∂U2
)16 0 0 0 0

0 0 0 020 0 0 0
0 0 0 0 1

2(−y3∂y3
+ U2∂U2

)16
1
2 U2∂U1

16 0
0 0 0 0 1

2 U2∂U1
16 −1

2(y3∂y3
+ U2∂U2

)16 0
0 0 0 0 0 0 −y3∂y3

16





















.

(2.11)
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This is a (56×56) matrix of first order differential operators since R(Λd+1) corresponds to the
56 of E7, see Table 1. The differential operators Dα normally act on the 70 coordinates of
E7/SU(8) but here are reduced to the coordinates U = U1+ iU2 and y3 of the GL(2) ⊂ E7 part
of the symmetric space. The matrix is blocked according to the branching of the representation
R(Λd+1) under GL(2)× SL(5) that is

56∼= (1,6)(2) ⊕ (2,6)(1) ⊕ (1,20)(0) ⊕ (2,6)(−1) ⊕ (1,6)(−2) , (2.12)

and we have written out the doublets of 6 separately in (2.11). The third power of (2.11)
evaluates to

TαTβTγDαDβDγ =





















S116 0 0 0 0 0 0
0 (S2 +

1
2S3U2∂U2

)16
1
2S3U2∂U1

16 0 0 0 0
0 1

2S3U2∂U1
16 (S2 −

1
2S3U2∂U2

)16 0 0 0 0
0 0 0 020 0 0 0
0 0 0 0 (−S2 +

1
2S3U2∂U2

)16
1
2S3U2∂U1

16 0
0 0 0 0 1

2S3U2∂U1
16 −(S2 +

1
2S3U2∂U2

)16 0
0 0 0 0 0 0 −S116





















,

(2.13)
with

S1 = (y3∂y3
)3 −

37
4
(y3∂y3

)2 +
3
4
∆U +

27
4

y3∂y3
,

S2 =
1
8
(y3∂y3

)3 +
3
8
∆U y3∂y3

−
25
8
(y3∂y3

)2 −
3
4
∆U +

9
4

y3∂y3
,

S3 =
3
4
(y3∂y3

)2 +
1
4
∆U −

33
4

y3∂y3
. (2.14)

Using these formulae, one can check that the seed function in (2.7) is annihilated by the
operator in (2.10).

We have shown that the seed of the double Epstein series (1.20) for the string and particle
multiplet satisfy the same homogeneous differential equations. By inserting these equations
in (1.12) or (1.24), and using the differential equation satisfied by the (non-differentiable)
modular function A(τ) (see [31] and (B.3) below), one may show that both proposals (1.12)
and (1.24) satisfy the inhomogenous differential equations required by supersymmetry Ward
identities [14], including the Poisson-type equation (1.5) [1]. To prove that the two double
Epstein series (1.20) indeed satisfy the tensorial differential equations we need to take care
of the poles that arise by analytic continuation from the domain of absolute convergence. We
shall argue that they are indeed satisfied, but for E6, in which case only the renormalised
coupling does satisfy the equations.

2.3 Nilpotent orbits and BPS states

The structure of the tensorial differential equations (2.10) can be understood by using the
language of nilpotent orbits of the group acting on its Lie algebra (see e.g. [55]). We shall
be using Bala–Carter labels for complex nilpotent orbits. The Bala–Carter label, e.g. A1, A2
or 2A1 (where the last case designates two commuting A1

∼= SL(2) subgroups) indicates in
what type of Levi subgroup a given nilpotent Lie algebra element is distinguished. For type
An, a nilpotent element is distinguished if it is regular (a.k.a. principal), i.e. if it belongs to
the largest possible nilpotent orbit of An.13 If there are several non-conjugate Levi subgroups
of the same type in Ed+1, the Bala–Carter label includes conventional primes to differentiate
between the non-conjugate orbits, e.g. (2A1)′ and (2A1)′′ in E5.

13For other Levi types there can be a finite number of such distinguished nilpotent elements; those are written
using conventional labels in parentheses following the Levi type, e.g., D4(a1). Since these Levi types only appear
for nilpotent orbits larger than the one encountered in the present paper, we refer the interested reader to [55].
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Nilpotent orbits provide a useful classification of Fourier coefficients of automorphic forms.
In physics terminology, Fourier coefficients describe effects from non-perturbative states cou-
pling to axions, corresponding to coordinates along nilpotent generators in the symmetric
moduli space Ed+1/K(Ed+1) in a given parabolic decomposition [5, 21, 23]. Therefore, the
various types of non-perturbative effects can be labelled by nilpotent elements. The set of
nilpotent orbits that support non-vanishing Fourier coefficients is often called the wavefront
set of an automorphic form. The wavefront set of a generic Eisenstein series induced from
a parabolic subgroup P = LU ⊂ Ed+1 can be easily determined from the Gelfand–Kirillov
dimension, and is tabulated for various groups and parabolics e.g. in [56].

In the relation between nilpotent orbits and non-perturbative effects, 1/2-BPS states cor-
respond to nilpotent elements of Bala–Carter label A1, while 1/4-BPS states correspond to
Bala–Carter label 2A1. This can be understood by noticing that certain 1/4-BPS states can
be realised as an (orthogonal) intersection of two 1/2-BPS states. Similarly, certain 1/8-BPS
states can be realised by an (orthogonal) intersection of three 1/2-BPS states, leading to the
Bala–Carter label 3A1. In addition, the labels A2 and 4A1 are also associated with 1/8-BPS
states and arise for a different class of non-perturbative effects [14,47].

The order of nilpotency p in x p = 0 of a given nilpotent element x of the Lie algebra
depends on the finite-dimensional representation of ed+1 in which it acts. Since the Lie algebra
is represented by first order differential operators acting on functions on the symmetric space
Ed+1/K(Ed+1), the nilpotency relations translate into differential equations of order p satisfied
by the automorphic form. For a given automorphic form, the strongest differential equation
arises from the maximal orbit in its wavefront set. Physically, this equation corresponds to a
supersymmetric Ward identity [12–14]. Often it suffices to consider these equations in only
one of the fundamental representations, as the others will be consequences.

Equipped with this knowledge we now see that (2.10) is in fact the tensorial differential
equation associated with the maximal orbit in the wavefront set of the Eisenstein series in-
duced from the Heisenberg parabolic subgroup PH , i.e. the maximal parabolic subgroup PΛH

associated to the highest weight for the adjoint representation (respectively Λ2, Λ2, Λ1, Λ8 for
D5, E6, E7 and E8). As will be shown in (2.37) and (2.40) below, integrating the lattice sums
Ξ

Ed+1
Λ1

at r ′ = 3 or respectively ΞEd+1
Λd+1

at r = d − 2 against an arbitrary SL(2) Eisenstein series

leads to an Eisenstein series EEd+1
sΛH

for the Heisenberg parabolic for a specific value of s. The
wavefront set of any such ‘adjoint’ Eisenstein series is generically of Bala–Carter type A2.

Since integrating the double lattice sums (1.23) against an SL(2) Eisenstein series gives
an Eisenstein series with a wavefront set associated to A2 nilpotent orbit, we conclude that the
Fourier coefficients of the double lattice sums themselves are also restricted to the same orbits,
and thus are at most of Bala–Carter type A2, as confirmed by equation (2.10). Automorphic
representations of Ed+1 for d ≥ 4 with this Bala–Carter type are uniquely represented by ad-
joint Eisenstein series EEd+1

sΛH
, where s is determined by the eigenvalue under the Laplacian. This

already gives a strong indication that the two double lattice sums in (1.23) must be propor-
tional to each other. We shall now present further evidence based on spectral considerations.

The claim that automorphic representations of Ed+1 for d ≥ 4 with Bala–Carter type A2 are
uniquely represented by Eisenstein series relies on the conjecture that there is no cuspidal au-
tomorphic representation associated to such small nilpotent orbits. Recall that cuspidal forms
are by definition exponentially suppressed at all cusps, and as such admit Fourier coefficients
that are themselves exponentially suppressed at all cusps of the corresponding Levi subgroup.
For the nilpotent orbit associated to the adjoint node 2ΛH , the generic Fourier coefficients in
the Heisenberg parabolic PH saturate the Gelfand–Kirillov dimension and are functions of the
Levi subgroup element v ∈ LH acting on the Fourier charge v(Q). For exceptional groups, the
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following stabilisers HQ ⊂ LH ⊂ Ed+1 occur for generic charges Q

SO(1,1)× SO(2,2) , SO(2)× SO(1,3) ⊂ SL(2)× SO(3, 3) ⊂ Spin(5,5) ,

SL(3)× SL(3) , SL(3,C) ⊂ SL(6) ⊂ E6(6) ,

SL(6) , SU(3,3) ⊂ Spin(6, 6) ⊂ E7(7) ,

E6(6) , E6(2) ⊂ E7(7) ⊂ E8(8) . (2.15)

The stabilisers are all non-compact. It follows that the Fourier coefficients as a function of v(Q)
are constant along all the cusps of the stabiliser HQ, and therefore cannot be cuspidal. Applying
this reasoning to orthogonal groups of type SO(2n, 2n), one concludes that the first possible
cuspidal representation can only appear for the nilpotent orbit of weight 2Λn, for which the
stabiliser of generic charges SO(n)× SO(n) is compact, in agreement with the conjecture in
[43]. For exceptional groups one predicts in this way that cuspidal representations can only
appear for higher dimensional nilpotent orbits, like the nilpotent orbit of weight 2Λ2 of type
A2 + 3A1 for E7 for example.

2.4 Integrating against cusp forms and against Eisenstein series

In order to prove the identity (1.23), we shall now integrate both sides against an arbitrary
Maaß eigenform f (τ) that is annihilated by ∆τ − s(s − 1) and an eigenmode of all Hecke
operators HN : f (τ) 7→

∑

kp=N ,0≤ j<k f ( pτ+ j
k ). To avoid regularisation issues, we first consider

the case where f is a cusp form for GL(2,Z), and then discuss the case of an Eisenstein series.

Starting with the string multiplet sum, we consider, for Re (r ′) large enough and f a cusp
form,

IEd+1
Λ1
( f , r ′)≡

∫

F

dτ1dτ2

τ2
2

f (τ)ΞEd+1
Λ1
(τ, r ′) , (2.16)

where F is the fundamental domain for PGL(2,Z) defined below (1.14). Using (2.7), we
rewrite ΞEd+1

Λ1
(τ, r ′) as a sum over γ ∈ P3\Ed+1 and over non-zero 2×2 matrices M . Restoring

the integral over the volume factor, we get

IEd+1
Λ1
( f , r ′) =

∑

γ∈P3\Ed+1

�

∫ ∞

0

dV
V r ′+1

∫

F

dτ1dτ2

τ2
2

f (τ)
′
∑

M∈Z2×2

e−
πy3

V Tr[T MUMᵀ]

�

�

�

�

�

�

γ

, (2.17)

where

T = 1
τ2

�

|τ|2 −τ1
−τ1 1

�

, U = 1
U2

�

1 U1
U1 |U |2

�

, (2.18)

such that (y3, U) parametrise the GL(2) factor in P3. The integral over F can then be unfolded
using the orbit method as in [57]. For cusp forms, the rank-one orbit does not contribute14

and the sum over rank-two matrices can be restricted to summing over M =
�

k j
0 p

�

with
0≤ j < k, k, p 6= 0, provided the integral over τ is extended to the upper half plane. For fixed
N = kp with k, p > 0, the sum over k, p, j is recognised as the action of the Hecke operator act-
ing on modular functions in the U variable, HN [ f ](U) = N−1/2

∑

k,p>0,kp=N

∑

j mod p f ( kU+ j
p ).

Thus, we get

IEd+1
Λ1
( f , r) = 2

∑

γ∈P3\Ed+1

¨

∑

N>0

HN

�

∫ ∞

0

dV
V r ′+1

∫

H1

dτ1dτ2

τ2
2

f (τ) e−
πN y3 |τ−U |2

Vτ2U2
− 2πy3N

V

�«
�

�

�

�

γ

. (2.19)

14For f an Eisenstein series, the rank-one orbit gives cut-off dependent contributions which do not contribute to
the renormalised integral for generic s.
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Now, we use the fact that e−πt|τ−U |2/(τ2U2) acts as a reproducing kernel on eigenmodes of
∆τ [58,59]. More precisely, for any smooth solution of [∆τ − s(s− 1)] f (τ) = 0,

∫

H1

dτ1dτ2

τ2
2

f (τ) e−
πt|τ−U |2
τ2U2 =N (s, t) f (U) , (2.20)

where the factor N (s, t) is independent of f . This factor can be computed by choosing
f (τ) = τs

2:

N (s, t) =

∫

H1

dτ1dτ2

τ2
2

�

τ2

U2

�s

e−
πt|τ−U |2
τ2U2 =

U
1
2−s

2p
t

∫ ∞

0

dτ2

τ
3/2
2

e−
πt
τ2U2

−πtU2
τ2
+2πt

=
2
p

t
Ks− 1

2
(2πt) e2πt ,

(2.21)

where Kν(x) is the modified Bessel function of the second kind. Setting t = N y3/V , we thus
get

IEd+1
Λ1
( f , r ′) = 4

∑

γ∈P3\Ed+1

�

∑

N>0

1
p

y3N

∫ ∞

0

dV

V r ′+ 1
2

Ks− 1
2

�

2πy3N
V

�

H(U)N f (U)

�
�

�

�

�

γ

. (2.22)

The integral over V can now be computed using

∫ ∞

0

dt
t1−s′

K
s−1

2
(2πt) =

π−s′

4
Γ ( s′−s

2 +
1
4) Γ (

s+s′
2 −

1
4) , (2.23)

which is valid whenever Re (s′) > |Re (s− 1
2)|. As for the action of the Hecke operator HN , its

action on the Fourier expansion

f (τ) = f0τ
s
2 + f ′0 τ

1−s
2 +

∑

n>0

fn

p

2πτ2 Ks− 1
2
(2π|n|τ2) e

2πnτ1 (2.24)

sends fn 7→
p

N
∑

d|(n,N) d
−1 fnN/d2 . From looking at the first mode with n = 1, it follows that

HN f (τ) =
p

N fN f (τ)/ f1 if f (τ) is a cuspidal Hecke eigenmode (i.e. f0 = f ′0 = 0, f1 6= 0). In
this way, setting s′ = r ′ − 1

2 and assuming that Re (r ′) is large enough such that
1− Re (r)< Re (s)< Re (r), we arrive at

IEd+1
Λ1
( f , r ′) = π

1
2−r ′Γ

�

r ′−s
2

�

Γ
�

r ′+s−1
2

� ∑

N>0

fN

f1
N

1
2−r ′

∑

γ∈P3\Ed+1

�

y−r ′
3 f (U)

�

�

�

�

γ
. (2.25)

Recalling the definition of the completed L-series associated to f [60],

L?( f , r) = π−rΓ
� r+s

2 −
1
4

�

Γ
� r−s

2 +
1
4

�

∑

N>0

fN

f1
N−r , (2.26)

normalised such that L?( f , 1− r) is equal to L?( f , r) up to a phase, we get

IEd+1
Λ1
( f , r ′) = L?( f , r ′ − 1

2)
∑

γ∈P3\Ed+1

�

y−r ′
3 f (U)

�

�

�

�

γ
. (2.27)

The right-hand side is recognised as an Eisenstein series induced from the cusp form f (U) on
the GL(2) factor in the maximal parabolic subgroup P3 with Levi subgroup GL(2)× SL(d).
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If we now take for f the non-holomorphic Eisenstein series ESL(2)
sΛ1

, the same computa-
tion goes through, except that the rank-one orbit gets cut-off dependent coefficients from the
constant terms in the Fourier expansion

ESL(2)
sΛ1

(τ) = τs
2 +
ξ(2s− 1)
ξ(2s)

τ1−s
2 +

2τ1/2
2

ξ(2s)

∑

N 6=0

|N |s−
1
2 σ1−2s(|N |)Ks− 1

2
(2π|N |τ2) e

2πiNτ1 .

(2.28)

For r ′ large enough, these terms vanish as the cut-off is removed, and the rank-two orbit picks
up contributions from the non-zero Fourier coefficients in (2.28). Using Ramanujan’s identity

∞
∑

N=1

N s−s′−1
2 σ1−2s(N) = ζ(s+ s′ − 1

2)ζ(s
′ − s+ 1

2) , (2.29)

one finds the L-series associated to ESL(2)
sΛ1

,

L?(ESL(2)
sΛ1

, r) = ξ(r + s− 1
2)ξ(r − s+ 1

2) (2.30)

leading to a Langlands–Eisenstein series,

IEd+1
Λ1
(ESL(2)

sΛ1
, r ′) =ξ(r ′ − s)ξ(r ′ + s− 1)

∑

γ∈P3\Ed+1

�

y−r ′
3 ESL(2)

sΛ1
(U)

�

�

�

�

γ

=ξ(r ′ − s)ξ(r ′ + s− 1) EEd+1

sΛ1+
r′−s

2 Λ3

.
(2.31)

We now turn to the particle multiplet sum. Using the same reasoning, the integral

IEd+1
Λd+1
( f , r) =

∫

F

dτ1dτ2

τ2
2

f (τ)ΞEd+1
Λd+1
(τ, r) (2.32)

for f a normalised Hecke eigenform evaluates to

IEd+1
Λd+1
( f , r) = L?( f , r − 1

2)
∑

γ∈Pd\Ed+1

�

y−r
d f (U)

��

�

γ
(2.33)

or, for f = ESL(2)
sΛ1

,

IEd+1
Λd+1
(ESL(2)

sΛ1
, r) = ξ(r − s)ξ(r + s− 1) EEd+1

sΛd+1+
r−s
2 Λd

. (2.34)

Note that we use the Bourbaki labelling of Ed+1, with the slight abuse of notation that Λd
corresponds to a sum of fundamental weights for d ≤ 3 as used in [1] to allow for general
formulae. In particular, for d = 3, the weights Λd+1 and Λd in E4 correspond to Λ3 and Λ2+Λ4
in A4.

2.5 Relating the particle, string multiplet and adjoint Eisenstein series

In order to relate the Eisenstein series (2.31) and (2.34), we use the general functional relation
for Langlands–Eisenstein series with infinitesimal weight parameter 2λ−ρ,

EG
λ = M(w, 2λ−ρ) EG

w(λ− ρ2 )+
ρ
2

(2.35)

for any element w of the Weyl group [61] (see [24] for an exposition targeted at physicists).
Here, ρ is the Weyl vector and the prefactor M(w,λ), known as the intertwiner (between
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different principal series representations), is given by a product over positive roots that are
reflected into negative roots under w:

M(w,λ) =
∏

α>0
wα<0

ξ(〈α,λ〉)
ξ(1+ 〈α,λ〉)

. (2.36)

Using suitable Weyl elements15 we find for d ≥ 3 that (2.31) and (2.34) coincide for r = d−2,
r ′ = 3,

ξ(s− d + 3)ξ(4− d − s) EEd+1

sΛd+1+
d−2−s

2 Λd
= ξ(3− s)ξ(2+ s) EEd+1

sΛ1+
3−s

2 Λ3
, (2.37)

hence confirming the relation (1.23). In the following, we shall also need a dimensionally reg-
ularised version of the Eisenstein series in (2.37) with dε = d +2ε, which satisfy the modified
identity

ξ(s−dε+3)ξ(4−dε−s) EEd+1

sΛd+1+
dε−2−s

2 Λd
= ξ(3−s−2ε)ξ(2+s−2ε) EEd+1

sΛ1+2εΛ2+
3−s−2ε

2 Λ3
. (2.38)

When f is an SL(2) cusp form, the expressions (2.27) and (2.33) describe more general
Eisenstein series induced from cusp forms on the parabolic subgroups P3 and Pd−1, respectively.
Langlands has also provided a functional relation for this case [61], see also [62,63], and the
intertwiner now depends on the cusp form f as well as on λ. For the case of SL(2) it evaluates
to the corresponding quotient of completed L-functions [63], implying the equality

IEd+1
Λd+1
( f , d − 2) = IEd+1

Λ1
( f , 3) (2.39)

for all cusp forms. This completes the proof of (1.23).

It is also interesting to note that the same functional equation (2.35) also allows to rewrite
either side of (2.37) as an Eisenstein series EE8

s+14
2 Λ8

, EE7
s+8

2 Λ1
, EE6

s+5
2 Λ2

, ED5
s+3

2 Λ2
for the adjoint rep-

resentation, i.e. induced from the Heisenberg parabolic, in agreement with the discussion of
the last subsection:

IEd+1
Λd+1

�

ESL(2)
sΛ1

, d − 2
�

= ξ(s− d + 3)ξ(s+ d − 3)EEd+1

sΛd+1+
d−2−s

2 Λd

=
ξ(s− 4+ 2sd+1)ξ(s− d − 1−δd,7 + 2sd+1)ξ(s+ d − 3+δd,7)

ξ(s)
EEd+1

( s−4
2 +sd+1)ΛH

, (2.40)

where sd+1 =
7
2 , 9

2 , 6, 9 for d = 4,5, 6,7, respectively.16

2.6 Poincaré series representations

For the case f (τ) = A(τ) of (1.15), the identity (2.20) is no longer valid, due to the non-
differentiability of A(τ) on the locus τ1 = 0 and its images under GL(2,Z). Moreover, A(τ)
is not an eigenmode of Hecke operators. Nevertheless, the manipulation in (2.17) and its
analogue for IEd+1

Λd+1
(A, r) are still valid, and lead to the Poincaré series representations

IEd+1
Λd+1
(A, r) =

∑

γ∈Pd\Ed+1

�

y−r
d
eA r

2
(U)

�

�

�

�

γ
(2.41)

15For the values d = 3, 4,5, 6,7 we use wA4
= w2w1w3w2, wD5

= w3w2w1w5w3w2, wE6
= w5w4w3w1w6w5w4w3,

wE7
= w6w5w4w3w1w7w6w5w4w3 and wE8

= w7w6w5w4w3w1w8w7w6w5w4w3, respectively. Recall that
sΛd+1 +

d−2−s
2 Λd for E4 is sΛ3 +

d−2−s
2 (Λ2 +Λ4) in the A4 basis.

16Here, we have used the following Weyl elements for the cases d = 4,5, 6,7: wD5
= w2w1w3w2w4w3,

wE6
= w2w4w3w1w5w4w2w3w4w5, wE7

= w1w3w4w2w5w4w3w1w6w5w4w2w3w4w5w6 and finally
wE8
= w8w7w6w5w4w2w3w1w4w3w5w4w2w6w5w4w3w1w7w6w5w4w2w3w4w5w6w7.
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and

IEd+1
Λ1
(A, r ′) =

∑

γ∈P3\Ed+1

h

y−r ′
3

eA r′
2
(U)

i
�

�

�

γ
, (2.42)

where eAs(U) is the SL(2,Z)-invariant function

eAs(U)≡
∫ ∞

0

dV
V 1+2s

∫

F

dτ1dτ2

τ 2
2

A(τ)
′
∑

M∈Z2×2

e−
π
V Tr[T MUMᵀ] . (2.43)

This satisfies the differential equation

∆eAs(U) = 12eAs(U)− 6
�

ξ(2s)ESL(2)
sΛ1
(U)

�2
. (2.44)

For the case of interest for the ∇6R4 coupling, using the identity between the particle and
string multiplet sums, we get

E (d),ExFT
(0,1) =

d≥2

8π2

3

∑

γ∈Pd\Ed+1

�

y2−d
d

eA d−2
2
(U)

�

�

�

�

γ
=

d≥3

8π2

3

∑

γ∈P3\Ed+1

�

y−3
3
eA 3

2
(U)

�

�

�

�

γ
(2.45)

This identity is formal however, since the value of r typically corresponds to a pole. The
function 8π2

3
eA 3

2
(U) corresponds to the exact∇6R4 coupling in ten-dimensional type IIB string

theory in the form given in [32].

2.7 Convergence

To determine the domain of convergence of the double Epstein series ΞEd+1
Λd+1
(φ,τ, r) for the

particle multiplet, let us insert an additional regulating power of y−ε̃d in the sum, and assume
that Re (r) and Re (ε̃) are both large enough such that the second term in (2.3) can be com-
bined with the first by allowing all matrices with rk M ≥ 1. We can then perform a Poisson
resummation on the second row of M and obtain the Fourier expansion with respect to τ1,

π−rΓ (r)
∑

γ∈Pd\Ed+1

�

y−ε̃d

′
∑

M∈Z2×2

�

τ2U2 y−1
d

|(1,τ)M(1, U)|2 + 2τ2U2 det M

�r��
�

�

�

�

γ

(2.46)

= ξ(2r)τ r
2 EEd+1

rΛd+1+
ε̃
2Λd
+ ξ(2r − 2)τ 2−r

2 EEd+1
1+ε̃

2 Λd+(r−1)Λd+1

+4τ2

∑

γ∈Pd\Ed+1

�

y−ε̃−r
d

′
∑

m,n

σr−1(gcd(m, n))
gcd(m, n)2r−2

Kr−1(2πτ2
|mU+n|2

U2
)

�
�

�

�

�

γ

+2τ2

∑

γ∈Pd\Ed+1

�

y−ε̃−r
d

′
∑

m1,m2

′
∑

n1,n2

|m1+Um2|r−1

|n1+Un2|r−1 Kr−1

�

2πτ2
|m1+m2U ||n1+n2U |

U2

�

e2πiτ1(m1n2−m2n1)

�
�

�

�

�

γ

.

By Godement’s criterion [24, 64], the first term EEd+1

rΛd+1+
ε̃
2Λd

in the limit ε̃ → 0 converges for

Re (r) > 4,6, 9, 29
2 when d = 4, 5,6, 7. The second term EEd+1

1+ε̃
2 Λd+(r−1)Λd+1

never converges

when ε̃ → 0, but its analytic continuation at ε̃ = 0 can be shown to vanish. Thus, we
conclude that the double Epstein series ΞEd+1

Λd+1
(φ,τ, r) has no pole for Re (r) > 4,6, 9, 29

2 , re-
spectively, which indicates that it is absolutely convergent in the same range. Similarly, we
find that the double Epstein series ΞEd+1

Λ1
(φ,τ, r ′) for the string multiplet converges absolutely

for Re (r ′)> 4, 6, 17
2 , 23

2 .
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2.8 From vector to spinor double lattice sums

In this section, we generalise the observation on the equivalence of different lattice sums from
Ed+1 to Spin(d, d), as this will be used in our later analysis. Using the same techniques, one
can establish the relation between the double lattice sums in vector and spinor representations
of Spin(d, d) with d ≥ 3,

Γ (d − 2)
πd−2

′
∑

Q i∈IId,d
Q i×Q j=0

�

τ2

g(Q1 +τQ2,Q1 + τ̄Q2)

�d−2

=
Γ (2)
π2

′
∑

Q i∈S±
Q iγd−4Q j=0

�

τ2

g(Q1 +τQ2,Q1 + τ̄Q2)

�2

, (2.47)

where IId,d is the even self-dual lattice in the vector representation of Spin(d, d), and S± are
the lattices in the Weyl spinor prepresentation of Spin(d, d), for either chirality. More precisely,
using the same notation as in (1.20),

lim
r→d−2

Ξ
Dd
Λ1
(τ, r) = lim

r ′→2
Ξ

Dd
Λd
(τ, r ′) = lim

r ′→2
Ξ

Dd
Λd−1
(τ, r ′) . (2.48)

For d = 5, this reduces to the identity (1.23) for G = SO(5, 5). For d = 4, it expresses in-
variance under triality of SO(4,4). As a consistency check, note that the differential equations
satisfied by the two Epstein series

�

∆Dd
−∆τ − r(r + 3− 2d)

�

Ξ
Dd
Λ1
(τ, r) = 0 (2.49)

�

∆Dd
−∆τ −

1
2(d − 2)r ′(r ′ − d − 1)

�

Ξ
Dd
Λd
(τ, r ′) = 0 , (2.50)

agree for (r, r ′) = (d − 2,2). Integrating both sides against the Eisenstein series ESL(2)
sΛ1
(τ), one

gets
ξ(d − 2− s)ξ(d + s− 3) EDd

sΛ1+
d−2−s

2 Λ2
= ξ(2− s)ξ(s+ 1) EDd

sΛd+
2−s

2 Λd−2
, (2.51)

where the equality follows from Langlands’ functional relation (2.35). It is worth noting that
these series are related by functional equations to the adjoint Eisenstein series EDd

s+d−2
2 Λ2

. A

similar functional identity should hold for Eisenstein series induced from SL(2) cusp forms f
on parabolic subgroups P2 and Pd−2, namely

IDd
Λ1
( f , d − 2) = IDd

Λd
( f , 2) = IDd

Λd−1
( f , 2) . (2.52)

Assuming the relation (2.47) as well as the Poincaré series representation (1.21), we obtain
several equivalent ways of expressing the modular integral of the product of ϕKZ with the
Siegel–Narain lattice sum,17

∫

F2

d6Ω

|Ω2|3
ϕKZ Γd,d,2 =

∫

G

d3Ω2

|Ω2|3−
d
2

ϕtr
KZ(Ω2)θ

Dd
Λ1

=

∫

G

d3Ω2

|Ω2|
ϕtr

KZ(Ω2)θ
Dd
Λd
=

∫

G

d3Ω2

|Ω2|
ϕtr

KZ(Ω2)θ
Dd
Λd−1

,

(2.53)

where θ Dd
Λk

is defined as in (1.18) and G =R+×F . In Appendix C, we study the asymptotics of
the various integrals and find further support for the relations (2.53), hence for the Poincaré
series representation (1.21).

17In each of these equations, we assume that a factor |Ω2|ε is inserted in the integral, divergences are subtracted
and the limit ε→ 0 is taken after analytic continuation.
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3 Weak coupling limit

In this section, we study the weak coupling limit of the integral (1.17). We first discuss the
expected form of the expansion, known from general physical considerations, before turning
to a detailed analysis of the constrained lattice sum θ

Ed+1
Λd+1

of (1.18) entering in (1.17).

3.1 Expectation

The weak coupling limit (1.1) of the exact non-perturbative∇6R4 coupling (which is invariant
under the U-duality group Ed+1(Z)) in generic dimension D = 10− d takes the form

E (d)
(0,1)
= g

2d+8
d−8

D

� 2
3ζ(3)

2

g2
D

+ E (d,1)
(0,1)
+ g2

D
E (d,2)
(0,1)
+ g4

D
E (d,3)
(0,1)
+O(e−1/gD)

�

, (3.1)

where 2ζ(3)2/3g2
D

is the tree-level contribution while the genus one, genus two and genus
three contributions are given by [48, §2.1.1]18

E (d,1)
(0,1)

=
4πζ(3)

3
ξ(d − 2) EDd

d−2
2 Λ1
+

8π4

567
ξ(d + 4)EDd

d+4
2 Λ1

(3.2)

E (d,2)
(0,1)

= 8π

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω) Γd,d,2 (3.3)

E (d,3)
(0,1)

=
4ζ(6)

27

�

bEDd
3Λd−1

+ bEDd
3Λd

�

. (3.4)

The exponentially suppressed terms in (3.1) originate from 1/8-BPS instantons, as well as
pairs of 1/2-BPS and anti-1/2-BPS instantons, as required by the quadratic source term in the
Laplace equation (1.5). In special dimensions where the local ∇6R4 coupling mixes with the
non-local part of the one-particle irreducible effective action, there are also non-analytic terms
proportional to log gD [8,48] which we will discuss in more detail in Section 5.2.

In the weak coupling limit, the behaviour of the homogeneous solution (1.11) can be
determined using standard constant term formulae [24,65] to be

F (d)
(0,1)
= g

− 24
8−d+2

D

�

8π4

567
ξ(d + 4) EDd

d+4
2 Λ1
+ g2

D
F (d,2)
(0,1)
+

4ζ(6)
27

g4
D
bEDd

3Λd
+O(e−1/gD)

�

. (3.5)

The O(g2
D
) contribution arises for d = 5,6 only, and corresponds to a two-loop threshold term

proportional to log gD. Such a term is known to arise from the non-analytic part of the string
amplitude, after Weyl rescaling to Einstein frame [8]. Substituting this behaviour into (1.13),
it follows from the above equation, (3.1) and (1.2) that the two-loop exceptional field theory
amplitude must behave as (for D > 3)

E (d),ExFT
(0,1) = g

− 24
8−d+2

D

�

2ζ(3)2

3g2
D

+
4πζ(3)

3
ξ(d − 2) EDd

d−2
2 Λ1
+ g2

D
E (d,2)
(0,1)
+

4ζ(6)
27

g4
D
bEDd

3Λd−1
+O(e−

1
gD )
�

(3.6)
up to logarithmic corrections discussed in Section 5.2. The three-loop amplitude is invariant
under the outer automorphism of Dd which exchanges the two spinor nodes due to the fact
the four-graviton amplitudes in type IIA and type IIB are the same up to order ∇8R4 [66].
The constituent functions (3.5) and (3.6) are not invariant individually under this exchange
since they involve the two distinct spinor series associated to the fundamental weights Λd and
Λd−1, respectively.

18The Eisenstein series in (3.2) and (3.4) originate from genus-one and genus-three modular integrals, respec-
tively. The genus-two integration measure d6Ω/|Ω2|3 in this paper differs by a factor 1/8 from dµ2 in [48].
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3.2 Weak coupling limit of the particle multiplet lattice sum

We are interested in the weak coupling limit of the integral (1.17), which, after subtraction of
the divergent power law L-dependent terms we denote by R.N., reads

Id(φ,ε) = 8πR.N.

∫

G

d3Ω2

|Ω2|
6−d−2ε

2

ϕtr
KZ (Ω2)θ

Ed+1
Λd+1
(φ,Ω2) , (3.7)

where G is the fundamental domain R+ ×F for the action of PGL(2,Z) on Ω2 (of which the
positive Schwinger domain S+ is a six-fold cover). The integral and the sum are absolutely
convergent for Re (ε) large enough. By analyzing the Fourier expansion in this region, we shall
find evidence that Id(φ,ε) has a meromorphic continuation to ε ∈ C, with a pole at ε = 0
for d = 4, 5,6. As we explain in Section 5.1, these poles are cancelled by contributions from
1/4-BPS states running in the loops. Since we are interested in the limit ε→ 0, we shall retain
the ε dependence only when there is a potential pole for some value of d.

The theta series θ Ed+1
Λd+1

involves a sum over pairs of vectors Γi in the particle multiplet, subject
to the constraints Γi × Γ j = 0 valued in the string multiplet. Under Ed+1 ⊃ GL(1)×Spin(d, d),
the particle multiplet representation branches as

M Ed+1
Λd+1
→ II

( 2
8−d )

d,d ⊕ S
( d−6

8−d )
+ ⊕

�

∧d−5 IId,d +∧d−7 IId,d

�( 2d−14
8−d ) ⊕ . . . , (3.8)

where the superscript denotes the charge under the GL(1) factor, IId,d the even-self-dual lat-
tice in the vector representation, ∧k IId,d the lattice in the k-th exterior power of the vector
representation (which is trivial for k > 2d), and S+ the Weyl spinor representation lattice.19

The branching (3.8) is complete for d ≤ 6; for E8 there are additional terms indicated by the
ellipses. For d ≤ 6 we denote the components of the charge Γi of (3.8) by qi ∈ IId,d , χi ∈ S+
and Ni ∈ ∧d−5 IId,d .

On the other hand, the string multiplet, appearing in the constraint Γi×Γ j = 0 of the lattice
sum, decomposes under GL(1)× Spin(d, d) as

M Ed+1
Λ1
→Z(

4
8−d ) ⊕ S

( d−4
8−d )
− ⊕

�

∧d−4 IId,d +∧d−6 IId,d

�( 2d−12
8−d ) ⊕

�

∧d−7 IId,d ⊗ S−
�( 3d−20

8−d ) ⊕ . . . , (3.9)

where the dots denote additional components that arise only for d ≥ 6 and play no role in our
analysis. Thus, the particle multiplet components (qi ,χi , Ni) along the decomposition (3.8)
must satisfy

(qi , q j) = 0 , qa
(iγaχ j) = 0 , q(i ∧ N j) +χ(iγd−4χ j) = 0 , qi · N j = 0, (3.10)

where the last constraint arises only in d ≥ 6. Here, we have denoted by γa the gamma
matrices of Spin(d, d) and γd−4 denotes the antisymmetric product of d − 4 such gamma
matrices. In terms of these components, the quadratic form G(Γ , Γ ) occurring in the double
lattice sum θ

Ed+1
Λd+1

of (1.18) can be expressed as

G(Γ , Γ ) = g
4

8−d
D |v1(q+aγχ+(1

2 aγd−4a+ b)N)|2+ g
2 d−6

8−d
D |v2(χ+aN)|2+ g

4 d−7
8−d

D |v3(N)|2 , (3.11)

where a ∈ S+, b ∈ R denote the Ramond–Ramond and Neveu–Schwarz axions, respectively,
parametrising the unipotent part of the parabolic subgroup Pd+1 with Levi subgroup
GL(1) × Spin(d, d) (note that b is only present for d = 6). The norms |v1(q)|2, |v2(χ)|2,
|v3(N)|2 denote the Spin(d, d) invariant quadratic forms in the respective representations,

19S+ ∼= S+ when d is even and S+ ∼= S− when it is odd. For the corresponding parabolic subgroups, we likewise
denote Pd

∼= Pd for d even, and Pd
∼= Pd−1 for d odd.
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and depend on the SO(d, d)/(SO(d) × SO(d)) moduli parametrising the metric and B-field
on the torus. To avoid cluttering, we denote all these norms by |v(·)|2. The γa matrices are
integral valued in the canonical null basis associated to the even self-dual lattice IId,d with the
normalisation {γa,γb}= ηab.

As in [1,50], we shall split the theta series θ Ed+1
Λd+1

into contributions where the components
(qi ,χi , Ni) along the graded decomposition (3.8) are gradually populated, such that the con-
straints can be solved explicitly. We shall refer to the gradually populated subsets of charges
that arise in this way as ‘layers’. We first focus on constant terms, which are independent of the
axions a, b and then consider non-trivial Fourier coefficients. A similar analysis for Spin(d, d)
lattice sums is presented in Appendix C.

1) The first layer

The contribution of the layer with χi = Ni = 0 but qi 6= 0 gives

θ (1)Λd+1
(φ,Ω2) =

′
∑

qi∈IId,d
(qi ,q j)=0

e−πΩ
i j
2 g

4
8−d
D g(qi ,q j) . (3.12)

Integrating against ϕtr
KZ in order to obtain the contribution to (3.7) and using the Poincaré

series representation (1.21), the domain G can be folded into the fundamental domain F2 for
Sp(4,Z),

I (1)d := 8πR.N.

∫

G

d3Ω2

|Ω2|
6−d−2ε

2

ϕtr
KZ(Ω2)θ

(1)
Λd+1
(φ,Ω2)

= 8πg
− 24+8ε

8−d +4
D

∫

F2

d6Ω

|Ω2|3
ϕεKZ(Ω) Γd,d,2(Ω), (3.13)

where

ϕεKZ = |Ω2|εϕtr
KZ(Ω2) (3.14)

denotes the Poincaré series seed in (1.21) before taking the limit ε→ 0. The expression (3.13)
is recognised as the perturbative two-loop contribution (3.3). Note that the Narain partition
function Γd,d,2 includes the zero vector qi = 0 which is absent in θ (1)Λd+1

(φ,Ω2), but the con-
tribution of this vector is removed by the renormalisation prescription mentioned above and
discussed in more detail in Section 5.

2) The second layer

The second contribution corresponds to qi arbitrary, χi 6= 0 but linearly dependent χi∧χ j = 0,
while Ni = 0. For d ≥ 5, the constraints χiγd−4χ j = 0 are solved by χi = niχ̂ where χ̂ ∈ S+ is
a primitive pure spinor i.e. χ̂γd−4χ̂ = 0 and such that no integer divides χ̂ (for d ≤ 4 there
are no constraints to solve). The primitive pure spinor χ̂ can always be rotated to a standard
form by Spin(d, d,Z) with stabiliser Pd ⊂ Spin(d, d,Z). Therefore, the sum over χi can be
written as a Poincaré sum over Pd\Spin(d, d,Z) together with a sum over ni ∈Z. Under this

parabolic decomposition, IId,d = Z
d
⊕Zd , and the constraints (qi , q j) = 0 from (3.10) imply

that qi ∈ Zd so that their Spin(d, d) invariant norm vanishes automatically. Since the sum
over qi ∈Zd is unconstrained, one can perform a Poisson resummation to obtain
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θ (2)Λd+1
(φ,Ω2) =

′
∑

ni∈Z

∑

qa
i ∈Zd

∑

γ∈Pd\Dd

�

e−πΩ
i j
2 g

4
8−d
D

�

y
4
d uab(qa

i +aani)(qb
j +abn j)+g−2

D y2ni n j

�

� �

�

�

�

γ

=
g
− 4d

8−d
D

|Ω2|
d
2

′
∑

ni∈Z

∑

qi
a∈Zd

∑

γ∈Pd\Dd

�

y−4e−πΩ
i j
2 g

2 d−6
8−d

D y2ni n j−πΩ−1
2i j g

− 4
8−d

D y−
4
d uabqi

aq j
b+2πiniq

i
aaa
��

�

�

�

γ

. (3.15)

Here, y and uab parametrise the Levi subgroup GL(d) ⊂ SO(d, d) while the axions a ∈ ∧2Zd

parametrise the unipotent subgroup within SO(d, d), and γ is understood to act on them
through the non-linear SO(d, d) action.20 The scalar y is defined such that y−2s is the canon-
ical character defining the Eisenstein series EDd

sΛd
=
∑

γ∈Pd\Dd
y−2s.

The term (3.15) contributes both to constant terms and to Fourier coefficients of (3.7).
Constant terms may come from a) from qi

a = 0 or b) from niq
i
a = 0 and qi

a 6= 0. The contribu-
tion from a) qi

a = 0 diverges at ε = 0, but it can be obtained by analytic continuation in ε as
above to give

I (2a)

d = 8πg
− 24

8−d
D

∑

γ∈Pd\Dd

 

y−2ε

∫

G

d3Ω2

|Ω2|3−ε
ϕtr

KZ(Ω2)
′
∑

ni∈Z
e−πΩ

i j
2 ni n j

!�

�

�

�

�

γ

. (3.16)

After integrating over the volume factor V using the parametrisation (1.14), the sum over ni

produces an Eisenstein series ESL(2)
(2ε−2)Λ1

(τ). The remaining integral over τ can be computed
using the following formula, that we establish in Appendix B,

R.N.

∫

F

dτ1dτ2

τ 2
2

A(τ) ESL(2)
sΛ1

(τ) =
3 [ξ(s)]2

[12− s(s− 1)]ξ(2s)
. (3.17)

Using this formula we get

I (2a)

d = g
− 24

8−d
D

16π2ξ(−2+ 2ε)2

(1+ 2ε)(6− 2ε)

∑

γ∈Pd\Dd

y−2ε
�

�

�

γ
→
ε→0

2ζ(3)2

3
g
− 24

8−d
D , (3.18)

which is recognised as the perturbative tree-level contribution in (3.1).

The contribution from niq
i
a = 0, qi

a 6= 0 is computed by unfolding the fundamental domain
of PGL(2,Z) to the strip, so as to set (n1, n2) = (n, 0), (q1, q2) = (0, q), leading to

8π2

3
g
− 4d

8−d
D

∫ ∞

0

dV
V−1+2ε

∫ L

0

dτ2

τ 2
2

 

∫
1
2

− 1
2

dτ1 A(τ)

!

(3.19)

×
∑

γ∈Pd\Dd

 

y−4
∑

n≥1

′
∑

qa∈Zd

e−
π

Vτ2
g

2 d−6
8−d

D y2n2−πV
τ2

g
− 4

8−d
D y−

4
d uabqaqb

!

�

�

�

�

�

�

γ

.

Note that the boundary of the unfolded domain ∪γ∈P1\SL(2)γF(L) includes boundaries at each
image of the cusp, but since there are no divergences at these points one can safely extend the
unfolded regularised domain to the bounded strip with τ2 < L.

Naïvely assuming that the expression (1.15) for A(τ) holds for all τ2 > 0, the integral on
the first line would evaluate to

∫
1
2

− 1
2

dτ1A(τ)≈
∫

1
2

− 1
2

dτ1

� 1
τ2
+
(|τ|2 −τ1)(τ 2

2 + 5(τ 2
1 −τ1))

τ 3
2

�

= τ2 +
1

6τ 3
2

. (3.20)

20The axion a is not to be confused with the summation index a = 1, . . . , d.
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We will see that this gives the correct powerlike terms in gD but misses exponentially sup-
pressed corrections to be discussed below and the full (non-naïve) result will be presented
in (3.27). To compute the integral over τ2 it is convenient to modify the regulator. Note that
the integral of the second term 1

6τ3
2
in (3.20) is finite, while the first term τ2 gives an incomplete

Gamma function; in the limit L→∞, the result coincides with the result of the integral over
τ2 ∈R+ with an insertion of a factor τ−2ε̃

2 in the integral with the identification ε̃= 1
2 log L → 0.

