
SciPost Phys. 8, 055 (2020)

Molecular dynamics simulation of entanglement
spreading in generalized hydrodynamics

Márton Mestyán1? and Vincenzo Alba2

1 International School for Advanced Studies (SISSA) and INFN,
Via Bonomea 265, 34136, Trieste, Italy

2 Delta Institute for Theoretical Physics, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, the Netherlands

? mestyan@fmf.uni-lj.si

Abstract

We consider a molecular dynamics method, the so-called flea gas for computing the evo-
lution of entanglement after inhomogeneous quantum quenches in an integrable quan-
tum system. In such systems the evolution of local observables is described at large
space-time scales by the Generalized Hydrodynamics approach, which is based on the
presence of stable, ballistically propagating quasiparticles. Recently it was shown that
the GHD approach can be joined with the quasiparticle picture of entanglement evolu-
tion, providing results for entanglement growth after inhomogeneous quenches. Here
we apply the flea gas simulation of GHD to obtain numerical results for entanglement
growth. We implement the flea gas dynamics for the gapped anisotropic Heisenberg
XXZ spin chain, considering quenches from globally homogeneous and piecewise homo-
geneous initial states. While the flea gas method applied to the XXZ chain is not exact
even in the scaling limit (in contrast to the Lieb–Liniger model), it yields a very good
approximation of analytical results for entanglement growth in the cases considered.
Furthermore, we obtain the full-time dynamics of the mutual information after quenches
from inhomogeneous settings, for which no analytical results are available.
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1 Introduction

In the last decade, the study of isolated quantum many-body systems out of equilibrium pro-
vided new insights on the deep interplay between entanglement and thermodynamics, shed-
ding new light on the fundamental question how statistical ensembles emerge from the out-
of-equilibrium dynamics after a quantum quench [1–6].

Integrable models offer an ideal setting for understanding generic features of the entangle-
ment dynamics after a quantum quench [7–35]. Indeed, for integrable systems the dynamics
of entanglement-related quantities can be understood within the so-called quasiparticle pic-
ture [8]. Here we focus on the out-of-equilibrium dynamics of the entanglement entropy (von
Neumann entropy), which is defined as [36–39]

S = −TrρA lnρA, (1)

with ρA the reduced density matrix of a macroscopic subsystem A (see Fig. 1 for a one-
dimensional setup). In the quasiparticle picture, pairs of entangled quasiparticles are produced
after the quench. As these pairs propagate ballistically, they entangle larger regions of the sys-
tem (see Fig. 1 (a)). At a given time after the quench, the von Neumann entanglement entropy
is the sum of the individual contributions coming from each pair that is shared between A and
its complement. This picture has been explicitly verified in free-fermion models [7]. It has
been shown recently that it holds true also in the presence of interactions [32].

The quasiparticle prediction for the entanglement entropy of subsystem A of length ` after
a quench in generic integrable systems reads as [32]

S(t) =
∑

α






2t

∫

2|vα,λ|t<`

dλ|vα,λ|sα,λ + `

∫

2|vα,λ|t>`

dλsα,λ






. (2)

Here the index α labels the different types of quasiparticles present in the model, and λ is the
so-called rapidity, which distinguishes different modes of the same type of quasiparticles. The
quasiparticle picture is built on two important ideas. First, at long times the entanglement
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Figure 1: Dynamics of the entanglement entropy after a quench from a homogeneous
(in (a)) and a piecewise homogeneous initial condition (in (b)). In both cases the
entanglement dynamics is due to the ballistic propagation of pairs of entangled parti-
cles (shaded cones). In (a) the quasiparticles entanglement entropy is the thermody-
namic entropy of the GGE that describes the steady state. In (b) the inhomogeneous
initial state is obtained by joining two homogeneous systems (left and right) in the
states |ΨL〉 and |ΨR〉. Entangled pairs are produced in the bulk of the two chains.
A lightcone spreads from the interface between them. For each value of ζ ≡ x/t
the system relaxes locally to a GGE. The entanglement entropy is obtained propagat-
ing the entropy of the GGEs describing the bulk of the left and right chains, i.e., for
ζ→±∞.

entropy between A and its complement coincides with the thermodynamic entropy of the sta-
tistical ensemble that describes local steady-state properties in A. For generic translationally
invariant steady states, this ensemble is a Generalized Gibbs Ensemble [2–6, 41–44] (GGE).
Second, the velocity of the entangling quasiparticles are the group velocities of the particle-
hole excitations [45] over the GGE steady state. A crucial observation is that, in contrast with
free-fermion models, vα,λ depends on the GGE describing the steady state after the quench (or
equivalently on the pre-quench initial state), and it is “dressed” by the interactions. For generic
lattice models with local interaction the velocities are finite, i.e, for any α,λ, |vα,λ|<∞. The
function sα,λ, i.e., the entropy carried by quasiparticle pairs of type α in mode λ, is the contri-
bution of these quasiparticles to the thermodynamic entropy of the GGE describing subsystem
A.