Using this regulator instead of L to simplify the computation, inserting this result in (3.19),
and changing variables to ρ2 = 1/(τ2V ), t = τ2/V , we get

I (2b)

d =
4π2

3
g
− 4d

8−d
D

∫ ∞

0

dt
t3−ε+ε̃

∫ ∞

0

dρ2

ρ 2−ε−ε̃
2

�

t +
ρ 2

2

6t

�

(3.21)

×
∑

γ∈Pd\Dd

�

y−4
∑

n≥1

′
∑

qa∈Zd

e−πρ2 g
2 d−6

8−d
D y2n2−πt g

− 4
8−d

D y−
4
d uabqaqb

��

�

�

�

γ

=
4π2

3
g
− 24

8−d−2ε d−4
8−d+2ε̃

D

∑

γ∈Pd\Dd

�

y−4ε
′
∑

qa∈Zd

�

ξ(2+ 2ε+ 2ε̃)π−3+ε−ε̃Γ (3− ε+ ε̃)g 6
D

6(y2 d−2
d uabqaqb)3−ε+ε̃

+
ξ(−2+ 2ε+ 2ε̃)π−1+ε−ε̃Γ (1− ε+ ε̃)g 2

D

(y2 d−2
d uabqaqb)1−ε+ε̃

�

��

�

�

�

γ

=
8π2

3
g
− 24

8−d−2ε d−4
8−d+2ε̃

D

�ξ(2+ 2ε+ 2ε̃)ξ(6− 2ε+ 2ε̃)
6

g 6
D

EDd
(3−ε+ε̃)Λd−1+2εΛd

+ξ(−2+ 2ε+ 2ε̃)ξ(2− 2ε+ 2ε̃)g 2
D

EDd
(1−ε+ε̃)Λd−1+2εΛd

�

ε̃→0
→ g

− 24
8−d−2ε d−4

8−d
D

�

4ζ(3)
3 g 2

D
ζ(2) EDd

Λd−1
+ 4π2ξ(2+2ε)ξ(6−2ε)

9 g 6
D

EDd
(3−ε)Λd−1+2εΛd

+O(ε)
�

,

where we used

′
∑

qa∈Zd

∑

γ∈Pd\Dd

�

y−2t

(y2 d−2
d uabqaqb)s

�
�

�

�

�

γ

= 2ζ(2s)EDd
sΛd−1+tΛd

. (3.22)

Using the fact that a vector qa parametrises the highest weight component of a conjugate Weyl
spinor of opposite chirality under the parabolic decomposition associated to Pd , one has

′
∑

qa∈Zd

∑

γ∈Pd\Dd

�

f (y2 d−2
d uabqaqb)

�

�

�

�

γ
=

′
∑

N∈S−

f (g(N , N)) , (3.23)

for any function f (x) suitably decaying at infinity. Decomposing the more general sum with
a factor of y−2t one gets the sum over the non-maximal parabolic coset Pd−1,d of a product of
the two multiplicative characters that gives (3.22). Thus we get, in generic dimension

I (2b)

d = g
− 24

8−d
D

�

4
27 g 6

D
ζ(6) EDd

3Λd−1
+ 4ζ(3)

3 g 2
D
ζ(2) EDd

Λd−1

�

. (3.24)

The two constant terms on the last line of (3.24) reproduce the expected one-loop and three-
loop contributions in (3.6). We shall explain in Section 5.2 how the renormalised coupling
(1.28) gives indeed the correct constant terms for all d.

Additional contributions to the second layer

However, (3.24) is only part of the constant term generated by (3.19), since the naïve formula
(3.20) only holds for τ2 >

1
2 , where the representation is (1.15) is valid. To compute the
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integral over the full half-line τ2 ∈ R+, it is convenient to extend the Laplace equation in
(B.3) to the full upper half-plane by GL(2,Z) invariance,

(∆− 12)A(τ) = −12
∑

γ∈PGL(2,Z)/(Z2×Z2)

τ2

|cτ+ d|2
δ( (ad+bc)τ1+bd+ac|τ|2

|cτ+d|2 ), (3.25)

where γ=
�

a b
c d

�

, ad− bc = ±1 and the stabiliser subgroup Z2×Z2 is generated by
�

1 0
0 −1

�

and
�

0 1
1 0

�

. The locus (ad + bc)τ1 + bd + ac|τ|2 = 0 is a geodesic circle of radius 1
|2ac| . going from

− b
a to − d

c on the boundary at τ2 = 0. For fixed coprime (a, c), the pair (b, d) is determined up
to shifts by (a, c), which translate the circle by integers. There is only one circle among these
translates that intersects the region [−1

2 , 1
2]× iR and the possible values of τ2 are restricted to

τ2 ≤
1
|2ac| due to the radius and both possible signs of c are identical in this respect. Therefore

the integral of A(τ) along the segment [−1
2 , 1

2] satisfies the Laplace equation

�

τ 2
2
∂ 2

∂ τ 2
2

− 12
�

∫
1
2

− 1
2

dτ1 A(τ) = −12τ2 − 24τ2

∑

a,c≥1
gcd(a,c)=1

H(1− (2acτ2)2)
p

1− (2acτ2)2
, (3.26)

where H(x) is the Heaviside function, equal to 1 if x > 0 or 0 otherwise. The first term on the
r.h.s. is the contribution of (a, c) = 1. The unique solution to (3.26) with the correct behaviour
at τ2 > 1 is21

∫
1
2

− 1
2

dτ1 A(τ) = τ2 +
1

6τ 3
2

−
1
7

∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

1+ 3
2(2acτ2)2 + (2acτ2)4

ac(acτ2)3
(1− (2acτ2)

2)
3
2 . (3.27)

The first two terms reproduce the naïve answer (3.20), but the last term, upon insertion into
(3.19), produces an additional contribution

I (2c)

d = −
2 · 82π2

21

∫ ∞

0

dV
V−1+2ε

∫ 1

0

dt
t5
(1+ 3

2 t2 + t4)(1− t2)
3
2 g
− 4d

8−d
D (3.28)

×
∑

γ∈Pd\Dd






y−4

∑

a,c≥1
gcd(a,c)=1

∑

n≥1

′
∑

qa∈Zd

e−
π
V t g

2 d−6
8−d

D y2(2acn2)−πV
t g
− 4

8−d
D y−

4
d uab(2acqaqb)







�

�

�

�

�

�

�

�

γ

.

Using (3.23) and observing that an and cn are independent divisors of N a = acnqa, we get

I (2c)

d = −
256π2

21
g
− 24

8−d+2
D

∫ 1

0

dt
t5
(1+ 3

2 t2 + t4)(1− t2)
3
2

′
∑

N∈S−
N×N=0

σ2(N)
2

K2(
4π
gD t |v(N)|)

|v(N)|2

= −
16π2

21
g
− 24

8−d+2
D

′
∑

N∈S−
N×N=0

σ2(N)2

|v(N)|2
B2(

2π
gD
|v(N)|) , (3.29)

where we introduced the special function

Bs(z) = 16

∫ 1

0

dt
t5
(1+ 3

2 t2 + t4)(1− t2)
3
2 Ks(

2z
t ) , (3.30)

21The homogeneous solution ( 1
(2nτ2)3

− (2nτ2)4)H(1− 2nτ2) would have a δ source non-vanishing and is thus
ruled out.
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which evaluates to

Bs(z) = 16

∫ ∞

1

du
p

u2 − 1

�

1+
1
2
(u2 + u−2)− u4 − u−4

�

Ks(2uz) (3.31)

=
� s2 − 4

z2
− 2−

8z2

s2 − 9
+

64z4

(s2 − 9)(s2 − 1)

�

(K s
2−1(z))

2

+
� s(s2 − 4)

z3
−

2(s+ 2)
z

−
8z

s+ 3
+

64z3

(s2 − 9)(s+ 1)

�

K s
2−1(z)K s

2
(z)

+
�

−
s(s+ 2)

z2
+

2(s+ 9)
s+ 3

+
8z2

(s+ 3)(s+ 1)
−

64z4

(s2 − 9)(s2 − 1)

�

(K s
2
(z))2 .

For s = 2, this reduces to

zB2(2z) =
1

60

∑

i=0,1

ri j(
z
2)Ki(z)K j(z) , (3.32)

where ri j are the functions defined in [32, (2.45)]. As a result, for d = 0 (3.29) reproduces

the formula [32, (2.44)], i.e. −16π2

21

∑′
n∈Z

σ2(n)2

|n|3
|n|
gD

B2(
2π
gD
|n|). In the limit gD → 0, using the

standard asymptotics of the modified Bessel function, we find that (3.29) reduces to

I (2c)

d ∼ −g
− 24

8−d+5
D

′
∑

N∈S−
N×N=0

σ2(N)
2 e−

4π
gD
|v(N)|

|v(N)|5
, (3.33)

which can be interpreted as contribution from bound states of instantons and anti-instantons
with vanishing total charge. Indeed, these effects are required by the differential equation
(1.5), given that E(0,0) contains instanton corrections of the form (see e.g. [5, (66)] for d = 0,
[23, (4.84)] for d = 4)

4πg
− 12

8−d+
3
2

D

′
∑

N

σ2(N)
e−

2π
gD
|v(N)|+2πiNa

|v(N)|
3
2

. (3.34)

Consistency with the Poisson equation

In order to check that the contributions (3.29) do satisfy the inhomogeneous Laplace equation
(1.5) sourced by the instanton terms in E (d)(0,0), we use (2.1) to compute

�

∆Ed+1
−

6(4− d)(d + 4)
8− d

�

E (d),ExFT
(0,1) =

8π2

3
Γ (d − 2)
πd−2

∫

F

dτ1dτ2

τ2
2

A(τ) [∆τ − 12] ΞEd+1
Λd+1

. (3.35)

Restoring the integral over V , integrating by parts over τ, and focusing on the contribution to
the term (3.19) of type 2b), we get

16π2

3
g
− 4d

8−d
D

∫ ∞

0

VdV

∫ ∞

0

dτ2

τ 2
2

�

�

τ2
2∂

2
τ2
− 12

�

∫ 1/2

−1/2

Adτ1

�

×
∑

γ∈Pd\Dd

�

y−4
∑

n≥1

′
∑

qa∈Zd

e−
π

Vτ2
g

2 d−6
8−d

D y2n2−πV
τ2

g
− 4

8−d
D y−

4
d uabqaqb

��

�

�

�

γ

. (3.36)

We now substitute the source term on the r.h.s. of (3.26) into the square bracket, obtaining
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4π2 g
− 4d

8−d
D

∑

a,c≥1
gcd(a,c)=1

∫
1

2ac

0

dτ2

τ2

p

1− (4acτ2)2

∫ ∞

0

VdV

×
∑

γ∈Pd\Dd

�

y−4
∑

n≥1

′
∑

qa∈Zd

e−
π

Vτ2
g

2 d−6
8−d

D y2n2−πV
τ2

g
− 4

8−d
D y−

4
d uabqaqb

��

�

�

�

γ

. (3.37)

The integral over V is of Bessel type, giving

27π2

g
24

8−d−2
D

∑

a,c≥1
gcd(a,c)=1

∑

n≥1

1
2ac
∫

0

dτ2

τ2

p

1− (4acτ2)2

∑

γ∈Pd\Dd

�

y
2(2−d)

d n2

uabqaqb
K2

�

2π
τ2

y
d−2

d n
Æ

uabqaqb

�

��

�

�

�

γ

.

(3.38)
The integral over τ2 can be computed by changing variables to u= 1/(2acτ2) and using

∫ ∞

1

du
p

u2 − 1
Ks(2uz) =

1
2

�

Ks/2(z)
�2

. (3.39)

Setting acnqa = N a, the sum over a, c, n amounts to a sum over pairs of divisors (an, cn) of
N a. As a result, we get

26π2 g
− 24

8−d+2
D

′
∑

N∈S−
N×N=0

�

σ2(N)
|v(N)|

K1

�

2π
gs

Æ

uabNaNb

��2

, (3.40)

which we recognise as the square of the D-instanton contributions in E (d)(0,0) consistent with (3.29).

3) The third layer

The third contribution to (3.7) is obtained when χ1 and χ2 are non-zero and linearly indepen-
dent, while the Ni still vanish. The χis can then be rotated into the degree-one doublet of the
SL(2) factor in the Levi subgroup associated to the graded decomposition22

�

gl1 ⊕ sl2 ⊕ sl′2 ⊕ sld−2

�(0) ⊕
�

2⊗ 2′ ⊗Zd−2
�( 2

d−2 ) ⊕
�

∧2Zd−2
�( 4

d−2 ) ⊂ sod,d ,

χi ∈ S+ = · · · ⊕
�

2⊗∧2Zd−2
�( d−6

d−2 ) ⊕
�

2′ ⊗Zd−2
�( d−4

d−2 ) ⊕ 2(1) ,

qi ∈ V =
�

Zd−2
�(− 2

d−2 ) ⊕
�

2⊗ 2′
�(0) ⊕

�

Zd−2
�( 2

d−2 ) .

(3.41)

We denote the variables parametrising the Levi subgroup GL(1)× SL(2)× SL(2)′× SL(d − 2)
by (y,υı̂ ̂,ρ

αβ , uab), and the coordinates on the unipotent part 2 ⊗ 2′ ⊗ Zd−2 by caβ

k̂
. The

coordinates of χi are (0, . . . , 0, n ĵ
i ), while the constraint qa

(iγaχ j) = 0 in (3.10) implies that

qi = (0, n̂i
̂ pα, qa

i )where n̂i
̂ := ni

̂/gcd
�

ni
̂
�

. Using these variables one can write the Poincaré
sum

22Such a doublet of spinors defines a (d − 2)-form χ1γd−2χ2 which is in the Spin(d, d) orbit of a highest weight
representative, which can be rotated into a standard form using Spin(d, d) to a specific representative.
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θ (3)Λd+1
(φ,Ω2) =

∑

γ∈Pd−2\Dd

�

∑

ni
̂∈Z2

det n6=0

∑

qa
i ∈Z

d−2

pα∈Z2

e−πΩ
i j
2 g

4
8−d
D

�

(g−2
D yn2+ραβ (pα+aαn)(pβ+aβn))υk̂l̂ n̂i

k̂ n̂ j
l̂
�

× e−πΩ
i j
2 g

4
8−d
D y

2
d−2 uab(qa

i +aa
k̂
ni

k̂+caα
k̂

n̂i
k̂(pα+aαn))(qb

j +ab
l̂
n j

l̂+cbβ

l̂
n̂ j

l̂ (pβ+aβn))
��

�

�

�

γ

=
g
−4 d−1

8−d
D

|Ω2|
d−2

2

∑

γ∈Pd−2\Dd

�

∑

ni
̂∈Z2

det n6=0

∑

qi
a∈Z

d−2

pα∈Z2

y−2

Ω
i j
2 υk̂l̂ n̂i

k̂ n̂ j
l̂
e−πΩ

i j
2 g

2 d−6
8−d

D yυk̂l̂ ni
k̂n j

l̂

× e
−πg

− 4
8−d

D

�

y−
2

d−2 Ω−1
2i ju

abqi
aq j

b+
1

Ω
i j
2 υk̂l̂ n̂i k̂ n̂ j l̂

ραβ (pα−caα
k̂

n̂i
k̂qi

a)(p
β−cbβ

l̂
n̂ j

l̂q j
b)
�

+2πi(qi
ani

̂aa
̂
+npαaα)

��

�

�

�

γ

, (3.42)

where we have used Poisson resummation on the unconstrained variables pα and qa
i . The

constant term comes from qi
ani

̂ = 0 and npα = 0, implying pα = qq
a = 0. Replacing d → d+2ε

for the analytic continuation, one obtains the constant term

I (3a)

d = 8πg
−4 d−1

8−d
D

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ(Ω2)
∑

γ∈Pd−2\Dd

�

∑

ni
̂∈Z2

det n6=0

y−2

Ω
i j
2 υk̂l̂ n̂i

k̂ n̂ j
l̂
e−πΩ

i j
2 g

2 d−6
8−d

D yυk̂l̂ ni
k̂n j

l̂

��

�

�

�

γ

= 8πg
− 24+8ε

8−d +2+4ε
D

ξ(4ε− 2)
ξ(4ε)

∑

γ∈Pd−2\Dd

�

y−1
∑

ni
̂∈Z2

det(ni
̂)6=0

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ(Ω2)e
−πΩi j

2 yυk̂l̂ ni
k̂n j

l̂

��

�

�

�

γ

,

(3.43)

where we have done the integral over V = |Ω2|−
1
2 and the sum over gcd(n) and then rewritten

the result as a new simpler integral over V and sum over the matrices ni
̂ without explicit

gcd(n). In Appendix C.3, we argue that in the limit ε→ 0, this gives a finite Eisenstein series

I (3a)

d =
4π2

9
ξ(4ε− 2)
ξ(4ε)

ξ(5− 2ε)ξ(3+ 2ε)
ξ(8)
ξ(7)

g
− 24+8ε

8−d +2+4ε
D EDd

(− 3
2+ε)Λd−2+4Λd

=
ε→0
−80ξ(2)ξ(6)ξ(8)g

− 24
8−d+2

D EDd

− 3
2Λd−4+4Λd

. (3.44)

As we shall see in Section 5.2, this undesired term cancels against the counterterm in (1.28)
and does not appear in the renormalised coupling.

4) The fourth layer

Up to now, we have considered only contributions with Ni = 0, which exhaust all layers when
d ≤ 4. The fourth layer includes Ni 6= 0, but linearly dependent (Ni ∧ N j = 0), which is
automatic for d = 5, where Ni ∈ Z. We shall argue that the contribution from this layers
drops out in the renormalised coupling (1.28).

For d = 5 one has
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I (4)5 (φ,ε) = 8πR.N.

∫

G

d3Ω2

|Ω2|
1−2ε

2

ϕtr
KZ (Ω2)

′
∑

Ni∈Z
∑

χi∈S−
qi∈II5,5

χiγχ j=N(iq j)
(qi ,q j)=0

e−πΩ
i j
2

�

g
4
3
5 g(qi+aγχi+

1
2 (aγa)Ni ,q j+aγχ j+

1
2 (aγa)N j)+g

− 2
3

5 v(χi+aNi)·v(χ j+aN j)+g
− 8

3
5 Ni N j

�

, (3.45)

while the same term for d = 6 can be written as a Poincaré sum

I (4)6 (φ,ε) = 8πR.N.

∫

G

d3Ω2

|Ω2|−ε
ϕtr

KZ (Ω2)
∑

γ∈P1\SO(6,6)

′
∑

Ni∈Z
∑

χi∈S−
qi∈II5,5

χiγχ j=N(iq j)
(qi ,q j)=0

e−πΩ
i j
2

�

g2
4 g(qi+aγχi+

1
2 (aγa)Ni ,q j+aγχ j+

1
2 (aγa)N j)+yv(χi+aNi)·v(χ j+aN j)+g−2

4 y2Ni N j

�

×
∑

mi∈Z
e−πΩ

i j
2 g2

4 y2(mi+ā(χi+ani)+bni)(m j+ā(χ j+an j)+bn j)

�

�

�

�

γ

=
8π

g 2
4

∑

γ∈P1\SO(6,6)

y−2

 

R.N.

∫

G

d3Ω2

|Ω2|
1−2ε

2

ϕtr
KZ (Ω2)

′
∑

Ni∈Z
∑

χi∈S−
qi∈II5,5

χiγχ j=N(iq j)
(qi ,q j)=0

e−πΩ
i j
2

�

g2
4 g(qi+aγχi+

1
2 (aγa)Ni ,q j+aγχ j+

1
2 (aγa)N j)+yv(χi+aNi)·v(χ j+aN j)+g−2

4 y2Ni N j

�

×
∑

m̃i∈Z

e−πΩ
−1
2 i j g

−2
4 y−2m̃i m̃ j+2πim̃i(ā(χi+ani)+bni)

�

�

�

�

�

�

γ

. (3.46)

The abelian Fourier coefficient is obtained by setting m̃i = 0, leading to

I (4a)

6 (φ,ε) = g
−4− 4ε

3
4

∑

γ∈P1\SO(6,6)

y−4− 4ε
3 I (4)5 (g5 = y−

1
2 g4)

�

�

�

γ
. (3.47)

Therefore the contributions to the constant terms and abelian Fourier coefficients in d = 6 are
determined from the ones in d = 5 through a Poincaré sum.

In Appendix D.1, we study a similar integral IEd+1
Λd+1
(ESL(2)

sΛ1
, d+2ε−2) where A(τ) is replaced

by an Eisenstein series ESL(2)
sΛ1

. There we find for generic s that the constant terms from the orbit

with Ni 6= 0, Ni ∧ N j = 0 disappear as ε = 0, due to an overall factor of 1
ξ(4ε) . Therefore we

expect this factor of 1
ξ(4ε) to appear in the computation irrespective of the function (e.g. A(τ)

or ESL(2)
sΛ1

) on SL(2)/SO(2) one considers. However, for the specific value s = −3 corresponding
to the counterterm in (1.28), one finds that the coefficient diverges in ξ(1+ 2ε) and there is
a finite contribution in the limit. Consistency requires that this finite contribution disappears
in the renormalised coupling (1.28), see Section 5.2.
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5) The fifth layer

For d = 6 one must also consider the cases with Ni non-collinear. One can write the sum as a
Poincaré sum over P2 ⊂ SO(6, 6) such that

II6,6
∼= (Z2)(−2) ⊕ (S−)(0) ⊕ (Z2)(2) , S̄+ ∼= (II4,4)

(−2) ⊕ (Z2 ⊗ S+)
(0) ⊕ (II4,4)

(2) , (3.48)

where the embedding SO(4, 4) ⊂ SO(6, 6) differs from the standard one by triality. The solu-
tion to the constraints (3.10) decomposes in this basis as

qi = (0,0, ni
̂) , χi = (0, ni

̂ pα
k , qia) , Ni = (ni

̂ (p,p)
2k2 ,γaαα̇ pα

k qia, mi
̂) , (3.49)

where k can be chosen as an integer coprime to pα that divides ni
̂, γaαα̇pαqia and ni

̂

k
(p,p)

2 .

The integer k can be decomposed as k = k1k2 such that k1k 2
2 |ni

̂ and k1|
(p,p)

2 . For any pα, one
can find a pair of primitive null vectors uα and vα such that (u, v) = 1 and

pα = gcd(p)uα +
(p, p)

2gcd(p)
vα (3.50)

and the condition k|γaαα̇pαqia reduces to the property that the component of qia in the null
space of uα is divisible by k2 and the one in the null space of vα is divisible by k1k2. So
qia ∈ k2 II4,4[k1] ∼= (k1k2Z)4 ⊕ (k2Z)4 in the appropriate decomposition. The bilinear form
reads

G(Γi , Γ j) = ỹ1υı̂ ̂(mi
ı̂ + ã ı̂aqia +

1
2 ã ı̂a ãk̂ani

k̂ + b̃ni
̂)(m j

̂ + ã ̂bq j b +
1
2 ã ̂b ãl̂ bn j

l̂ + b̃n j
l̂)

+
p

ỹ1 ỹ2ũab(qia + ãı̂ani
ı̂)(q j b + ã ̂bn j

̂) + ỹ2υı̂ ̂ni
̂n j

̂, (3.51)

where

ỹ1 = g 2
4 y , ỹ2 = g−2

4 y + uαβ( pα
k + aα)(

pβ
k + aβ) +

g 2
4

4y
[( pα

k + aα)(
pα

k + aα)]2 ,

ũab =
uab + g 2

4 y−1uα̇β̇γa
αα̇γ

b
ββ̇(

pα

k + aα)( pβ

k + aβ)
È

1+ g 2
4 y−1uγδ(

pγ
k + aγ)(

pδ
k + aδ) +

g 4
4

4y2 [(
pγ
k + aγ)(

pγ

k + aγ)]2
,

ã ı̂a = ε ı̂ ̂ηab ã ̂b = a ı̂a + c ı̂α̇γa
αα̇(

pα

k + aα) ,

b̃ = b+ āα( pα
k + aα) +

1
2 c ( pα

k + aα)(
pα

k + aα) , (3.52)

with (aα, aı̂a, āα) ∈ S− parametrising the unipotent in P1 ⊂ E7 in

S− ∼= (S+)(−2) ⊕ (Z2 ⊗ II4,4)
(0) ⊕ (S+)(2) , (3.53)

and (ĉıα̇, c) the unipotent Z2 ⊗ S− ⊕Z of P2 ⊂ SO(6, 6) and uab and uα̇β̇ the Levi subgroup
Spin(4, 4) in the vector and spinor representation and υı̂ ̂ the SL(2) Levi subgroup of P2. For
fixed pα and k, the sum over ni

̂, qia and mi
̂ reproduces a genus two Siegel–Narain theta

series over the lattice k2 II4,4[k1] ⊕ II2,2[k1k2
2], with ni

̂ non-degenerate. The computation
at this level would involve the consideration of the Poincaré sum of |Ω2|εϕtr

KZ (Ω2) over all
congruent subgroups Γ0(k1k2

2) of Sp(4,Z) (γ= ( A B
C D
) with C a multiple of k1k2

2), which seems
out of reach.

Rather than pursuing this approach, we shall argue that the sum over p and k in this ex-
pression can be seen as a Poincaré series over P1\SO(5, 5) acting on the overall unconstrained
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lattice sum in II6,6 with ni
̂ non-degenerate. The reason is that one obtains exactly the same

sum in the T2 decompactification limit of the same coupling, i.e. in the parabolic P6 ⊂ E7

M E7

Λ7
= (Z2)(−2) ⊕ S(−1)

− ⊕ (Z
2 ⊗ II5,5)

(0) ⊕ S(1)+ ⊕ (Z
2)(2) . (3.54)

The decomposition of this series can be computed explicitly when all strictly negative degree
charges are zero while the degree 0 ones are non-degenerate, in which case they match exactly
the set of charges we have defined above, i.e.

(ni
̂, ni

̂ pα
k , (p,p)

2k2 ni
̂) ∈ (Z2 ⊗ II5,5)

(0) , (qia,γa
αα̇

pα

k qia) ∈ S(1)+ , mi
̂ ∈ (Z2)(2) . (3.55)

This does not parametrise the whole set of charges in the large T2 volume, but only those for
which ni

̂ is non-degenerate inZ2⊗II5,5, which we call the principal layer in the decomposition
of the SO(5, 5) Poincaré sum.23

With this interpretation, the sum over p and k of each Narain theta series over
k2 II4,4[k1] ⊕ II2,2[k1k2

2], with ni
̂ is the Poincaré sum acting on the Narain theta series over

II6,6. So one can apply the orbit method for the single Sp(4,Z) invariant theta series, and then
carry out the sum over p and k on the resulting expression. This leads to

∫

G

d3Ω2

|Ω2|3

∫

Z3\R3

d3Ω1 |Ω2|εϕtr
KZ (Ω2) |Ω2|3

∑

ni
ĵ∈Z2

det n6=0

∑

qia∈II4,4

mi
̂∈Z2

e−πΩ
i j
2 G(Γi ,Γ j)+πiΩi j

1 (2εı̂ ̂mi
ı̂n j

̂−(qi ,q j))

=

∫

G

d3Ω2

|Ω2|3

∫

Z3\R3

d3Ω1 |Ω2|εϕtr
KZ (Ω2)

|Ω2|2

ỹ3+ε
1 ỹ1+ε

2

∑

ni
ĵ∈Z2

det n6=0

∑

mi ̂∈Z2

e−π
r

ỹ2
ỹ1
Ω−1

2i jυı̂ ̂(mi ı̂+Ωiknk
ı̂)(m j ̂+Ω̄ jl nl

̂)

×
∑

qia∈II4,4

eπiΩi j pL(qi+ãni)·pL(qi+ãni)−πiΩ̄i j pR(qi+ãni)·pR(qi+ãni)+2πimi(qi ã+
1
2 ããni+b̃ni)

=

∫

G

d3Ω2

|Ω2|3

∫

Z3\R3

d3Ω1

∑

γ∈P2\Sp(4,Z)
det C(γ)6=0

�

|Ω2|εϕtr
KZ (Ω2)

��

�

γ

|Ω2|2

ỹ3+ε
1 ỹ1+ε

2

∑

mi ̂∈Z2

det m 6=0

e−π
r

ỹ2
ỹ1
Ω−1

2i jυı̂ ̂m
i ı̂m j ̂

×
∑

qia∈II4,4

e−πΩ
i j
2 ũabqiaq j b−πiΩi j

1 η
abqiaq j b+2πimi ̂qia ã ̂

a
+ . . . , (3.56)

where the ellipsis denotes non-abelian Fourier coefficients. In words, we first enforce the con-
straint by introducing the integral over Ω1, then rescale Ω2 to identify the sum as a Narain
theta series over II6,6 and use Poisson summation over mi

̂, and in the last step convert the
‘partial’ P2\Sp(4,Z) Poincaré sum over linearly independent (mi ̂, ni

̂) but with trivial symplec-
tic product into a ‘partial’ Poincaré sum of |Ω2|εϕtr

KZ (Ω2). Indeed, the sum over (mi ̂, ni
̂) with

ni
̂ non-degenerate can be promoted to an Sp(4,Z) invariant sum over doublet of symplectic

vectors that are linearly independent. The Sp(4,Z) orbit of doublets of symplectic vectors
with a non-trivial symplectic product contribute to the non-abelian Fourier coefficient and can
be computed similarly. The Sp(4,Z) orbit of doublets of symplectic vectors with a vanishing
symplectic product can be written as a Poincaré sum over γ ∈ P2\Sp(4,Z) of the representa-
tives with ni

̂ and mi ̂ non-degenerate, but only when the 2×2 matrix C in the lower-left block
of γ is non-degenerate is the resulting ni

̂ = Ci jm
j ̂ non-degenerate.

Now we shall argue that the missing terms in the Poincaré sum over P1\Sp(4,Z) only
contribute to degenerate Fourier coefficients, such that the following refinement of (1.21)

23The Poincaré series turns the vector (0,0, mı̂) into an arbitrary null vector (nı̂, qα, mı̂) with the same gcd. The
trivial element gives (0,0, mı̂), elements in the first layer are vectors of type (0, pα, mı̂) while elements in the
principal layer are (nı̂, pα, mı̂) with nı̂ 6= 0.
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holds24

lim
ε→∞

∑

γ∈P2\Sp(4,Z)
det C(γ)6=0

�

|Ω2|εϕtr
KZ (Ω2)

��

�

γ
= ϕKZ (Ω)−ϕtr

KZ (Ω2)−
′
∑

M∈S+
det M=0

FM (Ω2)e
2πitr[MΩ1] , (3.57)

where S+ is the set of symmetric matrices with positive integral diagonal components Mii ≥ 0
and half-integral off-diagonal M12 that is moreover> 0 if M11 = M22 = 0. The function FM (Ω2)
removes part of the Fourier coefficients of the KZ invariant in (A.11) supported on rank-one
matrices. For ε 6= 0, one expects, by analogy with the Siegel modular form ∑

γ∈P2\Sp(4,Z)

ESL(2)
−3Λ1

(τ)

V 1+2ε

�

�

�

γ
, that

the constant term at ε 6= 0 takes the form

∑

γ∈P2\Sp(4,Z)
det C(γ)6=0

�

|Ω2|εϕtr
KZ (Ω2)

��

�

γ
∼

5ζ(3)
4π2

V 2ESL(2)
2εΛ1

(τ) +
π

36
ξ(4ε−1)
ξ(4ε)

ξ(−4+2ε)ξ(3+2ε)
ξ(−3+2ε)ξ(4+2ε)

ESL(2)
−3Λ1

V 2−2ε
. (3.58)

The second term vanishes in the limit ε→ 0. Inserting the first term in the previous integral,
one obtains

I (5a)

6 (φ,ε) = 8π

∫

G

d3Ω2

|Ω2|3
5ζ(3)
4π2

ESL(2)
2εΛ1

(τ)

|Ω2|

∑

γ∈P2\SO(6,6)

∑

pα∈S+
k≥1

gcd(k,p)=1

|Ω2|2

ỹ3+ε
1 ỹ1+ε

2

∑

mi ̂∈Z2

det m 6=0

e−π
r

ỹ2
ỹ1
Ω−1

2i jυı̂ ̂m
i ı̂m j ̂

�

�

�

�

γ

=
20ζ(3)
π

ξ(2ε)2
∑

γ∈P2\SO(6,6)

∑

pα∈S+
k≥1

gcd(k,p)=1

g−2
4 y−4−2εESL(2)

2εΛ1
(υ)

(1+ g 2
4 y−1uγδ(

pγ
k + aγ)(

pδ
k + aδ) +

g 4
4

4y2 [(
pγ
k + aγ)(

pγ

k + aγ)]2)
3
2+ε

�

�

�

�

γ

=
20ζ(3)
π

ξ(2ε)2
ξ(2ε− 1)ξ(2ε− 4)
ξ(2ε)ξ(2ε+ 3)

g−10
4

∑

γ∈P2\SO(6,6)

ESL(2)
2εΛ1

(v)
�

y−2ε + . . .
�

�

�

�

γ

=
40ξ(2ε)ξ(3)ξ(2− 2ε)ξ(5− 2ε)

ξ(3+ 2ε)
g−10

4 ED6
2εΛ1
+ . . . , (3.59)

where the ellipses are Fourier coefficients. Here, we rewrote the sum over (p, k) as a sum
over unconstrained (p, k) and n = (p,p)

2k not zero, up to an overall factor of 1
ζ(3+2ε) , and then

performed a Poisson summation over n and set k to zero through the introduction of the theta

24For the Siegel–Eisenstein series (A.25) with s1 = s2 = s, one checks that the sum over rank-one matrices C gives

the constant term ξ(2s−1)
ξ(2s)

ESL(2)
(2s−1)Λ1

V and contributes to the degenerate Fourier coefficients e2πitr[MΩ1] with M rank-one.
We shall argue in Appendix D that for s1 and s2 generic, the principal layer of the Poincaré sum over rank-two
matrices C gives all the constant terms of the two-parameter Siegel–Eisenstein series.
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lift of ESL(2)
εΛ1

,

∑

pα∈S+
k≥1

gcd(k,p)=1

1

( y
g 2

4
+ uγδ(

pγ
k + aγ)(

pδ
k + aδ) +

g 2
4

4y [(
pγ
k + aγ)(

pγ

k + aγ)]2)
3
2+ε

=
1

ξ(3+ 2ε)

∫ ∞

0

dρ2

ρ 2
2

∫
1
2

− 1
2

dρ1ρ
5
2+ε
2

∑

n∈Z
pα∈S+
k≥1

e
−πρ2

�

y

g2
4

k2+u(p+ak,p+ak)+
g2
4
y (n+p̄a+ 1

2 āak)2
�

+iπρ1(2nk−p̄p)

=
g−1

4 y
1
2

ξ(3+ 2ε)

∫ ∞

0

dρ2

∫
1
2

− 1
2

dρ1(E
SL(2)
εΛ1
(ρ)−ρε2)

∑

ñ≥1
pα∈S+

e
−πρ2u(p,p)− π

ρ2
y

g2
4

ñ2+2πiñp̄a−iπρ1 p̄p

=
ξ(2ε− 1)ξ(2ε− 4)
ξ(3+ 2ε)ξ(2ε)

g−5+2ε
4 y

5
2−ε + . . . . (3.60)

Although several steps in the computation just outlined remain to be clarified, in Appendix D.1
we apply the same reasoning to a similar modular integral with A(τ) replaced by an Eisenstein
series ESL(2)

sΛ1
, and find that it reproduces the correct constant terms (namely the last three

terms in (D.2)) predicted by Langlands’ formula. This agreement is a strong indication that
this reasoning is indeed correct.

In Section 5.2 we shall see that the sum of the contributions from the five layers to the
perturbative part of the renormalised coupling (1.31) reproduce the expected terms in (3.1),
including logarithmic terms in the string coupling constant, while the divergent one-loop con-
tribution in I (5a)

6 (φ,ε) disappears in the renormalised function (1.28).

3.3 Fourier coefficients

Beyond the constant terms, our method also gives access to non-zero Fourier coefficients,
which we now turn to.

The first source of Fourier coefficients comes from what was called the second term above,
more specifically niq

i
a 6= 0 in (3.15). The corresponding terms simplify to

I (2d)

d = 8πg
− 24

8−d
D

∫

G

d3Ω2

|Ω2|3
ϕtr

KZ(Ω2)
∑

qi∈S+
qi×q j=0

∑

ni∈Z
niq

i 6=0

e−πΩ
i j
2 ni n j−πΩ−1

2i j g
−2
D g(qi ,q j)+2πini(qi ,a) . (3.61)

To analyse this expression, it is convenient to unfold the integral domain G to the set of positive
matrices R+ ×H1/Z by fixing ni = (n, 0) for n > 0. Setting N = nq1, one can solve the
constraint for q2 in the Pd ⊂ SO(d, d) parabolic decomposition associated to N such that
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I (2d)

d =
8π2

3
g
− 24

8−d
D

∫ ∞

0

VdV

∫ ∞

0

dτ2

τ 2
2

∫
1
2

− 1
2

dτ1 A(τ)
∑

γ∈Pd\SO(d,d)

′
∑

N∈N

∑

n|N

×
∑

j∈Z
q∈Z

d(d−1)
2

q∧q=0

e
−π
�

n2
Vτ2
+Vτ2

y2N2

g2
D n2 +

V
τ2 g2

D

(y2( j+(ς,q)− τ1
n N)2+y2 d−4

d |v(q)|2)
�

+2πiNa
�

�

�

�

γ

=
8π2

3
g
− 24

8−d+1
D

∫ ∞

0

V
1
2 dV

∫ ∞

0

dτ2

τ2
3
2

∑

γ∈Pd\SO(d,d)

′
∑

N∈N

∑

n|N

∑

̃∈Z

∫
1
2

− 1
2

dτ1 A(τ)e−2πiτ1
N ̃
n

×y−1
∑

q∈Z
d(d−1)

2

q∧q=0

e
−π
�

n2
Vτ2
+Vτ2

y2N2

g2
D n2 +

V
τ2 g2

D

y2 d−4
d |v(q)|2+ τ2 g2

D

V y2 ̃
2
�

+2πi( ̃(q,ς)+Na)
�

�

�

�

γ

. (3.62)

For ̃ 6= 0 and q 6= 0, this term involves the integral of the Fourier coefficient of A(τ) with a
saddle point at

τ2 = n

√

√

√ y
d−4

d |v(q)|
gD ̃N

, V =
n
y

√

√

√

g3
D
̃

y
d−4

d |v(q)|N
, (3.63)

which is exponentially suppressed in e−2π y
gD

N−2πy−
4
d |v( ̃q)|. One can compute explicitly the

contribution from the leading part (3.20) of the constant term of A(τ), and similarly for its
Fourier coefficients. Using the same method as in (3.26), (3.27) one solves the differential
equation for the Fourier coefficients25

�

τ 2
2
∂ 2

∂ τ 2
2

− (2π̃τ2)
2 − 12

�

∫
1
2

− 1
2

dτ1A(τ)e−2πi ̃ τ1 (3.64)

= −12τ2 − 24τ2

∑

a,c≥1
gcd(a,c)=1

H(1− (2acτ2)2)
p

1− (2acτ2)2
cos
�

2π̃( 1
2ac +

b
a )
�

cos
�π̃

ac

Æ

1− (2acτ2)2
�

,

where b is the solution modulo a to ad − bc = 1. One finds the unique continuous solution
that reproduces A(τ) for τ2 >

1
2

∫
1
2

− 1
2

dτ1A(τ)e−2πi ̃ τ1 =
3

( ̃π)2τ2
−

15

2( ̃π)4τ3
2

+
∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

cos
�

2π̃( 1
2ac +

b
a )
�

�

3
�

75(ac)2

(π̃)6τ3
2

+
2

(π̃)2τ2
−

5

(π̃)4τ3
2

(1− (2acτ2)
2)
�

×
�
Æ

1− (2acτ2)2 cos
�π̃

ac

Æ

1− (2acτ2)2
�

− ac
π̃ sin

�π̃
ac

Æ

1− (2acτ2)2
�

�

+
75ac
(π̃)5τ3

2

(1− (2acτ2)
2) sin

�π̃
ac

Æ

1− (2acτ2)2
�

�

. (3.65)

25For each positive coprime a and c there are two solutions τ1 = −
1

2ac −
b
a ±
p

1−(2acτ2)2

2ac where b is the same

modulo a, leading to the same source term as in (3.26) multiplied by e2πi ̃( 1
2ac +

b
a ) cos(π̃ac

p

1− (2acτ2)2). Because
the function A(τ) is even in τ1, its Fourier coefficients are real. For each coprime a, c, there is the permuted pair
c, a, with b and−d permuted, and the contribution carries the complex conjugate phase e2πi ̃( 1

2ac −
d
c ) = e2πi ̃(− 1

2ac −
b
a ).
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The saddle point (3.63) is at large τ2 at small coupling gD, therefore the contributions from
A(τ) at τ2 <

1
2 will be further exponentially suppressed and at leading order one can neglect

them. The integral gives then

I (2d)

d ∼
16π2

3
g
− 24

8−d+3
D

′
∑

N∈S+
N×N=0

σ2(N)

�

y
4
d−3
N

gcd(N)
ξ(2)ESLd

Λ1
(vN )K1

�

2π
p

g(N ,N)
gD

�

+ g2
D

y
20
d −5

N

6gcd(N)
ξ(5)ESLd

5
2Λ2
(vN )K1

�

2π
p

g(N ,N)
gD

�

+
3gD

π2gcd(N)2 y4
N

′
∑

Q∈Z
d(d−1)

2

Q∧Q=0

σ1(Q)e
2πi(Q,ςN )

K 3
2
(2πy

− 4
d

N |vN (Q)|)

(y
− 4

d
N |vN (Q)|)

3
2

K0

�

2π
p

g(N ,N)
gD

�

−
15g2

D

2π4gcd(N)3 y5
N

′
∑

Q∈Z
d(d−1)

2

Q∧Q=0

σ1(Q)e
2πi(Q,ςN )

K 5
2
(2πy

− 4
d

N |vN (Q)|)

(y
− 4

d
N |vN (Q)|)

5
2

K1

�

2π
p

g(N ,N)
gD

�

�

e2πi(N ,a),

(3.66)

where we kept the variable yN =
p

g(N ,N)
gcd(N) for simplicity, and the sum over Q ∈ Z d(d−1)

2 is a sum
over characters of the unipotent stabilisers of the charge N . The leading term in gD factorises
as an Eisenstein series over the Levi stabiliser of N , while the full Fourier coefficient depends
non-trivially on the whole parabolic stabiliser.

The neglected terms in (3.65) give rise to integrals over the truncated domain τ2 ∈ [0, 1
2ac ]

for any coprime a and c, which are therefore further exponentially suppressed. As we shall see,
these corrections can be ascribed to instanton anti-instanton corrections, similarly to (3.29)
for the constant term. To see this, it is convenient to do the inverse Poisson summation over
̃. Note that the function fa,c, ̃(τ2) appearing in the sum over coprime a, c

∫
1
2

− 1
2

dτ1A(τ)e−2πi ̃τ1 =
3

( ̃π)2τ2
−

15

2( ̃π)4τ3
2

+
∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

fa,c, ̃(τ2) (3.67)

is regular at ̃= 0 and gives

fa,c,0(τ2) = −
1+ 3

2(2acτ2)2 + (2acτ2)4

7ac(acτ2)3
(1− (2acτ2)

2)
3
2 (3.68)

as in (3.27). The Poisson formula involves the inverse Fourier transform

f̃a,c, j(τ2) =

∫

R

d ̃ e2πi j ̃ fa,c, N
n ̃
(τ2) e

−π τ2 g2
D

V y2 ̃
2

, (3.69)

which evaluates to

f̃a,c, j(τ2) =
�

P (1)a,c, j(τ2) + P (2)a,c, j(τ2)
p

1− (2acτ2)2
�

e
−π V y2

τ2 g2
D

[2acn( j+(q,ς))+N(1+2bc+
p

1− (2acτ2)2)]2

(2acn)2

−
�

P (1)a,c, j(τ2)− P (2)a,c, j(τ2)
p

1− (2acτ2)2
�

e
−π V y2

τ2 g2
D

[2acn( j+(q,ς))+N(1+2bc−
p

1− (2acτ2)2)]2

(2acn)2

+ P (0)a,c, j(τ2)
�

erf(
Ç

π V
τ2

y
gD

2acn( j+(q,ς))+N(1+2bc+
p

1−(2acτ2)2)
2acn )− erf(

Ç

π V
τ2

y
gD

2acn( j+(q,ς))+N(1+2bc−
p

1−(2acτ2)2)
2acn )

�

. (3.70)
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Here P (k)a,c, j are polynomials in the various parameters which we omit since they are not partic-
ularly illuminating. In the saddle point approximation, one computes that these corrections
are exponentially suppressed with the action26

SIĪ =
2π
gD

Ç

y2(N + N1 + (ς,Q))2 + y2− 8
d |v(Q)|2 +

2π
gD

Ç

y2(N1 + (ς,Q))2 + y2− 8
d |v(Q)|2,

(3.71)
which corresponds to the sum of the actions of an instanton of charges (N + N1,Q) and anti-
instanton of charge (−N1,−Q) with

N1 = bcN + acn j , Q = acnq . (3.72)

It is convenient to change variables to N1, Q and

τ2 =
t

2ac
, V = acn2ν , (3.73)

and define

F
�

t, y2

g2
D
ν, N , N1 + (ς,Q)

�

=
p

2
n

f̃a,c, j(τ2) , (3.74)

where the dependence on the arguments is made explicit in F . Then the complete function
I (2d)

d reduces to the sum of (3.66) and

8π2

3
g
− 24

8−d+1
D

∫ ∞

0

ν
1
2 dν

∫ 1

0

dt

t 3
2

∑

γ∈Pd\SO(d,d)

′
∑

N∈N
e2πiNaγ

∑

q∈Z
d(d−1)

2

q∧q=0

∑

j∈Z

∑

n|N

∑

a,c≥1
gcd(a,c)=1

a2c2n4

× y−1e
−π
�

2
νt+νt y2N2

2g2
D

+ 2ν
t g2

D

y2 d−4
d |v(acnq)|2

�

F
�

t, y2

g2
D
ν, N , bcN + ac j + (ς, acq)

�

�

�

�

�

γ

=
8π2

3
g
− 24

8−d+1
D

∫ ∞

0

ν
1
2 dν

∫ 1

0

dt

t 3
2

∑

γ∈Pd\SO(d,d)

′
∑

N∈N
e2πiNaγ

′
∑

N1∈Z
Q∈Z

d(d−1)
2

Q∧Q=0

σ2(N1,Q)σ2(N + N1,Q)

× y−1e
−π
�

2
νt+νt y2N2

2g2
D

+ 2ν
t g2

D

y2 d−4
d |v(Q)|2

�

F
�

t, y2

g2
D

ν, N , N1 + (ς,Q)
�

�

�

�

�

γ

, (3.75)

where we used the property that cn divides (N1,Q) and an divides (N+N1,Q) using 1+bc = ad.
Note that the case (N1,Q) = 0 is excluded from the second sum: In this case a and j are fixed
such that b N

n +a j = 0 and the sum over c (after replacing a2c2n4 by (acn2)2−2ε in dimensional
regularisation) leads to a factor of ζ(2ε−2)which vanishes at ε= 0. The factorsσ2(N1,Q) and
σ2(N+N1,Q) are the measure factors of the 1/2-BPS instanton and anti-instantons, see [5,67].