The approach of Ref. [32] has been generalized in [46–48] to calculate the Rényi entropies
in the steady-state, whereas calculating their full-time dynamics is a challenging open prob-
lem. Remarkably, the quasiparticle picture allows to obtain the dynamics of the logarithmic
negativity [15,49], which is a proper entanglement measure for mixed states.

Recently, there has been a growing interest in understanding the entanglement dynamics
after quenches from piecewise homogeneous initial states. In the standard setup (see Fig. 1
(b)) two homogeneous chains in a different state (L, R in Fig. 1) are joined together at t = 0.
One then studies the ensuing dynamics under an integrable globally homogeneous Hamilto-
nian. During the time evolution a lightcone spreads from the interface between the chains. For
typical initial states, in the limit of long times and large distances x from the origin, the sys-
tem reaches at each fixed ray ζ≡ x/t (see Fig. 1), a Local Quasi Stationary State [50] (LQSS)
which is described by a GGE. These ζ-dependent GGEs can be described analytically within
the Generalized Hydrodynamics (GHD) formalism [51, 52]. Furthermore, by combining the
quasiparticle picture with the GHD approach [47,53–55] it is possible, in principle, to gener-
alize the quasiparticle picture [32] to inhomogeneous settings. However, actually calculating
the full-time entanglement dynamics in this case is a demanding task. The main difficulty is
that, unlike in homogeneous quenches, the trajectories of the quasiparticles are not straight
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lines. Explicit results are available only in the short time limit [55] t/`→ 0 and the long time
limit t/`→∞.

In order to overcome the above difficulties, we use a mapping between the GHD and the
“molecular dynamics” of a system of classical particles called flea gas [56]. This mapping
allows one to obtain the out-of-equilibrium dynamics in quantum integrable systems by per-
forming classical simulations [57–59]. So far, the flea gas method has been employed only to
integrable field theories, such as the Lieb-Liniger gas, but not to lattice models. In this paper,
we discuss a generalization of the flea gas approach to the spin-1/2 anisotropic XXZ chain. An
important remark is that, unlike for the Lieb-Liniger model [56], for the XXZ chain it is not
straightforward to show analytically that the flea gas dynamics is fully equivalent to the GHD.
In general for the XXZ chain the flea gas dynamics is expected to be different from the GHD.
Our results suggest that that deviations are present, although much larger systems would be
needed to ensure that the system is in the scaling limit. Still, we observe that deviations of the
flea gas from the GHD are small. This results in a surprisingly good agreement between the
flea gas and the GHD for the dynamics of local observables and the entanglement entropy.

Our main goal is to show that with moderate computational effort the flea gas framework
allows one to compute accurate numerical predictions for the full-time entanglement dynamics
after quenches from arbitrary inhomogeneous initial conditions, provided that the Generalized
Hydrodynamics approach can be applied.

The flea gas algorithm requires to know the bare quasiparticle velocity and the scattering
matrix between quasiparticles, which are easily obtained for a generic integrable model. The
third and only nontrivial input to this method is the initial condition of the flea gas dynamics.
For quenches from homogeneous initial states, the initial condition of the flea gas dynamics is
given by the GGE describing the long time limit after the quench. The idea is that at compar-
atively short times after the quench the quasiparticles are described by the GGE density. For
piecewise homogeneous setups (see, e.g., Fig. 1 (b)), the initial condition is given by the GGEs
describing each homogeneous chain at t = 0 in the hydrodynamic timescale.

We stress that it is also necessary to know the structure of quantum correlations in the initial
states, i.e., how entanglement is shared among the quasiparticles. Here we restrict ourselves
to the situation in which only entangled pairs are present. Other situations, for instance the
case of entangled “triplets”, have been considered, at least in free models [26,27].

As a benchmark of the method, we show that for quenches from homogeneous states our
numerical results are in perfect agreement with (2). Moreover, for quenches from inhomo-
geneous initial states, in the limit t,` →∞ with t/` � 1 our results confirm the analytical
predictions in Ref. [55]. Finally, to show the versatility of the method we provide results for the
full-time dynamics of the entanglement entropy and of the mutual information after a quench
from inhomogeneous settings, which are not easily accessible analytically [55].

The article is organized as follows. In Section 2 we introduce the XXZ chain and the
quenches considered in this study. In Section 3 we discuss the Bethe ansatz treatment of
generic thermodynamic ensembles. The thermodynamic Bethe ansatz framework (TBA) is
introduced in Section 3.1, which is followed by the description of steady states after homo-
geneous quenches in Section 3.2 and a summary of the GHD approach for inhomogeneous
quenches in Section 3.3. In Section 4 we introduce the flea gas method, its implementation
for the XXZ chain (see Section 4.1), and the calculation of entanglement-related quantities (see
Section 4.2). Our numerical results are discussed in Section 5. In Section 5.1 we benchmark
the method for homogeneous quenches. In Section 5.2 we provide results for entanglement
entropy after quenches from piecewise homogeneous initial states. Finally, in Section 5.3 we
discuss the mutual information. Section 6 concludes the article by mentioning some interest-
ing future directions.
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2 Model and quenches

The flea gas method that we propose for calculating the entanglement dynamics is expected
to work for generic interacting integrable models, both on the lattice and in the continuum.
However, here we provide results only for a prototypical lattice model, the spin-1/2 XXZ chain,
which describes a system of interacting spins on a ring, and it is defined by the Hamiltonian

H =
L
∑

i=1

1
2

�

S+i S−i+1 + S−i S+i+1

�

+∆
L
∑

i=1

Sz
i Sz

i+1. (3)

Here S+,−,z
i are spin-1/2 operators, and ∆ is the so-called anisotropy parameter. We restrict

ourselves to the region with∆> 1, where the system is gapped in the thermodynamic limit, al-
though the method can be applied for∆≤ 1 as well. We impose periodic boundary conditions
by identifying sites 1 and L + 1. We construct our initial states by joining two homogeneous
blocks that are prepared in either the translationally invariant tilted Néel state or in the trans-
lationally invariant Majumdar-Ghosh (dimer) state. The method is applicable, in principle, to
any low-entangled initial state.

The translationally invariant tilted Néel state is denoted as |N,θ 〉, and it is obtained by
rotating the Néel state |↑↓↑ . . . 〉 around the ẑ axis and making it translationally invariant, i.e.,

|N,θ 〉=
�

1+ T
p

2

� §

[cos(θ/2) |↑〉+ i sin(θ/2) |↓〉]⊗

⊗ [sin(θ/2) |↑〉 − i cos(θ/2) |↓〉]
ª⊗L/2

.

(4)

Here θ is the tilting angle and T is the one site translation operator to the right. The Néel
state is recovered for θ = 0. Similarly, the translationally invariant dimer state |D〉 is defined
as

|D〉=
�

1+ T
p

2

��

|↑↓〉 − |↓↑〉
p

2

�⊗L/2

. (5)

In the homogeneous setup (Fig. 1 (a)), the chain is prepared in one of the states (4) or (5) at
t = 0, and the system is let to evolve under (3). In the inhomogeneous case (Fig. 1 (b)) we
consider quenches from the initial state |Ψ0〉= |N,θ 〉 ⊗ |D〉.

3 Bethe ansatz description of thermodynamic macrostates in the
XXZ chain

Here we introduce the thermodynamic Bethe ansatz (TBA) treatment of the XXZ chain [60],
focusing on the features that are needed in the implementation of the flea gas method. First,
we summarize the general TBA framework in Section 3.1. Then we report the TBA description
of the steady states after the considered homogeneous quenches in Section 3.2. Finally, we
summarize the generalized hydrodynamics (GHD) framework for quenches from inhomoge-
neous states in Section 3.3.

3.1 Thermodynamic Bethe Ansatz (TBA)

The XXZ chain is solved by the Bethe ansatz [60], which allows one to construct the eigenstates
of (3). In the Bethe ansatz, the eigenstates are constructed with respect to the reference state
with all spins up | ↑↑ · · · ↑〉. Since the total magnetization

∑

j Sz
j commutes with (3), the

eigenstates are characterized by the total number N of down spins, which is a good quantum
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number of the state. We refer to N as the number of particles. In this study we focus on the
thermodynamic limit, i.e., the limit L, N →∞, with particle density N/L fixed.