We conclude that the dominant contribution (3.66) to I (2d)

d is of the expected form to cor-
respond to 1/2-BPS Euclidean D-brane instantons, with the spinor N identified as the D-brane
charge satisfying the 1/2-BPS constraint N ×N = 0. The overall factor of σ2(N)/N2 is recog-
nised as the partition function of the world-volume theory of N Euclidean Dp-branes on the

26To do this computation it is convenient to introduce z1 =
q

y2(N + N1 + (ς,Q))2 + y2− 8
d |v(Q)|2 and

z2 =
q

y2(N1 + (ς,Q))2 + y2− 8
d |v(Q)|2. The saddle point for e

−π V y2

τ2 g2
D

[2acn( j+(q,ς))+N(1+2bc+
p

1− (2acτ2)2)]2

(2acn)2 lies within the in-
tegration domain when z2 > z1 and the action takes the minimum value 2π

gD
(z1 + z2), whereas the saddle point

for e
−π V y2

τ2 g2
D

[2acn( j+(q,ς))+N(1+2bc−
p

1− (2acτ2)2)]2

(2acn)2 lies within the integration domain when z1 > z2 and attains the same min-
imum value. The error functions involve the same exponential in their asymptotic expansion at large x using
erf(x) = sign(x)− 1

πx e−x2 ∑∞
k=0 Γ (

1
2 + k)(− 1

x2 )k.
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torus [67]. For a D(d − 1) Euclidean brane instanton yN
− 4

d vN defines the string frame metric
and ςN the B field components along the torus, so that the sum over Q in (3.66) can be in-
terpreted as contributions from world-sheet instantons over the Euclidean brane background.
The subleading correction (3.75) can instead be interpreted as the instanton anti-instanton
corrections, which also carry the measure factor of the two constitutive instantons.

The second source of Fourier coefficients comes from the third layer of charges, more
specifically from (3.42) with qi

ani
̂ 6= 0 or npα 6= 0,

I (3b)

d = 8πg
− 24

8−d+2
D

∑

γ∈Pd−2\Dd

� ′
∑

ni
̂∈Z2

∫

G

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)
e−πΩ

i j
2 υk̂l̂ ni

k̂n j
l̂

yΩi j
2 υk̂l̂ n̂i

k̂ n̂ j
l̂

(3.76)

×
∑

qi
a∈Z

d−2

pα∈Z2

e
− π

g2
D

�

y
d−4
d−2 Ω−1

2i ju
abqi

aq j
b+

y

Ω
i j
2 υk̂l̂ n̂i k̂ n̂ j l̂

ραβ (pα−caα
k̂

n̂i
k̂qi

a)(p
β−cbβ

l̂
n̂ j

l̂q j
b)
�

+2πi(qi
ani

̂aa
̂
+npαaα)

�

.

The integral over G can be unfolded to R+×H1 at the expense of restricting the sum over ni
̂

toZ2×2/GL(2,Z). The integral overΩ2 is once again dominated by a saddle point as gD →∞.
The modulus of the exponential is of the form e−S(Ω) where S is the ‘action’

S(Ω2) = π
�

TrΩ2Y + TrΩ−1
2 X +

M
TrΩ2Y

�

, (3.77)

where X , Y are symmetric positive matrices and M > 0. The extremum with respect to Ω2 is
given by

Ω?2 =

q

M + TrX Y + 2
p

|X Y |

TrX Y + 2
p

|X Y |

�

X +
Æ

|X Y |Y−1
�

, (3.78)

and satisfies

S(Ω?2) = 2π
Ç

M + TrX Y + 2
Æ

|X Y | . (3.79)

Provided the integrand ϕtr
KZ(Ω2) is continuous around Ω?2, the integral in the saddle point

approximation reduces to

∫

H(R)

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)

TrΩ2Y
e−S(Ω2) ∼

ϕtr
KZ(X +

p

|X Y |Y−1)e−2π
Ç

M+Tr X Y+2
p
|X Y |

p

|X |(Tr X Y + 2
p

|X Y |)(M + Tr X Y + 2
p

|X Y |)
1
4

. (3.80)

For the integral (3.76) one obtains, setting Pα = npα and Q ı̂
a = n j

ı̂q j
a,

S(Ω?2) =
2π
gD

È

yραβ(Pα − caα
ı̂ Q ı̂

a)(P
β − cbβ

̂
Q ̂b) + y

d−4
d−2

�

υı̂ ̂u
abQ ı̂

aQ ̂b + 2
Ç

(uabucd − uacubd)Q1̂
aQ1̂

bQ2̂
cQ

2̂
d

�

,

(3.81)
which is identified as the classical action for a 1/4-BPS D-brane of charge N ∈ S+ with
N̄γd−4N 6= 0, (and γ2N · (N̄γd−4N) = 0 in ∧d−6 IId,d for d ≥ 6)

S(Ω?2) =
2π
gD

È

|v(N)|2 +
Ç

2|v(N)γd−4v(N)|2 . (3.82)

We shall now express the Fourier coefficients (3.76) in a covariant fashion by resolving
the sum over Pd−2\Dd . For each non-zero spinor N ∈ S+, one has a sum over the doublets of
spinor χi ∈ S− satisfying instead χ̄iγd−4χ j = 0 such that (χ̄iγd−2χ j) ·γ2N = 0 in ∧d−4 IId,d and
such that

1
gcd(χ̄iγd−2χ j)

χ̄iγd−3N ∈ ∧d−3 IId,d ,
1

gcd(χi)
N ∈ S+ . (3.83)
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Introducing the same notation g(·, ·) for the metric on any module of Spin(d, d) parametrised
by the coset SO(d, d)/(SO(d)×SO(d)), and unfolding the integration domain against the sum
over χi , one can write (3.76) as

I (3b)

d = 16πg
− 24

8−d+2
D

′
∑

N∈S+
γ2N ·(N̄γd−4N)=0

e2πiN̄ a
∑

χi∈S−⊗Z2/GL(2,Z)
χ̄iγd−4χ j=0, χiγd−2χ j 6=0

χ̄iγd−2χ j ·γ2N=0
1

gcd(χ̄iγd−2χ j )
χ̄iγd−3N∈∧d−3 IId,d

1
gcd(χi )

N∈S+

∫

H(R)

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)
gcd(χi)2

Ω
i j
2 g(χi ,χ j)

×e
−πΩi j

2 g(χi ,χ j)−
π

g2
D

�

Ω−1
2i jε

ikε jl g(χ̄kγd−3N ,χ̄lγd−3N)

g(χ̄1γd−2χ2,χ̄1γd−2χ2)
+ g(N ,N)

Ω
i j
2 g(χi ,χ j )

−
εikε jl g(χi ,χ j )g(χ̄kγd−3N ,χ̄lγd−3N)

Ω
i j
2 g(χi ,χ j )g(χ̄1γd−2χ2,χ̄1γd−2χ2)

�

∼ 8πg
− 24

8−d+4+ 1
4

D

′
∑

N∈S+
Γ2N ·(N̄Γd−4N)=0

e2πiN̄ a− 2π
gD

Ç

g(N ,N)+2
p

g(N̄γd−4N ,N̄γd−4N)

(g(N , N) + 2
Æ

g(N̄γd−4N , N̄γd−4N))
1
4

(3.84)

×
∑

χi∈S−
χ̄iγd−4χ j=0, χiγd−2χ j 6=0

χ̄iγd−2χ j ·γ2N=0
1

gcd(χ̄iγd−2χ j )
χ̄iγd−3N∈∧d−3 IId,d

1
gcd(χi )

N∈S+

gcd(χi)2
Æ

|g(χi ,χ j)|
ϕtr

KZ[(
g(χ̄iγd−3N ,χ̄ jγd−3N)

g(χ̄1γd−2χ2,χ̄1γd−2χ2)
+
p

2g(N̄γd−4N ,N̄γd−4N) g(χi ,χ j)
2|g(χk ,χl )|

)−1] ,

where we used the same saddle point approximation as above in the second step. To find
this formula one can use the fact that the sum over non-zero χi decomposes into the Poincaré
sum over Pd−2\Dd and χi = (0, 0, ni

̂). Then χ̄iγd−2χ j = εi j(. . . , 0, det n), and the constraint
χ̄iγd−2χ j · γ2N = 0 imposes that N = (0,Q ı̂

a, Pα). Then the only non-zero component of

χ̄iγd−3N is εı̂ ̂ni
ı̂Q ̂a, so that the one of 1

gcd(χ̄iγd−2χ j)
χ̄iγd−3N is −εi jn

−1 j
ı̂ Q ı̂

a, which in order to be

an integers requires that Q ı̂
a = n j

ı̂q j
a for an integral qi

a. Finally the condition that 1
gcd(χi)

N ∈ S+
is automatically satisfied for Q ı̂

a and requires that Pα be divisible by gcd(ni
̂).

In D = 4 there are additional contributions from the last orbit to the Fourier coefficients.
For generic abelian Fourier coefficients, one can insert the Fourier expansion (A.11) in (3.56)
without having to worry about the discrepancy (3.57). The integral over Ω1 sets the matrix M
in (A.11) equal to 1

2ηabqa
i qb

j . As the Fourier coefficient is defined by the charge Qa
ı̂ = mı̂

jqa
j ,

we recast the sum over qa
i and mı̂

j into a sum over integral charges Q ı̂ ∈ II4,4 and matrices Aı̂
j

dividing them in II4,4. One obtains in this way

I (5c)

6 =
∑

γ∈P2\SO(6,6)

�

1

g 4
4 y4

∑

Q∈Z2⊗II4,4
∆(Q)≥1

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II4,4

∑

d|A−1Q·QᵀA−ᵀ
|A|−1d−3 c̃

�

∆(Q)
|A|2d2

�

(3.85)

×
∑

k≥1
p∈S+

gcd(k,p)=1
(p,p)

2k ∈Z
A−1/Qp

k ∈S−

∫

H+

d3Ω2

|Ω2|

�

4π∆(Q)
L( p

k + a)
+

5
π|Ω2|

� 1

L( p
k + a)3

+
π

L( p
k + a)2

tr[Ω2vQ ·Qᵀvᵀ]
�

�

× e
−πtr[vᵀΩ2v(L(p+a)Q·Qᵀ+QuQᵀ+

g 2
4
y (

p
k+a)ᵀ/Qu/Q( p

k+a))]− π

g 2
4

tr[Ω−1
2 ]+2πi(Q,a+cγa( p

k+a))
��

�

�

�

γ

,
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where

∆(Q) = det[ηabQ ı̂aQ ̂b)] , L(p) =

s

1+
g 2

4
y uαβ pαpβ +

g 4
4

4y2 (p, p)2 . (3.86)

Note that ∆(Q) is the usual quartic invariant of electromagnetic charge vectors in an N = 4
truncation of N = 8 supergravity [68].

To exhibit the Fourier expansion, we still need to decompose the sum over (k, p) into p
mod k and the integral part p′, and Poisson resum over p′. We define the function

fQ(
g4 xp

y ) =

∫

H+

d3Ω2

|Ω2|

�

4π∆(Q)
L(x)

+
5

π|Ω2|

� 1
L(x)3

+
2π

L(x)2
tr[Ω2vQ ·Qᵀvᵀ]

�

�

e
−πtr[vᵀΩ2v(L(x)Q·Qᵀ+QuQᵀ+

g 2
4
y xᵀ/Qu/Qx)]− π

g 2
4

tr[Ω−1
2 ]

, (3.87)

which can be evaluated in terms of matrix variate Bessel functions [50, 80], and its Fourier
transform

f̃Q(χ) =

∫

d8 x fQ(x)e
2πi(χ,x) , (3.88)

where we have rescaled variables such that f̃Q(χ) does not depend on y . While we do not
have an explicit formula for f̃Q(χ), we note that it is a well-defined, absolutely convergent
integral. Moreover, we expect that it should have the characteristic exponential suppression
for 1/8-BPS D-brane instantons. The generic Fourier coefficients can be written as27

I (5c)

6 =
∑

γ∈P2\SO(6,6)

�

1

g 12
4

∑

Q∈Z2⊗II4,4
∆(Q)≥1

∑

χ∈S+

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II4,4

∑

d|A−1Q·QᵀA−ᵀ
|A|−1d−3 c̃

�

∆(Q)
|A|2d2

�

×
∑

k≥1
p∈S+mod kS+

(p,p)
2k ∈Z

A−1/Qp
k ∈S−

e2πi( p
k ,χ) f̃Q

�
p

y
g4
(χ + /Qc)

�

e2πi(Q,a)+2πi(χ,a)

��

�

�

�

γ

, (3.89)

where the coefficients c̃(n) are defined in (A.12). As expected for a generic Fourier coefficient
saturating the Gelfand–Kirillov dimension of the automorphic representation, these Fourier
coefficients decompose into a ‘measure factor’

µP2
(Q,χ) =

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II4,4

∑

d|A−1Q·QᵀA−ᵀ
|A|−1d−3 c̃

�

∆(Q)
|A|2d2

�

∑

k≥1
p∈S+mod kS+

(p,p)
2k ∈Z

A−1/Qp
k ∈S−

e2πi( p
k ,χ) (3.90)

and an analytic function 1
g 12

4
f̃Q
�
p

y
g4
(χ + /Qc)

�

of g4 and the Levi factor v acting on the charge

(0,Q,χ) only, but not on the number-theoretic properties of the charge. Note that the depen-
dence in y and the axions c is such that the function is covariant under P2 as a
U(1)× SO(4)× SO(4) ⊂ P2 invariant function of v(0,Q,χ).

A significant complication is that the true measure factor µ(Q,χ) differs from (3.90), due
to the fact that the charges in the form (0,Q,χ) do not define a unique representative of

27The condition d|Q ·Qᵀ is a shorthand notation for d|(Q1,Q1)/2, (Q2,Q2)/2, (Q1,Q2).
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the P2 ⊂ Spin(6,6) orbits. We shall not attempt to compute the measure µ for general (Q,χ),
although we expect that it will take a similar form with different powers of the determinant |A|
of the dividing matrix A and of the integer d. In the special case however where Q is a projective
charge, in the language of [69], then the problem simplifies drastically. One example of such
a projective charge is a configuration of one D5 and three D1 Euclidean branes wrapping
three orthogonal T2 ⊂ T6, two once and one N times, possibly along with one unit of D(−1)
brane, i.e. 1 D5 +1 D1+1 D1+N D1 (+1 D(-1)). Then each representative has gcd(Q) = 1,
gcd(Q ı̂ ·Q ̂) = 1 and gcd(Q1̂∧Q2̂) = 1 such that A= 1, d = 1 and k = 1. In this case there is no
sum over p and the measure reduces to c̃

�

∆(Q)
�

= c̃
�

∆(0,Q,χ)
�

, where ∆(0,Q,χ) = ∆(Q)
is also the quartic Spin(6, 6) invariant of the total charge (0,Q,χ). Then the measure is the
same for all possible representatives in the Poincaré sum P2\Spin(6,6), so the Spin(6, 6,Z)
invariant measure will be preserved and equal to c̃

�

∆(0,Q,χ)
�

. This is indeed in agreement
with the index of a 1/8-BPS stack of D-branes on T6 determined in [51–53], which counts
four-dimensional BPS black holes.

The full Fourier expansion for D5

For d = 4, we have exhausted all the contributions in the theta series θ Ed+1
Λd+1
(φ,Ω2), and have

thus obtained the complete expansion of the integral (3.7) that we record here for reference

E (4),ExFT
(0,1) =

2ζ(3)2

3
g−6

6 +
2π2

9
ζ(3)g−4

6 ED4
Λ1
+ 8πg−2

6 R.N.

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω)Γ4,4,2(Ω, t)

+ 4
27ζ(6) E

D4
3Λ3
+ 8πg−6

6

∫

G

d3Ω2

|Ω2|3
ϕtr

KZ(Ω2)
′
∑

qi∈S+
q̄iq j=0

∑

ni∈Z
niq

i 6=0

e−πΩ
i j
2 ni n j−πΩ−1

2i j g
−2
6 g(qi ,q j)+2πini(qi ,a)

+ 8πg−4
6

′
∑

N∈S+

e2πiN̄ a
∑

χi∈S−
χ̄iχ j=0, χiγ2χ j 6=0
χ̄iγ2χ j ·γ2N=0

1
gcd(χ̄iγ2χ j )

χ̄iγ1N∈II4,4

1
gcd(χi )

N∈S+

∫

G

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)
gcd(χi)2

Ω
i j
2 g(χi ,χ j)

× e
−πΩi j

2 g(χi ,χ j)−
π

g2
6

�

Ω−1
2i jε

ikε jl g(χ̄kγ1N ,χ̄lγ1N)

g(χ̄1γ2χ2,χ̄1γ2χ2)
+ g(N ,N)

Ω
i j
2 g(χi ,χ j )

−
εikε jl g(χi ,χ j )g(χ̄kγ1N ,χ̄lγ1N)

Ω
i j
2 g(χi ,χ j )g(χ̄1γ2χ2,χ̄1γ2χ2)

�

−
16π2

21
g−4

6

′
∑

qi∈II4,4

(qi ,q j)=0

σ2(q)2

|v(q)|2
B2

�

2π
g6
|v(q)|

�

. (3.91)

As shown in Section C.2, the theta lift formula
∫ d6Ω
|Ω2|3

ϕKZ(Ω)Γ5,5,2(Ω, t) gives indeed the same
constant terms. The integral in the second line can be simplified as in (3.66) and (3.75).

4 Decompactification limit

In this section, we study the integral (1.17) in the limit where one circle inside T d becomes
very large. We first discuss the expected form of the expansion, known from general physical
considerations, before turning to a detailed analysis of the constrained lattice sum (1.18). For
d = 5, it is worth noting that the decompactification limit is equivalent to the weak coupling
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limit under exchanging g5 with R−1, due to the symmetry of the Dynkin diagram of E6 and
(1.23) with d − 2= 3, which will allow us to cross-check our computations.

4.1 Expectation

The decompactification limit of the non-perturbative ∇6R4 coupling takes the formal generic
form [22] [2, (2.28)]

E (d)
(0,1)
∼ R

12
8−d

�

E (d−1)
(0,1)
+

5
π
ξ(d − 6)Rd−7 E (d−1)

(1,0)
+ 40ξ(2)ξ(6)ξ(d + 4)Rd+3

+
2π
3
ξ(d − 2)Rd−3E (d−1)

(0,0)
+

16π2ξ(d − 2)2

(d + 1)(6− d)
R2d−6

�

, (4.1)

where R = rd/`D+1 is the radius of the circle in Planck units, up to logarithmic terms that
depend on the specific dimension and can be found in the Appendix B of [2]. These terms are
determined by matching the decompactification limit of the perturbative string theory answer
together with the requirement that the result must be expressed in terms of the functions
multiplying the lower-derivative terms in R, R4 and ∇4R4 in the effective action. On the
other hand, the decompactification limit of the homogeneous solution F (d)

(0,1) in (1.11) (coming
from the one-loop amplitude in exceptional field theory) gives

F (d)
(0,1)
∼ R

12
8−d

�

F (d−1)
(0,1)
+

5
π
ξ(d − 6)ζ(5)Rd−7EEd

5
2Λ1
+ 40ξ(2)ξ(6)ξ(d + 4)Rd+3

�

, (4.2)

where ζ(5)EEd
5
2Λ1
= E (d−1)

(1,0) for d = 6 and for d = 0 in type IIB, whereas

E (d−1)
(1,0)
= ζ(5) EEd

5
2Λ1
+

4π3

45
ξ(d + 1) EEd

d+1
2 Λd

(4.3)

for 1≤ d ≤ 5 and d = 0 type IIA.28

It follows from (1.13) that for d ≤ 5, the two-loop exceptional field theory amplitude must
behave as

E (d),ExFT
(0,1) ∼ R

12
8−d

�

E (d−1),ExFT
(0,1) +

4π2

9
ξ(d − 6)ξ(d + 1)Rd−7EEd

d+1
2 Λd

+
2π
3
ξ(d − 2)Rd−3E (d−1)

(0,0)

+
16π2ξ(d − 2)2

(d + 1)(6− d)
R2d−6

�

(4.4)

up to logarithmic corrections that will be discussed in detail in Section 5.3. This formula
applies up to non-analytic terms to d = 6 if one omits the term EEd

d+1
2 Λd

which is divergent.

4.2 Decompactification limit of the particle multiplet lattice sum

We are interested in the decompactification limit of the integral (3.7). Under Ed+1 ⊃ GL(1)×Ed ,
the particle multiplet decomposes as

M Ed+1
Λd+1
→Z(9−d) ⊕

�

M Ed
Λd

�(1) ⊕
�

M Ed
Λ1

�(d−7) ⊕ [M Ed
Λ7
](2d−15) , (4.5)

where we define M Ed
Λd+1
= Z and M Ed

Λk
= {0} for k > d + 1. We denote the charges Γi accord-

ingly by (mi ,Q i , Pi , ni). The constraints Γi × Γ j = 0 are valued in the string multiplet, which
decomposes as

M Ed+1
Λ1
→
�

M Ed
Λ1

�(2) ⊕
�

M Ed
Λ2
⊕M Ed

Λ7

�(d−6) ⊕ [M Ed
Λ6
](2d−14) . (4.6)

28 For d ≤ 3 one must understand EEd
sΛd

as the sum over the 1/2-BPS particle charges, so one gets

EE3
sΛ3
= ESL(2)

sΛ1
ESL(3)

sΛ2
, EE2

sΛ2
= ν

6s
7 ESL(2)

sΛ1
+ ν−

8
7 s, EE1

sΛ1
= g

3
2 s

A for type IIA, and zero for type IIB.
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Thus, the components (mi ,Q i , Pi , ni) are subject to the constraints

Q i ×Q j = m(i Pj) , P(i ×Q j)

�

�

Λ2
= 0 , P(i ·Q j) = −3m(i n j) , Pi × Pj = −n(i Q j), (4.7)

where the third only arises for d = 6, and the last constraint simplifies to (Pi , Pj) = 0 for d = 5
and disappears for d ≤ 4. In terms of these components, the quadratic form G(Γ , Γ ) can be
expressed as

G(Γ , Γ ) = R−2 9−d
8−d (m+ 〈a,Q〉+ 〈a× a, P〉 − det a n)2

+ R−
2

8−d g(Q+ 2a× P − a× an,Q+ 2a× P − a× an)

+ R2 7−d
8−d g(P − an, P − an) + R2 15−2d

8−d n2, (4.8)

where a denotes the axions parametrising the unipotent part of the parabolic subgroup Pd+1.
As in Section 3.2, we shall split the theta series θ Ed+1

Λd+1
into contributions where the components

(mi ,Q i , Pi , ni) along the graded decomposition (4.5) are gradually populated, such that the
constraints can be solved explicitly.

1) The first layer

The first layer corresponds to all charges being zero except mi , in which case one has the
contribution

θ (1)
Λd+1
(φ,Ω2) =

′
∑

mi∈Z
e−πΩ

i j
2 R−2 9−d

8−d mi m j . (4.9)

This term corresponds to the Kaluza–Klein states running in the loop. It is infrared divergent
and requires regularisation. Integrating against ϕtr

KZ, we get

I (1)d = 8π

∫

G

d3Ω2

|Ω2|
6−d

2

ϕtr
KZ(Ω2)θ

(1)
Λd+1
(φ,Ω2)

=
8π2

3

∫ ∞

0

dV
V 3−d

∫

F

dτ1dτ2

τ 2
2

A(τ)
′
∑

(m,n)∈Z2

e−πVR−2 9−d
8−d |m+nτ|2

τ2

=
16π2

3
ξ(2d − 4)R

12
8−d+2(d−3)

∫

F

dτ1dτ2

τ 2
2

A(τ) ESL(2)
(d−2)Λ1

(τ)

=
16π2 ξ(d − 2)2

(6− d)(d + 1)
R

12
8−d+2(d−3), (4.10)

where we used (3.17). More precisely, using the regularisation (1.17) one obtains after taking
the limit L→∞

I (1)d,ε =
16π2 ξ(d + 2ε− 2)2

(6− d − 2ε)(d + 2ε+ 1)
R

12+4ε
8−d +2(d−3)+4ε . (4.11)

It has a double pole in d = 2 and d = 3 associated to the double pole in the eight-dimensional
supergravity amplitude, and a simple pole in d = 6. It is associated to both the log divergence
proportional to the E(1,0) coupling in d = 6 and the log divergence proportional to the E(0,0)

coupling in d = 5 and is not proportional to a sum of them. We shall discuss the logarithmic
contribution for d = 6 in more detail in Section 5.3.
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2) The second layer

The second term comes from mi ∈Z, Q i 6= 0, Pi = ni = 0:

θ (2)
Λd+1
(φ,Ω2) =

′
∑

Q i∈M Ed
Λd

Q i×Q j=0

∑

mi∈Z
e−πΩ

i j
2

�

R−2 9−d
8−d (mi+〈a,Q i〉)(m j+〈a,Q j〉)+R−

2
8−d g(Q i ,Q j)

�

(4.12)

=
′
∑

Q i∈M Ed
Λd

Q i×Q j=0

∑

mi∈Z

R2 9−d
8−d

|Ω2|
1
2

e−πΩ
−1
2 i jR

2 9−d
8−d mi m j−πΩi j

2 R−
2

8−d g(Q i ,Q j)+2πi〈miQ i ,a〉 .

The term I (2a)

d with mi = 0 is recognised as the theta series θ Ed
Λd
(φ,Ω2), up to factors of |Ω2|

and R, whereas the term I (2b)

d coming from mi 6= 0 but miQ
i = 0 can be treated as I (2b)

d and
I (2c)

d in Section 3.2. In the same way we unfold the fundamental domain of PGL(2,Z) to the
strip, so as to set (m1, m2) = (0, m) and (Q1,Q2) = (Q, 0), leading to, upon using (3.27),

I (2b)

d =
8π2R2 9−d

8−d

3

∫ ∞

0

dV
V d−2+2ε

∫ L

0

dτ2

τ 2
2

 

∫
1
2

− 1
2

dτ1 A(τ)

!

′
∑

Q∈M Ed
Λd

Q×Q=0

∑

m≥1

e−
πV
τ2

R29−d
8−d m2−πR−

2
8−d

Vτ2
|Z(Q)|2

=
8π2R

12+4ε
8−d

3

∫ ∞

0

dV
V d−2+2ε

∫ L

0

dτ2

τ 2
2

′
∑

Q∈M Ed
Λd

Q×Q=0

∑

m≥1

e−
πV
τ2

R2m2− π
Vτ2
|Z(Q)|2

×
�

τ2 +
1

6τ3
2

−
1
7

∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

1+ 3
2(2acτ2)2 + (2acτ2)4

ac(acτ2)3
(1− (2acτ2)

2)
3
2

�

=
8π2R

12+4ε
8−d

3

�

ξ(dε − 2)ξ(dε − 3)Rdε−3 EEd
dε−3

2 Λd
+
ξ(dε − 6)ξ(dε + 1)

6
Rdε−7 EEd

dε+1
2 Λd

−
2π2

7
Rdε−3

′
∑

Q∈M Ed
Λd

Q×Q=0

�

σdε−3(Q)
�2

|Z(Q)|dε−3
Bdε−3(2πR|Z(Q)|)

�

, (4.13)

where dε = d + 2ε and Bd−3(x) is the function defined in (3.30). In total, one obtains

I (2)d = R
12+4ε
8−d

�

8π

∫

d3Ω2

|Ω2|
7−dε

2

ϕtr
KZ(Ω2)

′
∑

Q i∈M Ed
Λd

Q i×Q j=0

e−πΩ
i j
2 g(Q i ,Q j) (4.14)

+
8π2

3
ξ(dε − 2)ξ(dε − 3)Rdε−3 EEd

dε−3
2 Λd

+
4π2

9
ξ(dε − 6)ξ(dε + 1)Rdε−7 EEd

dε+1
2 Λd

−
16π2

21
Rd−3

′
∑

Q∈M Ed
Λd

Q×Q=0

�

σd−3(Q)
�2

|Z(Q)|d−3
Bd−3(2πR|Z(Q)|)

+8πR2(d−3)

∫

d3Ω2

|Ω2|
7−d

2

ϕtr
KZ(Ω2)

′
∑

Q i∈M Ed
Λd

Q i×Q j=0

′
∑

mi∈Z
miQ i 6=0

e−πΩ
−1
2 i j m

i m j−πΩi j
2 R2 g(Q i ,Q j)+2πi〈miQ i ,a〉

�

.
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The first term, corresponding to mi = 0, reproduces the function R
12

8−d Id−1 in dimension D+1.
The two terms in the second line formally give respectively (part of) the threshold functions
E (d−1)
(0,0) and E (d−1)

(1,0) in D+1 dimensions, while the third line corresponds to non-perturbative correc-
tions to the constant term. We shall discuss the renormalised expression at ε= 0 shortly. Note
that unlike in the weak coupling limit, the regularisation does not give rise to non-maximal
parabolic Eisenstein series. This is because there is no additional Poincaré series in this com-
putation, so one cannot deviate from the Pd maximal parabolic Poincaré series associated to
the sum over Q i . The last term corresponds to non-trivial Fourier coefficients associated to
1/2-BPS instantons, which can be analysed similarly as I (2d)

d in Sections 3.3 and C.1.
Following the steps as in Section C.1 and in particular (C.19), one computes that

8πR2(d−3)

∫

d3Ω2

|Ω2|
7−d

2

ϕtr
KZ(Ω2)

′
∑

Q i∈M Ed
Λd

Q i×Q j=0

′
∑

mi∈Z
miQ i 6=0

e−πΩ
−1
2 i j m

i m j−πΩi j
2 R2 g(Q i ,Q j)+2πi〈miQ i ,a〉

=
16π2

3
R

d−3
2

′
∑

Q∈M Ed
Λd

Q×Q=0

�

σd−3(Q)

�

y
9−3d

2 + (9−d)(d−4)
10−d

Q

gcd(Q)
d−3

2

ξ(d − 4)EEd -1
d−4

2 Λd -1

(vQ)K d−3
2

�

2πR|Z(Q)|
�

+
3y

7−3d
2

Q

π2R gcd(Q)
d−1

2

′
∑

q∈M Ed−1
Λd−1

q×q=0

σd−4(q)e
2πi(q,ςQ)

K d−2
2
(2πy−2 9−d

10−d

Q |vQ(q)|)

(y−2 9−d
10−d

Q |vQ(q)|)
d−2

2

K d−5
2

�

2πR|Z(Q)|
�

−
15y

5−3d
2

Q

2π4R2 gcd(Q)
d+1

2

′
∑

q∈M Ed−1
Λd−1

q×q=0

σd−4(q) e
2πi(q,ςQ)

K d
2
(2πy−2 9−d

10−d

Q |vQ(q)|)

(y−2 9−d
10−d

Q |vQ(q)|)
d
2

K d−7
2

�

2πR|Z(Q)|
�

�

+
y

5−3d
2 + (9−d)d

10−d
Q

6R2

σd−7(Q)

gcd(Q)
d−7

2

ξ(d) EEd -1
d
2Λd -1

(vQ)K d−7
2
(2πR|Z(Q)|)

�

e2πi(Q,a)

+
8π2

3
R2d−7

∫ ∞

0

dν

ν
9
2 − d

∫ 1

0

dt

t 3
2

∑

γ∈Pd\Ed

′
∑

N∈N

′
∑

N1∈Z
q∈M Ed−1

Λd−1

q×q=0

σd−3(N1, q)σd−3(N + N1, q)

× y−1e−π
�

2
νt+νt R2 y2N2

2 + 2ν
t R2 y

2
10−d |v(q)|2

�

F
�

t, R2 y2ν, N , N1 + (ς, q)
�

e2πiQaγ

�

�

�

�

γ

, (4.15)

where yQ =
|Z(Q)|
gcd(Q) , the sum over q ∈ M Ed−1

Λd−1
runs over over characters of the unipotent stabilis-

ers of the charge Q, and F is the function defined in (3.74). The leading term in R factorises
as an Eisenstein series over the Levi stabiliser of Q in the minimal representation, while the
full Fourier coefficient depends non-trivially on the whole parabolic stabiliser. One recognises
σd−3(Q) as the measure for 1/2-BPS charges Q ∈ M Ed

Λd
, and similarly σd−4(q) as the measure

for 1/2-BPS charges q ∈ M Ed−1
Λd−1

, just like for Fourier coefficients of E (d−1)
(0,0) and E (d−2)

(0,0) in the decom-
pactification limit, see [1,23]. To interpret these Fourier coefficients it is relevant to combine
them with the 1/2-BPS Fourier coefficients of the homogeneous solution [50]
∫

R(Λd )/M
Ed
Λd

da e−2πi(Q,a)F (d)
(0,1)
= 80ξ(2)R

12+4ε
8−d +

d+3
2

�

ξ(6)σd+3(Q)
K d+3

2
(2πR|Z(Q)|)

|Z(Q)|
d+3

2

+
σd−7(Q)

R5gcd(Q)
d−7

2

ξ(5)EEd -1
5
2Λ1
(vQ)K d−7

2
(2πR|Z(Q)|)

�

, (4.16)
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where Q ×Q = 0. Altogether, the abelian Fourier coefficients of E (d)(0,1) involving an Eisenstein
series of the Levi stabiliser of the charge Q combine in the full coupling E (d)(0,1) as

R
12

8−d+
d+3

2

�

16π4

567
σd+3(Q)

K d+3
2
(2πR|Z(Q)|)

|Z(Q)|
d+3

2

+
4πσd−3(Q)

3(Ry
2

10−d
Q )3

E (d−2)
(0,0)
(vQ)

K d−3
2
(2πR|Z(Q)|)

|Z(Q)|
d−3

2

+
10σd−7(Q)

π(Ry
2

10−d
Q )5

E (d−2)
(1,0)
(vQ)

K d−7
2
(2πR|Z(Q)|)

|Z(Q)|
d−7

2

�

(4.17)

and we assembled the effective couplings in D + 2 dimensions that appear with the expected

power of the torus volume Ry
2

10−d
Q associated to the charge Q.

The last term in (4.15) involving the function F can be ascribed to instanton anti-instanton
corrections of charges Q = (N , 0, 0) and Q1 = (N1, q, 0), and is further exponentially sup-
pressed in e−2πR(|Z(Q1)+|Z(Q−Q1)|). The measure factor also reproduces the 1/2-BPS measure
appearing in the Fourier expansion of E (d)(0,0), consistently with the property that these terms are
the solution to the Laplace equation (1.5) with a quadratic source term in E (d)(0,0).

3) The third layer

The next layer corresponds to mi ∈ Z, Q i ∈ M Ed
Λd

and Pi 6= 0, with Pi ∧ Pj = 0, so that Pi = ni P
for two relative prime integers ni and some P ∈ M Ed

Λ1
. In this case, the last constraint in (4.7)

implies that P is in the orbit of the highest weight representative in the parabolic decomposition
(3.9) with respect to P1 ⊂ Ed . Within this decomposition, the constraints (4.7) for the charge
Q i in the decomposition (3.8) imply that Q i = (qi , 0, . . . ) for a doublet of vectors qi ∈ IId−1,d−1,
subject to the conditions (qi , q j) = 2m(in j). Writing this third contribution as a Poincaré series
over P1\Ed , the seed is recognised as a Siegel–Narain genus-two theta series for the lattice
IId,d as follows,

θ (3)Ed+1
(φ,Ω2)

=
∑

γ∈P1\Ed















∑

qi∈IId−1,d−1
ni ,mi∈Z ni 6=0
(qi ,q j)=2m(i n j)

e−πΩ
i j
2 yR

−2
8−d

�

(yR2)−1(mi + (a, qi) +
(a,a)

2 ni)(m j + (a, q j) +
(a,a)

2 n j) + g(qi + ani , q j + an j) + yR2nin j

�















�

�

�

�

�

�

�

�

�

�

�

γ

=
∑

γ∈P1\Ed

�

|yR−
2

8−dΩ2|−
d
2

∫

[0,1]3
d3Ω1 Γd,d,2(Ry

1
2 ,Ω1 + iyR−

2
8−dΩ2)

−
∑

qi∈IId−1,d−1
(qi ,q j)=0

∑

mi∈Z
e−πΩ

i j
2 yR−

2
8−d
�

(yR2)−1(mi+(a,qi))(m j+(a,q j))+g(qi ,qi)
�

��

�

�

�

γ

, (4.18)

where Γd,d,2(Ry
1
2 ,Ω) is the genus-two partition function for the lattice IId,d = IId−1,d−1 ⊕ II1,1,

with radius Ry
1
2 on II1,1. To compute the integral of the first line against ϕtr

KZ, we first rescale

Ω2 7→ R
2

8−dΩ2/y , so that the argument of the Siegel–Narain theta series becomes Ω= Ω1+iΩ2;
we then use its invariance under Sp(4,Z) to fold the integration domain to the fundamental
domain F2, at the cost of replacing ϕtr

KZ by the sum of its images under Sp(4,Z); the latter
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sum produces the Kawazumi–Zhang invariant ϕKZ by virtue of (1.21). As for the second line
in (4.18), we perform a Poisson summation over mi , obtaining finally

I (3)d = 8πR2 d−2
8−d

∑

γ∈P1\Ed

�

y2−d

∫

F2

d6Ω

|Ω2|3
ϕεKZ(Ω) Γd,d,2(Ω, Ry

1
2 )

�
�

�

�

�

γ

(4.19)

−8πR
12

8−d

∑

γ∈P1\Ed













y3−d

∫

G

d3Ω2

|Ω2|
7−d

2 −ε
ϕtr

KZ(Ω2)
∑

ni∈Z
qi∈IId−1,d−1
(qi ,q j)=0

e−πΩ
−1
2i jR

2 yni n j−πΩi j
2 g(qi ,q j)+2πi(niqi ,a)













�

�

�

�

�

�

�

�

�

�

�

γ

.

The next step is to integrate overΩ1 in the first line. In principle one should do the computation
using the unfolding method and the Fourier–Jacobi expansion of ϕεKZ(Ω) at ε 6= 0. Instead,
we shall do the computation at ε = 0, and argue a posteriori that we do not miss any term
for d ≥ 4. At ε = 0, we can use the equivalence (2.53) between the constrained lattice sum
over the vectors in IId,d and the constrained lattice sum over spinors in S+. As for the second
line, it is useful to change variable from Ω2→ Ω−1

2 , using the fact that d3Ω2/|Ω2|sϕtr
KZ(Ω2)→

d3Ω2/|Ω2|4−sϕtr
KZ(Ω2) under this operation. After these steps, one obtains

I (3)d = 8πR2 d−2
8−d

∑

γ∈P1\Ed

�

y2−d

�∫

G

d3Ω2

|Ω2|
ϕtr

KZ(Ω2)Ξ
Dd
Λd
(Ω2, Ry

1
2 )

− R2 y

∫

G

d3Ω2

|Ω2|
d+1

2

ϕtr
KZ(Ω2)

∑

ni∈Z
qi∈IId−1,d−1

(qi ,q j)=0

e−πΩ
i j
2 R2 yni n j−πΩ−1

2i j g(q
i ,q j)+2πi(niq

i ,a)
���

�

�

�

γ

. (4.20)

The integral on the first line can then be computed by inserting (C.24) with R replaced by
Ry1/2. Most terms in (C.24) coincide with the terms appearing in the second line of (4.20)
and cancel out, leaving only

I (3)d = 8πR
12

8−d+d−3
∑

γ∈P1\Ed
δ∈Pd−3\Dd−1

�

y
3−d

2

∑

ni
̂∈Z2

det n 6=0

∫

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)
e−πΩ

i j
2 υk̂l̂ ni

k̂n j
l̂

y ′(Ωi j
2 υk̂l̂ n̂i

k̂ n̂ j
l̂)

d−3
2

(4.21)

×
′
∑

qi
a∈Z

2

pα∈Zd−3

e
−πR2 y

�

Ω−1
2i ju

abqi
aq j

b+
y
′ 2

d−3

Ω
i j
2 υk̂l̂ n̂i k̂ n̂ j l̂

ραβ (pα−caα
k̂

n̂i
k̂qi

a)(p
β−cbβ

l̂
n̂ j

l̂q j
b)
�

+2πi(qi
ani

̂aa
̂
+npαaα)

��

�

�

�

δγ

,

where y and y ′ are the coordinates on the GL(1) factors of the Levi subgroups of P1 and Pd−3,
respectively, i.e. the associated multiplicative parabolic characters. At this point we change

variables y = y
2
3
4 v, y ′ = y

9−d
2

4 v
3−d

2 such that vυk̂l̂ ni
k̂n j

l̂ is identified as υk̂l̂ ni
k̂n j

l̂ over SL(3)
and y4 is the multiplicative character for P4

ed ⊃ (gl1 ⊕ sl2 ⊕ sl3 ⊕ sld−3)
(0) ⊕ (2,3,d− 3)(

9−d
3d−9 ) ⊕ (3, (d − 3

2
))(

18−2d
3d−9 ) ⊕ (2, (d − 3

3
))(

9−d
d−3 ) (4.22)

under which

M Ed
Λd
→ (Zd−3)(

2
d−3 ) ⊕ (Z2 ⊗Z3)(

1
3 ) ⊕ (Z3 ⊗Zd−3)(

2d−12
3d−9 ) ⊕ (Z2 ⊗∧2Zd−3)(

d−7
d−3 ) ⊕ (Z3 ⊗∧3Zd−3)(

4d−30
3d−9 ) . (4.23)
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In this way, denoting y4 by y again for simplicity, we obtain

I (3)d = 8πRd−3
∑

γ∈P4\Ed

�

∑

ni
̂∈Z3

rk(n)=2

∫

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)
e−πΩ

i j
2 yυk̂l̂ ni

k̂n j
l̂

y2(Ωi j
2 yυk̂l̂ n̂i

k̂ n̂ j
l̂)

d−3
2

(4.24)

×
′
∑

qi
a∈Z

2

pα∈Zd−3

e
−πR2

�

Ω−1
2i j y−

1
3 uabqi

aq j
b+

y
4

d−3

Ω
i j
2 yυk̂l̂ n̂i k̂ n̂ j l̂

ραβ (pα−caα
k̂

n̂i
k̂qi

a)(p
β−cbβ

l̂
n̂ j

l̂q j
b)
�

+2πi(qi
ani

̂aa
̂
+npαaα)

��

�

�

�

γ

,

where caα
k̂

are the axions in the component (2,3,d− 3)(
9−d
3d−9 ) of the unipotent of P4 and

Q = (npα, qi
ani

̂, 0, 0, 0) is the Fourier charge in (4.23). Using the saddle point approxima-
tion as in (3.77), (3.79) one obtains that these terms are exponentially suppressed in

2πR
r

y
4

d−3ραβ(npα− caα
k̂

ni
k̂qi

a)(npβ − cbβ

l̂
n j

l̂q j
b) + y

2
3
�

uabqi
aq j

bυk̂l̂ ni
k̂n j

l̂+ 2|det q|
p

det(nυnᵀ)
�

= 2πR
Ç

|Z(Q)|2 + 2
Æ

∆(Q×Q) , (4.25)

the BPS mass of a 1/4-BPS charge Q. The charge Q is 1/2-BPS if det q = 0.

4) The fourth layer

Next we consider mi ∈ Z,Q i ∈ M Ed
Λd

and Pi ∈ M Ed
Λ1

, with P1 ∧ P2 6= 0. In this case P1 ∧ P2 ∈ M Ed
Λ3

is non-zero, and it is in the minimal orbit such that one can decompose the sum over Pi
as a Poincaré sum over P3\Ed and a sum over non-degenerate 2 by 2 matrices ni

̂ in this
GL(2)× SL(d − 1) decomposition

M Ed
Λd
= (Zd−1)(

4
d−1 ) ⊕ (Z2×(d−1))(

d−5
d−1 ) ⊕ (∧3Zd−1)(

2d−14
d−1 ) ⊕ (Z2 ⊗∧5Zd−1)(

3d−23
d−1 ) ,

M Ed
Λ1
= (Z2)(1) ⊕ (∧2Zd−1)(

2d−10
d−1 ) ⊕ (Z2 ⊗∧4Zd−1)(

3d−19
d−1 ) ⊕ (Zd−1 ⊗∧5Zd−1)(

4d−28
d−1 ) ,

M Ed
Λ2
= (Zd−1)(

2d−6
d−1 ) ⊕ (Z2 ⊗∧3Zd−1)(

3d−15
d−1 ) ⊕ . . . . (4.26)

The general solution to the constraints P(i ×Q j)

�

�

Λ2
= 0 is then

Pi = (ni
̂, 0, 0, 0) , Q i = (q

a
i , ni

̂ pa
k , 0, 0) , (4.27)

with qi and p inZd−1 and k relative prime to p that divides ni
̂, while the additional constraint

Q i ×Q j = m(i Pj) implies that
mi =

pa
k qa

i , (4.28)

so that k divides paqa
i . One can then check that all the other constraints in (4.7) are satisfied.

The bilinear form then reduces to

R
2

8−d G(Γi , Γ j) =
�

R2 y + y
d−5
d−1 uab( pa

k + aa)(
pb
k + ab)

�

υk̂l̂ ni
k̂n j

l̂

+
�

y
4

d−1 uab+R−2( pa
k +aa)(

pb
k +ab)

��

qa
i +
�

aa
k̂
+ cac

k̂
( pc

k +ac)
�

ni
k̂
��

qb
j +
�

ab
l̂
+ cbd

l̂
( pd

k +ad)
�

n j
l̂
�

.

(4.29)

For fixed k and pa, the sum over qa
i is in kZ⊕Zd−2, and one can do a Poisson summation to

the dual lattice 1
kZ⊕Z

d−2
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∑

qi∈Zd−1

paqa
i ∈kZ

e−πΩ
i j
2 (y

4
d−1 uab+R−2(

pa
k +aa)(

pb
k +ab))(qa

i +ãa
k̂
ni

k̂)(qb
j +ãb

l̂
n j

l̂ ) (4.30)

=
1

y4|Ω2|
d−1

2

∑

qi∈Zd−1

p∧qi∈kZ
(d -1)(d -2)

2

e
−πΩ−1

2i j y−
4

d−1
�

uabk−2−
uacubd (

pc
k +ac )(

pd
k +ad )

y
4

d−1 R2k2+u(p+ak)(p+ak)

�

qi
aq j

b

k2 + y−
4

d−1

R2 uab(pa + aak)(pb + abk)
e2πi

ni
̂qi

a
k ãa

̂ .