A distinctive feature of integrable models is that their eigenstates can be interpreted as a
collection of well-defined, i.e., having infinite lifetime, quasiparticles. For generic integrable
models the quasiparticles are labelled by a set of real parameters {λα, j}α, j , which are called
rapidities. For the XXZ chain at ∆ > 1 one has λα, j ∈ [−π,π]. In general, there can be
different species of quasiparticles. These are distinguished by the integer index α. The total
number of species depends on ∆. For instance, at ∆ ≥ 1 there is an infinite number of them.
Quasiparticles with α = 1 correspond to magnon-like excitations, whereas for α > 1 they are
bound states of α magnons (α-strings [60]).

In the thermodynamic limit it is impossible to consider the individual rapidities λα, j of the
quasiparticles. Instead, the standard TBA framework [60] uses the density of quasiparticles
in rapidity space ρα,λ, which are real functions of λ for each species α. One can also define
the hole density ρ(h)

α,λ as the density of unoccupied states in rapidity space. Another important

quantity is the total density of states ρ(t)
α,λ = ρα,λ+ρ

(h)

α,λ. For a generic integrable model, this is
a nontrivial function of λ, whereas for non-interacting systems the total density is a constant,
reflecting that the rapidities are equally spaced. For the following, it is also convenient to
define the filling functions ϑα,λ and the functions ηα,λ as

ϑα,λ ≡
ρα,λ

ρ
(t)
α,λ

, ηα,λ ≡
ρ
(h)
α,λ

ρα,λ
. (6)

The densities ρα,λ and ρh
α,λ are constrained by the Bethe equations arising from the periodic

boundary conditions. In the thermodynamic limit, the Bethe equations become the Bethe–
Gaudin–Takahashi (BGT) equations [60]

ρα,λ +ρ
(h)
α,λ = aα,λ −

∞
∑

β=1

∫ π/2

−π/2
dµ Tαβ(λ−µ)ρβ ,µ, (7)

where the functions aα,λ are

aα,λ =
1
π

sinh(αη)
cosh(αη)− cos(2λ)

, (8)

and η≡ arccosh(∆). In (7), the scattering matrix Tα,β is defined as

Tα,β(λ) = (1−δαβ)a|α−β |,λ + 2a|α−β |+2,λ + · · ·+ 2aα+β−2,λ + aα+β ,λ, (9)

where aα,λ is the same as in (8). The matrix Tα,β(λ − µ) encodes all the information about
the scattering between quasiparticles of type (α,λ) and (β ,µ), and it will be crucial in the
implementation of the flea gas algorithm (see section 4).

In the TBA framework, any set of particle and hole densities ρα,λ,ρ(h)
α,λ identifies a ther-

modynamic macrostate. All the information about thermodynamic expectation values of local
and quasi local operators is encoded in the functions ρα,λ. These expectation values are de-
termined by summing over the quasiparticles species and integrating over their rapidity. For
instance, for the XXZ chain the energy of a macrostate identified by a set of densities ρα,λ
reads [60]

E
L
=
∑

α

∫ π/2

−π/2
dλεα,λρα,λ, withεα,λ = −

sinhη sinh(αη)
cosh(αη)− cos(2λ)

. (10)

6

https://scipost.org
https://scipost.org/SciPostPhys.8.4.055


SciPost Phys. 8, 055 (2020)

Besides the energy, integrable models have an infinite set of quasilocal charges that commute
with the Hamiltonian. In the case of the XXZ model, these charges are obtained as the deriva-
tives of the transfer matrix. In the thermodynamic limit, a conserved quasilocal charge Q̂ is
expressed as

〈Q̂〉
L
=
∑

α

∫ π/2

−π/2
dλqα,λρα,λ, (11)

where qα,λ is a known function, the density of the charge.
An important quantity that we will use is the bare velocity of the quasiparticles vbare

α,λ . This
is the group velocity defined from the bare quasiparticles dispersion as

vbare
α,λ ≡

ε′
α,λ

p′
α,λ

withε′α,λ ≡
dεα,λ

dλ
and p′α,λ =

dpα,λ

dλ
, (12)

where εα,λ is the bare energy of a quasiparticle defined in (10), and pα,λ its bare momentum
with p′

α,λ = 2πaα,λ.
Interestingly, for generic integrable models the quasiparticle velocities depend on the ther-

modynamic macrostate [45], and they are “dressed” by the interactions. This happens be-
cause in interacting integrable models the addition or removal of a single quasiparticle causes
a global rearrangement of the rapidities of the other quasiparticles. The net effect is a “dress-
ing” of the bare quasiparticles properties, including the energies εα,λ, and hence the group
velocities.

The correspondence between thermodynamic macrostates and microscopic eigenstates
of (3) is not one-to-one. In fact, the densities ρα,λ and ρ(h)

α,λ do not uniquely determine a
microscopic eigenstate. In the thermodynamic limit, the number of microscopic eigenstates
that give rise to the same set of macroscopic densities diverges exponentially with the system
size. The number of these thermodynamically equivalent eigenstates is given in terms of the
so-called Yang–Yang entropy [60] as

1
L

ln(# of eigenstates) = sYY =
∞
∑

α=1

∫ π/2

−π/2
dλsα,λ, (13)

with the entropy density function sα,λ being

sα,λ = ρα,λ

�

log
�

1+ηα,λ

�

+ηα,λ log
�

1+η−1
α,λ

��

. (14)

The TBA formalism has been applied to describe thermal properties of the XXZ chain [60].
The corresponding thermodynamic ensemble is the Gibbs ensemble, and the Yang-Yang en-
tropy (13) is the usual thermal entropy. However, the TBA framework can also be used to
describe the thermodynamic macrostate arising after a quantum quench, i.e., the macrostate
described by a generalized Gibbs ensemble (GGE) that takes into account the conservation
of all the quasilocal charges. Then, the corresponding Yang-Yang entropy becomes the GGE
thermodynamic entropy. Remarkably, this Yang-Yang entropy coincides with the von Neumann
entanglement entropy of the post-quench steady state [32, 33, 61, 62, 65, 66], and it is one of
the main ingredients to reconstruct the full-time dynamics of the entanglement entropy (as it
is clear from (2)).

3.2 TBA treatment of the steady state after quenches from homogeneous states

Integrable models possess an extensive number of local and quasilocal conserved quantities.
Their expectation value in the initial state is preserved during the dynamics. Thus, the post-
quench dynamics is strongly constrained, implying that a Generalized Gibbs Ensemble, instead

7

https://scipost.org
https://scipost.org/SciPostPhys.8.4.055


SciPost Phys. 8, 055 (2020)

of the standard Gibbs one, has to be used to describe local properties of the steady state in the
long time limit. The GGE can be thought of as emerging from a generalized microcanonical
principle [67]. The eigenstates entering in the microcanonical average are the ones that have
the correct expectation value of the local and quasilocal conserved quantities. In the thermo-
dynamic limit the vast majority of these eigenstates give rise to the same set of densities ρα,λ.
This set of densities is called the representative state. The corresponding hole densities ρ(h)

α,λ
are obtained from the BGT equations (7). The representative state encodes all information
about local properties of the steady state.

Within the TBA approach there are several techniques to determine the densities ρα,λ that
describe the representative state. For instance, they can be determined from the overlaps
between the eigenstates of the XXZ chain with the initial state, by using the so-called Quench
Action method [5]. Alternatively, they can be calculated from the knowledge of the initial
values of the local and quasilocal conserved quantities [68]. The latter method allows to deal,
in principle, with any translationally invariant initial state.

It is customary to describe the representative state in terms of ηα,λ. These functions satisfy
the so-called Y-system [69], which leads to the set of recursive equations for the functions ηα,λ
(cf. (6)) as

ηα,λ =
ηα−1,λ+iη/2ηα−1,λ−iη/2

1+ηα−2,λ
− 1 withα≥ 2, (15)

with the convention that η0,λ ≡ 0. Once η1,λ is known, then the functions ηα,λ for α > 1
can be computed using (15). The corresponding particle densities ρα,λ can be computed by
substituting the ηα,λ in the BGT equations (7).