Writing instead the sum over ni
̂/k which we write ni

̂ for brevity and changing variable

Ω2→ R
2

8−d
�

R2k2 + y−
4

d−1 uab(pa + aak)(pb + abk)
�−1
Ω2 (4.31)

one obtains

I (4)d = 8πR
12+4ε
8−d −4ε

∑

γ∈P3\Ed

∫

G

d3Ω2

|Ω2|
5
2−ε
ϕtr

KZ(Ω2)
∑

ni
̂∈Z2

det n6=0

e−πΩ
i j
2 yυk̂l̂ ni

k̂n j
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∑

qi∈Zd−1

∑
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k|p∧qi

e2πi
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̂qi

a
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̂
(
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k +ab)) e

−πΩ−1
2i j

�
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4

d−1 R2uabqi
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8

d−1 (uacubd−uadubc)(
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k +ac)(
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b

�

y4(k2 + y−
4

d−1 R−2u(p+ ak, p+ ak))2ε

�

�

�

�

γ

. (4.32)

The contribution from qi
a can be computed by Poisson resumming over pa ∈Zd−1,

I (4a)

d =
8π
ξ(4ε)

R
12+4ε
8−d

∑

γ∈P3\Ed

y−2

∫

G

d3Ω2

|Ω2|
5
2−ε
ϕtr

KZ(Ω2)
∑

ni
̂∈Z2

det n6=0

e−πΩ
i j
2 yυk̂l̂ ni

k̂n j
l̂

×
�
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d−1

2 −2ε
′
∑

p∈Zd−1

σd−1−4ε(p)
K d−1

2 −2ε(2πR
q

y
4

d−1 uabpapb)

(y
4

d−1 uabpapb)
d−1

4 −ε
e2πipaaa

��

�

�

�

γ

=
8π
ξ(4ε)

R
12+4ε
8−d

�

ξ(4ε - d+1)Rd−1−4ε
∑
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Λ1
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Q1∧Q2 6=0

�

�

�

gcd(Q1∧Q2)
v(Q1∧Q2)

�

�

�

2
∫

G

d3Ω2

|Ω2|
5
2−ε
ϕtr

KZ(Ω2)e
−πΩi j

2 G(Qi ,Q j)

+ 2R
d−1

2 −2ε
′
∑

Q∈M Ed
Λd

Q×Q=0

∑

Qi∈M Ed
Λ1

Qi×Q=0
Qi×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1∧Q2)
v(Q1∧Q2)

�

�

�

2
∫

G

d3Ω2

|Ω2|
5
2−ε
ϕtr

KZ(Ω2)e
−πΩi j

2 G(Qi ,Q j)

×σd−1−4ε(Q)
K d−1

2 −2ε(2πR|Z(Q)|)

|Z(Q)|
d−1

2 −2ε
e2πi(Q,a)

�

, (4.33)

where the sum over M Ed
Λ1

with Qi ×Q = 0 in M Ed
Λ2

, defines a function on the Levi stabiliser Ed−1

of Q as a constrained double lattice sum over M Ed−1
Λ1

.
We shall now argue that this contribution disappears in the renormalised integral (1.28).

One can use the same argument as in Appendix C.3 to compute that the source term for the
Laplace equation satisfied by this function vanishes as ε→ 0, with
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�

∆Ed
− 12+ 2 (1+2ε)(d−1)(d−2−ε)

9−d

� ∑
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2
∫
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5
2−ε
ϕtr

KZ(Ω2)e
−πΩi j

2 G(Qi ,Q j)

= −2πξ(2ε− 1)
∑

γ∈P1\Ed

g−
8+16ε
9−d +2ε

�

ξ(2ε− 2)EDd -1
εΛd -2

+ 2g1−ε
′
∑

Q∈S+
Q×Q=0

σ2ε-2(Q)
gcd(Q)2

K1-ε(
2π
g |v(Q)|)

|v(Q)|1+ε e2πi(Q,a)
�

= 2πξ(2ε− 1)ξ(d − 3+ 2ε)
�

EEd

(ε− 1
2 )Λ1+

d−3+2ε
2 Λd

− EEd

(ε− 1
2 )Λ1

EEd
d−3+2ε

2 Λd
+O(ε)

�

=O(ε) ,

(4.34)

which vanishes at ε→ 0. Therefore the potentially dangerous constant term in I (4a)

d must be
proportional to an Eisenstein series. The coefficient follows by computing the first non-trivial
orbit in the string perturbation limit

8π
∑

Qi∈M Ed
Λ1

Qi×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1∧Q2)
v(Q1∧Q2)

�

�

�

2
∫

G

d3Ω2

|Ω2|
5
2−ε
ϕtr

KZ(Ω2)e
−πΩi j

2 G(Qi ,Q j) +O(ε) (4.35)

=
4π2

9
ξ(6− 2ε)ξ(2+ 2ε)EEd

−3Λ1+(2+ε)Λ3

=
2π2

9

∑

Qi∈M Ed
Λ1

Qi×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1∧Q2)
v(Q1∧Q2)

�

�

�

2
∫

G

d3Ω2

|Ω2|
5
2−ε

ESL(2)
−3Λ1

(τ)

V
e−πΩ

i j
2 G(Qi ,Q j) .

In the last equality, that can be computed in the same way as in Section 2.4, we recognise the
same constant term as in the counterterm in (1.28). Using a functional equation, the Eisenstein
series in the middle line of (4.35) is seen to diverge as ξ(1+2ε)EEd

− 3
2Λ1+Λ5

for d = 4, 5, while it

has a finite limit otherwise. The same computation applies to the Fourier coefficients in I (4a)

d ,
since the function of the Levi stabiliser Ed−1 is the same. We conclude that I (4a)

d →
ε→0

0 for

d 6= 4,5, and expect that the same holds for the whole contribution I (4)d . For d = 4,5, I (4a)

d has
a finite limit, but cancels in the renormalised coupling (1.28).

5) The fifth layer

We now briefly discuss the last layer for which ni 6= 0. This layer only occurs for d = 6. The
analysis from Appendix D.1 shows that for the similar integral IE7

Λ7

�

ESL(2)
sΛ1

, 4+ 2ε
�

where A(τ)
is replaced by an arbitrary Eisenstein series, the contribution from this layer contains a general
factor ξ(4ε−5)ξ(4ε−9)

ξ(4ε)ξ(4ε−4) , so we expect the same for the case of interest. However, at the specific

value s = −3, the factor ξ(4ε−5)ξ(4ε−9)
ξ(4ε)ξ(4ε−4) multiplies a divergent function containing ξ(2ε) that

compensates for the 1/ξ(4ε) and gives the finite contribution 8π
27ξ(2)ξ(10)R15 in the limit.

As for the other cases we expect that this finite contribution cancels out in the renormalised
function (1.28), as it must for consistency. Note that the fifth layer also contributes to generic
Fourier coefficients with charges Q with a non-trivial E6 cubic invariant I3(Q) 6= 0. However,
the supersymmetric Ward identity for the renormalised coupling requires that such Fourier co-
efficients must vanish [14]. It is therefore consistent that this fifth layer should not contribute
to the renormalised coupling after canceling the counterterm.
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The contributions from the five layers produce exactly the expected constant terms in the
decompactification limit shown in (4.1). For this it is crucial to take into account the renor-
malisation and contribution from 1/4-BPS states. This will be discussed in more detail in
Section 5.3.

5 Regularisation and divergences

In the previous sections, we have computed the perturbative and decompactification limits of
the ∇6R4 coupling based on (1.12) that represents mutually 1/2-BPS states running inside
a two-loop diagram of exceptional field theory. In the calculation we have encountered vari-
ous divergent contributions, see for instance (3.44). In the present section, we analyse these
singular terms in more detail and provide a renormalisation prescription that also includes
1/4-BPS states running in the loops and will be shown to cancel the pole in the two-loop 1/2-
BPS contribution in space-time dimension D = 4,5, 6, so that the sum of the two is finite in
the limit ε → 0 in all dimensions. We will show that this regularisation gives the expected
logarithmic term in the string coupling constant in perturbation theory.

5.1 Contributions from 1/4-BPS states

We follow the same reasoning as in [30], where the analogous one-loop contribution to∇4R4

with 1/4-BPS states running in the loop was obtained. The idea there was to interpret the
perturbative genus-one string integrand in the limit τ2→∞ as a sum over perturbative string
states running in the loop, and extending the sum to the full non-perturbative spectrum of 1/4-
BPS states. In this way, the 1/4-BPS state contribution to the ∇4R4 coupling at one-loop was
given in [30] as

E1-loop 1
4 -BPS

(1,0) = 4π
∑

Γ∈M Ed+1
Λd+1

Γ×Γ 6=0∆′(Γ )=0

σ3(Γ × Γ )
|V(Γ × Γ )|2

∫ ∞

0

dL

L
6−d−2ε

2

�

L +
1

2π|V(Γ × Γ )|

�

e−πLM(Γ )2 , (5.1)

where |V(Γ × Γ )|2 is the Ed+1-invariant quadratic norm on R(Λ1) and M(Γ ) is the mass of a
state satisfying the 1/4-BPS constraints Γ × Γ 6= 0 and ∆′(Γ ) = 0 with ∆ the quartic invariant
on R(Λd+1) and ∆′ its gradient. The explicit form of the 1/4-BPS mass is

M(Γ ) =
Æ

|Z(Γ )|2 + 2|V(Γ × Γ )| . (5.2)

The contribution for each charge Γ to (5.1) is weighted by σ3(Γ × Γ ), which we recognise as
the twelfth helicity supertrace Ω12(Γ ) =

1
12!Tr(−1)2J3(2J3)12 counting 1/4-BPS multiplets of

charge Γ , as computed in [50,70].

Turning to ∇6R4, a similar contribution must appear as a one-loop sub-diagram in the
two-loop integrand by factorisation. We propose that the ∇6R4 coupling receives a two-loop
contribution of the form

E2-loop 1
4 -BPS

(0,1) = 20
∑

Γi∈M Ed+1
Λd+1

Γ1×Γi=0
Γ2×Γ2 6=0∆′(Γ2)=0

σ3(Γ2 × Γ2)
|V(Γ2 × Γ2)|2

∫

R3
+

dL1 dL2 dL3

(
∑

i> j Li L j)
8−d−2ε

2

�

L2 + L3 +
1

2π|V(Γ2 × Γ2)|

�

× e−π(L1M(Γ1)2+L2M(Γ2)2+L3M(Γ1+Γ2)2) . (5.3)

Here the two edges with Schwinger parameters L2 and L3 carry 1/4-BPS multiplets of charge
Γ2 and Γ1 + Γ2, whereas the edge of length L1 carries a 1/2-BPS multiplet of charge Γ1. We
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assume that the two-loop contribution with a 1/2-BPS charge Γ1 and a 1/4-BPS charge Γ2, but
with Γ1 × Γ2 6= 0, vanishes, as well as contributions where none of the charges Γ1, Γ2, Γ1 + Γ2 is
1/2-BPS.

Let us first analyse the contribution (5.3) from the point of view of perturbative string
theory, by writing it as a Poincaré sum over P1\Ed+1 of a charge sum in IId,d . This is possible
because one can always rotate the vector Γ2 × Γ2 to a highest weight representative using
γ ∈ P1\Ed+1. In the corresponding graded decomposition, the charge Γ2 is q2 ∈ IId,d with
(q2, q2) 6= 0 and the constraint Γ1 × Γ2 = 0 implies according to (3.10)

(q2, q1) = 0 , qa
2γaχ1 = 0 , q2 ∧ N1 = 0 , q2 · N1 = 0 , (5.4)

from which one concludes that χ1 = N1 = 0 and moreover from Γ1 × Γ1 = 0 that (q1, q1) = 0.
It will be useful to consider the change of variables on the Schwinger parameters

L1 = g
− 4

8−d
D (t +ρ2u2(1− u2)) , L2 = g

− 4
8−d

D ρ2(1− u2) , L3 = g
− 4

8−d
D ρ2u2 , (5.5)

where ρ2 and t are positive reals and u2 ∈ [0,1]. One obtains from (5.3)

E2-loop 1
4 -BPS

(0,1) = 20
∑

γ∈P1\Ed+1

�

g
− 24

8−d+4
D

∑

qi∈IId,d
(q1,qi)=0

q 2
2 6=0

σ3(
q 2

2
2 )

( q 2
2
2 )2

∫

R2
+

dρ2 dt

ρ 2
2 t3

∫ 1

0

du2
1
t

�

1+
1

2πρ2|
q 2

2
2 |

�

× (ρ2 t)
d
2+εe−πt g(q1,q1)−πρ2 g(q2+u2q1,q2+u2q1)−πρ2q 2

2

��

�

�

�

γ

(5.6)

= 40
∑

γ∈P1\Ed+1






g
− 24

8−d+4
D

∫

P1,2\H2(C)

d6Ω

|Ω2|3−ε
1
t

′
∑

n∈Z

�

ρ
1
2

2
σ3(|n|)

|n|
3
2

K 3
2
(2π|n|ρ2)e

2πinρ1
�

Γd,d,2(Ω)







�

�

�

�

�

�

�

γ

,

where

Ω=

�

ρ ρu2 + u1
ρu2 + u1 σ1 + it +ρu 2

2

�

, (5.7)

and the integration domain P1,2\H2(C) ranges over [−1
2 , 1

2] for ρ1, u1, u2 and σ1 and over

R+ for ρ2 and t. In the last line we used the identity K3/2(2π|n|ρ2) =
e−2π|n|ρ2

2
p
|n|ρ2

�

1+ 1
2π|n|ρ2

�

.

Before evaluating (5.6) further, we note the consistency of the known expression with the
genus-two contribution to the ∇6R4 coupling, given by [35,36]

8πg
− 24

8−d+4
D

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω) Γd,d,2(Ω) . (5.8)

From (A.13) we recall that

∫ 1

0

du2

∫ 1

0

du1

∫ 1

0

dσ1ϕKZ =
π

6
t +

π

36

ESL(2)
2Λ1

(ρ)

t
, (5.9)

where the SL(2) series has the well-known Fourier expansion

8π ·
π

36
ESL(2)

2Λ1
(ρ) =

2π2

9
ρ 2

2 +
10ζ(3)
π

ρ−1
2 + 40

′
∑

n∈Z
ρ

1
2

2
σ3(|n|)

|n|
3
2

K 3
2
(2π|n|ρ2)e

2πinρ1 , (5.10)
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exhibiting the same sum of Bessel functions as in (5.6). This shows that our non-perturbative
proposal (5.8) does include the known perturbative contribution from perturbative string the-
ory.

Returning to (5.6), we next fold the integral from P1,2\H2(C) to the standard Siegel mod-
ular domain F2 = Sp(4,Z)\H2(C). The resulting Poincaré sum of the non-zero Fourier mode
does not converge, but can be evaluated formally as in [30] to give

∑

γ∈P1,2\Sp(4,Z)

p

|n|ρ2K 3
2
(2π|n|ρ2)e2πinρ1

t

�

�

�

�

γ

(5.11)

=
∑

γ∈P1\Sp(4,Z)

∑

δ∈P1\SL(2)

p

|n|ρ2K 3
2
(2π|n|ρ2)e2πinρ1

�

�

�

δ

t

�

�

�

�

γ

=
2π2

3ζ(3)
σ3(|n|)
|n|

∑

γ∈P1\Sp(4,Z)

ESL(2)
2Λ1

(ρ)

t

�

�

�

�

γ

=
2π2

3ζ(3)
σ3(|n|)
|n|

∑

γ∈P2\Sp(4,Z)

ESL(2)
−3Λ1

(τ)

V

�

�

�

�

γ

,

where in the last step we use the analytic continuation of the Poincaré sums

∑

γ∈P1\Sp(4,Z)

ESL(2)
(2+ε−δ)Λ1

(ρ)

t1−ε−δ

�

�

�

�

γ

= ESp(4)
(2δ−3)Λ1+(2+ε−δ)Λ2

=
∑

γ∈P2\Sp(4,Z)

ESL(2)
(2δ−3)Λ1

(τ)

V 1+2ε

�

�

�

�

γ

, (5.12)

from the convergent range ε+ 1 > δ > 4 to their value at ε = δ = 0. The Eisenstein series
in the last term of (5.11) is recognised as a Siegel–Eisenstein series of Sp(4) satisfying the
functional identity

ESp(4)
−3Λ1+2Λ2

=
ξ(8)ξ(5)
ξ(7)ξ(4)

ESp(4)
5
2Λ2

. (5.13)

Using these equalities between (divergent) Poincaré sums and ignoring the fact that the regu-
larising factor |Ω2|ε spoils modular invariance, one obtains from (5.6) that

E2-loop 1
4 -BPS

(0,1) =
160π2

3ζ(3)

∞
∑

n=1

σ3(n)2

n3

∑

γ∈P1\Ed+1

�

g
− 24

8−d+4
D

∫

F2

d6Ω

|Ω2|3−ε
ξ(8)ξ(5)
ξ(7)ξ(4)

ESp(4)
5
2Λ2
(Ω)Γd,d,2(Ω)

�
�

�

�

�

γ

=
160π2

3ζ(3)

∞
∑

n=1

σ3(n)2

n3

∫

G

d3Ω2

|Ω2|
6−d−2ε

2

ESL(2)
−3Λ1

(τ)

V
θ

Ed+1
Λd+1
(φ,Ω2) . (5.14)

Making use, as in [30], of the formal Ramanujan identity
∞
∑

n=1

σ3(n)2

n3
= −

ζ(3)
240

(5.15)

one concludes that

E2-loop 1
4 -BPS

(0,1) = −
2π2

9

∫

G

d3Ω2

|Ω2|
6−d−2ε

2

ESL(2)
−3Λ1

(τ)

V
θ

Ed+1
Λd+1
(φ,Ω2) . (5.16)

Even though we have used the formal identities (5.11) and (5.15) in the derivation, we stress
that the original expression (5.3) is regular and well-defined for large enough ε.

As stated in (1.28) in the introduction, the complete two-loop amplitude with both 1/2-
and 1/4-BPS states running in the loops is therefore given by the sum

E (d)2-loop
(0,1) = 8π

∫

G

d3Ω2

|Ω2|
6−d−2ε

2

�

ϕtr
KZ −

π

36

ESL(2)
−3Λ1

(τ)

V

�

θ
Ed+1
Λd+1
(φ,Ω2) , (5.17)
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which should be finite as ε → 0 in all dimensions d ≥ 4. We show that it is indeed finite
in the weak coupling and decompactification limits for d = 4, and for all the terms that we
can compute for d = 5 and d = 6. With hindsight, the reason for this finiteness is that the
divergences at ε = 0 in d = 4, 5,6 come from the constant terms proportional to τ−3

2 in ϕtr
KZ

and ESL(2)
−3Λ1

(τ)/V , that drop out in the difference (5.17).

The three-loop exceptional field theory contribution was computed and analysed in [30,
(2.19)]. The analytic contribution has poles in d = 4,5, 6, but those poles cancel against
non-analytic contributions, leading in these dimensions to

E (d)3-loop
(0,1) = 40ξ(2)ξ(6)ξ(d+4) bEEd+1

d+4
2 Λd+1

+40
ξ(8)
ξ(7)

ξ(d+1)ξ(2sd+1−d+3)ξ(2sd+1) bE
Ed+1
sd+1ΛH

, (5.18)

where s5 =
7
2 , s6 =

9
2 and s7 = 6 as in (2.40). For d = 3, the three-loop contribution decom-

poses similarly as29

E (3)3-loop
(0,1) = 40ξ(2)ξ(6)ξ(7) ESL(5)

7
2Λ3

+ 40ξ(2)ξ(3)ξ(4) ESL(5)
− 1

2Λ1−Λ4
, (5.19)

which is finite and does not require regularisation. Both terms in (5.18) or (5.19) are homoge-
neous solutions of the Laplace equation (1.5), but they satisfy different tensorial equations [14]
and thus belong to two distinct automorphic representations. In particular, the second func-
tion solves (2.10) whereas the first one does not. The first function in (5.18) is recognised as
ÒF (d)
(0,1) in (1.30), while the second can be written using (2.40) as the finite part of

E (d)Adj
(0,1) =

2π2

9

∫

G

d3Ω2

|Ω2|
6−d

2

ESL(2)
−(3+2ε)Λ1

(τ)

V
θ

Ed+1
Λd+1
(φ,Ω2) (5.20)

= 40
ξ(4)ξ(8+ 4ε)

ξ(4+ 2ε)ξ(7+ 4ε)
ξ(d + 1+ 2ε)ξ(2sd+1 + 2ε− d + 3)ξ(2sd+1 + 2ε) bEEd+1

(sd+1+ε)ΛH
,

at ε→ 0 in agreement with the last term in (1.31).30 One finds therefore that the sum of the
second term in the three-loop contribution with the full two-loop contribution (5.16) repro-
duces (1.31).

Thus one gets the exact coupling (1.32) stated in the introduction, with a now precise
prescription for defining the divergent integral (1.12). It will be useful in the analysis below
to rewrite (1.31) as the finite function

bE (d),ExFT
(0,1) =

8π2

3
IEd+1
Λd+1
(A(τ)− 1

6 ESL(2)
−3Λ1

, d − 2) + 40ξ(8)ξ(d+1)ξ(2sd+1+3−d)ξ(2sd+1)
ξ(7)

bEEd+1
sd+1ΛH

, (5.21)

where IEd+1
Λd+1
( f , s) was defined in general in (2.32).

In summary, we have explained how the total ∇6R4 coupling arises from the sum of the
one-, two- and three-loop four-graviton amplitudes including massive 1/2-BPS and 1/4-BPS
states running in the loops. Since for d < 7 there are two distinct supersymmetry invariants

29The weight Λd−1 in [30, (2.19)] is in general the highest weight of the third order antisymmetric product of
Λd+1, which for d = 3 gives two solutions: Λ1 + 2Λ4 and 2Λ2 of SL(5), corresponding respectively to type IIA and
type IIB. The three-loop contribution is therefore 40ξ(−1)ξ(−2)ξ(−3)(ESL(5)

− 1
2 (Λ1+2Λ4)

+ ESL(5)

− 1
2Λ2
).

30The same formula holds for d = 3 with

2π2

9

∫

G

d3Ω2

|Ω2|
3
2

ESL(2)
−(3+2ε)Λ1

(τ)

V
θ

A4

Λ3
(φ,Ω2) = 40ξ(2+ 2ε)ξ(3+ 2ε)ξ(4)ESL(5)

−( 1
2+ε)Λ1−(1+ε)Λ4

.
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completing∇6R4 [14], it is natural to decompose this coupling into two functions as in (1.32).
The computation of the 1/4-BPS states contributions at one- and two-loops are rather formal
as in (5.11), and we do not understand the analytic continuation that would lead to a justifi-
cation of the formal infinite sums we have been doing. The derivation of these contributions
can therefore be considered as heuristic. Nonetheless, the final definition (5.21) can be justi-
fied independently as the unique regularisation of the two-loop integral that is consistent with
supersymmetry Ward identities and the string theory perturbative expansion. Indeed, as we
show in detail in Appendix D in (D.30) and below, the term IE6

Λ6
(ESL(2)
−3Λ1

, 3+2ε) in (5.21) yields
an Eisenstein series that belongs to an automorphic representation associated to a bigger nilpo-
tent orbit than the one required by supersymmetry according to equation (2.10). It is therefore
apparent that only the finite combination involving A(τ)− 1

6 ESL(2)
−3Λ1

in (5.17) solves (2.10) with
the appropriate source term as written in [1], and is therefore consistent with supersymmetry.
The last term in (5.21), involving an adjoint Eisenstein series, is the appropriate homogeneous
solution to the homogeneous tensorial equation (2.10). As we shall argue in Section 5.2, its
presence in the full coupling is required for consistency with string perturbation theory.

The renormalisation prescription (5.21) also makes the equality of the particle and string
multiplet sums stated in (1.23) meaningful. While the identity (1.23) is divergent at the values
of interest for the functional relation, the renormalised integral bE (d),ExFT

(0,1) of (5.21) makes sense
on either side and the equality holds for these renormalised couplings.

5.2 Divergences and threshold terms in the weak-coupling limit

We shall now analyse the cancelation of divergences and the contributions to logarithmic terms
from (5.21) for each of the constant terms derived in Section 3. For brevity we shall refer to
the last term in (5.21) as the ‘adjoint Eisenstein series’

E (d)Adj
(0,1) =

40ξ(8)ξ(d + 1)ξ(2sd+1 + 3− d)ξ(2sd+1)
ξ(7)

bEEd+1
sd+1ΛH

. (5.22)

The second term IEd+1
Λd+1
(ESL(2)
−3Λ1

, d+2ε−2) in (5.21) coming from the 1/4-BPS state sum (5.16)
will be referred to as the ‘counterterm’, the idea being that exceptional field theory contains
only loops of 1/2-BPS states, while additional contributions from 1/4-BPS states are described
by suitable counterterms. To analyse the perturbative terms we must deal with the poles at
ε = 0 using the renormalisation prescription for the integral (5.17). There are divergent
contributions from what we called the second layer in (3.21), the third layer in (3.44), the
fourth layer in (3.47) and lastly, from the fifth layer in (3.58).

We have already argued that the contributions from the third and the fourth layers, which
are both proportional to 1

ξ(4ε) , should cancel when using the renormalisation prescription

(5.17). We expect the same to happen for the fifth layer in d = 6 proportional to 1
ξ(4ε) . This

is indeed the case if the last term in the conjectured expansion (3.58) is correct. We are not
able to check this property at this stage, and leave it as a conjecture.

Let us now turn to the terms that contribute at three-loop order in string perturbation
theory. The divergent contribution from the second perturbative layer I (2b)

d in (3.21) is given
by

g
− 24

8−d−2ε d−4
8−d

D
4π2ξ(2+2ε)ξ(6−2ε)

9 g 6
D

EDd
(3−ε)Λd−1+2εΛd

. (5.23)

while the correct contribution appearing at three loops in string theory, computed using the
same regularisation as in [30], is instead the zeroth order term at ε→ 0 of

g
− 24

8−d+2ε
D

4π2ξ(2+2ε)ξ(6+2ε)
9 g 6

D
EDd
(3+ε)Λd−1

. (5.24)
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By examining the constant terms of the two functions one sees that these two results differ.
The discrepancy is, however, resolved using the renormalised integral (5.21) as follows. Using
the Langlands constant term formula (D.2) in Appendix D.1 one finds that the contribution
from the counterterm in (5.17) cancels against (5.23), such that (5.17) is indeed finite, while
the contribution from the adjoint Eisenstein series in (5.21) gives precisely the perturbative
term (5.24) as was already observed in [47].

In addition, the counterterm (5.16) and adjoint series (5.20) both include a spurious cor-
rection in g−3

D
in string frame, that cancels out in the total coupling. In d = 6 there is an

additional spurious contribution from the adjoint series in g−12
D

in string frame, that cancels
the same one from the counterterm in (3.58), while the divergent one-loop term in (3.59) is
canceled in the renormalised coupling (3.58).

In summary, the full ∇6R4 coupling (5.21) reproduces all the expected perturbative cor-
rections detailed in Section 3.1: The tree-level term appears in (3.18). The one-loop correction
comes from (3.24), with the additional logarithmic term for d = 6 that comes from the adjoint
series (5.20) that we shall discuss below. The two-loop term comes from (3.13). The three-
loop correction in (3.24) is canceled by the counterterm and replaced by the function (5.24)
from the adjoint series (5.20).

We close the perturbative analysis of the∇6R4 coupling by a discussion of the logarithmic
terms. To analyse them we shall need the precise weak coupling expansion of ÒF (d)

(0,1) which
corresponds to the first term in (5.18) and of bE (d),ExFT

(0,1) . The weak coupling expansion of ÒF (d)
(0,1) is

given for 1≤ d ≤ 6 by

ÒF (1)
(0,1)
∼

4ζ(2)ζ(5)
63

g−10/7
9 (r5 + r−5) +

4
27
ζ(6) r3 g18/7

9 ,

ÒF (2)
(0,1)
∼
�

8πζ(6)
567g2

8

ESL(2)
3Λ1

(U) +
4ζ(6)

27
g2

8

�

ESL(2)
3Λ1

(T ) ,

ÒF (3)
(0,1)
∼

5πζ(7)
189

g−14/5
7 ED3

7
2Λ1
+

4ζ(6)
27

g6/5
7 ED3

3Λ3
,

ÒF (4)
(0,1)
∼

16ζ(8)
189

1

g4
6

ED4
4Λ3
+

5
3
ζ(3) log g6 +

4ζ(6)
27

bED4
3Λ4

, (5.25)

ÒF (5)
(0,1)
∼

5ζ(9)
54g6

5

ED5
9
2Λ1
+

�

40

9g4
5

ζ(3) +
10

9g2
5

ζ(3)ED5
3
2Λ1

�

log g5 +
4ζ(6)
27g2

5

ED5
3Λ5

,

ÒF (6)
(0,1)
∼

64ζ(10)
189πg10

4

bED6
5Λ1
+

�

−
5ζ(5)
πg10

4

+
8ζ(8)
3π2 g8

4

ED6
4Λ1

�

log g4 −
2ζ(6)
15g8

4

∂εE
D6
(4+ε)Λ1

�

�

�

ε=0
+

4ζ(6)
27g6

4

bED6
3Λ6

,

where we have shown the complete result of the constant term calculation. We first discuss the
logarithmic terms for d = 4, 5,6 and then the derivative of the Eisenstein series that appears
for d = 6. And finally we will discuss the special case d = 2.

The integral in (5.17) is finite layer-by-layer for d = 4, 5,6 and the cancellation of the pole
between the two-loop integral and the counterterm also hold for the logarithmic terms. There-
fore the logarithmic terms in bE (d),ExFT

(0,1) must come exclusively from the three-loop contribution
(5.18). As was shown in [47], the adjoint series corresponding to the second term in (5.18)
produces the logarithmic terms

bE (4),ExFT
(0,1) ∼

log g6

E (4)Adj
(0,1) ∼

log g6

10
3
ζ(3) log g6 + . . . ,

bE (5),ExFT
(0,1) ∼

log g5

E (5)Adj
(0,1) ∼

log g5

10

3g2
5

ζ(3) ED5
3
2Λ1

log g5 + . . . , (5.26)
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bE (6),ExFT
(0,1) ∼

log g4

E (6)Adj
(0,1) ∼

log g4

�

10ζ(5)
πg10

4

+
2π3

27g6
4

ED6
2Λ6

�

log g4 + . . . .

Combining the contributions from (5.25) and (5.26) then produces the following total loga-
rithmic terms for E (d)(0,1)

E (4)
(0,1)
∼

log g6

5ζ(3) log g6 , (5.27)

E (5)
(0,1)
∼

log g5

�

40

9g4
5

ζ(3) +
40

9g2
5

ζ(3)ED5
3
2Λ1

�

log g5 ∼
20
9
E (5)
(0,0)

log g5 , (5.28)

E (6)
(0,1)
∼

log g4

�

5ζ(5)
πg10

4

+
2π3

27g6
4

ED6
2Λ6
+

8ζ(8)
3π2 g8

4

ED6
4Λ1

�

log g4 ∼
5
π
E (6)
(1,0)

log g4 , (5.29)

where E (d)(0,0) and E (d)(1,0) are the coefficients of the effective R4 and∇4R4 couplings given by (1.2).
This indeed produces the expected non-analytic terms in the weak coupling expansion of the
∇6R4 couplings [2]. Note that the coefficient of the log gD correction had to recombine into
a U-duality invariant function, since it is related to the scale of a logarithm in Mandelstam
variables [8], determined by form factor divergences in supergravity.

In d = 6 one must be more careful with the two-loop contributions since they potentially
include an additional logarithmic term and a derivative of an Eisenstein series. Adding the
two-loop contribution (3.13), the similar contribution from the counterterm and the two-loop
contribution from the adjoint series leads to

8πg−8−4ε
4

∫

F2

d6Ω

|Ω2|3
�

ϕεKZ(Ω)−
π

36
ESp(4)
−3Λ1+(2+ε)Λ2

(Ω)
�

Γ6,6,2(Ω)

+
2ζ(6)
15g8

4

∂εE
D6
(4−2ε)Λ1+εΛ2

�

�

�

ε0
, (5.30)

and where |ε0 denotes the constant term in the Laurent expansion around ε= 0. In Appendix
C we provide evidence that this genus-two integral is finite at ε→ 0, such that (5.17) is indeed
finite as claimed. If so, it cannot contribute to log g4 terms, and there is therefore no log g4 at
two-loop order. The finite two-loop contributions from the Eisenstein series then add up to

−
2π2

9g 8
4

∫

F2

d6Ω

|Ω2|3
ESp(4)
−3Λ1+(2+ε)Λ2

(Ω) Γ6,6,2(Ω) +
2ζ(6)
15g8

4

∂εE
D6
(4−2ε)Λ1+εΛ2

�

�

�

ε0

= −
2ζ(6)
15g8

4

∂εE
D6
4Λ1+εΛ2

�

�

�

ε=0
+

2ζ(6)
15g8

4

∂εE
D6
(4−2ε)Λ1+εΛ2

�

�

�

ε0

= −
4ζ(6)
15g8

4

∂εE
D6
(4+ε)Λ1

�

�

�

ε0
. (5.31)

In order to reproduce the genus-two string theory amplitude (5.8), it should be that

R.N.

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω) Γ6,6,2(Ω) =

∫

F2

d6Ω

|Ω2|3
ϕεKZ(Ω) Γ6,6,2(Ω)

�

�

�

ε=0
−
ζ(6)
20π

∂εE
D6
(4+ε)Λ1

�

�

�

ε0
, (5.32)

where we factored out 8πg−8
4 from (5.8). This identity may hold up to terms proportional to

ED6
4Λ1

which can be absorbed by adjusting the splitting between the analytic and non-analytic
parts of the full amplitude. This ambiguity appears in the renormalisation of the pole

∫

F2

d6Ω

|Ω2|3
ϕεKZ(Ω) Γ6,6,2(Ω) =

π

18
ξ(1+ 2ε)ξ(8+ 2ε)ED6

(4+ε)Λ1
+O(ε0) (5.33)
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at ε→ 0. A more detailed analysis would be needed to establish (5.32), which we again leave
as a conjecture.

Let us end this discussion with the case d = 2, for which there is a logarithmic supergravity
divergence with a double pole in dimensional regularisation at two loops. The sources of
logarithmic divergences in I2(φ,ε) come from the two-loop integral I (1)2 (3.13) that behaves
as (cf. Appendix F)

I (1)2 = 8πg
− 4

3ε

8

∫

F2

d6Ω

|Ω2|3
ϕεKZ(Ω) Γ2,2,2(Ω) (5.34)

= g
− 4

3ε

8

�

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
ESL(2)

2εΛ1
(U)ESL(2)

2εΛ1
(T ) +O(ε0)

�

,

and the contribution

8π2

3
g
−2+ 2

3ε

8 ξ(−2+ 2ε)ξ(2− 2ε)ED2
(1−ε)Λ1+2εΛ2

=
8π2

3
g
−2+ 2

3ε

8 ξ(3− 2ε)ξ(2− 2ε)ESL(2)
(1−ε)Λ1

(U)
(5.35)

from (3.21). To cancel the pole in 1
ε , we must include the divergent component of the su-

pergravity amplitude, with massless legs, as well as the divergent component of the one-loop
R4 form-factor associated to the two-loop exceptional field theory amplitude with only mass-
less states running in one of the loops. Implementing an infrared cut-off µ as in [1, 30], one
obtains 31

I2,ε +
π

3
π−εΓ (ε)µ−2ε E (2)

(0,0),ε +
π2

3

�

π−2εΓ (ε)2 + 1
6π
−εΓ (ε) +O(ε0)

�

µ−4ε (5.36)

∼
ε→0

4π2

27
log(g8)

2 +
2π
9

log(g8)
�2ζ(2)

g2
8

+ 4ζ(4)(bESL(2)
Λ1
(U) + bESL(2)

Λ1
(T )) +

π

3

�

+ . . .

+
4π2

3
log(2πµ)2 −

2π
3

log(2πµ)
�2ζ(2)

g2
8

+ 4ζ(4)
�

bESL(2)
Λ1
(U) + bESL(2)

Λ1
(T )

�

+
4π
3

log(g8) +
π

3

�

,

where the dots stand for analytic terms in the string coupling constant coming from I2,ε, and

E (2)
(0,0),ε = 4πξ(2ε)ESL(2)

εΛ1
ESL(3)
εΛ2

= 4πξ(2ε) + E (2)
(0,0)
+O(ε)

∼ 4π
�

ξ(2ε)g
− 2

3
8 ESL(2)

εΛ1
(U)ESL(2)

εΛ1
(T ) + ξ(3− 2ε)g

−2+ 4
3ε

8 ESL(2)
εΛ1
(U)

�

(5.37)

is the dimensionally regularised one-loop exceptional field theory R4 coupling [1]. The re-
sult is finite at ε → 0 and reproduces the logarithmic terms in the string coupling constant
computed in [2, (2.19)], up to the additive, scheme-dependent constant π3 .

We conclude that the renormalised coupling (1.32) reproduces correctly all the required
terms in the weak coupling expansion, including the terms that are logarithmic in the string
coupling constant.

5.3 Divergences and threshold terms in the large radius limit

In the decompactification limit, similar divergent terms arise in the calculation presented in
Section 4 and have to be considered along with the renormalisation and three-loop contribu-
tion shown in (5.21). More specifically, there are divergences in the first layer in (4.11), in
the second layer in (4.13), in the fourth layer in (4.33) and in the fifth layer. Most of them

31The term 1
6π
−εΓ (ε)L2ε has not been derived but must be there for cancelling the first order pole.
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were already discussed in detail after their derivation and we now focus in more detail on the
second layer.

In the derivation of the second layer we used identities that are only valid at ε= 0. How-
ever, the calculation in Appendix D.1 shows that the derivation gives the correct result at ε 6= 0
if the local modular function A(τ) is replaced by an ordinary non-holomorphic Eisenstein se-
ries. Indeed we find a consistent result for d = 4,5, 6 using the regularised expression (4.13).
Taking this contribution from the second layer, subtracting the 1/4-BPS counterterm (5.17)
and adding the three-loop contribution to give (1.31), one gets

I (2b)

d,ε

�

A(τ)− π
6 ESL(2)
−3Λ1
(τ)
�

+ I (2b)

d,0

�

π
6 ESL(2)
−(3+2ε)Λ1

�

(5.38)

∼
4π2

9
R

12+4ε
8−d

�

6ξ(dε − 2)ξ(dε − 3)Rdε−3 EEd
dε−3

2 Λd
+ ξ(dε − 6)ξ(dε + 1)Rdε−7 EEd

dε+1
2 Λd

−
ξ(8)
ξ(7)

ξ(dε − 6)ξ(dε + 1)Rdε EEd
dε−6

2 Λd
− ξ(dε − 6)ξ(dε + 1)Rdε−7 EEd

dε+1
2 Λd

�

+
4π2

9
ξ(d − 6− 2ε)ξ(d + 1+ 2ε)R

12
8−d

�

ξ(8)
ξ(7)

Rd+2ε EEd
d−6−2ε

2 Λd
+ Rd−7−2ε EEd

d+1+2ε
2 Λd

�

∼ R
12

8−d

�

8π2

3
ξ(d − 2)ξ(d + 2ε− 3)Rd−3 EEd

d+2ε−3
2 Λd

+δd,6
8ζ(10)
π2

R12 log(R)

+
4π2ξ(d − 6− 2ε)ξ(d + 1+ 2ε)

9
Rd−7−2ε EEd

d+1+2ε
2 Λd

�

.

The first term above is regular at ε = 0 for d ≥ 4. For d = 6, the extra term above cancels
against the contribution from the first term (4.11). The last term gives

4π2ξ(3+ 2ε)ξ(5+ 2ε)
9

R−3−2ε EA4

( 5
2+ε)Λ3

∼
10ζ(3)

3R3

�

1
2ε − log(R) +

6
π
ξ(4)ξ(6)bEA4

5
2Λ3

�

4π2ξ(2+ 2ε)ξ(6+ 2ε)
9

R−2−2ε ED5
(3+ε)Λ5

∼
5

3R2

�

� 1
2ε − log(R)

�

4πξ(2)ED5
Λ4
+ 4πξ(4)ξ(6)bED5

3Λ5

�

4π2ξ(1+ 2ε)ξ(7+ 2ε)
9

R−1−2ε EE6

( 7
2+ε)Λ6

∼ 40ξ(2)R−2εξ(1+ 2ε)ξ(5− 2ε)EE6

( 5
2−ε)Λ1

(5.39)

for d = 4,5, 6, respectively, reproducing the expected result displayed in Section 4.1.

We close the subsection by considering the logarithmically divergent contributions in the
decompactification limit for d ≥ 4. The logarithmic terms in the radius R arising from ÒF (d)

(0,1) as
given by the first term in (5.18) are for d = 4, 5,6

ÒF (4)
(0,1)
∼

log R
−

5
2
ζ(3) log R ,

ÒF (5)
(0,1)
∼

log R

10
9
ζ(3)R4 log R−

20
9
ζ(3)R2 ED5

3
2Λ1

log R ,

ÒF (6)
(0,1)
∼

log R
−

4
π2
ζ(8)R12 log R+

5
3
ζ(3)R6EE6

3
2Λ1

log R−
5

2π
ζ(5)R5EE6

5
2Λ1

log R . (5.40)

Turning to the decompactification limit of bE (d),ExFT
(0,1) we note that there was a logarithmic

contribution for d = 6 coming from the first constant term in (4.11) as well as the counterterm
and there are additional contributions coming from the counterterm as well as from the three-
loop amplitude given by the adjoint series given in (5.20). Therefore we have the following
logarithmic terms

bE (4),ExFT
(0,1) ∼

log R
E (4)Adj
(0,1) ∼

log R
−

10
3
ζ(3) log R+ . . .
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bE (5),ExFT
(0,1) ∼

log R
E (5)Adj
(0,1) ∼

log R
−

10
3
ζ(3)R2 ED5

3
2Λ1

log R (5.41)

bE (6),ExFT
(0,1) ∼

log R
−

8
π2
ζ(8)R12 log+

16
3π2

ζ(8)R12 log R+ E (6)Adj
(0,1) ∼

log R
−

5
π
ζ(5)R5 EE6

5
2Λ1

log R .

Combining the two contributions then gives the following logarithmic terms

E (4)
(0,1)
∼

log R
−

35
6
ζ(3) log R ,

E (5)
(0,1)
∼

log R
−

25
9

R2E (4)
(0,0)

log R+
10
9
ζ(3)R4 log R ,

E (6)
(0,1)
∼

log R
−

15
2π

R5E (5)
(1,0)

log R+
5
6

R6E (5)
(0,0)

log R−
4
π2
ζ(8)R12 log R, (5.42)

where E (d−1)
(0,0) and E (d−1)

(1,0) are the coefficients of the R4 and ∇4R4 couplings in dimension D+ 1,
given by (1.2) (after using Langlands functional equations). This agrees with the coefficients
of the logarithms found in [2, (B.62)].

For d = 6, we must also consider the derivative of the Eisenstein series. This derivative
arises from the term proportional to R5 in ÒF (6)

(0,1) that takes the form

ÒF (6)
(0,1)
∼
R5

40ξ(2)ξ(6)
�

R5−εξ(1+ 2ε)ξ(5+ 2ε)
ξ(6+ 2ε)

EE6

( 5
2+ε)Λ1

− R5 ξ(5)
2εξ(6)

EE6
5
2Λ1

�

�

�

�

ε→0
. (5.43)

There is a similar term in bE (6),ExFT
(0,1) that reads

bE (6),ExFT
(0,1) ∼

R5
40ξ(2)

�

R5+2εξ(1− 2ε)ξ(5+ 2ε)EE6

( 5
2+ε)Λ1

+ R5ξ(5)
2ε

EE6
5
2Λ1

�

�

�

�

ε→0
(5.44)

such that the unphysical derivative of the Eisenstein series (∂sE
E6
sΛ1
)|s= 5

2
drops out in the total

coupling E (6)(0,1).

For d = 2 the combination (1.28) is not finite because there is a logarithmic divergence in
supergravity. One obtains

I2,ε ∼ R
12+4ε

6

�

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
R−2+4ε +

2π
3

R2ε−1ξ(2ε)E (1)
(0,0),ε +O(ε0)

�

∼
1
12

�

E (2)
(0,0),ε +

π
6

�2
+O(ε0), (5.45)

where

E (2)
(0,0),ε = 4πξ(2ε)ESL(2)

εΛ1
ESL(3)
εΛ2

= 4πξ(2ε) + E (2)
(0,0)
+O(ε) ,

E (1)
(0,0),ε = 4πξ(2ε− 1)

�

ν−
3
7 (1−2ε)ESL(2)

(ε− 1
2 )Λ1
+ ν

4
7 (1−2ε)

�

= E (1)
(0,0)
+O(ε) . (5.46)

Taking into account the divergence coming from the supergravity amplitude and the R4 form-
factor as in (5.37), one obtains instead

I2,ε +
π

3
π−εΓ (ε)µ−2ε E (2)

(0,0),ε +
π2

3

�

π−2εΓ (ε)2 + 1
6π
−εΓ (ε) +O(ε0)

�

µ−4ε

∼
49π2

27
log(R)2 −

7π
9

log(R)
�

RE (1)
(0,0)
+ π

3

�

+
4π2

3
log(2πµ)2 −

2π
3

log(2πµ)
�

RE (1)
(0,0)
− 14π

3 log(R) + π
3

�

, (5.47)
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which is finite as ε→ 0 and reproduces the expected logarithmic terms from [2, (B.49)].

For d = 3 one obtains the constant terms

I3,ε ∼ R
12+4ε

5

�

16π2ξ(1+ 2ε)2

(3− 2ε)(4+ 2ε)
R4ε + I2,ε +

8π2

3
R2εξ(1+ 2ε)E (2)

(0,0),ε +O(ε0)
�

∼ R
12
5

�

4π2

3
log(R)2 +

2π
3

log(R)E (2)
(0,0)
+ . . .

�

, (5.48)

which reproduces the expected logarithmic terms from [2, (B.38)].

In summary, our renormalisation prescription leading ultimately to the renormalised cou-
pling (1.31), reproduces correctly the expected expansion of the ∇6R4 coupling in the weak
coupling and decompactification limits, including logarithmic terms in the string coupling and
the radius R. This lends very strong support to the claim that (1.31) is the correct full coupling.

5.4 Generalisation to E8

In three dimensions there exists a unique∇6R4 type supersymmetry invariant [14]. Thus, the
second term in (1.13) should be omitted, leading to

E (7)
(0,1)
= bE (7),ExFT

(0,1) = 8π

∫

G

d3Ω2

|Ω2|
−1
2

�

|Ω2|εϕtr
KZ −

π

36

ESL(2)
−3Λ1

(τ)

V 1+2ε
+
π

36

ESL(2)
−(3+2ε)Λ1

(τ)

V

�

θ
E8
Λ8
(φ,Ω2)

�

�

�

�

ε0

,

(5.49)
consistently with the sum of the exceptional field theory amplitude contributions up to three
loops [30], and the 1/4-BPS states contribution discussed in this section.