Clearly, Eq. (15) implies that to determine the steady-state properties after a homoge-
neous global quench, one needs to calculate only η1,λ. For both the tilted Néel state and the
Majumdar-Ghosh state, which are relevant for this work, the function η1,λ is exactly known.
For the tilted Néel state |N,θ 〉 with tilting angle θ , one has [70]

1+η1,λ =
T1(λ+ i η2 )

φ(λ+ i η2 )

T1(λ− i η2 )

φ̄(λ− i η2 )
, (16)

where

T1(λ) = −1
8 cot(λ){8 cosh(η) sin2(θ ) sin2(λ)− 4 cosh(2η) (17)

+[cos(2θ ) + 3][2 cos(2λ)− 1] + 2 sin2(θ ) cos(4λ)}, (18)

and

φ(λ) = 1
8 sin(2λ+ iη)[2 sin2(θ ) cos(2λ− iη) + cos(2η) + 3], (19)

φ̄(λ) = 1
8 sin(2λ− iη)[2sin2(θ ) cos(2λ+ iη) + cos(2η) + 3]. (20)

For the dimer state, the funcion η1,λ reads [68]

η1,λ =
cos(4λ)− cosh(2η)

cos2(λ)(cos(2λ)− cosh(2η))
− 1. (21)

3.3 Quenches from piecewise homogeneous initial states: Generalized Hydro-
dynamics

Here we consider quenches from piecewise homogeneous initial states (as described in Fig. 1
(b)). Two semi-infinite chains L and R are prepared in the translationally invariant states
|ΨL〉 and |ΨR〉, and are suddenly joined together at t = 0. The ensuing dynamics is governed
by the globally translational invariant Hamiltonian (3). Recently, it has been shown that a
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Generalized Hydrodynamics (GHD) approach allows to study this quench [51,52] in the long
time limit at large spatial scales. Physically, during time evolution a light-cone spreads from
the interface between the two chains. Outside of this lightcone, the properties of the system
are the same as after the homogeneous quenches from the states |ΨL〉 and |ΨR〉 (see Fig. 1 (a)).
Inside the lightcone and at late times, the expectation values of local and quasilocal observables
become functions of ζ = x/t. This reflects the propagation of stable quasiparticles between
the two chains. This also suggests the emergence of a local quasi-stationary state for each ζ.
For integrable models, this corresponds to a ζ-dependent GGE. Within the TBA framework,
the GGE is represented by a set of TBA densities {ρα,λ(ζ)}∞α=1.

The key result of the GHD is that because of infinitely many conserved charges, the densities
ρα,λ(ζ) satisfy a simple continuity equation [51,52] as

∂tρα,λ(ζ) + ∂x

�

vα,λ(ζ)ρα,λ(ζ)
�

= 0. (22)

In the bipartite quench the dependence of local observables on the space-time coordinates x , t
is only through ζ. Here vα,λ(ζ) are the dressed group velocities (the same as in (2)), which
are solutions of the system of integral equations [45]

vα,λ(ζ) = vbare
α,λ(ζ) +

∑

β

∫ π/2

−π/2
dµ

Tαβ(λ−µ)
aα,λ

ρβ ,µ(ζ)
�

vα,λ(ζ)− vβ ,µ(ζ)
�

, (23)

where Tαβ is the scattering matrix (cf. (9) for the result for the XXZ chain) and aα,λ is defined
in (8). The functions vbare

α,λ are the bare velocities defined in (12).
Physically, Eq. (23) reflects that, due to integrability, the scattering between the quasi-

particles is elastic, and the only effect of the interactions is to renormalize the quasiparticles
velocities. Indeed, the term ρβ ,µ|vα,λ − vβ ,µ| in (23) is the number of quasiparticles with ra-
pidity µ and of species β that scatter in the unit time with the quasiparticle of species α and
rapidity λ. The ratio Tαβ(λ−µ)/aα,λ can be interpreted as an effective shift of the trajectory
of the quasiparticle with label α,λ due to the scatterings. This interpretation underlies the flea
gas method (cf. section 4).

The GHD approach has been successfully applied to describe transport properties in spin
systems, one-dimensional integrable field theories, both classical and quantum [59, 71–74,
76–90]. Very recently, it has been shown that GHD provides a precise framework to describe
experiments with trapped cold atoms [57]. A recent interesting direction is to generalize
the approach to include diffusive corrections [91–95]. Finally, the GHD approach can be
used to study the entanglement dynamics after quenches from piecewise-homogeneous ini-
tial states [47,53,55].