The analysis of Section 4.2 can be applied to the lattice M E8
Λ8

in the adjoint representation
of E8. As we explain in Appendix E, the computation is very similar for the first five layers,
but there are two additional layers of charges. We are able to compute the constant term and
the generic Fourier coefficients for the sixth layer of charges. Using the Langland constant
term formula for the Eisenstein series IE8

Λ8
(ESL(2)

sΛ1
, 5 + 2ε), we argue that the last layer does

not contribute, so that the constant terms that we are able to compute do exhaust the non-
vanishing contributions. Despite the fact that the three contributions in (5.49) are individually
finite in the limit ε→ 0, IE8

Λ8
(ESL(2)
−(3+δ)Λ1

, 5+ 2ε) is not analytic at (ε,δ) = (0, 0) in C2, because

its limit includes a factor of δ+2ε
δ−2ε . Therefore the renormalisation prescription (1.31) gives a

finite contribution that must be taken into account to reproduce the correct coupling. One
obtains eventually

E (7)
(0,1)
∼ R12

�

E (6)
(0,1)
+

5
π

log R E (6)
(1,0)
+
ζ(5)
2π

R4E (6)
(0,0)
−

9ζ(5)2

8π2
R8 +

5ζ(11)
12π

R10
�

, (5.50)

which reproduces the expected result from [2, (B.70)]. The first three terms come from the
second layer of charges with
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I (2)7,ε

�

A(τ)− π
6 ESL(2)
−3Λ1
(τ)
�

+ I (2)7,0

�

π
6 ESL(2)
−(3+2ε)Λ1

�

(5.51)

∼ R12
�

R4εIE7
Λ7

�

A(τ)− π
6 ESL(2)
−3Λ1
(τ), 5+ 2ε

�

+ IE7
Λ7

�

π
6 ESL(2)
−(3+2ε)Λ1

(τ), 5
�

�

+
4π2

9
R12+4ε

�

6ξ(5+ 2ε)ξ(4+ 2ε)R4+2ε EE7
(2+ε)Λ7

+ ξ(1+ 2ε)ξ(8+ 2ε)R2ε EE7
(4+2ε)Λ7

−
ξ(8)
ξ(7)

ξ(1+ 2ε)ξ(8+ 2ε)R7+2ε EE7

( 1
2+ε)Λ7

− ξ(1+ 2ε)ξ(8+ 2ε)R2ε EE7
(4+2ε)Λ7

�

+
4π2

9
ξ(1− 2ε)ξ(8+ 2ε)R12

�

ξ(8)
ξ(7)

R7+2ε EE7

( 1
2−ε)Λ7

+ R−2ε EE7
(4+2ε)Λ7

�

∼ R12

�

R4εIE7
Λ7

�

A(τ)− π
6 ESL(2)
−3Λ1
(τ), 5+ 2ε

�

+ IE7
Λ7

�

π
6 ESL(2)
−(3+2ε)Λ1

(τ), 5
�

+
4π2ξ(1− 2ε)ξ(8+ 2ε)

9
R−2ε EE7

(4+ε)Λ7
+

8π2

3
ξ(5)ξ(4+ 2ε)R4 EE7

(2+ε)Λ7

�

.

To compute the logarithmic term one uses the property that the only divergent terms are

IE7
Λ7

�

π
6 ESL(2)
−(3+2ε)Λ1

(τ), 5
�

+
4π2ξ(1− 2ε)ξ(8+ 2ε)

9
R−2ε EE7

(4+ε)Λ7

= 40ξ(4)
�

ξ(7+2ε)ξ(8+4ε)ξ(9+2ε)ξ(12+2ε)
ξ(4+2ε)ξ(7+4ε) EE7

(6+ε)Λ1
+ ξ(1− 2ε)ξ(8+ 2ε)R−2ε EE7

(4+ε)Λ7

�

= 40ξ(8)ξ(9)ξ(12)bEE7
6Λ1
+ 40ξ(2)ξ(6)ξ(10)bEE7

5Λ7
+

5
π

log Rζ(5)EE7
5Λ1
+O(ε) , (5.52)

consistently with (5.50). The last constant term in 40ξ(2)ξ(6)ξ(d + 4)Rd+3 that comes from
the function ÒF (d)

(0,1) for d ≤ 6 now originates from the sixth layer of bE (7),ExFT
(0,1) displayed in (E.33).

This analysis also lends support to our renormalised coupling (1.32) in the case d = 7.
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A Poincaré series representation of ϕKZ

In this section, we provide evidence for the relation (1.21) expressing the Kawazumi–Zhang
invariant ϕKZ as a Poincaré series seeded by its tropical limit. We first recall how both sides
can be expressed as theta liftings for lattices of signature (3,2) and (2,1), following [48]. As a
result, (1.21) would follow from a similar property (A.16) for Siegel–Narain theta series. We
give evidence that (A.16) holds, by integrating both sides against a vector-valued Eisenstein

66

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054


SciPost Phys. 8, 054 (2020)

series of weight−1/2, and invoking Langlands’ functional relation for generic Eisenstein series
of SO(3,2) = Sp(4,R)/Z2. Additional evidence for (1.21) comes from the analysis of constant
terms in Sections 3 and 4 and in Appendix C.

A.1 Theta series representation for real-analytic Siegel modular forms

The Siegel modular group Sp(4,Z) is isomorphic to the automorphism group of the lattice
Z5 with quadratic form 2(m1n1 +m2n2) + 1

2 b2 of signature (3, 2). Using this observation, we
can obtain Siegel modular functions of Sp(4,Z) from theta liftings of vector-valued modular
forms under SL(2,Z), generalising earlier constructions of the log-norm of the Igusa cusp
form Ψ10 [71] and of the genus-two Kawazumi–Zhang invariant [48]. For this purpose, we
introduce the lattice partition functions for i = 0,1 (setting z = x + iy ∈H and q = e2πiz)

Γ
(i)
3,2(Ω; z) = y

∑

m1,m2,n1,n2∈Z
b∈2Z+i

q
1
4 ~p

2
L q̄

1
4 |pR|2 , i = 0,1, (A.1)

where

p1
R+ ip2

R =
m2 −ρm1 +σn1 + (ρσ− v2)n2 − b v

q

ρ2σ2 − v2
2

,

p1
L + ip2

L =
m2 −ρm1 + σ̄n1 + (ρσ̄− v2)n2 − b v + i

2 v2
2 (n

1 +ρn2)
q

ρ2σ2 − v2
2

p3
L =b+ i

(n1 + n2ρ̄)v − (n1 + n2ρ)v̄
2ρ2

,

(A.2)

such that ~p 2
L − |pR|2 = 4min

i + b2. Here,

Ω=

�

ρ v
v σ

�

(A.3)

lives in the Siegel upper-half plane H2, and (pR, p̄R) and ~pL = (p1
L , p2

L , p3
L) are the projections

of the lattice vector Q= (m1, m2, b, n1, n2) on the positive 2-plane and its orthogonal comple-
ment.

Given a weak Jacobi form h(z, v) of weight −1/2 and index 1, we can take its theta series
decomposition [72]

h(z, v) = h0(z)θ3(2z, 2v) + h1(z)θ2(2z, 2v) (A.4)

and consider the modular integral

I3,2[h] =

∫

F1

dxdy
y2

�

Γ
(0)
3,2 (Ω; z)h0(z) + Γ

(1)
3,2 (Ω; z)h1(z)

�

(A.5)

over the standard fundamental domain F1 = {τ ∈ H1, |τ| > 1, |τ1| < 1/2} for PSL(2,Z)
(which consists of two copies of the fundamental domain F for PGL(2,Z) defined below
(1.14)). The integrand is invariant under SL(2,Z)×Sp(4,Z), so the integral produces a Siegel
modular form, possibly with singularities on rational quadratic divisors when h has poles at
the cusp. In the limit Ω→ i∞ (corresponding to the maximal non-separating degeneration in
the language of genus-two Riemann surfaces, or the limit where one circle decompactifies in
the language of torus compactifications), Γ (i)3,2(Ω; z) factorises into Γ1,1(V ; z)× Γ (i)2,1(τ, z), where
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Γ1,1(V ; z) =V−1
∑

(p,q)∈Z2

e−π|p+qz|2/(yV 2)

Γ
(i)
2,1(τ; z) =y

∑

a,c∈Z,b∈2Z+i

q
1
4 |pL |2 q̄

1
4 p2

R , i = 0, 1 .
(A.6)

Here V = 1/|Ω2|1/2 is the inverse radius of the large circle, τ is defined as in (1.14) and

pR =
a|τ|2 + bτ1 + c

τ2
, p1

L + ip2
L =

aτ2 + bτ+ c
τ2

, (A.7)

such that |pL|2 − p2
R = b2 − 4ac. In the decompactifying limit V → 0, the dominant term in

the modular integral (A.5) comes from the zero orbit (p, q) = (0,0), so I3,2[h] ∼ V−1 I2,1[h]
where

I2,1[h] =

∫

F1

dxdy
y2

�

Γ
(0)
2,1 (τ; z)h0(z) + Γ

(1)
2,1 (τ; z)h1(z)

�

. (A.8)

Thus, the leading tropical limit I2,1 of the Siegel modular form I3,2 is itself a theta lift. Sublead-
ing terms come from the terms with (p, q) 6= (0,0). For these terms, the integration domain
can be unfolded to the strip R+ × [−1

2 , 1
2] at the expense of restricting to q = 0. The integral

over u picks up contributions from zero or negative Fourier modes of hi , leading to powerlike
or exponentially suppressed terms in 1/V , respectively. The minimal non-separating degener-
ation limit t →∞with t = τ2/V keeping ρ2 = 1/(Vτ2) fixed instead corresponds to the limit
where the volume of T2 becomes infinite, and can be extracted using similar orbit methods.

The Kawazumi–Zhang invariant ϕKZ is obtained by choosing [48]

(h0, h1) = −
1
2

D−5/2(h̃0, h̃1), (A.9)

where

h̃(z, v) = h̃0(z)θ3(2ρ, 2v) + h̃1(z)θ2(2z, 2v) =
θ2

1 (z, v)

η6(z)
, (A.10)

and Dw =
i
π(∂z −

iw
2τ2
) is the Maaß raising operator, mapping modular forms of weight w to

modular forms of weight w + 2. Using the theta lift representation, it is straightforward to
obtain the asymptotics of ϕKZ in the tropical limit Ω→ i∞, and indeed the complete Fourier
expansion,

ϕKZ =
π

6
|Ω2|1/2A(τ) +

5ζ(3)
4π2

|Ω2|−1

+ 2
∑

M∈S+

�

|M |+
5

16π2|Ω2|
(1+ 2πtr[MΩ2])

�∑

k|M

k−3 c̃(4|M |
k2 )(e2πitrMΩ + e−2πitrMΩ̄), (A.11)

where S+ is defined below (3.57), A(τ) is the modular local function defined by (1.15) on the
fundamental domain F , and c̃(n) are the Fourier coefficients of

−
θ4(2τ)
η(4τ)6

=
∑

n≥−1

c̃(n)qn . (A.12)

In the minimal non-separating degeneration t →∞, one has instead

ϕKZ =
π

6
t +ϕ0 +

ϕ1

t
+O(e−πt), (A.13)
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where

ϕ0 =πρ2u2
2 − log

�

�

�

�

ϑ1(v,ρ)
η(ρ)

�

�

�

�

=
1
2
D1,1(ρ; v) ,

ϕ1 =
5

16π2ρ2
D2,2(ρ; v) +

π

36
ESL(2)

2Λ1
(ρ) .

(A.14)

Here, Da,b is the Kronecker–Eisenstein series

Da,b(v,ρ) =
(2iρ2)a+b−1

2πi

′
∑

(m,n)∈Z2

e2πi(nu2+mu1)

(mρ + n)a(mρ̄ + n)b
, (A.15)

where v = u1+u2ρ. It may be worth noting that D1,1 coincides with the scalar propagator on
the torus.

A.2 Poincaré series from theta lifting

The identity (1.21) expressing the Kawazumi–Zhang invariant as a Poincaré series seeded by
its tropical limit would follow from a similar property for the lattice theta series,

Γ
(i)
3,2 = lim

ε→0





∑

γ∈(GL(2,Z)nZ3)\Sp(4,Z)

�

|Ω2|
1
2+ε Γ

(i)
2,1

�

�

�

�

γ



 , (A.16)

where the limit ε→ 0 should be taken after analytic continuation away from the region where
the sum converges. While we do not know how to prove this relation, we shall test its conse-
quence when integrating against the Eisenstein series E(s, w; z) of weight w = −1

2 under the
congruence subgroup Γ0(4) ⊂ SL(2,Z). The Eisenstein series is defined by

E(s, w; z) =
∑

γ∈Γ∞\Γ0(4)

y s− w
2

�

�

�

w

γ
, (A.17)

where the ‘slash’ notation corresponds to the action of γ ∈ Γ0(4) on the variable z with an
additional factor of automorphy (cz + d)−w. Decomposing as in (A.4)

E(s, w; z) = E0(s, w; 4z) + E1(s, w; 4z) (A.18)

and computing the integral (A.5) by unfolding, we get

I3,2

�

E(s− 1
4 ,−1

2)
�

=
Γ (s)
πs

′
∑

Q=(m1,m2,n1,n2,b)∈Z5

b2+4m1n1+4m2n2=0

|pR(Q)|−2s = ξ(2s) ESp(4)
sΛ2

, (A.19)

which we recognise as the Siegel–Eisenstein series for Sp(4,Z). Indeed, using the constant
terms (for w ∈Z+ 1

2)

E(s, w; z) =y s− w
2 +

41−2s(−1)b
w
2 −

1
4 cπΓ (2s− 1)

Γ (s+ w
2 ) Γ (s−

w
2 )

ζ(4s− 2)
ζ(4s− 1)

y1−s− w
2 +O(e−πy) (A.20)

and the orbit method, we find the constant terms

V−1I2,1

�

E(s− 1
4 ,−1

2)
�

+ ξ(2s)ξ(4s− 2)V−2s +
ξ(2s− 2)ξ(4s− 3)

ξ(4s− 2)
V 2s−3 . (A.21)
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In the first term, the theta lift can be computed by unfolding,

I2,1

�

E(s− 1
4 ,−1

2)
�

=
Γ (s− 1

2)

πs− 1
2

′
∑

(a,b,c)∈Z3

b2−4ac=0

p−(2s−1)
R

=
Γ (s− 1

2)

πs− 1
2









′
∑

(a,b)∈Z2

a 6=0,4a|b2

�

1
aτ2

�

�

�

�

aτ+
b
2

�

�

�

�

2
�−(2s−1)

+
∑

c 6=0

�

c
τ2

�−(2s−1)









= V−1 ξ(2s− 1) ESL(2)
(2s−1)Λ1

(τ) , (A.22)

where in the last line, we solved the constraint 4a|b2 by setting (a, b) = kp(p, q) with
gcd(p, q) = 1 and k ≥ 1. In total, (A.21) reproduces the known constant terms of the Siegel–
Eisenstein series ESp(4)

sΛ2
[40, (3.13)].

The conjectural property (A.16) now predicts that

ESp(4)
sΛ2

=
ξ(2s− 1)
ξ(2s)

lim
ε→0





∑

γ∈(GL(2,Z)nZ3)\Sp(4,Z)

�

|Ω2|
1
2+ε ESL(2)

(2s−1)Λ1
(τ)
�

�

�

�

γ



 . (A.23)

Expressing ESL(2)
(2s−1)Λ1

(τ) as a sum over cosets, this is tantamount to

ESp(4)
sΛ2

?
=
ξ(2s− 1)
ξ(2s)

lim
ε→0





∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

�

|Ω2|
1
2+ετ2s−1

2

�

�

�

�

γ



 , (A.24)

where B is the Borel subgroup of Sp(4,Z). The righthand side is proportional to the generic
Langlands–Eisenstein series

ESp(4)
(s2−s1)Λ1+s1Λ2

=
∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

ρ
s1
2 ts2

�

�

�

γ
=

∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

|Ω2|
1
2 (s1+s2)τ

s2−s1
2

�

�

�

γ
, (A.25)

with (s1, s2) = (1 − s + ε, s + ε). Using the functional equation satisfied by (A.25) under
(s1, s2) 7→ (1 − s1, s2), and recalling (A.3), we find that the right-hand side of (A.24) is, in
the limit ε→ 0, equal to

∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

(|Ω2|s )
�

�

�

γ
, (A.26)

which is the standard definition of the Siegel–Eisenstein series ESp(4)
sΛ2

. This provides a strong
consistency check on the conjecture (A.16), and therefore on its consequence (1.21).

A.3 Poincaré series from 1/2-BPS state sums

If (h0, h1) or equivalently h(z) = h0(4z) + h1(4z) can be represented as a Poincaré series for
SL(2,Z), then we can evaluate the either of the integrals I3,2[h] or I2,1[h] by the unfolding
method [73], and obtain a sum over lattice vectors of fixed norm, which can be reinterpreted
as a Poincaré series for Spin(3, 2,Z) = Sp(4,Z) or for O(2, 1,Z) = PGL(2,Z). Let us assume
that h is proportional to the Niebur–Poincaré series F4(s,κ, w; z). The integral then becomes

I3,2(s,κ;Ω) = Γ (s+ 1
4)

∑

(mi ,b,ni)∈Z5

4mi n
i+b2=κ

(p2
R/κ)

−1
4−s

2F1

�

s+ 1
4 , s+ 1

4 ; 2s;−κ/p2
R

�

, (A.27)
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where

pR =
m2 −ρm1 +σn1 + (ρσ− v2)n2 − b v

q

ρ2σ2 − v2
2

. (A.28)

The summand is (away from the singular locus where pR = 0 for some vector Q) an eigen-
mode of ∆Sp(4) with eigenvalue 1

8(4s + 1)(4s − 5). For κ = 1, all vectors are images of the
vector Q= (mi , b, ni) = (0,1, 0), whose stabiliser is SL(2,Z)ρ×SL(2,Z)σ. Therefore, we can
interpret (A.27) as

I3,2(s,κ= 1;Ω) = Γ (s+ 1
4)

∑

γ∈[SL(2,Z)×SL(2,Z)]\Sp(4,Z)

Ms

 

|v|
q

ρ2σ2 − v2
2

!

�

�

�

�

γ

, (A.29)

where

Ms(u) =u−
1
2−2s

2F1

�

s+ 1
4 , s+ 1

4 ; 2s;−
1
u2

�

=(1+ u2)−(s+
1
4 ) 2F1

�

s+ 1
4 , s− 1

4 ; 2s;−
1

1+ u2

�

,
(A.30)

where in the second equality we used Pfaff’s identity 2F1(a, b, c; z) = (1−z)−a
2F1(a, c−b, c; z

z−1).
Note that Ms(u) satisfies

1
2
(1+ u2)∂ 2

u Ms(u) +
1+ 4y2

2y
∂uMs(u) =

�

2s(s− 1)− 5
8

�

Ms(u), (A.31)

which ensures that the Poincaré series (A.29) is an eigenmode of ∆Sp(4) with eigenvalue
2s(s− 1)− 5

8 . Similarly, we can write the tropical limit as a Poincaré series:

I2,1(s,κ;τ) =Γ (s− 1
4)

∑

(a,b,c)∈Z3

b2−4ac=κ

(p2
R/κ)

1
4−s

2F1

�

s+ 1
4 , s− 1

4 ; 2s;−κ/p2
R

�

=Γ (s− 1
4)

∑

γ∈SO(2)\SO(2,1,Z)

ms(τ1/τ2)|γ,
(A.32)

where pR = [a|τ|2 + bτ1 + c]/τ2 and

ms(u) = u−2s+ 1
2 2F1

�

s+ 1
4 , s− 1

4 ; 2s;−
1
u2

�

. (A.33)

Choosing s = 9
4 ,κ = 1 and adjusting the normalisation, the Niebur–Poincaré series reduces to

the weak holomorphic modular form (A.10) appearing in the theta lift representation of the
Kawazumi–Zhang invariant or its tropical limit,

h̃(z) = h̃0(4z) + h̃1(4z) = −
1

Γ (9
2)
F4(

9
4 , 1,−5

2 ; z) . (A.34)

Using the identity
Dw F4(s,κ, w; z) = κ(2s+w)F4(s,κ, w+ 2; z) (A.35)

and setting s = 9
4 in the previous formulae, we get

ϕKZ(Ω) =
1

4Γ (9/2)

∫

F1

dxdy
y2

�

Γ
(0)
3,2 (Ω; z)F0(

9
4 , 1

4 ,−5
2 ; z) + Γ (1)3,2 (Ω; z)F∞(9

4 , 1
4 ,−5

2 ; z)
�

=
1

4Γ (9/2)
I3,2(9/4, 1/4;Ω)

=
Γ (5/2)

4Γ (9/2)

∑

(mi ,b,ni)∈Z5

4mi n
i+b2=1

M(|pR|) =
1
35

∑

γ∈O(3,2,Z)/O(2,2,Z)

M

 

v
q

ρ2σ2 − v2
2

!

�

�

�

�

γ

,

(A.36)
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where

M(u) = u−5
2F1

�5
2 , 5

2 ; 9
2 ;−1/u2

�

=
35
12

�

3(2+ 5u2)arcsinh(1/u)−
11+ 15u2

p
1+ u2

�

. (A.37)

Similarly, for the tropical limit A= 6
πϕ

tr
KZ, we get

A(τ) =−
3
π

∫

F1

dxdy
y2

�

Γ
(0)
2,1 (τ; z)Dz h̃0(z) + Γ

(1)
2,1 (τ; z)Dz h̃1(z)

�

=−
3
π

∫

FΓ0(4)

dxdy
y2

Γ
(0)
2,1 (τ; 4z)Dz h̃(z)

=
3

2π1/2Γ (9
2)

∑

(a,b,c)∈Z3

b2−4ac=1

m(pR) =
8

35π

∑

γ∈O(2,1,Z)/O(1,1,Z)

m
�

τ1

τ2

�
�

�

�

γ
,

(A.38)

where

m(u) = u−4
2F1

�5
2 , 2; 9

2 ;−1/u2
�

=
35
12

�

15u2 + 4− 3
�

3+ 5u2
�

u arccot(u)
�

. (A.39)

Note that m(u) is a bounded, continuous, even function of u ∈R, non-differentiable at u= 0,
and decays as 1/|u|4 for |u| →∞. It is annihilated by the differential operator ∂u(1+u2)∂u−12,
which ensures that the Poincaré series (A.38) is annihilated by ∆τ − 12 away from the locus
τ1 = 0 and its images under GL(2,Z).

B Integrating A(τ) against single and double Eisenstein series

In this appendix, we compute modular integrals of the local modular form A(τ) defined in
(1.15), which we copy for convenience,

A(τ) =
|τ|2 −τ1 + 1

τ2
+

5τ1(τ1 − 1)(|τ|2 −τ1)
τ3

2

(B.1)

multiplied by either a standard non-holomorphic Eisenstein series ESL(2)
sΛ1

(τ), or a ‘double Eisen-
stein series’ defined in (2.43), over the fundamental domain F for PGL(2,Z) defined below
(1.14). These results are used in the computation of the weak-coupling expansion in Sec-
tion 3.2.

B.1 Against a single Eisenstein series

Here we establish the formula (3.17), which we recall for convenience,

R.N.

∫

F

dτ1dτ2

τ 2
2

A(τ) ESL(2)
sΛ1

(τ) =
3 [ξ(s)]2

[12− s(s− 1)]ξ(2s)
. (B.2)

It will be convenient to unfold the integral to the domain F ′ = {|τ − 1
2 | >

1
2 , 0 < τ1 < 1}

which consists of the 6 images of F under the permutation group S3 ⊂ PGL(2,Z). Inside this
domain, the two factors in the integrand are eigenmodes of the Laplacian [31, (3.12)],

[∆τ − s(s− 1)] ESL(2)
sΛ1

= 0 , (B.3)
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(∆τ − 12)A= −12τ2δ(τ1)− 12τ2δ(1−τ1)−
12τ2

|τ|2
δ

�

|τ|2 −τ1

|τ|2

�

.

We define the truncated fundamental domain F ′(L) by removing the region τ2 > L and its
images under S3. To avoid dealing with the delta functions, we regulate F ′(L) by requiring
δ < τ1 < 1−δ, |τ− 1

2 |>
1
2 +δ and we let δ→ 0 at the end. Thus,

[s(s− 1)− 12]

∫

F ′(δ,L)

dτ1dτ2

τ 2
2

A(τ) ESL(2)
sΛ1

=

∫

∂F ′(δ,L)
?
�

AdESL(2)
sΛ1

− ESL(2)
sΛ1

dA
�

, (B.4)

where ?dτ1 = dτ2,?dτ2 = −dτ1. Due to S3 symmetry, the three boundaries at τ1 = 0, 1 and
|τ− 1

2 | =
1
2 produce identical contributions, while the the contribution from the boundary at

τ2 = L and its image is subtracted by the renormalisation prescription. The contribution from
the boundary at τ1 = 0 can be computed by using

A(0,τ2) = τ2 +
1
τ2

, ∂τ1
A|τ1→0+ = −

6
τ2

, lim
τ1→0

∂τ1
ESL(2)

sΛ1
= 0 . (B.5)

At τ1 = 0, τ2 runs from L to 1/L, hence

[s(s− 1)− 12]

∫

F ′(δ,L)

dτ1dτ2

τ 2
2

A(τ) ESL(2)
sΛ1

(τ) = −18

∫ L

1
L

dτ2

τ2
ESL(2)

sΛ1
(iτ2) . (B.6)

The integral on the r.h.s. can be computed for Re[s]> 1 by substituting ESL(2)
sΛ1

=
∑

(c, d) = 1

τ2
2

|cτ+d|2s

and integrating term by term. Upon folding the integral and subtracting the divergence, we
get

lim
L→∞

�

∫ L

1

dτ2

τ2
ESL(2)

sΛ1
(iτ2)−

Ls

s

�

=
2

sζ(2s)

∞
∑

n=1

n−2s
∞
∑

m=1
2F1

� s
2 , s; s

2 + 1;−m2

n2

�

, (B.7)

where the sum and the integral are absolutely convergent for Re[s] > 1. Using the functional
identity32

2F1

� s
2 , s; s

2 + 1;−x2
�

+ x−2s
2F1

� s
2 , s; s

2 + 1;−
1
x2

�

=
sΓ ( s

2)
2

2Γ (s)
x−s , (B.8)

and exchanging m and n one obtains

2
sζ(2s)

∞
∑

n=1

n−2s
∞
∑

m=1
2F1

� s
2 , s; s

2 + 1;−m2

n2

�

=
Γ ( s

2)
2

2Γ (s)ζ(2s)

∞
∑

n=1

∞
∑

m=1

1
(nm)s

=
ξ(s)2

2ξ(2s)
(B.9)

consistently with the advertised formula (B.2).
It is worth noting that the integral (B.6) can be computed alternatively by inserting a power

τ
η
2 in the integrand, subtracting by hand the constant term from ESL(2)

sΛ1
(iτ2), and extending

the integral from [1/L, L] to R+:
∫ +∞

0

dτ2

τ
1−η
2

�

ESL(2)
sΛ1

(iτ2)−τs
2 −
ξ(2s− 1)
ξ(2s)

τ1−s
2

�

= L?
�

ESL(2)
sΛ1

,η+
1
2

�

, (B.10)

which gives the same result in the limit η→ 0 using (2.30). We therefore conclude that

R.N.

∫

F ′

dτ1dτ2

τ 2
2

A(τ) ESL(2)
sΛ1

(τ) =
18

12− s(s− 1)
ξ(s)2

ξ(2s)
. (B.11)

After dividing by 6 to get the integral over F , we obtain (B.2).
32A special case of the general identity [74, Eq. (15.3.7)]

2F1

�

a, b; c; z
�

=
Γ (b− a)Γ (c)
Γ (c − a)Γ (b)

�

− 1
z

�a
2F1

�

a, a−c+1; a−b+1; 1
z

�

+
Γ (a− b)Γ (c)
Γ (c − b)Γ (a)

�

− 1
z

�b
2F1

�

b−c+1, b;−a+b+1; 1
z

�

.
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B.2 Against a double Eisenstein series

We now briefly consider the integral against the ‘double Eisenstein series’ defined in (2.43),

eAs(U)≡
∫ ∞

0

dV
V 1+2s

∫

F

dτ1dτ2

τ 2
2

A(τ)
′
∑

M∈Z2×2

e−
π
V M

2
, (B.12)

where, for an integer matrix M =

�

q1 p1
q2 p2

�

,

M2 =
1

τ2U2
Tr

�

�

p1 q1
p2 q2

�T

·
�

1 −U1
−U1 |U |2

�

·
�

p1 q1
p2 q2

�

·
�

1 −τ1
−τ1 |τ|2

�

�

=
1

2τ2U2

�

|p1 − U p2 −τ(q1 − Uq2)|2 + |p1 − U p2 − τ̄(q1 − Uq2)|2
�

.

(B.13)

Using (B.3) and the fact that M2 degenerates to

M2 =
1

τ2U2
|p1 − U p2|2 +

τ2

U2
|q1 − Uq2|2 (B.14)

on the locus τ1 = 0, it is straightforward to check that the integral (B.12) satisfies the differ-
ential equation

∆eAs(U) = 12eAs(U)− 6
�

ξ(2s)ESL(2)
sΛ1
(U)

�2
. (B.15)

Using the same method as in [32, App. A], it is straightforward to show that the relevant
solution to (B.15) can be represented as a sum of an Eisenstein series and a lattice sum-type
series

eAs(U) = 6ξ(2s)2





ESL(2)
2sΛ1
(U)

2(2− s)(2s+ 3)
+
∑

γ∈S
(detγ)−2shs(U1/U2)

�

�

�

γ



 , (B.16)

where33

S = {±1}\
��

α β

γ δ

�

∈Z2×2 ∩ GL+(2,R)

�

�

�

�

gcd(α,β) = gcd(γ,δ) = 1

�

(B.17)

and hs(u) is the unique smooth, decaying solution of
�

∂u((1+ u2)∂u)− 12
�

hs = −(1+ u2)−s . (B.18)

This solution can be expressed for s /∈ {1, 2} as

hs(u) =
1− 3s

6(s− 1)(s− 2) 2F1(−
3
2

, s;
1
2

;−u2) +
su2

s− 1 2F1(−
1
2

, s+ 1;
3
2

;−u2)

+α(s)
�

4
3
+ 5u2 + u(3+ 5u2)arctan(u)

�

(B.19)

in terms of hypergeometric functions and the term in the second line is the unique homoge-
neous, even and smooth solution of (B.18). The latter can also be written as

4
3
+ 5u2 + u(3+ 5u2)arctan(u) =

�

m(u) +
35π

8
|u|(3+ 5u2)

�

, (B.20)

33In the expression (B.16), GL+(2,R) consists of positive determinant GL(2,R) matrices and the action of
�

α β
γ δ

�

∈ GL+(2,R) on the upper half plane is U 7→ αU+β
γU+δ . The Laplacian on the upper half plane is also invariant

under this action that extends the usual SL(2,R) action.
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combining the non-smooth homogeneous solution m(u) introduced in (A.39) and the inde-
pendent non-smooth solution |u|(3+5u2). The numerical coefficient α(s) is fixed by requiring
that hs(u) decays (as 1/|u|2) as |u| →∞ and is given explicitly by

α(s) =
Γ (3

2 + s)

3
p
π(s− 1)(s− 2)Γ (s)

. (B.21)

For s = 3/2, we recover the solution in [32, (A.7)]

h3/2(u) =
7+ 44u2 + 40u4

3
p

1+ u2
−

16
3π

�

4
3
+ 5u2 + u(3+ 5u2)arctan(u)

�

. (B.22)

Similar closed algebraic forms arise when s is half-integer, e.g.

h5/2(u) = −
13+ 102u2 + 168u4 + 80u6

9(1+ u2)3/2
+

32
9π

�

4
3
+ 5u2 + u(3+ 5u2)arctan(u)

�

. (B.23)

It is interesting to note that the representation (B.16) can be obtained directly by plugging
in the Poincaré representation (A.38) of A(τ) into the integral (B.12), and unfolding the sum
over γ ∈ GL(2,Z). The first term in (B.16) comes from contributions of rank-one matrices M
while the second comes from non-degenerate matrices. The agreement with the second term
in (B.16) relies on the conjectural identity for A= I2,

16
35π

∫ ∞

0

dV
V 1+2s

∫

H1

dτ1dτ2

τ 2
2

e−
2π
V −

π|U−τ|2
Vτ2U2 m(τ1/τ2) = 6[π−sΓ (s)]2 hs(U1/U2), (B.24)

which we have checked at the first few orders in a Taylor expansion around U1 = 0 using Math-
ematica. Note that the factor m(τ1/τ2) in the integrand, despite being annihilated by∆τ−12,
is not regular along the locus τ1 = 0 in H, so that the reproducing kernel identity (2.20) does
not apply. Indeed, upon applying it blindly, it would only produce the term proportional to the
non-smooth m(U1/U2) in (B.19) via (B.20).

Using the same method as in Section 3, it is straightforward to obtain the Fourier expansion

eAs(U) =
3ξ(2s)2 U 2s

2

(2− s)(2s+ 3)
+ ξ(2s)ξ(2s− 1)U2 +

3ξ(2s− 1)2 U 2−2s
2

(s+ 1)(5− 2s)
+
ξ(5− 2s)ξ(2s+ 3)

6
U −3

2

−
2
7

′
∑

N∈Z

�

σ2s−1(N)
�2

|N |2s−1
B2s−1(2πU2|N |)

+ 2U2

∑

M∈Z2×2

det M 6=0

∫

F

dτ1dτ2

τ 2
2

A(τ) |m11+τm12|2s−1

|m21+τm22|2s−1 K2s−1(2πU2
|m11+τm12||m21+τm22|

τ2
)e2πi det MU1 , (B.25)

where the function Bs was defined in (3.30). It can be checked that this expansion is consistent
with the Poisson equation (B.15).34

C Spin(d, d) lattice sums

In this appendix, we analyse the two-loop/genus-two integrals introduced in (2.53) involving
Spin(d, d) lattice sums. This provides support for the conjectures in Sections 2 and 3 as well
as in Appendix A.

34Note that the only term of the Fourier expansion of ESL(2)
2sΛ1
(U) present in (B.16) that is not cancelled in (B.25)

is the leading constant term proportional to U2s
2 .
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C.1 Large radius limit

We start with the genus-two modular integral (3.3), which we rewrite for convenience,

E (d,2)
(0,1)
= 8πR.N.

∫

F2

d6Ω

|Ω2|3
ϕKZ Γd,d,2 . (C.1)

Its asymptotics in the limit where one circle S1 of radius R inside T d decompactifies was dis-
cussed for generic d in [2, (2.38)]:

E (d,2)
(0,1)
= R2 E (d−1,2)

(0,1)
+

2π
3
ξ(d−2)Rd−1 E (d−1,1)

(0,0)
+

5
π
ξ(d−6)Rd−5 E (d−1,1)

(1,0)
+

16π2ξ(d − 2)2

(d + 1)(6− d)
R2d−4 (C.2)

and

E (d−1,1)
(0,0)

= 4πξ(d − 2) EDd
d−2

2 Λ1
, E (d−1,1)

(1,0)
=

4π4

45
ξ(d + 2) EDd

d+2
2 Λ1

. (C.3)

Except for the last term proportional to R2d−4, these constant terms can be obtained by using
the orbit method: the term proportional to R2 is the zero orbit contribution, while the terms
proportional to Rd−1 and Rd−5 originate from the terms proportional to t and 1/t in (A.13),
the O(t0) term giving a vanishing result after integrating over v. The orbit method fails to
produce the complete expansion due to the logarithmic singularity of ϕKZ at the separation
limit, but one can recover the contribution in R2d−4 by carefully extracting the contribution
from this degeneration as in [75]. One can also determine this coefficient using the Poisson
equation satisfied by the integral (C.1).

We now consider the integral on the last line of (2.53),

IS,d = 8π

∫

G

d3Ω2

|Ω2|1−ε
ϕtr

KZ θ
Dd
Λd

, θ
Dd
Λd
(Ω2,φ) =

∑

Q i∈S+
Q iγd−4Q j=0

e−πΩ
i j
2 v(Q i)·v(Q j) . (C.4)

We shall see that the functional identity E (d,2)
(0,1) = bIS,d in (2.53) holds for the renormalised

coupling

bIS,d ≡ 8π

∫

G

d3Ω2

|Ω2|

�

|Ω2|εϕtr
KZ −

π

36

ESL(2)
−3Λ1

(τ)

V 1+2ε
+
π

36

ESL(2)
−(3+2ε)Λ1

(τ)

V

�

θ
Dd
Λd

, (C.5)

as in (1.31).
In order to analyse the decompactification limit of (C.4), we decompose the sum in θ Dd

Λd
.

Under Spin(d, d) ⊃ Spin(d −1, d −1)×GL(1), the Weyl spinors Q i ∈ S+ decompose into two
spinors qi ∈ S+, and pi ∈ S− of opposite chiralities. The invariant quadratic form becomes

|v(Q)|2 = R−1|v(q+ ap)|2 + R|v(p)|2, (C.6)

while the constraints Q iγd−4Q j = 0 reduce to

qiγd−5q j = 0 , piγd−5p j = 0 , qiγd−4pi = qiγd−6pi = 0 . (C.7)

As in Section 3.2, we decompose the theta series into contributions where the components
(qi , pi) are gradually populated.
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The first layer

The contribution from lattice spinors with qi 6= 0, pi = 0 gives

I (1)S,d = 8πR2+2ε

∫

d3Ω2

|Ω2|1−ε
ϕtr

KZ(Ω2)
′
∑

qi∈S+
qiγd−5q j=0

e−πΩ
i j
2 v(qi)·v(q j)→ R2 × IS,d−1 , (C.8)

where we can take the limit ε→ 0 provided IS,d−1 is itself regular.

The second layer

For the layer with pi 6= 0 but p1 ∧ p2 = 0, one has the Poincaré sum

θ (2)Λd
(φ,Ω2) =

∑

γ∈Pd−1\Dd−1

� ′
∑

ni∈Z

∑

qa
i ∈Zd−1

e−πΩ
i j
2

�

R−1 y2 d−3
d−1 uab(qa

i +aani)(qb
j +abn j)+Ry2ni n j

�

��

�

�

�

γ

=
Rd−1

|Ω2|
d
2

∑

γ∈Pd−1\Dd−1

y−2(d−2)

� ′
∑

ni∈Z

∑

qi
a∈Zd−1

e−πΩ
i j
2 Ry2ni n j−πΩ−1

2i jRy−2 d−3
d−1 uabqi

aq j
b+2πiniq

i
aaa
��

�

�

�

γ

. (C.9)

Constant terms originate from a) qi
a = 0 and b) niq

i
a = 0, qi

a 6= 0. The former requires to
take into account both the dimensional regularisation ε 6= 0 and the regularisation of the
fundamental domain FL . One obtains after taking the limit L→∞

I (2a)

S,d = 8πR2d−4−2ε
∑

γ∈Pd−1\Dd−1

�

y−4ε
�

�

�

�

γ

∫

d3Ω2

|Ω2|
d+2

2 −ε
ϕtr

KZ(Ω2)
′
∑

ni∈Z
e−πΩ

i j
2 ni n j

= R2d−4−2ε 16π2ξ(3− d + 2ε)2

(6− d + 2ε)(1+ d − 2ε)
EDd−1

2εΛd−1
→ R2d−4 16π2ξ(d − 2)2

(6− d)(1+ d)
, (C.10)

using (3.17). The contributions b) are computed by unfolding the integration domain over
PGL(2,Z)

16πRd−1

∫ ∞

0

dV
V 4−d+2ε

∫ ∞

0

dτ2

τ 2
2





∫
1
2

− 1
2

dτ1 A(τ)





×
∑

γ∈Pd−1\Dd−1

�

y2(3−d)
∑

n≥1

′
∑

qa∈Zd−1

e−
π

Vτ2
Ry2n2−πV

τ2
Ry2 3−d

d−1 uabqaqb

��

�

�

�

γ

. (C.11)

As in (3.19), this may be computed by inserting (3.27) in the square bracket. After changing
variables to ρ2 = 1/(τ2V ), t = τ2/V , The contribution from (3.20) to the integral gives

I (2b)

S,d =
4π2Rd−1

3

∫ ∞

0

dt

t
d+1

2 −ε

∫ ∞

0

dρ2

ρ
d−1

2 −ε
2

�

t +
ρ 2

2

6t

�

×
∑

γ∈Pd−1\Dd−1

�

y2(3−d)
∑

n≥1

′
∑

qa∈Zd−1

e−πρ2Ry2n2−πt Ry2 3−d
d−1 uabqaqb

��

�

�

�

γ

=
8π2Rd−1

3
ξ(3− d + 2ε)ξ(d − 3− 2ε) EDd−1

( d−3
2 −ε)Λ1+2εΛd−1

+
4π2

9
Rd−5 ξ(7− d + 2ε)ξ(d + 1− 2ε) EDd−1

( d+1
2 −ε)Λ1+2εΛd−1

. (C.12)
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The terms on the last line are recognised as Rd−1E (d−1,1)
(0,0) and Rd−5E (d−1,1)

(1,0) in (C.2) with their
respective coefficients. The last term in (3.27) gives additional non-perturbative contributions
that would be overlooked by the naïve unfolding method. They are

I (2c)

S,d = −
2 · 82π2

21
Rd

∫ ∞

0

dV
V 4−d+2ε

∫ 1

0

dτ2

τ 5
2

(1+ 3
2τ

2
2 +τ

4
2 )(1−τ

2
2 )

3
2

×
∑

γ∈Pd−1\Dd−1

�

y3(2−d)
∑

a,c≥1
gcd(a,c)=1

∑

n≥1

′
∑

qa∈Zd−1

e−
π

Vτ2
Ry2(2acn2)−πV

τ2
Ry2 3−d

d−1 uab(2acqaqb)
��

�

�

�

γ

= −
16π2

21
Rd−1

′
∑

q∈IId−1,d−1
(q,q)=0

σd−3(q)2

|v(q)|d−3
Bd−3(2πR|v(q)|) , (C.13)

where Bs(x) was given in (3.31).

The third layer

The contribution from p1 ∧ p2 6= 0 can be written as a Poincaré sum

θ (3)Λd
(φ,Ω2) =

∑

γ∈Pd−3\Dd−1

�

∑

ni
̂∈Z2

det n 6=0

∑

qa
i ∈Z

2

pα∈Zd−3

e−πΩ
i j
2 R−1 y

�

(R2n2+y
2

3−d ραβ (pα+aαn)(pβ+aβn))υk̂l̂ n̂i
k̂ n̂ j

l̂
�

× e−πΩ
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i +aa
k̂
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n̂i
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j +ab
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n j
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n̂ j
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��

�

�

�

γ

=
R
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2

|Ω2|

∑
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�
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̂∈Z2
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∑
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a∈Z

2

pα∈Zd−3
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2

(Ωi j
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2
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(C.14)

× e
−πR

�

y−1Ω−1
2i ju

abqi
aq j

b+
y
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d−3
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i j
2 υk̂l̂ n̂i k̂ n̂ j l̂
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��

�
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�

γ

.

The constant term contribution is at qi
a = pα = 0, since ni

̂ is non-degenerate. After manipu-
lating the integral over V as in (3.42), one obtains the constant term

I (3a)

S,d = 8π
ξ(4ε− d + 3)

ξ(4ε)
Rd−1

∑

γ∈Pd−3\Dd−1

�

∑

ni
̂∈Z2

det n6=0

y−1

∫

d3Ω2

|Ω2|2−ε
ϕtr

KZe−πΩ
i j
2 Ryυk̂l̂ ni

k̂n j
l̂

��

�

�

�

γ

. (C.15)

The factor of ξ(4ε) in the denominator suggests that this contribution may vanish, but we
shall see that the integral also diverges in ξ(1 + 2ε) so that there is a finite contribution.
Nonetheless, we argue in Section C.3 that this terms drops out in the renormalised function
(C.5) as a consequence of the tensorial differential equation. In particular, one has

I (3a)

S,d =
4π
9
ξ(8)
ξ(7)

Rd−1−2εξ(4ε− d + 3)
ξ(4ε)

ξ(2ε+ 3)ξ(2ε− 4)EDd−1
2ε−3

2 Λd−3+4Λd−2
+O(ε)

=
4π
9
ξ(8)
ξ(7)

Rd−1−2ε ξ(4ε−d+3)ξ(4ε−3)
ξ(4ε)ξ(4ε−2)

ξ(2+2ε)ξ(1+2ε)ξ(−5+2ε)ξ(−6+2ε)
ξ(2ε+4)ξ(2ε−3) EDd−1

2ε−3
2 Λd−5+4Λd−2

=
ε→0

−
80ξ(2)ξ(6)ξ(8)ξ(d − 2)

ξ(3)
EDd−1

− 3
2Λd−5+4Λd−2

(C.16)

for d ≥ 5, where the function is ED4
4Λ3

for d = 5, and zero for d < 5.

78

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054


SciPost Phys. 8, 054 (2020)

Fourier coefficients

The Fourier coefficients from (C.9) simplify to

I (2d)

S,d = 8πR2d−4

∫

d3Ω2

|Ω2|
d+1

2

ϕtr
KZ(Ω2)

′
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∑
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(qi ,q j)=0
niq

i 6=0

e−πΩ
i j
2 ni n j−πΩ−1

2i jR
2 g(qi ,q j)+2πini(qi ,a), (C.17)

which can be computed as in Section 3.3. It is convenient to unfold the integral domain G
to the set of positive matrices R+ ×H1/Z by fixing ni = (n, 0) for n > 0. Setting N = nq1,
one can solve the constraint for q2 in the Pd−1 ⊂ SO(d − 1, d − 1) parabolic decomposition
associated to N such that

I (2d)

S,d =
8π2

3
R2d−4

∫ ∞

0

V d−4dV

∫ ∞

0

dτ2

τ 2
2
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− 1
2

dτ1 A(τ)
∑
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′
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n|N

(C.18)

×
∑

j∈Z
q∈Z
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2
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�

γ

.

Following the steps as in Section 3.3 and in particular (3.65), one computes that

I (2d)

S,d =
16π2

3
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2
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N∈S+
N×N=0

�

σd−3(N)
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�
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2
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d
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�
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p
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, (C.19)
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where we kept the variable yN =
p

g(N ,N)
gcd(N) for simplicity, and the sum over Q ∈ Z (d−1)(d−2)

2 is a sum
over characters of the unipotent stabilisers of the charge N , and F is the function defined in
(3.74). The leading term in R factorises as an Eisenstein series over the Levi stabiliser of N ,
while the full Fourier coefficient depends non-trivially on the whole parabolic stabiliser. The
last term involving the integral and the function F can be ascribed to instanton anti-instanton
corrections, and is further exponentially suppressed.

The Fourier coefficients from (C.14) yield

I (3)S,d = 8πRd−1
∑

γ∈Pd−3\Dd−1

� ′
∑

ni
̂∈Z2

∫
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k̂ n̂ j
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(C.20)
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.

Using (3.77), the integral gives in the saddle point approximation

∫

d3Ω2

|Ω2|2
ϕtr

KZ(Ω2)

(TrΩ2Y )
d−2

2

e−S(Ω2) ∼
ϕtr
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p

|X Y |Y−1)e−2π
Ç

M+Tr X Y+2
p
|X Y |

p

8|X |(Tr X Y + 2
p

|X Y |)(M + Tr X Y + 2
p

|X Y |)
2d−7

4

. (C.21)

For Pα = npα and Q ı̂
a = n j

ı̂q j
a, we obtain

S(Ω?2) = 2πR
È

y
2

d−2ραβ(Pα − caα
ı̂ Q ı̂

a)(P
β − cbβ

̂
Q ̂b) +υı̂ ̂u
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aQ ̂b + 2|detQ|

�

, (C.22)

which is recognised as the BPS mass for the vector Q ∈ IId,d with a non-vanishing norm, such
that

S(Ω?2) = 2πR
Æ

g(Q,Q) + (Q,Q) . (C.23)

Collecting all contributions, one finally obtains
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+
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, (C.24)

which is consistent with the identity (2.53). It is worth noting that the term proportional to
R2d−4 on the first line can be viewed as the contribution of the vector qi = 0 in the integral on
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the fourth line, while the first term R2 IS,d−1 can be viewed as the contribution from ni = 0 in
the same integral, upon using the identity
∫

Sp(4,Z)\H+(C)

d6Ω

|Ω2|3
ϕKZ(Ω)Γd,d,2 =

∫

GL(2,Z)\H+(R)

d3Ω2

|Ω2|
ϕtr

KZ(Ω2)
∑

χi∈S+
χiγd−4χ j=0

e−πΩ
i j
2 v(χi)·v(χ j). (C.25)

C.2 Large volume limit

We now consider the large volume limit of the genus-two integral

E (d,2)
(0,1)
= 8π

∫

F2

d6Ω

|Ω2|3
ϕKZ Γd,d,2 = 8π

∫

G

d3Ω2

|Ω2|3−
d
2−ε
ϕtr

KZ(Ω2)θ
Dd
Λ1

. (C.26)

The latter may be computed either by the orbit method for the modular integral over F2, as
in [75], or by decomposing the lattice sum θ

Dd
Λ1

. We shall show that the two procedures give
the same results, providing supporting evidence for the Poincaré series representation (1.21)
which underlies the equality (C.26).

Applying the orbit method on the first expression in (C.26), we find constant terms coming
from the rank-zero, rank-one and rank-two orbits, respectively,

E (d,2)
(0,1)
= 8πRd

�∫
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+

∫ ∞
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�
′
∑
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t

+

∫

G
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|Ω2|3

�

ϕtr
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5ζ(3)
4π2

|Ω2|−1
�

∑

ni∈Z5

rk n=2

e−πRΩ−1
2i j v

−ᵀ(ni)·v−ᵀ(n j)
�

, (C.27)

where Rd = V 2
d and we replaced ϕKZ by its constant terms (A.13) and (A.11) in the Fourier–

Jacobi and Fourier expansions, respectively. The first integral was evaluated in [36] using the
Laplace eigenmode property of ϕKZ,

∫

F2

d6Ω

|Ω2|3
ϕKZ =

π3

180
. (C.28)

In the rank-one contribution, the integral over u1, u2 annihilates ϕ0 and replaces ϕ1 by the
Eisenstein series 5

12 ESL(2)
2Λ1

, whose integral on F vanishes. In this way we arrive at the constant
terms

E (d,2)
(0,1)
∼

2π4

45
Rd +

2π4

27
Rd−1 ESL(d)

Λd−1

+ 8πRd−2

∫
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|Ω2|3
ϕtr
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∑
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e−πΩ
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2i j v

−ᵀ(ni)·v−ᵀ(n j) +
ζ(3)ζ(5)

6π
Rd−5ESL(d)

5
2Λd−2

, (C.29)

where we omitted in the third term the restriction of the sum to rank-two matrices, which
would follow from (C.27). The additional sum over rank-one matrices arises due to the log-
arithmic divergence of the Kawazumi–Zhang invariant at the separating degeneration locus,
similarly to the term proportional to R2d−4 in (C.2) of the last section, and would be absent in
the case of a regular theta lift (against a cuspidal form or a Siegel–Eisenstein series. Physically
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this third term comes from the two-loop ten-dimensional supergravity amplitude on T d , which
does include all Kaluza–Klein momenta and not only rank-two matrices.

The Fourier coefficients only get contributions from the rank-two orbit, but they are com-
plicated and unilluminating, therefore we shall not display them.

Alternatively, one may compute the large volume limit by decomposing the constrained
lattice sum in the vector representation,

θ
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=
′
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qi∈Zd

2p(i ·q j)=0

e−πΩ
i j
2

�

R−1v(qi+api)·v(q j+ap j)+Rv−ᵀ(pi)·v−ᵀ(p j)
�

=
′
∑

qi∈Zd

e−πΩ
i j
2 R−1v(qi)·v(q j)

+
∑

γ∈Pd−1\SL(d)

 

′
∑

ni∈Z

∑

qi∈Zd−1

Rd−1

|Ω2|
d−1

2 y2
e−πΩ

i j
2 Ry2ni n j−πΩ−1

2i jRy−
2

d−1 v(qi)·v(q j)+2πi(niq
i ,a)

!

�

�

�

�

�

�

γ

+
∑

γ∈Pd−2\SL(d)

�

∑

ni
̂∈Z2×2

detn6=0

∑

q̃i∈Z2×(d−2)

p̃∈Z

Rd− 3
2

|Ω2|
d−2

2 y
3
2

Ç

Ω
i j
2 ρk̂l̂ n̂i

k̂ n̂ j
l̂
e−πΩ

i j
2 Ryρk̂l̂ ni

k̂n j
l̂+2πi(ni

̂q̃i ·a ̂+np̃a)

× e
−πΩ−1

2i jRy−
2

d−2 v(q̃i)·v(q̃ j)− π

Ω
i j
2 ρk̂l̂ n̂i k̂ n̂ j l̂

Ry(p̃−n̂i
̂q̃i ·c ̂)2

��

�

�

�

γ

. (C.30)

Here we solved the constraints p(i · q j) = 0 using the decompositions

d = (d − 2)(−
2

d−2 ) ⊕ 2(1) 3 pi = (0, ni
ĵ) , (C.31)

d = 2(−1) ⊕ (d − 2)(
2

d−2 ) 3 qi = (p̃ n̂i
ĵ , q̃i) , (C.32)

where n̂ = n/gcd(n), and performed a Poisson resummation over q̃i ∈ Zd−2 and p̃ ∈ Z.
Inserting the decomposition (C.30) inside the last integral in (C.26), one obtains
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+
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,

where the second term comes from the contribution of rank-one charges with qi = 0, and the
third and fourth lines from rank-one charges with qi 6= 0, niq

i = 0, which can be computed as
in (3.24), (3.29), giving the two Eisenstein series above using

∑

γ∈Pd−1\SL(d)

′
∑

qa∈Zd−1

y4ε
�
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, (C.34)
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at s = 1/2 and s = 5/2, for the third and fourth terms respectively. The last line comes from
the last line in (C.30) at q̃ = p̃ = 0 and generically vanishes at ε→ 0 because of the overall

1
ξ(4ε) factor. In addition, one checks using the Langlands constant term formula that for any
z ∈ C,

lim
ε→0

�

ξ(1+ 2ε) ESL(d)
1+2ε

2 Λd−2+zεΛd−1

�

= ξ(2) ESL(d)
Λd−1

(C.35)

generalising the functional equation

ξ(1+ 2ε) ESL(d)
1+2ε

2 Λd−2
= ξ(2+ 2ε) ESL(d)

2+2ε
2 Λd−1

. (C.36)

To identify the first term we use the identity

∫

G

d3Ω2

|Ω2|3−
d
2

ϕtr
KZ(Ω2)

′
∑

qi∈Zd

e−πΩ
i j
2 v(qi)·v(q j) =

∫

G

d3Ω2

|Ω2|3
ϕtr

KZ(Ω2)
′
∑

ni∈Zd

e−πΩ
−1
2i j v

−ᵀ(ni)·v−ᵀ(n j) , (C.37)

that follows by Poisson summation using that the renormalised integral
∫

G
d3Ω2
|Ω2|3−sϕ

tr
KZ(Ω2) van-

ishes.
Putting these terms together, one therefore matches the expansion (C.27) in the limit

ε → 0, up to the exponentially suppressed terms that are missed by the orbit method. This
computation, valid for generic d, provides strong evidence for the Poincaré series representa-
tion (1.21).

It is worth noting that the term of order Rd arises in two different ways in these two com-
putations, leading to a rather remarkable identity for the integral of ϕKZ over the fundamental
domain of Sp(4,Z),

∫

F2

d6Ω

|Ω2|3
ϕKZ =

π3

270
R.N.

∫

F

dτ1dτ2

τ 2
2

A(τ)ESL(2)
2Λ1

(τ). (C.38)

This identity can presumably be established more directly by using the Rankin–Selberg method,
i.e. computing the Petersson product between ϕKZ and ESp(4)

sΛ1
using the unfolding trick, and

extracting the residue at s = 3
2 . However, there are regularisation issues which make this

computation challenging.

In addition, there are non-perturbative corrections coming from the second line with qi 6= 0
but niq

i = 0 through the extension of ϕtr
KZ(Ω2) to H+(R). The Fourier coefficients from the

second line at niq
i 6= 0 can be computed after a change of variable in Ω2 → R−1 y−2Ω−1

2 and
implementing the Poincaré sum at ε= 0 as

8πRd

∫

d3Ω2

|Ω2|
3
2

ϕtr
KZ(Ω2)

′
∑

Q i∈Z
d(d−1)

2

Q i×Q j=0

′
∑

mi∈Z
miQ i 6=0

e−πΩ
−1
2 i j m

i m j−πΩi j
2 R2u(Q i ,Q j)+2πi(miQ i ,a) . (C.39)

For d = 5 it coincides with the last line in (4.14) with d = 4, in agreement with the functional
equation (1.23). It can be simplified in the same way as in (4.15) for general d. The rank-two
Fourier coefficients come from the last line in (C.30) with (q̃i , p̃) 6= 0. One checks for d = 5
that they match the Fourier coefficients of (4.24) at d = 5, with a change of variable in Ω2 and
upon identitfying P3 ⊂ SL(5) as P4 ⊂ E4. Under the assumption that the renormalised I (4)4 of
(4.32) indeed vanishes in the limit ε → 0, one obtains a perfect match of the two functions
(1.6) and (1.32) at d = 4. This provides further evidence for the vanishing of the renormalised
fourth layer contribution I (4)d in the decompactification limit.
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C.3 Vanishing of the third layer contribution

In Section 3.2, we relied on (3.44) to show that the third layer contribution to the weak
coupling limit of the renormalised coupling (1.31) cancels out. To justify (3.44) we shall first
establish that I (3a)

d is an eigenfunction of the Laplace operator. The argument of this section
will generalise straightforwardly to prove the similar result (C.16) for I (3a)

S,d .
For this purpose, one can write (3.43) as a Poincaré sum

I (3a)

d =
8π2

3
g
− 24+8ε

8−d +2+4ε
D

ξ(4ε− 2)
ξ(4ε)

∑

γ∈Pd−2\Dd

�

y−1−2ε
�

eAε(U)−
3ξ(2ε)2

6+ ε− 2ε2
ESL(2)

2εΛ1
(U)

��

�

�

�

γ

=
8π2

3
g
− 24+8ε

8−d +2+4ε
D

�

ξ(4ε− 2)
ξ(4ε)

∑

γ∈Pd−2\Dd

�

y−1−2ε
eAε(U)

�

�

�

�

γ
−
ζ(3)
12

EDd
Λd
+O(ε)

�

, (C.40)

where we used the functional relation

ξ(2ε)
∑

γ∈Pd−2\Dd

�

y−1−2εESL(2)
2εΛ1
(U)

�

�

�

�

γ
= ξ(2ε)EDd

1
2Λd−2+εΛd

= ξ(2− 2ε)EDd
εΛd−2+(1−ε)Λd

(C.41)

in the last line. Acting with the Laplace operator and integrating by parts, we find

(∆Dd
+ (d−2)(1+2ε)(d−2ε)

2 − 12)

�

∑

γ∈Pd−2\Dd

�

y−1−2ε
�

eAε(U)−
3ξ(2ε)2

6+ ε− 2ε2
ESL(2)

2εΛ1
(U)

��

�

�

�

γ

�

=
∑

γ∈Pd−2\Dd

�

y−1−2ε(∆U − 12)
�

eAε(U)−
3ξ(2ε)2

6+ ε− 2ε2
ESL(2)

2εΛ1
(U)

��

�

�

�

γ

= −6ξ(2ε)2
∑

γ∈Pd−2\Dd

�

y−1−2ε
�

(ESL(2)
εΛ1
(U))2 − ESL(2)

2εΛ1
(U)

��

�

�

�

γ
. (C.42)

The right-hand-side of this differential equation is a Poincaré sum of a function with a finite
limit at ε→ 0, and so we expect I (3a)

d (that includes an extra 1
ξ(4ε)) to satisfy a homogenous

equation at ε = 0. To study this, it will prove convenient to use the double lattice sum repre-
sentation of the Poincaré sum

∑

γ∈Pd−2\Dd

�

y−1
∑

ni
̂∈Z2

det(ni
̂)6=0

e−πΩ
i j
2 yυk̂l̂ ni

k̂n j
l̂

��

�

�

�

γ

=
∑

Qi∈S+
Qi×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1 ∧Q2)
v(Q1 ∧Q2)

�

�

�e−πΩ
i j
2 v(Qi)·v(Q j). (C.43)

Using this representation one can rewrite the differential equation
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(∆Dd
+ (d−2)(1+2ε)(d−2ε)

2 − 12)

�

∑

γ∈Pd−2\Dd

�

y−1−2ε
�

eAε(U)−
3ξ(2ε)2

6+ ε− 2ε2
ESL(2)

2εΛ1
(U)

��

�

�

�

γ

�

= −
3
2
π−2εΓ (ε)2

∑

Qi∈S+
Qi×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1 ∧Q2)
v(Q1 ∧Q2)

�

�

�

1
|v(Q1)|2ε|v(Q1)|2ε

= −
3
2
π−2εΓ (ε)2

∑

γ∈Dd/Pd

′
∑

n1∈Z

′
∑

q2∈∧2Zd

q2×q2=0

∑

n2∈Z

�

�

�

�

gcd(q2)

y2 d−2
d v(q2)

�

�

�

�

1

(y2n 2
1 )ε

1

(y2(n2 + (q2, a))2 + y2 d−4
d |v(q2)|2)ε

�

�

�

�

γ

= −6ξ(2ε)
∑

γ∈Dd/Pd

�

ξ(2− 2ε)y−2+4ε 2−d
d ESL(d)

εΛ2

+2y−2 d−1
d +4ε 1−d

d

′
∑

q∈∧2Zd

q×q=0

gcd(q)σ2ε−1(q)
K 1

2−ε
(2πy−

2
d |v(q)|)

|v(q)|
1
2+ε

e2πi(q,a)

��

�

�

�

γ

.

The terms in the bracket are recognised as the Fourier expansion of the Eisenstein series EDd
Λd

with respect to the parabolic Pd , up to a constant term proportional to ESL(d)
(1+ε)Λ1

. Thus the
previous result can be continued as

= −6ξ(2ε)
∑

γ∈Dd/Pd

�

ξ(2)y−2εEDd
Λd
− ξ(2+ 2ε)y−2(1+ε) d−2

d ESL(d)
(1+ε)Λ1

+O(ε)
�

= −6ξ(2ε)ξ(2)
�

EDd
Λd
− EDd

Λd−1
+O(ε)

�

=O(ε0) , (C.44)

where we use EDd
Λd
= EDd

Λd−1
in the last step. After dividing out by ξ(4ε), the source term in the

Laplace equation therefore vanishes.
Assuming that the source terms for higher order invariant differential operators vanish in

the same way, we conclude that I (3a)

d must be proportional to an SO(d, d) Eisenstein series
satisfying to the same differential equations as the one appearing in the same perturbative
limit of the counterterm in (1.28). Since the counterterm in (1.28)

2π2

9

∫

G

d3Ω2

|Ω2|
6−d−2ε

2

ESL(2)
−3Λ1

(τ)

V
θ (3)Λd+1

(φ,Ω2)

∼
4π2

9
ξ(4ε− 2)
ξ(4ε)

ξ(5− 2ε)ξ(3+ 2ε)
ξ(8)
ξ(7)

g
− 24+8ε

8−d +2+4ε
D EDd

(− 3
2+ε)Λd−2+4Λd

(C.45)

(where θ (3)Λd+1
corresponds to the third layer contribution (3.42)) satisfies by construction to

the same differential equations as the function Id(φ,ε) without the source terms, it follows
that I (3a)

d must be proportional to EDd

−3
2Λd−4+4Λd

. We shall now argue that the coefficient of

proportionality is such that this Eisenstein series cancels in the renormalised coupling (1.28).
To this aim, we compute the first non-trivial contribution to the double lattice sum (C.43)

in the parabolic Pd . In this limit, one get a first contribution
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∑

ni∈Z
qi∈∧2Zd

qi×q j=0
q1∧q2=0
n[iq j] 6=0

�

�

�

�

gcd(2n[iq j])

y2 d−2
d 2n[i v(q j])

�

�

�

�

e−πΩ
i j
2

�

y2(ni+(qi ,a))(n j+(q j ,a))+y2 d−4
d v(qi)·v(q j)

�

(C.46)

=
∑

γ∈SL(2)/P1

′
∑

q∈∧2Z2

q×q=0

′
∑

n2∈Z

∑

n1∈Z

�

�

�

�

gcd(q)

y2 d−2
d v(q)

�

�

�

�

e−
π
V

�

(n1+(q,a)+τ1n2)
2

τ2
+τ2n 2

2 +
1
τ2

y2 d−4
d |v(q)|2

�

�

�

�

�

γ

=
∑

γ∈SL(2)/P1

′
∑

q∈∧2Z2

q×q=0

′
∑

n2∈Z

∑

ñ1∈Z

�

�

�

�

�

gcd(q)

y2 d−2
d v(q)

�

�

�

�

y−1
p

Vτ2e−
π
V

�

τ2 y2n 2
2 +

1
τ2

y2 d−4
d |v(q)|2

�

−πVτ2 y−2 ñ 2
1

× e2πiñ1((q,a)+τ1n2)
�

�

�

�

�

γ

and the associated constant term is therefore
∫ ∞

0

dV

V
1
2+2ε

∫ ∞

0

dτ2

τ2
3
2

∫
1
2

− 1
2

dτ1A(τ)
′
∑

q∈∧2Z2

q×q=0

′
∑

n2∈Z

�

�

�

�

gcd(q)

y3− 4
d v(q)

�

�

�

�

e−
π
V

�

τ2 y2n 2
2 +

1
τ2

y2 d−4
d |v(q)|2

�

= 2ξ(2ε)ξ(−1+ 2ε) y−2−4ε d−2
d ESL(d)

εΛ2
+ ξ(−4+2ε)ξ(3+2ε)

6 y2 8−d
d −4ε d−2

d ESL(d)
(2+ε)Λ2

+O(e−y−
2
d ) .

(C.47)

Comparing with a similar term in the expansion of EDd

−3
2Λd−4+4Λd

fixes the coefficient of the

second term in (3.44) to match the one of (C.45) in (D.2). In contrast, the first term does
not appear in the expansion of EDd

−3
2Λd−4+4Λd

, instead it is recognised as a constant term of

the minimal Eisenstein series EDd
Λd

. Indeed it is not a solution to the homogeneous Laplace
equation, and we therefore expect that this term will cancel against another contribution at
the next order in level expansion for the charges, including either qi ∧ q j 6= 0 or pi ∈ ∧4Zd .

We may also consider the tensorial differential equations (2.10) on the renormalised ex-
pression (1.28). Using the reduction formula for Whittaker coefficients of the series
EDd

−3
2Λd−4+4Λd

[24, 76], one computes that it admits non-zero Whittaker vectors of type A2A1

for d ≥ 5. This implies that this function admits Fourier coefficients outside of the wavefront
set determined by the tensorial equation (2.10), that allows at most for Whittaker vectors of
type A2. We conclude that the naïve pole subtraction prescription for Id(φ,ε) and the coun-
terterm (C.45) violate the tensorial equation (2.10), but the term proportional to EDd

−3
2Λd−4+4Λd

drops out in the renormalised function (1.28), such that it satisfies the required supersymmetry
Ward identities.

D Integrating ΞEd+1
Λd+1
(τ,φ, r) against an Eisenstein series

In order to determine the weak coupling and decompactification limit asymptotic expansions
of the renomalised coupling (1.31), we shall repeat the computations of Sections 3 and 4
with A(τ) replaced by an Eisenstein series ESL(2)

sΛ1
. Although these expansions can be easily

computed by using Langlands’s constant term formula, it is nevertheless instructive to obtain
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them in this way, since it will allow us to identify the constant terms that we could not compute
directly using the method of Sections 3 and 4 as contributions of specific double cosets in the
Weyl group. Since these contributions can be expressed as theta-lifts of ESL(2)

sΛ1
up to an overall

factor of 1
ξ(4ε) , it is plausible that the analogous contributions for A(τ) will also vanish in the

limit ε→ 0, justifying our previous computations.
With these motivations in mind, let us consider the function

IEd+1
Λd+1

�

ESL(2)
(4+δ)Λ1

, d + 2ε− 2
�

=

∫

F

dτ1dτ2

τ2
2

ESL(2)
(4+δ)Λ1

Ξ
Ed+1
Λd+1
(τ,φ, d + 2ε− 2) (D.1)

= ξ(d + 2ε− 6−δ)ξ(d + 2ε+ 1+δ)EEd+1
d+2ε−6−δ

2 Λd+(4+δ)Λd+1

=
d=4,5,6

ξ(2sd+1 +δ− 2ε)ξ(2sd+1 + 3− d +δ− 2ε)ξ(d + 1+ 2ε+δ)
ξ(4+δ− 2ε)

EEd+1

(sd+1+
δ
2−ε)ΛH+2εΛd+1

.

This function reproduces the last two terms in (1.31) upon setting either δ = 0 first or ε = 0
first and then writing δ = 2ε. Recall that sd+1 =

7
2 , 9

2 , 6 for d = 4,5, 6.

D.1 Weak coupling limit

We shall first write the result of Langlands constant term formula. We refer to [24, 65] for
the precise statement of this formula in terms of double cosets in the Weyl group. We shall
use the convention that Λd−k stands for the trivial vanishing weight when k = d, and an
Eisenstein series including a weight Λd−k for k > d vanishes. Using Langlands’ functional
relations between Eisenstein series, one obtains the following formula valid for all d ≤ 6

ξ(d + 2ε− 6−δ)ξ(d + 2ε+ 1+δ)EEd+1
d+2ε−6−δ

2 Λd+(4+δ)Λd+1
(D.2)

∼ g
− 24+8ε

8−d
D

�

ξ(dε − 6−δ)ξ(dε + 1+δ)g4
D
EDd

(4+δ)Λ1+
dε−6−δ

2 Λ2

+ξ(2+δ+ 2ε)ξ(−5−δ+ 2ε)g2ε
D

�

g−1−δ
D

EDd

(− 1+δ
2 −ε)Λd−1+2εΛd

+ ξ(7+2δ)
ξ(8+2δ) g

6+δ
D

EDd

( 6+δ
2 −ε)Λd−1+2εΛd

�

+
ξ(4ε− 2)
ξ(4ε)

g2+4ε
D

ξ(−4−δ+ 2ε)ξ(3+δ+ 2ε)EDd

(− 3+δ
2 +ε)Λd−2+(4+δ)Λd

+
ξ(4ε− 5)
ξ(4ε)

g1+6ε
D

�

ξ(−8−δ+2ε)ξ(−6−δ+2ε)ξ(6+δ+2ε)
ξ(−3−δ+2ε) g−7−δ

D
EDd

(− 6+δ
2 +ε)Λd−5+(

6+δ
2 +ε)Λd

+ξ(−1+δ+2ε)ξ(1+δ+2ε)ξ(−1−δ+2ε)
ξ(4+δ+2ε)

ξ(7+2δ)
ξ(8+2δ) g

δ
D

EDd

( 1+δ
2 +ε)Λd−5+(−

1+δ
2 +ε)Λd

�

+δd,6 g2+4ε
D

�

ξ(−11−δ+2ε)ξ(−8−δ+2ε)ξ(7+δ+2ε)
ξ(−3−δ+2ε) g−14−2δ

D
+ ξ(−4+δ+2ε)ξ(−1+δ+2ε)ξ(−δ+2ε)

ξ(4+δ+2ε)
ξ(7+2δ)
ξ(8+2δ) g

2δ
D

�

EDd
2εΛ1

+δd,6
ξ(4ε− 5)ξ(4ε− 8)
ξ(4ε)ξ(4ε− 4)

ξ(−7−δ+2ε)ξ(δ+2ε)ξ(−4−δ+2ε)ξ(3+δ+2ε)
ξ(−3−δ+2ε)ξ(4+δ+2ε) g−6+8ε

D
EDd

(4+δ)Λ1+(−
4+δ

2 +ε)Λ2

�

.

This formula can be recast as a sum of contributions of the different layers of charges as in
Section 3.2, with A(τ) replaced by the Eisenstein series ESL(2)

(4+δ)Λ1
,
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IEd+1
Λd+1

�

ESL(2)
(4+δ)Λ1

, d − 2+ 2ε
�

(D.3)

∼ g
− 24+8ε

8−d
D

�

ξ(d + 2ε− 6−δ)ξ(d + 2ε+ 1+δ)g4
D
IDd
Λ1

�

ESL(2)
(4+δ)Λ1

, d − 2+ 2ε
�

+g4
D

∫ ∞

0

dV
V−1+2ε

∫ L

0

dτ2

τ 2
2

∫
1
2

− 1
2

dτ1ESL(2)
(4+δ)Λ1

×
∑

γ∈Pd\Dd

 

y−4
∑

n≥1

′
∑

qa∈Zd

e−
π

Vτ2
g−2

D y2n2−πV
τ2

y−
4
d uabqaqb

!

�

�

�

�

�

�

γ

+
ξ(4ε− 2)
ζ(4ε)

g2+4ε
D

∫

F

d2τ

τ 2
2

ESL(2)
(4+δ)Λ1

′
∑

Q i∈S+
Q i×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1 ∧Q2)
v(Q1 ∧Q2)

�

�

�

�

τ2

v(Q1 +τQ2) · v(Q1 + τ̄Q2)

�2ε

+
ξ(4ε− 5)
ξ(4ε)

g1+6ε
D

�

ξ(−8−δ+2ε)ξ(−6−δ+2ε)ξ(6+δ+2ε)
ξ(−3−δ+2ε) g−7−δ

D
EDd

(− 6+δ
2 +ε)Λd−5+(

6+δ
2 +ε)Λd

+ξ(−1+δ+2ε)ξ(1+δ+2ε)ξ(−1−δ+2ε)
ξ(4+δ+2ε)

ξ(7+2δ)
ξ(8+2δ) g

δ
D

EDd

( 1+δ
2 +ε)Λd−5+(−

1+δ
2 +ε)Λd

�

+δd,6

∫

G

d3Ω2

|Ω2|3
�

ESp(4)
(4+δ)Λ1+

2ε - 3 -δ
2 Λ2

−
ESL(2)
(4+δ)Λ1

V 1+2ε

�∑

γ∈P2\D6

∑

pα∈S+
k≥1

gcd(k,p)=1
mi ̂∈Z2

det m 6=0

|Ω2|2

ỹ3+ε
1 ỹ1+ε

2

e−π
r

ỹ2
ỹ1
Ω−1

2i jυı̂ ̂m
i ı̂m j ̂

�

�

�

�

γ

�

.

The first layer of charges, as in (3.13), gives the first line in both (D.2) and (D.3), while the
second layer, as in (3.24), gives the second line in (D.2) and the second and third lines in
(D.3). Note that for an Eisenstein series there are no exponentially suppressed contributions
to the constant terms as they do arise for A(τ), see (3.29). The fourth layer of charges gives
the fourth line in (D.3) as in (3.43), which can be identified with the third line in (D.2). For
d ≤ 4 this exhausts all terms. For d = 5 and 6, it follows by elimination that the fourth layer
of charges gives the fourth and fifth lines in (D.2), that we have reproduced as such in (D.3).
Although we have not been able to compute these latter using the double lattice sum, the
overall factor of ξ(4ε−5)

ξ(4ε) suggests that the total contribution from the fourth layer of charge to
the abelian Fourier coefficients vanishes.

For d = 6, the same computation as in (3.59) gives the last line in (D.3). Using Langlands’s
constant term formula for the Sp(4,R) Langlands–Eisenstein series

ESp(4)

(4+δ)Λ1+
2ε - 3 -δ

2 Λ2
∼

ESL(2)
(4+δ)Λ1

V 1+2ε
+
ξ(−4−δ+ 2ε)
ξ(−3−δ+ 2ε)

ESL(2)
2εΛ1

V 5+δ
+
ξ(7+ 2δ)ξ(3+δ+ 2ε)
ξ(8+ 2δ)ξ(4+δ+ 2ε)

ESL(2)
2εΛ1

V−2−δ

+
ξ(4ε− 1)
ξ(4ε)

ξ(−4−δ+ 2ε)ξ(3+δ+ 2ε)
ξ(−3−δ+ 2ε)ξ(4+δ+ 2ε)

ESL(2)
(4+δ)Λ1

V 2−2ε
(D.4)

one obtains three contributions which, upon using the identification of the sum over coprime
pα and k as a Poincaré sum over P1\SO(5,5) as in (3.59), give the two last lines in (D.2). We
have not proved rigorously that one can indeed write the sum over pα and k of the lattice sum
over k2 II4,4[k1]⊕ II2,2[k1k2

2] as a Poincaré sum over P1\SO(5, 5) of a lattice sum over II6,6 that
we used in (3.56), neither do we have a proof of the identities (3.57) and (3.58). The fact
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that the three constant terms match provides a strong consistency check that one has indeed

∑

γ∈P2\Sp(4,Z)
det C(γ)6=0

ESL(2)
(4+δ)Λ1

V 1+2ε

�

�

�

�

γ

∼
ξ(−4−δ+ 2ε)
ξ(−3−δ+ 2ε)

ESL(2)
2εΛ1

V 5+δ
+
ξ(7+ 2δ)ξ(3+δ+ 2ε)
ξ(8+ 2δ)ξ(4+δ+ 2ε)

ESL(2)
2εΛ1

V−2−δ

+
ξ(4ε− 1)
ξ(4ε)

ξ(−4−δ+ 2ε)ξ(3+δ+ 2ε)
ξ(−3−δ+ 2ε)ξ(4+δ+ 2ε)

ESL(2)
(4+δ)Λ1

V 2−2ε
, (D.5)

in agreement with (3.57), (3.58) for an Einsenstein series and that one can indeed use (3.56).

Note that for generic δ, the limit ε= 0 is regular and produces the adjoint Eisenstein series
constant terms (with δ replaced by 2ε in order to match the notations in (1.31))

ξ(2sd+1 + 2ε)ξ(2sd+1 + 3− d + 2ε)ξ(d + 1+ 2ε)
ξ(4+ 2ε)

EEd+1
(sd+1+ε)ΛH

(D.6)

∼ g
− 24

8−d
D

�

ξ(d − 6− 2ε)ξ(d + 1+ 2ε)g4
D
EDd

(4+2ε)Λ1+
d−6−2ε

2 Λ2

+ξ(2+ 2ε)ξ(6+ 2ε)
�

g−1−2ε
D

EDd

−( 1
2+ε)Λd−1

+ ξ(7+4ε)
ξ(8+4ε) g

6+2ε
D

EDd
(3+ε)Λd−1

�

+δd,6 g2
D

�

ξ(12+2ε)ξ(9+2ε)ξ(7+2ε)
ξ(4+2ε) g−14−4ε

D
+ ξ(−4+2ε)ξ(−1+2ε)ξ(1+2ε)

ξ(4+2ε)
ξ(7+4ε)
ξ(8+4ε) g

4ε
D

�

�

.
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D.2 Decompactification limit

We shall first write the result of Langlands’s constant term formula for d ≤ 7, using again the
convention that the weight Λ7 vanishes for d = 6, and an Eisenstein series including a weight
Λ7 vanishes for d < 6. Applying the functional relations between Eisenstein series, one obtains
the following formula valid for all d ≤ 7

ξ(d + 2ε− 6−δ)ξ(d + 2ε+ 1+δ)EEd+1
d+2ε−6−δ

2 Λd+(4+δ)Λd+1
(D.7)

∼ R
12+4ε
8−d

�

ξ(d + 2ε− 7−δ)ξ(d + 2ε+δ)EEd
d+2ε−7−δ

2 Λd−1+(4+δ)Λd

+ ξ(d + 2ε− 6−δ)ξ(d + 2ε+ 1+δ)Rd+2ε
�

RδEEd
d+2ε−6−δ

2 Λd
+ ξ(7+2δ)

ξ(8+2δ)R
−7−δ EEd

d+2ε+1+δ
2 Λd

�

+ ξ(4ε−1)ξ(3+δ+2ε)ξ(5+δ−2ε)
ξ(4ε)ξ(4+δ+2ε)ξ(4+δ−2ε) ξ(d − 5−δ− 2ε)ξ(d + 2+δ− 2ε)

×
�

Rd+1+δ−2εEEd
4ε−1

2 Λ1+
d−5−δ−2ε

2 Λd
+ ξ(7+2δ)

ξ(8+2δ)R
d−6−δ−2εEEd

4ε−1
2 Λ1+

d+2+δ−2ε
2 Λd

�

+
ξ(4ε+ 1− d)

ξ(4ε)
ξ(6− 2ε+δ)ξ(−1− 2ε−δ)Rd−1−4εEEd

(4+δ)Λ1−
3+δ−2ε

2 Λ3

+ ξ(4ε−5)ξ(4ε−9)ξ(−1+δ+2ε)ξ(9+δ−2ε)
ξ(4ε)ξ(4ε−4)ξ(4+δ+2ε)ξ(4+δ−2ε) ξ(5−δ− 2ε)ξ(12+δ− 2ε)Rd+3−6ε

×
�

ξ(−d−10−δ+6ε)
ξ(−16−δ+6ε) R7+δEEd

5−δ−2ε
2 Λ6−

9−δ−6ε
2 Λ7

+ ξ(7+2δ)
ξ(8+2δ)

ξ(−d−3+δ+6ε)
ξ(−9+δ+6ε) R−δEEd

12+δ−2ε
2 Λ6−

16+δ−6ε
2 Λ7

�

+δd,7

�

�

ξ(−16−δ+2ε)ξ(−12−δ+2ε)ξ(−8−δ+2ε)ξ(8+δ+2ε)
ξ(−7−δ+2ε)ξ(−3−δ+2ε)

ξ(−17−δ+6ε)
ξ(−16−δ+6ε)R

14+2δ

+ ξ(7+2δ)
ξ(8+2δ)

ξ(δ−9+2ε)ξ(δ−5+2ε)ξ(δ−1+2ε)ξ(1−δ+2ε)
ξ(δ+2ε)ξ(4+δ+2ε)

ξ(δ−10+6ε)
ξ(δ−9+6ε)

�

R10−4εEE7
2εΛ7

+ ξ(4ε−9)ξ(4ε−12)
ξ(4ε)ξ(4ε−4)

ξ(−17−δ+6ε)ξ(δ−10+6ε)
ξ(−16−δ+6ε)ξ(δ−9+6ε)

ξ(−8−δ+2ε)ξ(−4−δ+2ε)ξ(δ−1+2ε)ξ(3+δ+2ε)
ξ(4+δ−2ε)ξ(4+δ+2ε) R18−8εEE7

− 4+δ−2ε
2 Λ6+(4+δ)Λ7

+ ξ(4ε−9)ξ(4ε−13)ξ(4ε−17)
ξ(4ε)ξ(4ε−4)ξ(4ε−8)

ξ(−17−δ+6ε)ξ(δ−10+6ε)
ξ(−16−δ+6ε)ξ(δ−9+6ε) R

20−10ε
�

ξ(17+δ−2ε)ξ(13+δ−2ε)ξ(9+δ−2ε)ξ(8+δ+2ε)
ξ(4+δ−2ε)ξ(−7+δ+2ε) RδEE7

8+δ+2ε
2 Λ7

+ ξ(7+2δ)
ξ(8+2δ)

ξ(2+δ−2ε)ξ(1−δ+2ε)ξ(δ−9+2ε)ξ(δ−5+2ε)
ξ(4+δ+2ε)ξ(δ+2ε) R−7−δEE7

1−δ+2ε
2 Λ7

�

�

�

.

For d ≤ 6, the last five lines drop out and this formula can be rewritten as a sum of contributions
of the various layers of charges in Section 4.2 as35

35Note that the general theory of Fourier coefficients for Eisenstein series induced from cusp forms predicts
precisely the structure of L-functions appearing in (D.8), suggesting that this formula should hold for any Hecke
eigenfunction.
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IEd+1
Λd+1

�

ESL(2)
(4+δ)Λ1

, dε − 2
�

∼ R
12+4ε
8−d

�

IEd
Λd

�

ESL(2)
(4+δ)Λ1

, dε − 3
�

+

∫ ∞

0

dV
V dε−2

∫ L

0

dτ2

τ 2
2

∫
1
2

− 1
2

dτ1 ESL(2)
(4+δ)Λ1

∞
∑

n=1

′
∑

Q∈M Ed
Λd

Q×Q=0

e−
πV
τ2

R2n2− π
Vτ2
|Z(Q)|2

+
ξ(4ε− 1)L?(ESL(2)

(4+δ)Λ1
,−1

2 + 2ε)

ξ(4ε)L?(ESL(2)
(4+δ)Λ1

, 1
2 + 2ε)

∫ ∞

0

dV
V d−1−2ε

∫ L

0

dτ2

τ 2
2

∫
1
2

− 1
2

dτ1 ESL(2)
(4+δ)Λ1

×
∑

γ∈P1\Ed

�

y3−d−2ε
∞
∑

n=1

′
∑

q∈IId -1, d -1
(q,q)=0

e−
πV
τ2

R2 yn2− π
Vτ2

g(q,q)
��

�

�

�

γ

+
ξ(4ε+ 1− d)L?(ESL(2)

(4+δ)Λ1
,−3

2 + 2ε)

ξ(4ε)L?(ESL(2)
(4+δ)Λ1

, 1
2 + 2ε)

Rd−1−4εIEd
Λ1

�

ESL(2)
(4+δ)Λ1

, 1+ 2ε
�

+δd,6

ξ(4ε− 5)ξ(4ε− 9)L?(ESL(2)
(4+δ)Λ1

,−9
2 + 2ε)

ξ(4ε)ξ(4ε− 4)L?(ESL(2)
(4+δ)Λ1

, 1
2 + 2ε)

R5−4ε

×
∫ ∞

0

dV
V 9−2ε

∫ L

0

dτ2

τ 2
2

∫
1
2

− 1
2

dτ1 ESL(2)
(4+δ)Λ1

∞
∑

n=1

′
∑

Q∈M Ed
Λd

Q×Q=0

e−
πV
τ2

R2n2− π
Vτ2
|Z(Q)|2

�

. (D.8)

The first layer of charges does not contribute for an Eisenstein series because the regularised
integral over FL of the product of two Eisenstein series vanishes [77]. The first line of (D.7) is
reproduced from the first line of (D.8) that comes from the second layer of charges I (2a)

d with
Q i = 0 in (3.15), while I (2b)

d gives the second line in (D.8) that reproduces the second line
in (D.7). Eq. (4.24) might suggest that the third layer of charges does not contribute to the
constant terms, but the use of (4.20) is only valid at ε= 0 and there is a non-zero contribution
at ε 6= 0. Using the Langlands’s constant term formula for the Sp(4) Siegel–Eisenstein series
in the Fourier–Jacobi expansion P1\Sp(4)

ESp(4)

(4+δ)Λ1+
2ε - 3 -δ

2 Λ2
∼ t

5+δ
2 +εESL(2)

2ε−3−δ
2 Λ1

+ ξ(7+2δ)
ξ(8+2δ) t

− 2+δ
2 +εESL(2)

4+δ+2ε
2 Λ1

+ ξ(4ε−1)
ξ(4ε)

ξ(−4−δ+2ε)ξ(3+δ+2ε)
ξ(−3−δ+2ε)ξ(4+δ+2ε)

�

t
6+δ

2 −εESL(2)

− 2+δ+2ε
2 Λ1

+ ξ(7+2δ)
ξ(8+2δ) t

− 1+δ
2 −εESL(2)

5+δ−2ε
2 Λ1

�

(D.9)

one obtains
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I (3)d [E
SL(2)
(4+δ)Λ1

] (D.10)

=
1
2

R2 d+2ε−2
8−d

∑

γ∈P1\Ed

�

y2−d−2ε

∫

F2

d6Ω

|Ω2|3
ESp(4)

(4+δ)Λ1+
2ε - 3 -δ

2 Λ2
Γd,d,2(Ω, Ry

1
2 )

�
�

�

�

�

γ

−
1
2

R
12+4ε
8−d

∑

γ∈P1\Ed

�

y3−dε

∫

G

d3Ω2

|Ω2|
6−d

2 −ε
ESL(2)
(4+δ)Λ1

∑

ni∈Z
qi∈IId -1, d -1
(qi ,q j)=0

e−πΩ
−1
2i jR

2 yni n j−πΩi j
2 g(qi ,q j)+2πi(niqi ,a)

��

�

�

�

γ

∼ ξ(4ε−1)
ξ(4ε)

ξ(−4−δ+2ε)ξ(3+δ+2ε)
ξ(−3−δ+2ε)ξ(4+δ+2ε) R

12+4ε
8−d

∫ ∞

0

dV
V d−1−2ε

∫ L

0

dτ2

τ 2
2

∫
1
2

− 1
2

dτ1

�

τ4+δ
2 + ξ(7+2δ)

ξ(8+2δ)τ
−3−δ
2

�

×
∑

γ∈P1\Ed

�

y3−d−2ε
∞
∑

n=1

′
∑

q∈IId -1, d -1
(q,q)=0

e−
πV
τ2

R2 yn2− π
Vτ2

g(q,q)
��

�

�

�

γ

∼ ξ(4ε−1)ξ(3+δ+2ε)ξ(5+δ−2ε)
ξ(4ε)ξ(4+δ+2ε)ξ(4+δ−2ε) ξ(d − 5−δ− 2ε)ξ(d + 2+δ− 2ε)R

12+4ε
8−d

×
�

Rd+1+δ−2εEEd
4ε−1

2 Λ1+
d−5−δ−2ε

2 Λd
+ ξ(7+2δ)

ξ(8+2δ)R
d−6−δ−2εEEd

4ε−1
2 Λ1+

d+2+δ−2ε
2 Λd

�

such that the third layer of charges gives the second and third lines in (D.8) that gives the
third and fourth lines in (D.7). Consistently with (4.20), these two terms appear with a factor
of ξ(4ε−1)

ξ(4ε) that vanishes at ε= 0. We expect that the integral of A(τ) will give the same result
from (3.58) such that this contribution vanishes in the renormalised function (1.31).

The fourth layer of charges gives the fifth line in (D.8) using (4.33), where the ratio of L-
functions (2.30) comes from the presence of the factor |v(Q1 ∧Q2)|−2 in (4.33) that shifts the
weight s in the Eisenstein series but not in the parameter of the L-function in (2.27). This term
reproduces the fifth line in (D.7). By elimination, the last two lines in (D.8), which reproduces
the sixth and seventh lines in (D.7), must come from the fifth layer of charges that only exists
in d ≥ 6.

The same analysis holds for d = 7 for the first five layers of charges as we show in Appendix
E. The sixth layer of charges that only appears for d = 7 can be computed as in (E.27), (E.33)
to give

1
2

∫

G

d3Ω2

|Ω2|
1
2

∫

Z3\R3

d3Ω1

�

ESp(4)

(4+δ)Λ1+
2ε - 3 -δ

2 Λ2
−

ESL(2)
(4+δ)Λ1

V 1+2ε

�

(D.11)

×
∑

mi∈Z2

det m6=0

∑

qi∈II5,5

R̃2 e−πΩ
−1
2i j R̃υ̃

ı̂ ̂mı̂
i m ̂

j−πΩi j
2 ũabqa

i qb
j −πiΩi j

1 ηabqa
i qb

j +2πim ̂
iqa

i ã ̂a

(
�

y + υ(˜̀,˜̀)
R2

�2
+
�

y + υ(˜̀,˜̀)
R2

� y
1
2

R2 u(p̃, p̃) + 1
4

y
R4 u(p̃γp̃, p̃γp̃))

5
2+ε

∼
�

ξ(−16−δ+2ε)ξ(−12−δ+2ε)ξ(−8−δ+2ε)ξ(8+δ+2ε)
ξ(−7−δ+2ε)ξ(−3−δ+2ε)

ξ(−17−δ+6ε)
ξ(−16−δ+6ε)R

14+2δ

+ξ(7+2δ)
ξ(8+2δ)

ξ(δ−9+2ε)ξ(δ−5+2ε)ξ(δ−1+2ε)ξ(1−δ+2ε)
ξ(δ+2ε)ξ(4+δ+2ε)

ξ(δ−10+6ε)
ξ(δ−9+6ε)

�

R10−4εEE7
2εΛ7

+ξ(4ε−9)ξ(4ε−12)
ξ(4ε)ξ(4ε−4)

ξ(−17−δ+6ε)ξ(δ−10+6ε)
ξ(−16−δ+6ε)ξ(δ−9+6ε)

ξ(−8−δ+2ε)ξ(−4−δ+2ε)ξ(δ−1+2ε)ξ(3+δ+2ε)
ξ(4+δ−2ε)ξ(4+δ+2ε) R18−8εEE7

− 4+δ−2ε
2 Λ6+(4+δ)Λ7

.

By elimination one then concludes that the last seventh layer of charges contributes the last
two lines in (D.7) for d = 7.

In the limit ε → 0 at generic δ (a posteriori set to δ = 2ε) one obtains from (D.7) the
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constant terms of the adjoint Eisenstein series

ξ(d − 6− 2ε)ξ(d + 1+ 2ε)EEd+1
d−6−2ε

2 Λd+(4+2ε)Λd+1
(D.12)

=
ξ(2sd+1 + 2ε)ξ(2sd+1 + 3− d −δd,7 + 2ε)ξ(d + 1+δd,7 + 2ε)

ξ(4+ 2ε)
EEd+1
(sd+1+ε)ΛH

∼ R
12

8−d

�

ξ(2sd + 2ε)ξ(2sd + 4− d + 2ε)ξ(d + 2ε)
ξ(4+ 2ε)

EEd
(sd+ε)ΛH

+ξ(d − 6− 2ε)ξ(d + 1+ 2ε)
�

Rd+2εEEd
d−6−2ε

2 Λd
+ ξ(7+4ε)
ξ(8+4ε)R

d−7−2ε EEd
d+1+2ε

2 Λd

�

+δd,7

�

ξ(18+2ε)ξ(13+2ε)ξ(9+2ε)
ξ(4+2ε) R24+4ε + ξ(7+4ε)

ξ(8+4ε)
ξ(2ε−10)ξ(2ε−5)ξ(2ε−1)

ξ(4+2ε) R10−4ε
�

�

.