Unfortunately, calculating the full-time entanglement dynamics is in general a demanding
task. The reason is that inside the lightcone (see Fig. 1 (b)) the trajectories of the quasiparticles
are not straight lines. Explicit results are easily obtained only in some regimes. For instance,
the steady-state value of the von Neumann entropy of a finite interval placed next to the
interface between the two chains [53], as well as the growth rate of the entanglement entropy
between two-semi-infinite systems [55], can be calculated in terms of the ζ = 0 macrostate
only.

4 Flea gas approach for out-of-equilibrium integrable systems

The flea gas approach was introduced in Ref. [96] as an effective numerical method to sim-
ulate the GHD by employing classical “molecular dynamics” techniques. The method allows
to simulate the dynamics of a quantum system starting from any thermodynamic macrostate,
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both homogeneous as well as inhomogeneous. So far, the approach has been implemented for
the Lieb-Liniger gas but not for lattice systems such as the XXZ model.

The method was inspired by the correspondence between the continuity equation (22) and
the hydrodynamic equations of a system of classical particles (hard-rod gas). Hard rods are
classical one-dimensional objects undergoing elastic scattering. Here we denote their length as
d. The hard rods dynamics is as follows. Hard rods move like free particles with bare velocity
vb. When the distance between the centers of two hard rods equals d, they exchange their
velocities. Following Ref. [96], here we adopt an alternative interpretation. One can think of
hard rods as point-like objects. The scattering is then implemented as follows. When two hard
rods are at the same point in space they scatter. The scattering consists of an instantaneous
displacement by length d of the positions of the two particles. Precisely, after assuming d > 0
we impose that the particle on the left (right) is shifted by d to the right (left).

Let us define the density of rods with “bare” velocity vb as ρ(vb). The number of rods
with velocity between vb and vb + dv and in the spatial interval d x is ρ(vb)dvd x . During
time evolution, many scatterings occur. The net effect is a renormalization of the velocity of
the hard rods. Let us define this space-time dependent renormalized or “dressed” velocity as
v(vb; x , t) The dressed velocity is a function of the bare velocity vb. The density ρ(vb) obeys
the continuity equation [97]

∂tρ(vb; x , t) + ∂x

�

v(vb; x , t)ρ(vb; x , t)
�

= 0. (24)

The renormalized velocity is given by the integral equation [97]

v(vb; x , t) = vb + d

∫

dwρ(w; x , t)
�

v(vb; x , t)− v(w; x , t)
�

. (25)

Equation (25) has the same structure as (23), and it admits a simple interpretation. The
expression ρ(w)|v(vb)− v(w)| is the number of scatterings per unit time between the hard rod
with velocity v and the ones with velocity w. The second term on the right hand side in (25) is
the total shift that happens in the unit time to the trajectory of the hard rod with bare velocity
v due to the scatterings with other hard rods.

4.1 Flea gas for the XXZ chain and numerical implementation

We now discuss the application of the flea gas method for the XXZ chain. Before describing the
method for the quenches from an inhomogeneous initial state, it is useful to consider the case
of homogeneous ones. The TBA densities ρα,λ describing the steady state after the quench
are stationary and homogeneous, i.e., they do not depend on x , t. The group velocity vα,λ
of the quasiparticles are obtained by solving the TBA system (23). The crucial observation is
that Eq. (23) has the same structure as the equation for the hard rod gas (25). Equation (23)
can be interpreted as the dressing equation for the velocities of a system of multi-species and
point-like classical particles undergoing elastic scattering. Now each particle is identified by
a double index (α,λ), and Tα,β(λ − µ)/aα,λ is interpreted as a scattering length. Thus, we
define dα,β(λ,µ) as

dα,β(λ,µ) =
Tα,β(λ−µ)

aα,λ
. (26)

Similarly to the hard rods, the particles move freely with bare velocities vbare (now given
by (12)). Scatterings occur when two particles are at the same point in space. If the par-
ticle coming from the left has labels (α,λ), and the particle coming from the right has labels
(β ,µ), then the particle coming from the left will jump dα,β(λ,µ), and the particle coming
from the right will jump −dβ ,α(µ,λ).
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A crucial remark is in order. Unlike the case of the Lieb-Liniger model [56] it is not straight-
forward to show that the dynamics outlined above reproduces the correct dressing for the
bare velocities of the particles, i.e., Eq. (23). First, the displacement of the trajectory of a
given particle is given as ∆x = vα,λ∆t, which defines the dressed velocity vα,λ. The dressing
of the velocity arises from the scattering with the other particles. The number of scatterings
per unit time between a particle with label (α,λ) and particles with label (β ,µ) is given as
ρβ ,µ|vα,λ − vβ ,µ|∆t.