D.3 Comments on layers with vanishing contribution

We have claimed in Section 5 that all the constant terms in the weak coupling and the large
radius limit with an overall factor of 1

ξ(4ε) vanish for the renormalised function (1.28) at ε→ 0.
We further argued that the whole layer of charges generating them, including contributions
to the Fourier coefficients, vanishes in the limit ε → 0. In this section, we shall discuss the
corresponding terms for the Eisenstein series (D.1).

For d = 4,5, 6, there are additional poles in 1
ε when one first sets δ = 0, such that Formulae

(D.6) and (D.13) are not valid at δ = 0. We must therefore be more careful in the analysis
of the contributions in 1

ξ(4ε) . We shall first discuss the constant terms and then the Fourier
coefficients.

Decompactification limit

Let us first discuss the constant terms in the decompactification limit (D.7). The term

ξ(4ε−1)ξ(3+2ε)ξ(5−2ε)
ξ(4ε)ξ(4+2ε)ξ(4−2ε) ξ(d − 5− 2ε)ξ(d + 2− 2ε)ξ(7)ξ(8)R

d−6−2εEEd
4ε−1

2 Λ1+
d+2−2ε

2 Λd
(D.13)

has a finite limit at ε→ 0 in d = 4, 5,6 and

ξ(4ε−1)ξ(3+2ε)ξ(5−2ε)
ξ(4ε)ξ(4+2ε)ξ(4−2ε) ξ(d − 5− 2ε)ξ(d + 2− 2ε)Rd+1−2εEEd

4ε−1
2 Λ1+

d−5−2ε
2 Λd

(D.14)

is also finite in d = 5. Assuming the conjectured expansion (3.58) is correct, these terms cancel
in (1.28). Next, the term

ξ(4ε+ 1− d)
ξ(4ε)

ξ(6− 2ε)ξ(−1− 2ε)Rd−1−4ε EEd
−3Λ1+(2+ε)Λ3

(D.15)

also admits a finite limit at ε→ 0 in d = 4,5, thanks to the functional identity

EEd
−3Λ1+(2+ε)Λ3

=
d=4,5

ξ(1+ 2ε)
ξ(4+ 2ε)

EEd

(− 3
2+ε)Λ1+(d−4+ε)Λ2

, (D.16)

and the finiteness of EEd

− 3
2Λ1+(d−4)Λ2

.

By the same reasoning as in Section C.3, we expect that the leading contribution from
IEd+1
Λd+1
(A, d − 2 + 2ε) will include the same L-function factors as for the Eisenstein series in

(D.8), such that
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∑

Qi∈M Ed
Λ1

Qi×Q j=0
Q1∧Q2 6=0

�

�

�

gcd(Q1∧Q2)
v(Q1∧Q2)

�

�

�

2
∫

G

]d3Ω2

|Ω2|2−ε
A(τ)e−πΩ

i j
2 G(Qi ,Q j) (D.17)

=
ξ(6)ξ(2)
ξ(4)2

IEd
Λ1
(A, 1+ 2ε) +O(ε0) =

ξ(6)ξ(2)
3

EEd
−3Λ1+(2+ε)Λ3

+O(ε0) ,

reproducing (4.35). We checked explicitly in the decompactification limit that the last equality
holds for d = 4.

For d = 6 we moreover have a finite contribution from the fifth layer of charges,

ξ(4ε−5)ξ(4ε−9)ξ(−1+2ε)ξ(9−2ε)
ξ(4ε)ξ(4ε−4)ξ(4+2ε)ξ(4−2ε) ξ(5− 2ε)ξ(12− 2ε)R9−6εEE6

(6−ε)Λ6
→
ε→0

2ξ(2)ξ(6)ξ(10)
ξ(4)

R9 .

(D.18)
This contribution comes from the constant term in τ−3

2 of the Eisenstein series ESL(2)
4Λ1
(τ) that

also appears in A(τ), so it is expected to cancel in (1.28).

Weak coupling limit

Turning to the weak coupling limit (D.2) , we have already seen that the contribution

ξ(4ε− 5)
ξ(4ε)

g1+6ε
D

ξ(−8+2ε)ξ(−6+2ε)ξ(6+2ε)
ξ(−3+2ε) g−7

D
EDd
(−3+ε)Λd−5+(3+ε)Λd

(D.19)

of the third layer of charges has a finite limit in d = 4,5, 6, but we argued in Appendix C.3
that it cancels in (1.28). The contributions from the fourth layer of charges for d = 5,6 do not
vanish at δ = 0 in the limit ε→ 0. The two terms contribute for d = 5 and only the first for
d = 6. We expect them to cancel in (1.28). The contribution from the fifth layer of charges
gives a finite contribution in d = 6

ξ(4ε− 5)ξ(4ε− 8)
ξ(4ε)ξ(4ε− 4)

ξ(−7+2ε)ξ(2ε)ξ(−4+2ε)ξ(3+2ε)
ξ(−3+2ε)ξ(4+2ε) g−6+8ε

D
EDd

4Λ1+(−2+ε)Λ2
, (D.20)

which cancels in (1.28) provided the expansion (3.58) is correct.

Borel Fourier coefficients

We want now to argue that the Fourier coefficients associated to the layers of charges that
give constant terms with an overall factor of 1

ξ(4ε) , also include a similar factor and generically
vanish. For this one can use a reduction formula for abelian Fourier coefficients in the Borel
decomposition, the so-called (degenerate) Whittaker coefficients or Whittaker vectors [24,76].

The abelian Fourier coefficients of the SL(2) Eisenstein series can be written as

W A1
sΛ1
(nα1)≡

∫ 1

0

dτ1e−2πinτ1 ESL(2)
sΛ1

=
Ws(n)
ξ(2s)

=
1

ξ(2s)
p
τ2
σ2s−1(|n|)

|n|s−
1
2

Ks− 1
2
(2π|n|τ2) . (D.21)

Similarly for SL(r + 1) Eisenstein series, the generic abelian Fourier coefficients in the Borel
decomposition36 take the form

W Ar
∑

skΛk
(
∑

k

nkαk)≡
∫

U
da e−2πi

∑

k nkak ESL(r + 1)
∑

skΛk
=

W{sk}(nk)
∏r−1

k=0

∏r−k
j=1 ξ(2

∑k+ j
i= j si − k)

, (D.22)

36The product of ξ functions in the denominator is due to the product over all positive roots of SL(r + 1), see
also [78].
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for {sk} such that none of the ξ arguments vanish, i.e.
∏r−1

k=0

∏r−k
j=1(2

∑k+ j
i= j si − k) 6= 0. The

functions W{sk}(nk) are Eulerian functions 37 on the Cartan torus and are regular for all sk. In
particular the reduction of the wavefront set at special values of {sk} is a consequence of the
vanishing ξ factors only. The abelian Fourier coefficients of an arbitrary Eisenstein series over
a reductive group G

W G
∑

skΛk
(
∑

k

nkαk)≡
∫

U
da e−2πi

∑

k nkak EG
∑

skΛk
(D.23)

can be written in a similar way. It can however happen that the ‘instanton charges’ nk on the
simple roots are not all non-zero, in which case one is therefore computing a degenerate Whit-
taker coefficient. The resulting expression is then not necessarily Eulerian but can be given by a
sum of different terms in a way described by Weyl cosets according to a reduction formula [24].
If the subset of non-zero nk corresponds to a subgroup SL(r1+1)×SL(r2+1)×· · ·×SL(rN+1)
of G, the corresponding Whittaker coefficient is said to be of Bala–Carter type Ar1

Ar2
. . . ArN

. It
is generally given by a sum over Weyl elements acting on

∑

skΛk and subsequent projection
to the subgroup SL(r1+1)×SL(r2+1)× · · ·×SL(rN +1) generating products of terms of the
generic type (D.22) with coefficients depending on the sk.

We shall now analyse some of the Whittaker vectors for the Eisenstein series (D.1). We
will only display the ξ factors and will schematically write fk for some products of functions
W{sk}(nk).

• For D5, using the reduction formula one computes the Whittaker vector of type A2A1A1

W D5
(ε−1)Λ3+4Λ5

(n1α1 + n2α2 +mα4 + pα5) =
f1W2+ε(m) +

ξ(7)
ξ(8) f2Wε− 3

2
(m)

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(5+ 2ε)ξ(3− 2ε)
,

(D.24)

where, at the identity in the Cartan torus,

f1 =Wε−2,2+ε(n1α1 + n2α2)Wε−2(p) , f2 =W3
2+ε,ε−

3
2
(n1α1 + n2α2)W3

2+ε
(p) . (D.25)

One recognises the structure of the terms in the third lines of (D.7) that have the same factor
of 1

ξ(4ε)ξ(4+2ε)ξ(4−2ε) , suggesting that they come from the third layer of charges in the decom-
pactification limit. One can understand that the type A2A1A1 corresponds to generic Fourier
coefficients in the decompactification limit. In this case the Fourier coefficients in the 10 of P5

so(5,5)∼= . . .⊕ (gl1 ⊕ sl5)
(0) ⊕ 10

(2)
(D.26)

supported on the simple root pα5, of type A1 have a Levi stabiliser sl3 ⊕ sl2, so the generic
Fourier coefficient that can be related to a Whittaker vector corresponds to a Fourier coefficient
of the generic SL(3) × SL(2) Levi functions that are by definition of type A2A1, leading to a
total Bala–Carter type A2A1A1. The Whittaker vectors of type A2A1 have a structure similar
to (D.24) where W2+ε(m) and Wε− 3

2
(m) are replaced by the constant terms (at the identity) of

the corresponding SL(2) Eisenstein series ESL(2)
(2+ε)Λ1

and ESL(2)
(ε−3/2)Λ1

, together with one additional
new contribution

37i.e. they can be written as infinite products of p-adic Whittaker vectors for all primes p, including a special
function contribution from the ‘archimedean prime at infinity’.
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W D5
(ε−1)Λ3+4Λ5

(n1α1 + n2α2 + pα5) =
f1(ξ(4+ 2ε) + ξ(3+ 2ε)) + ξ(7)

ξ(8) f2(ξ(4− 2ε) + ξ(5− 2ε))

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(5+ 2ε)ξ(3− 2ε)

+
ξ(2+ 2ε)ξ(6− 2ε)W4,ε− 3

2
(n1α1 + n2α2)W2ε−1(p)

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(5+ 2ε)ξ(3− 2ε)ξ(8)
. (D.27)

The new contribution has a factor of W2ε−1(p) associated to the Eisenstein series ESL(2)
(2ε−1)Λ1

,
whose corresponding constant term includes a factor ξ(4ε − 3), and is understood to corre-
spond to the fourth layer of charges in the decompactification limit. One may check that for
ε→ 0, the A2 Whittaker vectors collapse to the Eulerian Whittaker vectors of the adjoint series,
so that all Fourier coefficients associated to the third and the fourth layer of charges indeed
vanish at ε= 0.

• For E6, using the reduction formula one computes the Whittaker vector of type A2A1A1

W E6

(ε− 1
2 )Λ5+4Λ6

(n1α1 +mα2 + n2α3 + pα6) =
f1W2+ε(m) +

ξ(7)
ξ(8) f2Wε− 3

2
(m)

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(6+ 2ε)ξ(2− 2ε)
(D.28)

that can similarly be attributed to the third layer of charges, and does vanish in the limit ε→ 0.
One finds for type A2A1

W E6

(ε− 1
2 )Λ5+4Λ6

(n1α1 + n2α3 + pα6) =
f1(ξ(4+ 2ε) + ξ(3+ 2ε)) + ξ(7)

ξ(8) f2(ξ(4− 2ε) + ξ(5− 2ε))

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(6+ 2ε)ξ(2− 2ε)

+
ξ(2+ 2ε)ξ(6− 2ε)W4,ε− 3

2
(n1α1 + n2α2)W2ε− 3

2
(p)

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(6+ 2ε)ξ(2− 2ε)

+
ξ(7− 2ε) f3 + ξ(1+ 2ε)ξ(7)ξ(8) f4

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)ξ(6+ 2ε)ξ(2− 2ε)
. (D.29)

Again, one can attribute the first line to the third layer of charges, the second line to the fourth
layer of charges and the third line to the third layer of charges. All these contributions vanish
in the limit ε→ 0, but the last term associated to the third layer of charges. One finds also a
Whittaker vector of type A2A1 that does not vanish at ε→ 0 ,

W E6

(ε− 1
2 )Λ5+4Λ6

(n1α1 +mα2 + n2α3) =
ξ(1+2ε) ξ(7)ξ(8) f5

ξ(4ε)ξ(4+2ε)ξ(4−2ε)ξ(6+2ε)ξ(2−2ε) +O(ε) . (D.30)

This Fourier coefficient can be identified as a A2A1 type Fourier coefficient of EE5
4ε−1

2 Λ1 +
7+δ−2ε

2 Λ5
in

(D.7) and is therefore associated to the third layer of charges. This shows that the wavefront set
of EE6

(ε− 1
2 )Λ5+4Λ6

�

�

ε0 is of type A2A1 and not A2, and therefore this function cannot be a solution

to the tensorial differential equation (2.10). In order for the renormalised function (1.28) to
satisfy this equation, this contribution must cancel against the Fourier coefficients of the theta
lift of A(τ).

• For E7 the Eisenstein series ξ(2ε)EEd+1
εΛ6+4Λ7

is of Bala–Carter type A3A1 (with wavefront
set associated to the smallest nilpotent orbit of that type). The corresponding Whittaker vector
is

ξ(2ε)ξ(7+ 2ε)W E7
εΛ6+4Λ7

(n1α2 + n2α4 + n3α5 + pα7) =
1
ξ(8) f

ξ(4ε)ξ(4ε− 4)ξ(4+ 2ε)ξ(4− 2ε)
(D.31)
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consistently with the fifth and last layer of charges contribution in (D.7), that includes the
same denominator.

Turning to the A2A1A1 type, we find

ξ(2ε)ξ(7+ 2ε)W E7
εΛ6+4Λ7

(n1α1 +mα2 + n2α3 + pα7)

=
f1 +

ξ(7)
ξ(8) f2

ξ(4ε)ξ(4+ 2ε)ξ(4− 2ε)
+

ξ(4ε− 5)( f̃1 +
ξ(7)
ξ(8) f̃2)

ξ(4ε)ξ(4ε− 4)ξ(4+ 2ε)ξ(4− 2ε)
, (D.32)

where the first term comes from the third layer of charges as in (D.24) and (D.29), while the
second comes from the fifth layer of charges. One finds again that the A2A1 Whittaker vector

ξ(2ε)ξ(7+ 2ε)W E7
εΛ6+4Λ7

(n1α1 + n2α3 + pα7)

=
ξ(4ε− 5)

ξ(4ε)ξ(4ε− 4)ξ(4+ 2ε)ξ(4− 2ε)
·

1
ξ(8)

�

ξ(2ε)ξ(7)( f3 + f4) + ξ(1+ 2ε)ξ(7− 2ε) f4(ε)
�

+
1

ξ(4ε)ξ(4ε− 4)ξ(4+ 2ε)ξ(4− 2ε)
·
ξ(7)
ξ(8)

ξ(2ε− 5)ξ(1+ 2ε) f3(ε) +O(ε) (D.33)

vanishes at ε→ 0. For E7 all the A2A1 type Whittaker vectors are in the same Weyl orbit and
therefore vanish in the limit ε → 0. For W E7

εΛ6+4Λ7
(n1α1 +mα2 + n2α3) the contribution from

(D.30) coming from the second layer of charges in (D.7) cancels agains the same contribu-
tion from EE6

4ε−1
2 Λ1+(4−ε)Λ6

coming from the third layer of charges in (D.7). We conclude that

ξ(2ε)EEd+1
εΛ6+4Λ7

�

�

ε0 is of Bala–Carter type A2, and must therefore satisfy the tensorial equation
(2.10). We also checked that all the Whittaker vectors of Bala–Carter type A1A1A1A1 vanish
at ε→ 0 and the ones of type A2 collapse to the ones of the adjoint Eisenstein series (i.e. all
terms proportional to 1

ξ(4ε) cancel in the limit ε→ 0).

To summarise, we have found that for d = 4 and d = 6, all the Whittaker vectors of Bala–
Cater type exceeding A2 vanish in the limit ε → 0 and the ones of type A2 collapse to the
Whittaker vectors of the adjoint Eisenstein series (D.6), while for d = 5 we found that some
Fourier coefficients of Bala–Carter type A2A1 originating from the third layer of charges remain
in the limit. We take this as further evidence for the fact that for all d, the fourth and fifth
layers of charges do not contribute to the Fourier coefficients of the renormalised coupling
(1.28) in the decompactification limit.

E Decompactification limit for E8

In this appendix, we discuss the d = 7 case considered in Section 5.4 in more detail. We first
explain how to rewrite the charge sum in the double theta series (1.18) in this case. We extract
the constant terms and abelian Fourier coefficients from the new layers that have no counter
part for d < 7. In particular we extract the summation measure for 1/8-BPS instantons in the
decompactification limit, which is related to the index of BPS black holes in four dimensions.

We consider the lattice sum (1.18)

θ
E8
Λ8
(φ,Ω2) =

′
∑

Qi∈M E8
Λ8

Qi×Q j=0

e−πΩ
i j
2 G(Qi ,Q j) , (E.1)

where M E8
Λ8

is the lattice in the adjoint representation invariant under the Chevalley group
E8(Z). Under the grading

e8(8)
∼= 1(−2) ⊕ 56(−1) ⊕

�

gl1 ⊕ e7(7)
�(0) ⊕ 56(1) ⊕ 1(2) , (E.2)
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one defines Q = (n,Υ ,` +Q, Γ , m) ∈ M E8

Λ8
with n, m ∈ Z, Υ , Γ ∈ M E7

Λ7

∼= Z56 and Q ∈ e7 and
` ∈Z/2 such that Q+ ` acts on M E7

Λ7
as a Z56×56 matrix [50, §4.1]. For ` integer, Q ∈ M E7

Λ1
. The

Spin(16) invariant bilinear form is

G(Q,Q) = R−4
�

m+ 〈a, Γ + bΥ 〉+ 2b`+ b2n+ 1
2〈a,Q · a〉+ 1

4〈Υ ,∆′(a)〉+ 1
4 n∆(a)

�2

+R−2
�

�Z
�

Γ +Q · a+ `a+ 1
8∆
′(a, a,Υ ) + 1

2 a〈a,Υ 〉+ 1
4 n∆′(a) + b(Υ + an)

��

�

2

+
�

�V
�

Q+ 2a× Υ + a× an
��

�

2
+
�

`+ 1
2〈a,Υ 〉+ bn

�2

+R2
�

�Z(Υ + an)
�

�

2
+ R4n2 , (E.3)

where the axions a ∈R56, b ∈R parametrise the Heisenberg unipotent subgroup R56+1 ⊂ P8,
R ∈ R+ the GL(1)+ subgroup and the SU(8) invariant norms |V (Q)| and |Z(Γ )| depend on
E7/SU(8). Altogether they parametrise P8/SU(8) ∼= E8/Spin(16). Recall that ∆′(Γ ) ∈ M E7

Λ7
is

the gradient of the quartic invariant ∆(Γ ) ∈ Z and ∆′(Γ1, Γ2, Γ3) ∈ M E7

Λ7
is the corresponding

symmetric trilinear map. The 1/2 BPS constraint Qi ×Q j = 0 is satisfied if and only if the
symmetric product Qi⊗Q j|Λ1

= 0, and the highest weight Λ1 module decomposes under (E.2)
as

3875∼= 133(−2) ⊕ (912⊕ 56)(−1) ⊕
�

1539⊕ 133⊕ 1
�(0) ⊕ (912⊕ 56)(1) ⊕ 133(2) . (E.4)

The five components of (E.4) can be written explicitly as [50]

i) Υ × Υ = nQ ,

ii) 1
3Q · Υ = nΓ − `Υ , 2Υ × (Q · J) + 2

3 J × (Q · Υ ) = 〈J ,Υ 〉Q , ∀J ∈ M E7

Λ7
,

iii) Q2 · J = (3`2 − 3mn+ 1
2〈Υ , Γ 〉)J + 2Υ 〈Γ , J〉 − 2Γ 〈Υ , J〉 , ∀J ∈ M E7

Λ7
, Υ × Γ = `Q ,

iv) 1
3Q · Γ = `Γ −mΥ , 2Γ × (Q · J) + 2

3 J × (Q · Γ ) = 〈J , Γ 〉Q , ∀J ∈ M E7

Λ7
,

v) Γ × Γ = mQ . (E.5)

We consider the computation of θ E8
Λ8

layer by layer as in Section 4.2.

E.1 Constant terms

1) The first, second, third and fourth layers

For the first four layers of charges, i.e. with Υi = ni = 0, one finds that `i = 0 from the
constraint and the computation is identical to the one carried out in Section 4.2. All the
corresponding results in Section 4.2 apply to the case d = 7.

2) The fifth layer

Let us now consider Υi 6= 0 and ni = 0. First we shall discuss the case in which Υi are linearly
dependent, so one can consider the E6 grading:

e7(7)
∼= 27(−2) ⊕

�

gl1 ⊕ e6(6)
�(0) ⊕ 27

(2)
,

56 ∼= 1(−3) ⊕ 27
(−1)
⊕ 27(1) ⊕ 1(3) ,

912 ∼= 78(−3) ⊕
�

351⊕ 27
�(−1) ⊕

�

351⊕ 27
�(1) ⊕ 78(3) ,

1539 ∼= 27(−4) ⊕
�

351⊕ 27
�(−2) ⊕

�

1⊕ 78⊕ 650
�(0) ⊕

�

351⊕ 27
�(2) ⊕ 27

(4)
, (E.6)

such that Υi = (0, 0,0, ni) ∈ 1(3). Using the 912 constraint one obtains that Q i = (0,ci +0, p̃i),
such that ci ∈ Z. The 56 constraint then gives ci = −`i . Then the condition Q2 + 4Γ ∧ Υ in
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the 1539 enforces that Γi = (p0
i , pi , qi , qi0) with the additional constraints

n(iq j) = −p̃i × p̃ j , n(i p j) = 2c(i p̃ j) , n(i p
0
j) = −4cic j , (E.7)

where ci = −`i is in Z/2. Then the constraint Υ × Γ = `Q gives

`(i p̃ j) = −
1
2

n(i p j) , n(i p
0
j) = 4`(ic j) , (E.8)

the constraint QΓ |912 = 0 gives

2c(i p j) + p̃(i p
0
j) = 0 , p(i × p̃ j) = 2c(iq j) , 4q(i × (p̃ j) × y) = p̃(i tr q j) y +

1
3

y tr p̃(iq j) , (E.9)

whereas the 56 component of iv) gives

(c(i − `(i)q0 j) +
1
3 tr p̃(iq j) = −m(in j) (c(i − 3`(i)q j) = 2p̃(i × p j) , (c(i + 3`(i)p j) = p0

(i p̃ j) .
(E.10)

Finally v) gives

pi × p j = −p0
(iq j) , 2m(ic j) = 3p0

(iq0 j) − tr p(iq j) , 4q(i × (p j) × y) = p(i tr q j) y +
1
3

y tr p(iq j)

(E.11)
and

qi × q j − p0
(i p j) = n(i p̃ j) . (E.12)

For `i = 0 the solution is the same as for the fifth layer of charges in E7. We are not able
to extract the constant terms from the fifth layer, but the Langlands constant term formula
suggests that they will involve a factor of 1

ξ(4ε)ξ(4ε−4) and vanish in the limit ε→ 0, along with
the corresponding abelian Fourier coefficients.

2) The sixth layer

We shall now consider Υi 6= 0 and linearly independent with ni = 0. In this case one can
consider the SO(5, 5) grading:

e7
∼= 10(−2) ⊕ (2⊗ 16)(−1) ⊕

�

gl1 ⊕ sl2 ⊕ so(5,5)
�(0) ⊕ (2⊗ 16)(1) ⊕ 10(2) ,

56 ∼= 2(−2) ⊕ 16
(−1)
⊕ (2⊗ 10)(0) ⊕ 16(1) ⊕ 2(2) ,

912 ∼= · · · ⊕
�

2⊗ 120⊕ 2× 2⊗ 10
�(0) ⊕

�

3⊗ 16⊕ 144⊕ 16
�(1) ⊕ (2⊗ 45⊕ 2)(2) ⊕ 16

(3)
,

1539 ∼= · · · ⊕ (120⊕ 3⊗ 10⊕ 10)(2) ⊕ (2⊗ 16)(3) ⊕ 1(4) , (E.13)

with Υi = (0, 0,0, 0, ni
̂) ∈ 2(2). The condition QΥ |912 = 0 then implies that

Q =
�

0,0, ni
̂
`k̂

r
+ 1

2δ
̂

k̂
ni

l̂ `l̂

r
, 0, ni

̂ p
k

, qi

�

∈ (2⊗ 2)(0) ⊕ (2⊗ 16)(1) ⊕ 10(2) , (E.14)

so that `= 1
2 ni

̂` ̂/r. The condition Q2 + 4Γ ∧ Υ to vanish in the 1539 implies that

Γi =
�

ni
̂ ˆ̀ı

r

` ̂

r
, ni

̂
` ̂

r
p
k

, 1
2 ni

̂ p
k
γ

p
k
+ ε ̂k̂

`k̂

r
qi ,/qi

p
k

, mi
̂
�

, (E.15)

with the constraint
2εk̂l̂ n(i

k̂m j)
l̂ = (qi , q j) . (E.16)

The only constraint that is not yet satisfied is Γi × Γ j = m(iQ j) that enforces

mi =
1
2

p
k
/qi

p
k
+mi

̂
` ̂

r
. (E.17)
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Here we defined k coprime to p ∈ S+ and r coprime to ˆ̀ı ∈ Z2 such that they divide ni
̂ and

all the other necessary quantities for the charges to be integer valued.
One can then interpret the sum over (k, p) as a Poincaré sum over P1\E6, and the sum over

(r, ˆ̀ı) as a Poincaré sum over P1\SL(3), for the maximal pair SL(3)× E6 ⊂ E8, and manipulate
the sum over ni

̂, qi , mi
̂ using the orbit method for an auxiliary genus two theta lift. One can

understand this in two steps. One can first rewrite the set of charges at ˆ̀ı = 0 in the P7 ⊂ E8
decomposition in which the sum over (k, p) can be interpreted as a sum over P1\E6

e8
∼= 2(−3) ⊕ 27(−2) ⊕ (2⊗ 27)(−1) ⊕ (gl1 ⊕ sl2 ⊕ e6)

(0) ⊕ (2⊗ 27)(1) ⊕ 27
(2)
⊕ 2(3)

(ni
̂, ni

̂ p
k

, ni
̂ pγp
2k2
) ∈ (2⊗ 27)(1)

(qi ,/qi
p
k

,
p/qi p
2k2
) ∈ 27

(2)

mi
̂ ∈ 2(3) . (E.18)

The set of charges of the sixth layer, at ˆ̀ı = 0, span the three first degrees in the decompo-
sition above, where the doublet of non-collinear charges in the (2⊗ 27) is in the E6 orbit of
(ni

̂, 0, 0). One recognises the sum over (k, p) as the Poincaré sum over P1\E6 of the solution
to Qi ×Q j = 0 at p = ˆ̀ı = 0. Similarly, the sum over non-trivial (r, ˆ̀ı) can be interpreted as a
sum over P1\SL(3) in the decomposition

e8
∼= · · · ⊕ (gl1 ⊕ sl3 ⊕ so(5,5))(0) ⊕ (3⊗ 16)(1) ⊕ (3⊗ 10)(2) ⊕ 16

(3)
⊕ 3(4)

(ni
̂, ni

̂
`k̂

r
+δ ̂

k̂
ni

l̂ `l̂

r
, ni

̂
` ̂`k̂

r2
) ∈ (sl3)(0)

(ni
̂ p
k

, ni
̂
` ̂

r
p
k
) ∈ (3⊗ 16)(1)

(qi ,ε
̂k̂ `k̂

r
qi +

pγp
2k2
) ∈ (3⊗ 10)(2)

/qi
p
k
∈ 16

(3)

(mi
̂, mi

̂
` ̂

r
+

p/qi p
2k2
) ∈ 3(4) . (E.19)

Now, the set of charges of the sixth layer span the five first degrees in the decomposition above,
where the doublet of non-collinear charges in sl3 is in the SL(3,Z) orbit of (ni

̂, 0, 0). One
recognises the sum over (r, ˆ̀ı) as the Poincaré sum over P1\SL(3) of the solution to Qi×Q j = 0
at ˆ̀ı = 0.

With this interpretation as a P1\E6 × P1\SL(3) Poincaré sum in mind, we rewrite the in-
variant bilinear form as

G(Qi ,Q j) = (R
−2 yυı̂ ̂+R−4˜̀

ı̂
˜̀
̂)
�

mi
ı̂+(ã ı̂, qi+

1
2 ãk̂ni

k̂)+ b̃ni
ı̂
��

m j
̂+(ã ̂, q j+

1
2 ãl̂)n j

l̂+ b̃n j
̂
�

+
�

(y + R−2υ(˜̀, ˜̀))uab +
y

1
2

R2
p̃γauγb p̃+ 1

4
(p̃γa p̃)(p̃γb p̃)

R4 + R2

y υ(˜̀, ˜̀)

�

(qa
i + ãa

ı̂ ni
ı̂)(qb

j + ãb
̂ n j

̂)

+
�

R2 y +υ(˜̀, ˜̀) + y
1
2 u(p̃, p̃) + 1

4
u(p̃γp̃, p̃γp̃)

R2 + 1
yυ(˜̀, ˜̀)

�

(υı̂ ̂ +
1

R2 y
˜̀

ı̂
˜̀
̂)ni

ı̂n j
̂, (E.20)

where we introduced for short

˜̀
ı̂ =

ˆ̀ı

r
+ aı̂ , p̃ =

p
k
+ a+ c ı̂

�

ˆ̀ı

r
+ aı̂

�

,
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ãa
ı̂ = aa

ı̂ + ĉıγ
a
� p

k
+ a+ 1

2 c ̂
�` ̂

r
+ a ̂

��

+ ca
�

ˆ̀ı

r
+ aı̂

�

+ 1
2εı̂ ̂υ

̂k̂
�`k̂

r
+ ak̂

� p̃γa p̃

R2 y +υ(˜̀, ˜̀)
,

b̃ = b+ 1
2 ā
� p

k
+ a+ 1

2 c ı̂
� ˆ̀ı

r
+ aı̂

�

�

+ 1
2 ā ı̂
� ˆ̀ı

r
+ aı̂

�

+ 1
2 p̃/c p̃+ . . . . (E.21)

The factors of R2 + 1
yυ(˜̀, ˜̀) in the denumerator in (E.20) comes from completing the squares

in

R−2 yυı̂ ̂mi
ı̂m j

̂ + R−4(mi
ı̂˜̀

ı̂ +
1
2 p̃/qi p̃)(m j

̂˜̀
̂ +

1
2 p̃/q j p̃)

= (R−2 yυı̂ ̂ + R−4˜̀
ı̂
˜̀
̂)
�

mi
ı̂ + 1

2υ
ı̂k̂˜̀

k̂
p̃/qi p̃

R2 y +υ(˜̀, ˜̀)

��

m j
̂ + 1

2υ
̂̂l ˜̀

l̂

p̃/q j p̃

R2 y +υ(˜̀, ˜̀)

�

+1
4
(p̃γa p̃)(p̃γb p̃)

R4 + R2

y υ(˜̀, ˜̀)
qa

i qb
j (E.22)

and

yuabqa
i qb

j + R−2υı̂ ̂uab

�

ε ı̂k̂˜̀
k̂qa

i +
1
2 ni

ı̂ p̃γa p̃
��

ε ̂̂l ˜̀l̂q
b
j +

1
2 n j

̂ p̃γb p̃
�

= (y + R−2υ(˜̀, ˜̀))uab

�

qa
i +

1
2 ni

ı̂υı̂k̂ε
k̂p̂˜̀

p̂
p̃γa p̃

R2 y +υ(˜̀, ˜̀)

��

qb
j +

1
2 n j

̂υ ̂̂lε
l̂ q̂˜̀

q̂
p̃γb p̃

R2 y +υ(˜̀, ˜̀)

�

+1
4

u(p̃γp̃, p̃γp̃)

R2 + 1
yυ(˜̀, ˜̀)

(υı̂ ̂ +
1

R2 y
˜̀

ı̂
˜̀
̂)ni

ı̂n j
̂ (E.23)

and repeatedly using the Spin(5, 5) identity [79]

γa p̃p̃γa = −
1
2(p̃γ

a p̃)γa ⇒ γa p̃(p̃γa p̃) = 0 . (E.24)

G(Q i ,Q j) in (E.20) is then recognised, up to a scale factor, as the the metric on the SO(7,7)
lattice II7,7

g̃(Q i ,Q j) = R̃−1υ̃ı̂ ̂

�

mi
ı̂ + (ã ı̂, qi +

1
2 ãk̂ni

k̂) + b̃ni
ı̂
��

m j
̂ + (ã ̂, q j +

1
2 ãl̂)n j

l̂ + b̃n j
̂
�

+ ũab(q
a
i + ãa

ı̂ ni
ı̂)(qb

j + ãb
̂ n j

̂) + R̃υ̃ı̂ ̂ni
ı̂n j

̂ , (E.25)

with

G(Qi ,Q j) =

√

√

√
�

y + υ(˜̀,˜̀)
R2

�2
+
�

y + υ(˜̀,˜̀)
R2

� y
1
2

R2
u(p̃, p̃) + 1

4
y

R4
u(p̃γp̃, p̃γp̃) g̃(Q i ,Q j)

R̃ = R2

√

√

√

1+
υ(˜̀, ˜̀)
R2 y

+
u(p̃, p̃)

R2 y
1
2

+ 1
4

u(p̃γp̃, p̃γp̃)

R4 y + R2υ(˜̀, ˜̀)

υ̃ı̂ ̂ =
υı̂ ̂ +

˜̀
ı̂
˜̀
̂

R2 y
r

1+ υ(˜̀,˜̀)
R2 y

ũab =

�

1+ υ(˜̀,˜̀)
R2 y

�

uab +
1

R2 y p̃γauγb p̃+ 1
4
(p̃γa p̃)(p̃γb p̃)
R4 y+R2υ(˜̀,˜̀)

s

�

1+ υ(˜̀,˜̀)
R2 y

�2
+
�

1+ υ(˜̀,˜̀)
R2 y

�u(p̃,p̃)

R2 y
1
2
+ 1

4
u(p̃γp̃,p̃γp̃)

R4 y

, (E.26)

where one checks that ũab is indeed an orthogonal symmetric matrix using (E.24).
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We can now use the orbit method for the genus-two Siegel–Narain theta series on the
lattice II7,7 to compute the sum

∫

G

d3Ω2

|Ω2|3

∫

Z3\R3

d3Ω1 |Ω2|εϕtr
KZ (Ω2) |Ω2|

7
2

∑

ni
ĵ∈Z2

det n6=0

∑

qia∈II5,5

mi
̂∈Z2

e−πΩ
i j
2 G(Qi ,Q j)+πiΩi j

1 (2εı̂ ̂mi
ı̂n j

̂−(qi ,q j))

=

∫

G

d3Ω2

|Ω2|
1
2

∫

Z3\R3

d3Ω1

∑

γ∈P2\Sp(4,Z)
det C(γ)6=0

�

|Ω2|εϕtr
KZ (Ω2)

��

�

γ

∑

mi∈Z2

det m 6=0

∑

qi∈II5,5

×R̃2 e−πΩ
−1
2i j R̃υ̃

ı̂ ̂mı̂
i m ̂

j−πΩi j
2 ũabqa

i qb
j −πiΩi j

1 ηabqa
i qb

j +2πim ̂
iqa

i ã ̂a

(
�

y + υ(˜̀,˜̀)
R2

�2
+
�

y + υ(˜̀,˜̀)
R2

� y
1
2

R2 u(p̃, p̃) + 1
4

y
R4 u(p̃γp̃, p̃γp̃))

5
2+ε
+ . . . , (E.27)

where the ellipsis denotes non-abelian Fourier coefficients. The constant term at qi = 0 can
be computed using the interpretation of the sum over k and p as the principal layer of the
Poincaré sum P1\E6 and the sum over r and ` as the principal layer of the Poincaré sum over
P1\SL(3).

In order to carry out the sum over k and p bellow we shall use that the sum over P1\E6

can be interpreted as a weak coupling limit with g5 = (R2 y
1
2 + y−

1
2υ(˜̀, ˜̀))−

1
2 such that

∞
∑

k=1

∑

p∈S+
pγp
2k ∈II5,5
(k,p)=1

1
�

1+ υ(˜̀,˜̀)
R2 y +

u( p
k+a, p

k+a)

R2 y
1
2

+ 1
4

u[( p
k+a)γ( p

k+a),( p
k+a)γ( p

k+a)]
R4 y+R2υ(˜̀,˜̀)

�s

=
ξ(2s− 8)ξ(2s− 11)
ξ(2s)ξ(2s− 3)

y4R16
�

1+
υ(˜̀, ˜̀)
R2 y

�8−s
+O(e−π

r

R2 y
1
2 +y−

1
2 υ(˜̀,˜̀)) (E.28)

up to the exponentially suppressed Fourier coefficients in e2πi(q,a), by recognising

EE6
sΛ6
=

1
2ζ(2s)

∑

k∈Z
p∈S+

q∈II5,5
2nq=pγp

1

(g−
8
3

5 k2 + g
− 2

3
5 u(p+ ak, p+ ak) + g

4
3
5 u(q+ (aγp) + 1

2(aγa)k, q+ (aγp) + 1
2(aγa)k))s

.

(E.29)
Similarly, to carry out the sum over ` and r one can recognise the unrestricted sum over ` and
r as the SL(3) Eisenstein series

ESL(3)
(s−ε)Λ1+2εΛ2

=
1

2ζ(2ε)

′
∑

r∈Z
`∈Z2

1

(y−1
3 υ(`+ ar,`+ ar) + y2

3 r2)s
ESL(2)

2εΛ1

�

υ+
( `r +a)( `r +a)

y3
3

√

√

1+
υ( `r +a, `r +a)

y3
3

�

(E.30)

such that the restricted sum with r 6= 0 can be recognised as its last constant term using
Langlands constant term formula, giving

∞
∑

r=1

∑

`∈Z2

(r,`)=1

1

(1+ υ( `r+a, `r+a)
R2 y )s

ESL(2)
2εΛ1

�

υ+
( `r +a)( `r +a)

R2 y
√

√

1+
υ( `r +a, `r +a)

R2 y

�

=
ξ(2s− 2ε− 1)ξ(2s+ 2ε− 2)
ξ(2s− 2ε)ξ(2s+ 2ε− 1)

R2 yESL(2)
2εΛ1
(υ) +O(e−πRy

1
2 ) . (E.31)

One determines that this is the unique constant term coming out of the principal layer by
computing the scaling in R2 y from the homogeneity of the Fourier transform.
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Using (E.27) and (3.58), one can compute in this way the constant term contribution

I (6a)
7 =

10ζ(3)
π

∑

γ∈P7\E8

∑

(r,`)

∞
∑

k=1

∑

p∈S+
pγp
2k ∈II5,5
(k,p)=1

×
∑

mi∈Z2

det m 6=0
m(`/r)∈Z2

∫

G

d3Ω2

|Ω2|
3
2

R̃2ESL(2)
2εΛ1
(τ)e−πΩ

i j
2 R̃υ̃ı̂ ̂mi

ı̂m j
̂

(
�

y + υ(˜̀,˜̀)
R2

�2
+
�

y + υ(˜̀,˜̀)
R2

� y
1
2

R2 u(p̃, p̃) + 1
4

y
R4 u(p̃γp̃, p̃γp̃))

5
2+ε

=
20ζ(3)
π

R4
∑

γ∈P7\E8

∑

(r,`)

∞
∑

k=1

∑

p∈S+
pγp
2k ∈II5,5
(k,p)=1

ξ(−2ε)ξ(2ε−1)

y
�

y+ υ(
˜̀,˜̀)

R2

� ESL(2)
2εΛ1

�

υ+
( `r +a)( `r +a)

R2 y
√

√

1+
υ( `r +a, `r +a)

R2 y

�

(
�

y + υ(˜̀,˜̀)
R2

�2
+
�

y + υ(˜̀,˜̀)
R2

� y
1
2

R2 u(p̃, p̃) + 1
4

y
R4 u(p̃γp̃, p̃γp̃))

3
2+ε

=
20ζ(3)
π

R20
∑

γ∈P7\E8

∑

(r,`)

∞
∑

k=1

ξ(−2ε)ξ(2ε− 1)ξ(2ε− 5)ξ(2ε− 8)ESL(2)
2εΛ1

�

υ+
( `r +a)( `r +a)

R2 y
√

√

1+
υ( `r +a, `r +a)

R2 y

�

ξ(2ε)ξ(3+ 2ε)y1+2ε(1+ υ( `r+a, `r+a)
R2 y )2ε−4

=
20ζ(3)
π

R22
∑

γ∈P7\E8

ξ(2ε− 9)ξ(6ε− 10)ξ(−2ε)ξ(2ε− 1)ξ(2ε− 5)ξ(2ε− 8)ESL(2)
2εΛ1
(υ)

ξ(2ε− 8)ξ(6ε− 9)ξ(2ε)ξ(3+ 2ε)y2ε

=
20ζ(3)
π

R22ξ(2ε− 9)ξ(6ε− 10)ξ(−2ε)ξ(2ε− 1)ξ(2ε− 5)ξ(2ε− 8)
ξ(2ε− 8)ξ(6ε− 9)ξ(2ε)ξ(3+ 2ε)

EE7
2εΛ7

=
ε→0

−40ξ(2)ξ(6)ξ(11)R22 . (E.32)

In the third equality we carried out the sum over p and k using (E.28), and in the fourth
equality the sum over ` and r using (E.31). This is the term that appears in the decompact-
ification limit (4.1), except for the sign. The sign will be resolved in considering the renor-
malised coupling (1.31). Indeed, this contribution drops out in (1.28) because the constant
term 5ζ(3)

4π2 V 2ESL(2)
2εΛ1

(τ) in (3.58) also appears in the constant terms of the Siegel–Eisenstein
series (D.4) at δ = 0. After these cancellations, the only remaining contribution in (1.28) is
the one from the adjoint Eisenstein series coming from the Siegel–Eisenstein series constant
term 5ζ(3)

4π2 V 2+2ε that gives instead
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2π2ξ(3+ 2ε)
9ξ(4+ 2ε)

∑

γ∈P7\E8

∑

(r,`)

∞
∑

k=1

∑

p∈S+
pγp
2k ∈II5,5
(k,p)=1

×
∑

mi∈Z2

det m 6=0
m(`/r)∈Z2

∫
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d3Ω2

|Ω2|
3
2
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2 R̃υ̃ı̂ ̂mi

ı̂m j
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(
�

y + υ(˜̀,˜̀)
R2

�2
+
�

y + υ(˜̀,˜̀)
R2

� y
1
2

R2 u(p̃, p̃) + 1
4

y
R4 u(p̃γp̃, p̃γp̃))

5
2

=
4π2ξ(3+ 2ε)

9ξ(4+ 2ε)

∑

γ∈P7\E8

∑

(r,`)

∞
∑

k=1

∑

p∈S+
pγp
2k ∈II5,5
(k,p)=1

R4−4ε ξ(2ε)ξ(2ε−1)

y5(1+ υ(
˜̀,˜̀)

R2 y
)

5
2

(1+ υ(˜̀,˜̀)
R2 y +

u(p̃,p̃)

R2 y
1
2
+ 1

4
u(p̃γp̃,p̃γp̃)
R4 y+υ(˜̀,˜̀)

)
3
2+ε

=
4π2ξ(3+ 2ε)

9ξ(4+ 2ε)
R20−4ε

∑

γ∈P7\E8

∑

(r,`)

∞
∑

k=1

ξ(2ε)ξ(2ε− 1)ξ(2ε− 5)ξ(2ε− 8)

ξ(2ε)ξ(3+ 2ε)y(1+ υ( `r+a, `r+a)
R2 y )ε−4

=
4π2ξ(3+ 2ε)

9ξ(4+ 2ε)
R22−4ε

∑

γ∈P7\E8

ξ(2ε− 9)ξ(2ε− 10)ξ(2ε)ξ(2ε− 1)ξ(2ε− 5)ξ(2ε− 8)
ξ(2ε− 8)ξ(2ε− 9)ξ(2ε)ξ(3+ 2ε)

=
4π2

9
R22−4εξ(2ε− 10)ξ(2ε− 1)ξ(2ε− 5)

ξ(4+ 2ε)
=
ε→0

40ξ(2)ξ(6)ξ(11)R22 . (E.33)

Note that in both cases we have used formal identities for divergent sum or integrals. In
the first sum for I (5a)

7 , we integrated the logarithmically divergent integral over V by analytic
continuation of dV

V 1+ε̃ at ε̃= 0. For the second sum we have the formal Poincaré sum of 1 over

P7\E8, which we consider equal to one by analytic continuation of the Eisenstein series EE8
ε̃Λ7

.
We encounter these divergences because we have neglected the cut-off L on the fundamental
domain F in the computation, in particular when we used the orbit method in (E.27). We
expect that a proper handling of the cut-off L in the orbit method should be equivalent to
introducing such parameter ε̃ as in (3.21). Although this computation is not rigorous, the fact
that the same method reproduces correctly three of the constant terms of the two-parameter
Eisenstein series in (D.7) provides a strong consistency check of our result.

For d = 7 both the counterterm and the three-loop contribution are finite, so one may
wonder why one needs the renormalised coupling to get the right answer. The point is that
IE8
Λ8

�

ESL(2)
(4+δ)Λ1

, 5+2ε
�

includes a non-analytic factor in ξ(δ−2ε)
ξ(δ+2ε) ∼

δ+2ε
δ−2ε near (δ,ε) = (0, 0), such

that the finite value at (δ,ε) = (0,0) depends on direction in which it is approached in C2.

E.2 Abelian Fourier coefficients

We now consider the abelian Fourier coefficients coming from the sixth layer, since the contri-
butions from the other layers were already discussed in Section 4.2. Combining the results of
the last section, and using the same method as in Section 3.3 for the weak coupling limit in
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D = 4, one concludes that they take the form

I (6c)
7 =

∑

γ∈P6\E7

�

R4

y5

∑

Q∈Z2⊗II5,5
∆(Q)≥1

∑
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p∈S+

gcd(k,p)=1
(pγp)

2k ∈Z
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1
2
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4
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r
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R2 y
υ(˜̀, ˜̀)

tr[Ω−1
2 ε(υ+

1
R2 y

˜̀˜̀ᵀ)εᵀ]

×e2πi
�

Q,aı̂+ĉıγ(
p
k+a+ 1

2 c ̂(
` ̂
r +a ̂))+c(

`̂ı
r +aı̂)

�

��

�

�

�

γ

, (E.34)

where

∆(Q) = det[ηabQ ı̂aQ ̂b)] , (E.35)

L(p̃, ˜̀) =

√

√

√1+
1

R2 y
υ(˜̀, ˜̀) +

1

R2 y
1
2

u(p̃, p̃) +
1
4

u(p̃γp̃, p̃γp̃)

R4 y + R2υ(˜̀, ˜̀)
.

To exhibit the Fourier expansion, we still need to decompose the sum over (k, p) into p mod
k and the integral part p′, and to use the Poisson formula on the sum over p′. We define the
function

fQ(
p̃

Ry
1
4

,
˜̀

Ry
1
2
) =

∫

H+

d3Ω2

|Ω2|

�

4π∆(Q)

L(p̃, ˜̀)
+

5
π|Ω2|

� 1

L(p̃, ˜̀)3
+

π

L(p̃, ˜̀)2
tr[Ω2Q ·Qᵀ]

�

�

(E.36)

× e
−πtr[Ω2(L(p̃,˜̀)Q·Qᵀ+(1+ 1

R2 y
υ(˜̀,˜̀))QuQᵀ+ 1

R2 y
1
2

p̃ᵀ/Qu/Qᵀp̃+ 1
4

p̃ /Qp̃ /Qᵀp̃
R4 y+R2υ(˜̀,˜̀)

)]− πR2
r

1+ 1
R2 y
υ(˜̀, ˜̀)

tr[Ω−1
2 ε(υ+

1
R2 y
``ᵀ)εᵀ]

,

which can be evaluated in terms of matrix variate Bessel functions [50, 80] if so desired, and
its Fourier transform

f̃Q(χ,λ) =

∫

d2˜̀
∫

d16 p̃ fQ(p̃, ˜̀)e2πi(χ,p̃)+2πi(λ,`) , (E.37)

where we have rescaled variables such that f̃Q(χ,λ) does not depend on y . While we do not
have an explicit formula for f̃Q(χ,λ), we note that the integral is absolutely convergent. The
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generic Fourier coefficients can be written as38

I (6c)
7 = R22

∑

γ∈P6\E7

�

∑

Q∈Z2⊗II5,5
∆(Q)≥1

∑

χ∈S+
λ∈Z2

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II5,5

∑

d|A−1Q·QᵀA−ᵀ
d−3 c̃

�

∆(Q)
|A|2d2

�

×
∑

k≥1
p∈S+mod kS+
(pγp)

2k ∈II5,5
A−1/Qp

k ∈S−
A−1p /Qp

2k2 ∈Z

e2πi( p
k ,χ)

∑

r≥1
`∈Z2 mod rZ2

r|A−1Q

e2πi( `r ,λ)

× f̃Q
�

Ry
1
4 (χ − /Q ı̂ ĉı), Ry

1
2 (λı̂ − c ı̂χ + 1

2 c ̂ /Q
̂c ı̂ −Q ı̂

aca)
�

e2πi(Q,a)+2πi(χ,a)+2πi(`,a)

��

�

�

�

γ

, (E.38)

where the coefficients c̃(n)were defined in (A.12). As expected for a generic Fourier coefficient
saturating the Gelfand–Kirillov dimension of the automorphic representation, these Fourier
coefficients decompose into a measure factor

µP6
(Q,χ,λ) =

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II5,5

∑

d|A−1Q·QᵀA−ᵀ
d−3 c̃

�

∆(Q)
|A|2d2

�

∑

k≥1
p∈S+mod kS+
(pγp)

2k ∈II5,5
A−1/Qp

k ∈S−
A−1p /Qp

2k2 ∈Z

e2πi( p
k ,χ)

∑

r≥1
`∈Z2 mod rZ2

r|A−1Q

e2πi( `r ,λ) (E.39)

and a real part given by the function R22 f̃Q of R and the Levi factor v acting on the charge
Γ = (0, 0,Q,χ,λ) only. Note indeed that the dependence of the function in y and the axions
c ı̂, ca is manifestly covariant under P6. The main complication in this formula is the Poincaré
sum over P6\E7. One must still determine the set of (Q,χ,λ) mapping to the same charge
Γ ∈ M E7

Λ7
under the Poincaré sum.

The computation simplifies drastically if the charge Γ is projective according to the defini-
tion given in [69]. Any primitive charge Γ ∈ M E7

Λ7
(with gcd(Γ ) = 1) can be rotated by E7(Z)

to a doublet of vectors (Q1,Q2) ∈ II2,2 (corresponding to the so-called STU truncation with a
single magnetic charge p0 = 1)

Q1 = e1+ + q1e1− , Q2 = q2e2+ + q3e2− + q0e1− , (E.40)

for a specific basis of light-like vectors ei± normalised such that

(ei±, e j±) = 0 , (ei+, e j−) = δi j . (E.41)

A primitive charge is moreover projective if and only if (where qI+3 = qI)

gcd(q0, qI , qI+1qI+2) = 1 for I = 1, 2,3 . (E.42)

If ∆(Γ ) = 1 mod 4 (i.e. q0 odd), a charge is projective if and only if gcd(1
2∆
′(Γ )) = 1 [69],

with

1
2
∆′(Q1,Q2) =

�

−q0e1+ + q0q1e1− + 2q1q2e2+ + 2q1q3e2−
−2q2q3e1+ + (q 2

0 − 2q1q2q3)e1− + q0q2e2+ + q0q3e2−

�

. (E.43)

38The condition d|Q ·Qᵀ is a shorthand notation for d|(Q1,Q1)/2, (Q2,Q2)/2, (Q1,Q2).
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Considering the representative (E.40), one finds that (E.40) for i = 1 gives that gcd(Q ı̂ ·Q ̂) = 1
and (E.40) for i = 2 implies gcd(Q1 ∧ Q2) = 1. Since gcd(Q) = 1, it follows that the only
matrix that divides (Q1,Q2) is the identity A = 1, and the only integer dividing the norms
are d = 1 and k = 1. In this case there is no sum over p and the measure reduces to
c̃
�

∆(Q)
�

= c̃
�

∆(Q,χ,λ)
�

where the first ∆ is the quartic invariant of SO(5,5), while the sec-
ond is the one of E7. Since the measure factor is the same for all representatives, the Poincaré
sum will not modify the measure in this case, and one recovers the expected index of BPS
black holes in four dimensions determined in [51–53].

A slightly more general orbit of charges is defined by primitive charges with gcd(Γ×Γ )′ = 1,
where (Γ ×Γ )′ includes all components of Γ ×Γ , except for the possibly half-integer E6 singlet,
i.e. for the representative (E.40)

Γ×Γ =
�

q0, qI , qI+1qI+2, 3
2q0 | I = 1,2, 3

	

, (Γ×Γ )′ =
�

q0, qI , qI+1qI+2 | I = 1,2, 3
	

. (E.44)

Note that the condition gcd(Γ × Γ )′ = 1 is E7(Z) invariant [69]. The helicity supertrace count-
ing 1/8-BPS states with such charges was determined in [81] as

Ω14(Γ ) =
gcd(Γ )=1

gcd(Γ×Γ )′=1

∑

d|Γ∧ 1
4∆
′(Γ )

d c̃
�

∆(Γ )
d2

�

. (E.45)

For a charge Γ = (0,0,Q, 0, 0), it can be written in a way similar to (E.39), namely

Ω14(Q) =
gcd(Γ )=1

gcd(Γ×Γ )′=1

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II5,5

∑

d|A−1Q·QᵀA−ᵀ
|A| d c̃

�

∆(Q)
|A|2d2

�

. (E.46)

Indeed, the set of matrices modulo GL(2,Z) that divides (Q1,Q2) is restricted in this case to
diagonal matrices parametrised by one integer k such that k divides Q2. They are the same as
the integers dividing

Q1 ∧Q2 = (q2, q3, q0, q1q2, q1q3) . (E.47)

The second condition on d dividing A−1Q ·QᵀA−ᵀ is that it divides (q1, q0
k , q2q3

k2 ), but since q1 is
coprime to gcd(q2, q3, q0, q1q2, q1q3) by the assumption that gcd(Γ×Γ )′ = 1, d must be coprime
to k and divide gcd(q2, q3, q0, q1q2, q1q3). The sum over d is then over the integers dividing
(q1, q0, q2q3), independently of k dividing (q2, q3, q0, q1q2, q1q3). This sum is then the same as
the one over all the integers d ′ = dk dividing Γ ∧ 1

4∆
′(Γ ) in (E.45).

It is reasonable to expect that upon taking into account the different representatives of
the same charge Γ = (0, 0,Q, 0, 0) under the Poincaré sum P6\E7, the measure (E.39) will
be modified to (E.46). However, the latter is not invariant under triality (permutations of
I = 1, 2,3) for more general charges, so that it depends on the chosen representative charge
(E.40) in general and it is therefore too naïve to hope that the Poincaré sum over P6\E7 gives
simply (E.46) out of (E.39) for gcd(Γ × Γ )′ 6= 1.

F ∇6R4 in D ≥ 8

In this section, we briefly discuss the explicit form of the ∇6R4 coupling at small d ≤ 2, in
relation to earlier proposals in the literature.

F.1 D = 10 type IIB

In [31] it was proposed that the exact ∇6R4 coupling in ten-dimensional type IIB string the-
ory is given by the two-loop amplitude in 11D supergravity compactified on T2, with metric
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gi j =
p

det g
U2

�

1 U1
U1 |U |2

�

, where U is identified with the type IIB axiodilaton. In the notation

of the present paper, this amounts to

E (0)
(0,1)
(U) =

8π2

3

∫

G

dV
V 4

dτ1dτ2

τ2
2

A(τ)
′
∑

M∈Z2×2

e
− 2π

V det M− π
Vτ2U2

�

�

�(1, U)M
�−τ

1

�

�

�

�

2

=
8π2

3
eA3/2(U), (F.1)

where eAs was introduced in (2.43). The weak coupling expansion can be obtained from (B.25)
and reproduces the known perturbative terms, as well as the instanton and anti-instanton
effects which were inferred in [32] by solving the Poisson equation (B.15).

F.2 D = 9

The exact ∇6R4 coupling in D = 9 was proposed in [22] to be given by

E (1)
(0,1)
= ν−

6
7 E (0)

(0,1)
+

4
3
ζ(2)ζ(3)ν

1
7 ESL(2)

3
2Λ1

+
8
5
ζ(2)2ν

8
7 +

4
63
ζ(2)ζ(5)

�

ν
15
7 ESL(2)

5
2Λ1

+ ν−
20
7

�

, (F.2)

where

ν=
�

r
`s

�7/4
p

g9 , U = C0 + i

p

r/`s

g9
(F.3)

and E (0)(0,1)(U) is the function (F.1) which governs the ∇6R4 term in ten-dimensional type IIB
string theory. In our formalism, the last two terms come from the 1-loop exceptional field
theory amplitude

F (1)
(0,1)
=

4ζ(2)ζ(5)
63

�

ν
15
7 bESL(2)

5
2Λ1

+ ν−
20
7

�

, (F.4)

while the two-loop amplitude in exceptional field theory accounts for the term

E (1),ExFT
(0,1) = ν−

6
7E (0)
(0,1)
+

8
5
ζ(2)2ν

8
7 . (F.5)

The remaining contribution 4
3ζ(2)ζ(3)ν

1
7 ESL(2)

3
2Λ1

does not appear as a 1/2-BPS particle state

sum and instead resembles a string multiplet state sum.

F.3 D = 8

The exact ∇6R4 coupling in D = 8 was proposed in [22], using results from [33], as

E (2)
(0,1)

= ESL(3)
(0,1) + ESL(2)

(0,1) +
4
3
ζ(2)ζ(3) bESL(3)

3
2Λ1

bESL(2)
Λ1

+
πζ(3)

18
bESL(3)

3
2Λ1

+
2π
9
ζ(2)bESL(2)

Λ1
+
ζ(2)

9

+
4ζ(6)

27
ESL(3)
− 3

2Λ1
ESL(2)

3Λ1
, (F.6)

where ESL(2)
(0,1) and ESL(3)

(0,1) are solutions to Poisson-type equations

(∆U − 12)ESL(2)
(0,1) = −

�

4ζ(2)bESL(2)
Λ1

�2
,

(∆SL(3) − 12)ESL(3)
(0,1) = −

�

2ζ(3)bESL(3)
3
2Λ1

�2
, (F.7)

with suitable asymptotics. The last term is recognised as the homogeneous solution (1.11),

F (2)
(0,1)
=

4ζ(6)
27

ESL(3)
− 3

2Λ1
ESL(2)

3Λ1
. (F.8)
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To see the origin of the other terms, note that the particle multiplet transforms as (3̄,2) under
SL(3)× SL(2). The double lattice sum therefore decomposes into

′
∑

Γi∈Z2×3

Γi×Γ j=0

e−πΩ
i j
2 G(Γi ,Γ j) (F.9)

=

�

∑

qi∈Z2

qi∧q j 6=0

∑

γ∈P2\SL(3)

e−πΩ
i j
2 y 2

2 G(qi ,qi)
�

�

�

γ
+

∑

pi∈Z3

pi∧p j 6=0

∑

γ∈P1\SL(2)

e−πΩ
i j
2 y 2

1 G(pi ,pi)
�

�

�

γ

+
′
∑

ni∈Z2

∑

γ∈P2\SL(3)×P1\SL(2)

e−πΩ
i j
2 y 2

1 y 2
2 ni n j

�

�

�

γ

�

.

The first two terms can be further decomposed into an unconstrained sum minus the sum over
collinear charges that can be computed using (B.25) as

8π

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

∑

qi∈Z2

qi∧q j 6=0

e−πΩ
i j
2 G(qi ,qi) =

8π2

3
eAε −

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
ESL(2)

2εΛ1
, (F.10)

8π

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

∑

pi∈Z3

pi∧p j 6=0

e−πΩ
i j
2 G(pi ,pi) =

8π2

3

∑

γ∈P1\SL(3)

eAε
�

�

�

γ
−

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
ESL(3)

2εΛ2
.

These combinations are finite as ε→ 0, as can be checked using (B.25) for the first, and

8πg
− 2ε

3
8

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

′
∑

qi∈Z3

e−πΩ
i j
2 G(pi ,pi) =

8π2

3
g−2ε

8
eAε(T ) +

16π2ξ(2ε)2

(6− 2ε)(1+ 2ε)
g−4+2ε

8

+
8π2

3
ξ(2− 2ε)ξ(3− 2ε)g−2

8 ESL(2)
(1−ε)Λ1

+
4π2

9
ξ(2+ 2ε)ξ(6− 2ε)g2

8 ESL(2)
(3−ε)Λ1

+ . . .

+
16π2

3
g−1−ε

8

′
∑

N∈Z2

�

σ2−2ε(N)
gcd(N)−2ε

ξ(2ε)
K1−ε

�2π
g8

|N1+T N2|p
T2

�

� |N1+T N2|p
T2

�1+ε

+
g2

8

6
σ2+2ε(N)
gcd(N)6

ξ(5− 2ε)
K1+ε

�2π
g8

|N1+T N2|p
T2

�

� |N1+T N2|p
T2

�ε−5 + . . .

�

e2πi(N ,a) , (F.11)

for the second. This expansion in turn follows from (3.13), (3.18), (3.22) and (3.66) up to
exponentially suppressed terms (represented by the dots) that are finite at ε→ 0. Therefore
one can set ε= 0 in the first term
∫

G

d3Ω2

|Ω2|2−ε
∑

qi∈Z2

qi∧q j 6=0

∑

γ∈P2\SL(3)

e−πΩ
i j
2 y 2

2 G(qi ,qi)
�

�

�

γ
= ESL(3)

2εΛ2

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

∑

qi∈Z2

qi∧q j 6=0

e−πΩ
i j
2 G(qi ,qi)

=
ε→0

∫

G

d3Ω2

|Ω2|2
ϕtr

KZ

∑

qi∈Z2

qi∧q j 6=0

e−πΩ
i j
2 G(qi ,qi) , (F.12)

and the second
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∫

G

d3Ω2

|Ω2|2−ε
∑

pi∈Z3

pi∧p j 6=0

∑

γ∈P1\SL(2)

e−πΩ
i j
2 y 2

1 G(pi ,pi)
�

�

�

γ
= ESL(2)

2εΛ1

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

∑

pi∈Z3

pi∧p j 6=0

e−πΩ
i j
2 G(pi ,pi)

=
ε→0

∫

G

d3Ω2

|Ω2|2
ϕtr

KZ

∑

pi∈Z3

pi∧p j 6=0

e−πΩ
i j
2 G(qi ,qi) . (F.13)

As for the mixed term, we get, after integrating over the volume factor and using (B.2),

8π

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

′
∑

ni∈Z2

∑

γ∈P2\SL(3)×P1\SL(2)

e−πΩ
i j
2 y 2

1 y 2
2 ni n j

�

�

�

γ
=

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
ESL(2)

2εΛ1
ESL(3)

2εΛ2
.

(F.14)
As in (5.37), this function is divergent and one needs to take into account the contribution
from the supergravity amplitude and the R4 form factor associated to the partly massless
contribution, giving39

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
ESL(2)

2εΛ1
ESL(3)

2εΛ2
+
π

3
Γ (ε)
(πµ2)ε

E (2)
(0,0),ε +

π2

3

�Γ (ε)2

π2ε
+

1
6
Γ (ε)
πε
+O(ε0)

�

µ−4ε

∼
ε→0

4
3
ζ(2)ζ(3) bESL(3)

3
2Λ1

bESL(2)
Λ1

+
π2

3
∂ 2

s

�

ESL(2)
sΛ1

+ ESL(3)
sΛ1

��

�

s=0 +
π

18
E (2)
(0,0)
+

11π2

108

+
4π2

3
log(2πµ)2 −

2π
3

log(2πµ)
�

E (2)
(0,0)
+
π

3

�

. (F.15)

One can then identify the automorphic forms ESL(2)
(0,1) and ESL(3)

(0,1) introduced above as

ESL(2)
(0,1) =

�8π2

3
eAε −

16π2ξ(2ε)2

(4− 2ε)(3+ 2ε)
ESL(2)

2εΛ1

�

�

�

�

ε=0
+
π2

3
∂ 2

s ESL(2)
sΛ1

�

�

s=0 +
π

9
ζ(2)bESL(2)

Λ1
+

13π2

216
,

ESL(3)
(0,1) = 8π

∫

G

d3Ω2

|Ω2|2
ϕtr

KZ

∑

qi∈Z3

pi∧p j 6=0

e−πΩ
i j
2 G(pi ,pi) +

π2

3
∂ 2

s ESL(2)
sΛ1

�

�

s=0 +
π

9
ζ(3)bESL(3)

3
2Λ1

+
13π2

216
.

(F.16)

One checks using (B.25) that they have indeed the same constant terms as [2, (B.25)]. We
conclude that summing all contributions we reproduce the expected coupling E (2)(0,1) in (F.6) with

8π

∫

G

d3Ω2

|Ω2|2−ε
ϕtr

KZ

′
∑

Γi∈Z2×3

Γi×Γ j=0

e−πΩ
i j
2 G(Γi ,Γ j) +F (2)

(0,1)

+
π

3
Γ (ε)
(πµ2)ε

E (2)
(0,0),ε +

π

3

�Γ (ε)2

π2ε
+

1
6
Γ (ε)
πε
+O(ε0)

�

µ−4ε +
π

18
E (2)
(0,0)
+

2ζ(2)
9

= E (2)
(0,1)
+

4π2

3
log(2πµ)2 −

2π
3

log(2πµ)
�

E (2)
(0,0)
+
π

3

�

, (F.17)

where the last two terms in the second line are scheme dependent terms which can be reab-
sorbed in the definition of the infrared cutoff µ of the non-local component of the amplitude.

39Observe that the first term by itself produces 8
3ζ(2)ζ(3) bE

SL(3)
3
2Λ1

bESL(2)
Λ1

, which is twice the correct result.

110

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054


SciPost Phys. 8, 054 (2020)

References

[1] G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, J. High Energ. Phys.
01, 164 (2016), doi:10.1007/JHEP01(2016)164, arXiv:1510.07859 [hep-th].

[2] B. Pioline, D6R4 amplitudes in various dimensions, J. High Energ. Phys. 04, 057 (2015),
doi:10.1007/JHEP04(2015)057, arXiv:1502.03377 [hep-th].

[3] C. M. Hull and P. K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438, 109
(1995), doi:10.1016/0550-3213(94)00559-W, hep-th/9410167.

[4] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443, 85 (1995),
doi:10.1016/0550-3213(95)00158-O, arXiv:hep-th/9503124 [hep-th].

[5] M. B. Green and M. Gutperle, Effects of D-instantons, Nucl. Phys. B 498, 195 (1997),
doi:10.1016/S0550-3213(97)00269-1, arXiv:hep-th/9701093.

[6] M. B. Green and J. H. Schwarz, Supersymmetrical string theories, Phys. Lett. B 109, 444
(1982), doi:10.1016/0370-2693(82)91110-8.

[7] M. B. Green and P. Vanhove, Low-energy expansion of the one-loop type-II superstring am-
plitude, Phys. Rev. D 61, 104011 (2000), doi:10.1103/PhysRevD.61.104011, arXiv:hep-
th/9910056.

[8] M. B. Green, J. G. Russo and P. Vanhove, String theory dualities and supergravity
divergences, J. High Energ. Phys. 06, 075 (2010), doi:10.1007/JHEP06(2010)075,
arXiv:1002.3805 [hep-th].

[9] B. Pioline, A note on non-perturbative R4 couplings, Phys. Lett. B 431, 73 (1998),
doi:10.1016/S0370-2693(98)00554-1, arXiv:hep-th/9804023.

[10] M. B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev.
D 59, 046006 (1999), doi:10.1103/PhysRevD.59.046006, arXiv:hep-th/9808061.

[11] A. Basu and S. Sethi, Recursion relations from space-time supersymmetry, J. High Energ.
Phys. 09, 081 (2008), doi:10.1088/1126-6708/2008/09/081, arXiv:0808.1250 [hep-
th].

[12] G. Bossard and V. Verschinin, Minimal unitary representations from supersymmetry, J.
High Energ. Phys. 10, 008 (2014), doi:10.1007/JHEP10(2014)008, arXiv:1406.5527
[hep-th].

[13] G. Bossard and V. Verschinin, E∇4R4 type invariants and their gradient expansion, J.
High Energ. Phys. 03, 089 (2015), doi:10.1007/JHEP03(2015)089, arXiv:1411.3373
[hep-th].

[14] G. Bossard and V. Verschinin, The two ∇6R4 type invariants and their higher order
generalisation, J. High Energ. Phys. 07, 154 (2015), doi:10.1007/JHEP07(2015)154,
arXiv:1503.04230 [hep-th].

[15] Y. Wang and X. Yin, Constraining higher derivative supergravity with scattering amplitudes,
Phys. Rev. D 92, 041701 (2015), doi:10.1103/PhysRevD.92.041701, arXiv:1502.03810
[hep-th].

[16] M. B. Green and P. Vanhove, D-instantons, strings and M-theory, Phys. Lett. B 408, 122
(1997), doi:10.1016/S0370-2693(97)00785-5, arXiv:hep-th/9704145.

111

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054
http://dx.doi.org/10.1007/JHEP01(2016)164
http://arxiv.org/abs/1510.07859
http://dx.doi.org/10.1007/JHEP04(2015)057
http://arxiv.org/abs/1502.03377
http://dx.doi.org/10.1016/0550-3213(94)00559-W
http://arxiv.org/abs/hep-th/9410167
http://dx.doi.org/10.1016/0550-3213(95)00158-O
http://arxiv.org/abs/hep-th/9503124
http://dx.doi.org/10.1016/S0550-3213(97)00269-1
http://arxiv.org/abs/hep-th/9701093
http://dx.doi.org/10.1016/0370-2693(82)91110-8
http://dx.doi.org/10.1103/PhysRevD.61.104011
http://arxiv.org/abs/hep-th/9910056
http://arxiv.org/abs/hep-th/9910056
http://dx.doi.org/10.1007/JHEP06(2010)075
http://arxiv.org/abs/1002.3805
http://dx.doi.org/10.1016/S0370-2693(98)00554-1
http://arxiv.org/abs/hep-th/9804023
http://dx.doi.org/10.1103/PhysRevD.59.046006
http://arxiv.org/abs/hep-th/9808061
http://dx.doi.org/10.1088/1126-6708/2008/09/081
http://arxiv.org/abs/0808.1250
http://arxiv.org/abs/0808.1250
http://dx.doi.org/10.1007/JHEP10(2014)008
http://arxiv.org/abs/1406.5527
http://arxiv.org/abs/1406.5527
http://dx.doi.org/10.1007/JHEP03(2015)089
http://arxiv.org/abs/1411.3373
http://arxiv.org/abs/1411.3373
http://dx.doi.org/10.1007/JHEP07(2015)154
http://arxiv.org/abs/1503.04230
http://dx.doi.org/10.1103/PhysRevD.92.041701
http://arxiv.org/abs/1502.03810
http://arxiv.org/abs/1502.03810
http://dx.doi.org/10.1016/S0370-2693(97)00785-5
http://arxiv.org/abs/hep-th/9704145


SciPost Phys. 8, 054 (2020)

[17] E. Kiritsis and B. Pioline, On R4 threshold corrections in type IIB string theory and (p, q)-
string instantons, Nucl. Phys. B 508, 509 (1997), doi:10.1016/S0550-3213(97)00645-7,
arXiv:hep-th/9707018.

[18] B. Pioline and E. Kiritsis, U-duality and D-brane combinatorics, Phys. Lett. B 418, 61
(1998), doi:10.1016/S0370-2693(97)01398-1, arXiv:hep-th/9710078.

[19] N. A. Obers and B. Pioline, Eisenstein series and string thresholds, Commun. Math. Phys.
209, 275 (2000), doi:10.1007/s002200050022, arXiv:hep-th/9903113.

[20] A. Basu, D4R4 term in type IIB string theory on T2 and U-duality, Phys. Rev. D 77, 106003
(2008), doi:10.1103/PhysRevD.77.106003, arXiv:0708.2950 [hep-th].

[21] B. Pioline, R4 couplings and automorphic unipotent representations, J. High Energ. Phys.
03, 116 (2010), doi:10.1007/JHEP03(2010)116, arXiv:1001.3647.

[22] M. B. Green, J. G. Russo and P. Vanhove, Automorphic properties of low en-
ergy string amplitudes in various dimensions, Phys. Rev. D 81, 086008 (2010),
doi:10.1103/PhysRevD.81.086008, arXiv:1001.2535 [hep-th].

[23] M. B. Green, S. D. Miller and P. Vanhove, Small representations, string instan-
tons, and Fourier modes of Eisenstein series, J. Number Theory 146, 187 (2015),
doi:10.1016/j.jnt.2013.05.018, arXiv:1111.2983 [hep-th].

[24] P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt and D. Persson, Eisenstein series and au-
tomorphic representations, Cambridge University Press, ISBN 9781316995860 (2018),
doi:10.1017/9781316995860, arXiv:1511.04265 [math.NT].

[25] G. Bossard, M. Cederwall, A. Kleinschmidt, J. Palmkvist and H. Samtleben,
Generalized diffeomorphisms for E9, Phys. Rev. D 96, 106022 (2017),
doi:10.1103/PhysRevD.96.106022, arXiv:1708.08936 [hep-th].

[26] N. A. Obers and B. Pioline, U-duality and M-theory, Phys. Rep. 318, 113 (1999),
doi:10.1016/S0370-1573(99)00004-6, hep-th/9809039.

[27] M. B. Green, M. Gutperle and P. Vanhove, One loop in eleven dimensions, Phys. Lett. B
409, 177 (1997), doi:10.1016/S0370-2693(97)00931-3, arXiv:hep-th/9706175.

[28] M. B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven dimensions, Phys. Rev. D 61,
104010 (2000), doi:10.1103/PhysRevD.61.104010, arXiv:hep-th/9910055.

[29] O. Hohm and H. Samtleben, Exceptional form of D=11 supergravity, Phys. Rev. Lett. 111,
231601 (2013), doi:10.1103/PhysRevLett.111.231601, arXiv:1308.1673 [hep-th].

[30] G. Bossard and A. Kleinschmidt, Cancellation of divergences up to three loops in exceptional
field theory (2017), arXiv:1712.02793.

[31] M. B. Green and P. Vanhove, Duality and higher derivative terms in M theory, J. High Energ.
Phys. 01, 093 (2006), doi:10.1088/1126-6708/2006/01/093, arXiv:hep-th/0510027
[hep-th].

[32] M. B. Green, S. D. Miller and P. Vanhove, SL(2,Z)-invariance and D-instanton con-
tributions to the D6R4 interaction, Commun. Num. Theor. Phys. 9, 307 (2015),
doi:10.4310/CNTP.2015.v9.n2.a3, arXiv:1404.2192 [hep-th].

[33] A. Basu, D6R4 term in type IIB string theory on T2 and U-duality, Phys. Rev. D 77, 106004
(2008), doi:10.1103/PhysRevD.77.106004, arXiv:0712.1252 [hep-th].

112

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054
http://dx.doi.org/10.1016/S0550-3213(97)00645-7
http://arxiv.org/abs/hep-th/9707018
http://dx.doi.org/10.1016/S0370-2693(97)01398-1
http://arxiv.org/abs/hep-th/9710078
http://dx.doi.org/10.1007/s002200050022
http://arxiv.org/abs/hep-th/9903113
http://dx.doi.org/10.1103/PhysRevD.77.106003
http://arxiv.org/abs/0708.2950
http://dx.doi.org/10.1007/JHEP03(2010)116
http://arxiv.org/abs/1001.3647
http://dx.doi.org/10.1103/PhysRevD.81.086008
http://arxiv.org/abs/1001.2535
http://dx.doi.org/10.1016/j.jnt.2013.05.018
http://arxiv.org/abs/1111.2983
http://dx.doi.org/10.1017/9781316995860
http://arxiv.org/abs/1511.04265
http://dx.doi.org/10.1103/PhysRevD.96.106022
http://arxiv.org/abs/1708.08936
http://dx.doi.org/10.1016/S0370-1573(99)00004-6
http://arxiv.org/abs/hep-th/9809039
http://dx.doi.org/10.1016/S0370-2693(97)00931-3
http://arxiv.org/abs/hep-th/9706175
http://dx.doi.org/10.1103/PhysRevD.61.104010
http://arxiv.org/abs/hep-th/9910055
http://dx.doi.org/10.1103/PhysRevLett.111.231601
http://arxiv.org/abs/1308.1673
https://arxiv.org/abs/1712.02793
http://dx.doi.org/10.1088/1126-6708/2006/01/093
http://arxiv.org/abs/hep-th/0510027
http://arxiv.org/abs/hep-th/0510027
http://dx.doi.org/10.4310/CNTP.2015.v9.n2.a3
http://arxiv.org/abs/1404.2192
http://dx.doi.org/10.1103/PhysRevD.77.106004
http://arxiv.org/abs/0712.1252


SciPost Phys. 8, 054 (2020)

[34] M. B. Green, S. D. Miller, J. G. Russo and P. Vanhove, Eisenstein series for higher-rank
groups and string theory amplitudes (2010), arXiv:1004.0163.

[35] E. D’Hoker and M. B. Green, Zhang–Kawazumi invariants and superstring amplitudes,
J. Number Theory 144, 111 (2014), doi:10.1016/j.jnt.2014.03.021, arXiv:1308.4597
[hep-th].

[36] E. D’Hoker, M. B. Green, B. Pioline and R. Russo, Matching the D6R4 interaction
at two-loops, J. High Energ. Phys. 01, 031 (2015), doi:10.1007/JHEP01(2015)031,
arXiv:1405.6226 [hep-th].

[37] N. Kawazumi, Johnson’s homomorphisms and the Arakelov-Green function (2008),
arXiv:0801.4218.

[38] S.-W. Zhang, Gross–Schoen cycles and dualising sheaves, Invent. Math. 179, 1 (2010),
doi:10.1007/s00222-009-0209-3.

[39] B. Pioline and R. Russo, Infrared divergences and harmonic anomalies in the
two-loop superstring effective action, J. High Energ. Phys. 12, 001 (2015),
doi:10.1007/JHEP12(2015)102, arXiv:1510.02409 [hep-th].

[40] I. Florakis and B. Pioline, On the Rankin–Selberg method for higher genus string ampli-
tudes, Commun. Num. Theor. Phys. 11, 337 (2017), doi:10.4310/CNTP.2017.v11.n2.a4,
arXiv:1602.00308 [hep-th].

[41] P. Tourkine, Tropical amplitudes, Ann. Henri Poincaré 18, 2199 (2017),
doi:10.1007/s00023-017-0560-7, arXiv:1309.3551 [hep-th].

[42] Z. Bern, L. Dixon, D. C. Dunbar, M. Perelstein and J. S. Rozowsky, On the relationship
between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl.
Phys. B 530, 401 (1998), doi:10.1016/S0550-3213(98)00420-9, arXiv:hep-th/9802162
[hep-th].

[43] D. Jiang and B. Liu, On cuspidality of global Arthur packets for symplectic groups (2016),
arXiv:1601.01665.

[44] D. Gourevitch, H. P. A. Gustafsson, A. Kleinschmidt, D. Persson and S. Sahi, Fourier coeffi-
cients of minimal and next-to-minimal automorphic representations of simply-laced groups
(2019), arXiv:1908.08296.

[45] M. B. Green, J. G. Russo and P. Vanhove, Modular properties of two-loop maximal su-
pergravity and connections with string theory, J. High Energ. Phys. 07, 126 (2008),
doi:10.1088/1126-6708/2008/07/126, arXiv:0807.0389 [hep-th].

[46] E. D’Hoker, M. B. Green and B. Pioline, Asymptotics of the D8R4 genus-two string invariant,
Comm. Num. Theo. Phys. 13, 351 (2019), arXiv:1806.02691.

[47] G. Bossard and A. Kleinschmidt, Supergravity divergences, supersymmetry and auto-
morphic forms, J. High Energ. Phys. 08, 102 (2015), doi:10.1007/JHEP08(2015)102,
arXiv:1506.00657 [hep-th].

[48] B. Pioline, A Theta lift representation for the Kawazumi–Zhang and Faltings in-
variants of genus-two Riemann surfaces, J. Number Theory 163, 520 (2016),
doi:10.1016/j.jnt.2015.12.021, arXiv:1504.04182 [hep-th].

113

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054
https://arxiv.org/abs/1004.0163
http://dx.doi.org/10.1016/j.jnt.2014.03.021
http://arxiv.org/abs/1308.4597
http://arxiv.org/abs/1308.4597
http://dx.doi.org/10.1007/JHEP01(2015)031
http://arxiv.org/abs/1405.6226
https://arxiv.org/abs/0801.4218
http://dx.doi.org/10.1007/s00222-009-0209-3
http://dx.doi.org/10.1007/JHEP12(2015)102
http://arxiv.org/abs/1510.02409
http://dx.doi.org/10.4310/CNTP.2017.v11.n2.a4
http://arxiv.org/abs/1602.00308
http://dx.doi.org/10.1007/s00023-017-0560-7
http://arxiv.org/abs/1309.3551
http://dx.doi.org/10.1016/S0550-3213(98)00420-9
http://arxiv.org/abs/hep-th/9802162
http://arxiv.org/abs/hep-th/9802162
https://arxiv.org/abs/1601.01665
https://arxiv.org/abs/1908.08296
http://dx.doi.org/10.1088/1126-6708/2008/07/126
http://arxiv.org/abs/0807.0389
https://arxiv.org/abs/1806.02691
http://dx.doi.org/10.1007/JHEP08(2015)102
http://arxiv.org/abs/1506.00657
http://dx.doi.org/10.1016/j.jnt.2015.12.021
http://arxiv.org/abs/1504.04182


SciPost Phys. 8, 054 (2020)

[49] O. Ahlén and A. Kleinschmidt, D6R4 curvature corrections, modular graph functions and
Poincaré series, J. High Energ. Phys. 05, 194 (2018), doi:10.1007/JHEP05(2018)194,
arXiv:1803.10250 [hep-th].

[50] G. Bossard and B. Pioline, Exact ∇4R4 couplings and helicity supertraces, J. High Energ.
Phys. 01, 050 (2017), doi:10.1007/JHEP01(2017)050, arXiv:1610.06693 [hep-th].

[51] J. Maldacena, G. Moore and A. Strominger, Counting BPS blackholes in toroidal type II
string theory (1999), arXiv:hep-th/9903163.

[52] D. Shih, A. Strominger and X. Yin, Counting dyons in Script N = 8 string theory, J.
High Energ. Phys. 06, 037 (2006), doi:10.1088/1126-6708/2006/06/037, arXiv:hep-
th/0506151 [hep-th].

[53] B. Pioline, BPS black hole degeneracies and minimal automorphic representations, J. High
Energ. Phys. 08, 071 (2005), doi:10.1088/1126-6708/2005/08/071, hep-th/0506228.

[54] H. Gomez and C. R. Mafra, The closed-string 3-loop amplitude and S-duality, J. High Energ.
Phys. 10, 217 (2013), doi:10.1007/JHEP10(2013)217, arXiv:1308.6567 [hep-th].

[55] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van
Nostrand Reinhold Co., New York (1993).

[56] S. D. Miller and S. Sahi, Fourier coefficients of automorphic forms, character va-
riety orbits, and small representations, J. Number Theory 132, 3070 (2012),
doi:10.1016/j.jnt.2012.05.032.

[57] L. J. Dixon, V. Kaplunovsky, and J. Louis, Moduli dependence of string loop correc-
tions to gauge coupling constants, Nucl. Phys. B 355, 649 (1991), doi:10.1016/0550-
3213(91)90490-O.

[58] J. Fay, Fourier coefficients of the resolvent for a Fuchsian group., J. Reine Angew. Math.
293-294, 143 (1977), doi:10.1515/crll.1977.293-294.143.

[59] C. Angelantonj, I. Florakis and B. Pioline, Threshold corrections, gener-
alised prepotentials and Eichler integrals, Nucl. Phys. B 897, 781 (2015),
doi:10.1016/j.nuclphysb.2015.06.009, arXiv:1502.00007 [hep-th].

[60] H. Iwaniec, Topics in classical automorphic forms, American Mathematical Society (2002).

[61] R. P. Langlands, On the functional equations satisfied by Eisenstein series, Springer Berlin,
Heidelberg, ISBN 9783540078722 (1976), doi:10.1007/BFb0079929.

[62] F. Shahidi, Eisenstein series and automorphic L-Functions, American Mathematical Society,
Providence, Rhode Island, ISBN 9780821849897 (2010), doi:10.1090/coll/058.

[63] S. D. Miller, Cusp forms on SL3(Z)\SL3(R)/SO3(R), Phd dissertation (1997).

[64] R. Godement, Domaines fondamentaux des groupes arithmétiques, in Séminaire Bourbaki,
1962/63. Fasc. Secrétariat mathématique, Paris (1964).

[65] C. Moeglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series: A para-
phrase of the scriptures, 113. Cambridge University Press (1995).

[66] N. Berkovits, New higher-derivative R4 theorems for graviton scattering, Phys. Rev. Lett.
98, 211601 (2007), doi:10.1103/PhysRevLett.98.211601, arXiv:hep-th/0609006 [hep-
th].

114

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054
http://dx.doi.org/10.1007/JHEP05(2018)194
http://arxiv.org/abs/1803.10250
http://dx.doi.org/10.1007/JHEP01(2017)050
http://arxiv.org/abs/1610.06693
https://arxiv.org/abs/hep-th/9903163
http://dx.doi.org/10.1088/1126-6708/2006/06/037
http://arxiv.org/abs/hep-th/0506151
http://arxiv.org/abs/hep-th/0506151
http://dx.doi.org/10.1088/1126-6708/2005/08/071
http://arxiv.org/abs/hep-th/0506228
http://dx.doi.org/10.1007/JHEP10(2013)217
http://arxiv.org/abs/1308.6567
http://dx.doi.org/10.1016/j.jnt.2012.05.032
http://dx.doi.org/10.1016/0550-3213(91)90490-O
http://dx.doi.org/10.1016/0550-3213(91)90490-O
http://dx.doi.org/10.1515/crll.1977.293-294.143
http://dx.doi.org/10.1016/j.nuclphysb.2015.06.009
http://arxiv.org/abs/1502.00007
http://dx.doi.org/10.1007/BFb0079929
http://dx.doi.org/10.1090/coll/058
http://dx.doi.org/10.1103/PhysRevLett.98.211601
http://arxiv.org/abs/hep-th/0609006
http://arxiv.org/abs/hep-th/0609006


SciPost Phys. 8, 054 (2020)

[67] G. Moore, N. Nekrasov and S. Shatashvili, D -particle bound states and generalized instan-
tons, Commun. Math. Phys. 209, 77 (2000), doi:10.1007/s002200050016, arXiv:hep-
th/9803265.

[68] S. Ferrara and R. Kallosh, University of supersymmetric attractors, Phys. Rev. D 54, 1525
(1996), doi:10.1103/PhysRevD.54.1525, arXiv:hep-th/9603090.

[69] S. Krutelevich, Jordan algebras, exceptional groups, and Bhargava composition, J. Algebra
314, 924 (2007), doi:10.1016/j.jalgebra.2007.02.060.

[70] E. Kiritsis, Introduction to superstring theory (1997), arXiv:hep-th/9709062.

[71] T. Kawai, N = 2 heterotic string threshold correction, K3 surface and generalized Kac-
Moody superalgebra, Phys. Lett. B 372, 59 (1996), doi:10.1016/0370-2693(96)00052-4,
arXiv:hep-th/9512046 [hep-th].

[72] M. Eichler and D. Zagier, The theory of Jacobi forms, In Progress in Mathematics,
Birkhäuser Boston Inc., Boston, MA (1985).

[73] C. Angelantonj, I. Florakis and B. Pioline, One-loop BPS amplitudes as BPS-state sums,
J. High Energ. Phys. 06, 070 (2012), doi:10.1007/JHEP06(2012)070, arXiv:1203.0566
[hep-th].

[74] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York, Dover
Publishing (1972).

[75] G. Bossard, C. Cosnier-Horeau and B. Pioline, Exact effective interactions
and 1/4-BPS dyons in heterotic CHL orbifolds, SciPost Phys. 7, 028 (2019),
doi:10.21468/SciPostPhys.7.3.028, arXiv:1806.03330 [hep-th].

[76] P. Fleig, A. Kleinschmidt and D. Persson, Fourier expansions of Kac-Moody Eisenstein
series and degenerate Whittaker vectors, Commun. Num. Theor. Phys. 8, 41 (2014),
doi:10.4310/CNTP.2014.v8.n1.a2, arXiv:1312.3643 [hep-th].

[77] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid
decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 415 (1982).

[78] E. Stade, On explicit integral formulas for GL(n,R) -Whittaker functions, Duke Math. J.
60, 313 (1990), doi:10.1215/S0012-7094-90-06013-2.

[79] L. Brink, J. H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B
121, 77 (1977), doi:10.1016/0550-3213(77)90328-5.

[80] C. S. Herz, Bessel functions of matrix argument, Ann. Math. 61, 474 (1955),
doi:10.2307/1969810.

[81] A. Sen, U-duality invariant dyon spectrum in type II on T6, J. High Energ. Phys. 08, 037
(2008), doi:10.1088/1126-6708/2008/08/037, arXiv:0804.0651 [hep-th].

115

https://scipost.org
https://scipost.org/SciPostPhys.8.4.054
http://dx.doi.org/10.1007/s002200050016
http://arxiv.org/abs/hep-th/9803265
http://arxiv.org/abs/hep-th/9803265
http://dx.doi.org/10.1103/PhysRevD.54.1525
http://arxiv.org/abs/hep-th/9603090
http://dx.doi.org/10.1016/j.jalgebra.2007.02.060
https://arxiv.org/abs/hep-th/9709062
http://dx.doi.org/10.1016/0370-2693(96)00052-4
http://arxiv.org/abs/hep-th/9512046
http://dx.doi.org/10.1007/JHEP06(2012)070
http://arxiv.org/abs/1203.0566
http://arxiv.org/abs/1203.0566
http://dx.doi.org/10.21468/SciPostPhys.7.3.028
http://arxiv.org/abs/1806.03330
http://dx.doi.org/10.4310/CNTP.2014.v8.n1.a2
http://arxiv.org/abs/1312.3643
http://dx.doi.org/10.1215/S0012-7094-90-06013-2
http://dx.doi.org/10.1016/0550-3213(77)90328-5
http://dx.doi.org/10.2307/1969810
http://dx.doi.org/10.1088/1126-6708/2008/08/037
http://arxiv.org/abs/0804.0651

	Introduction and summary
	From particle to string multiplet
	Laplace identities 
	Tensorial differential equations
	Nilpotent orbits and BPS states
	Integrating against cusp forms and against Eisenstein series 
	Relating the particle, string multiplet and adjoint Eisenstein series
	Poincaré series representations
	Convergence 
	From vector to spinor double lattice sums

	Weak coupling limit
	Expectation
	Weak coupling limit of the particle multiplet lattice sum 
	Fourier coefficients

	Decompactification limit
	Expectation
	Decompactification limit of the particle multiplet lattice sum 

	Regularisation and divergences
	Contributions from 1/4-BPS states
	Divergences and threshold terms in the weak-coupling limit
	Divergences and threshold terms in the large radius limit
	Generalisation to E8

	Poincaré series representation of KZ-invariant
	Theta series representation for real-analytic Siegel modular forms
	Poincaré series from theta lifting
	Poincaré series from 1/2-BPS state sums

	Integrating A(tau) against single and double Eisenstein series
	Against a single Eisenstein series
	Against a double Eisenstein series

	Spin(d,d) lattice sums
	Large radius limit
	Large volume limit 
	Vanishing of the third layer contribution

	Integrating Xi against an Eisenstein series
	Weak coupling limit 
	Decompactification limit
	Comments on layers with vanishing contribution

	Decompactification limit for E8
	Constant terms
	Abelian Fourier coefficients 

	D6R4 in D>=8
	D=10 type IIB
	D=9
	D=8

	References