The key issue is how to determine the direction of the jump. During the flea gas dynamics
the particles move with their bare velocities. If a particle moving at vbare

α,λ scatters with another
one with velocity vbare

β ,µ its trajectory gets shifted by sign(vbare
α,λ − vbare

β ,µ)dα,β(λ,µ). For the Lieb-
Liniger gas one can show that the dressed velocities are monotonic functions of the bare ones,
which implies that sign(vbare

α,λ − vbare
β ,µ) = sign(vα,λ − vβ ,µ). This ensures that the jumped length

is sign(vα,λ − vβ ,µ)dα,β(λ,µ). By summing over β and integrating over µ, one obtains the
term on the right-hand-side in (23). This shows that the flea gas dynamics gives the correct
dressing for the group velocities of the particles. On the other hand, for the XXZ chain the
dressed velocities are not monotonically increasing functions of the bare ones. An important
consequence is that now sign(vbare

α,λ − vbare
β ,µ) 6= sign(vα,λ − vβ ,µ). This implies that for the XXZ

chain one cannot conclude that the total jumped length is given as (vα,λ − vβ ,µ)dα,β(λ,µ). To
overcome this problem, our strategy here is to use the flea gas dynamics as outlined above,
showing numerically that, at least in the quenches that we consider, it gives the correct dressing
for the group velocities of the particles (see section 5.1).

We now discuss the details of the implementation of the flea gas method for the XXZ chain.
The system is in the continuum, and it is of length L. Both space and time are treated as
continuous variables. For a homogeneous quench, the initial state of the simulation is prepared
as follows. First, we create a total number of particles Np. The particles are described by
the TBA densities ρα,λ, which contain the full information about the post-quench GGE (see
section 3.2 for the results for the quenches considered here). Np is chosen such that one has
the correct value of the particle density, i.e.,

Np = L
∑

α

∫ π/2

−π/2
dλρα,λ. (27)

Note that Np is not the total number of down spins N , which is given as N = L
∑

α

∫

dλαρα,λ.
This simply reflects that in the simulation multi-spin bound states are treated as individual
point-like particles. The particles are labeled as 1, . . . , Np. Here we restrict ourselves to the sit-
uation in which only pairs of entangled quasiparticles with opposite rapidities [32] are present.
For convenience, particles forming an entangled pair are labelled by consecutive integers as
(2γ, 2γ+ 1) with γ= 1, . . . , Np/2. To each pair we assign a species label α with probability rα
given as

rα =
L

Np

∫ π/2

−π/2
dλρα,λ. (28)

Similarly, rapidities λ2γ = −λ2γ+1 are assigned to the pairs with probability ρα,λ = ρα,−λ. The
position of each pair is random in the interval [−L/2, L/2]. Note that entangled particles are
produced at the same point in space, implying x2γ = x2γ+1. However, to avoid spurious scat-
terings when the dynamics starts, we impose a tiny displacement between entangled particles.
Finally, we assign to each pair their contribution to the Yang-Yang entropy, which is sα,λ/ρα,λ
(cf. (14)).

During the time evolution, the particles move with the bare velocities vbare
α,λ, given as (cf (12))
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vbare
α,λ =

sinh(η) a′
α,λ

2aα,λ
. (29)

Here aα,λ are defined in (8) and a′
α,λ ≡ daα,λ/dλ. During the simulation only the position

of the particles are updated, whereas their labels, velocities, and entropies remain the same.
Particles can collide, jumping backward and forward of distance dα,β(λ− µ) (cf. (26)). This
happens as follows. Let us denote two colliding particles as P1 and P2, P1 being the left particle
and P2 the right one, respectively. Let us assume that P1 and P2 have labels (α,λ) and (α′,λ′),
respectively. Thus, P1 jumps to the right of distance dα,α′(λ,λ′), whereas particle P2 jumps
to the left of distance dα′,α(λ′,λ) = −dα,α′(λ,λ′). It is crucial to observe that while jumping,
P1 and P2 can scatter with other particles that are within dα,α′(λ,λ′). For example, if the
trajectory of P1, after scattering with P2, crosses that of a third particle P3 with label (α′′,λ′′),
P1 scatters with P3, as well. This means that, in principle, there is a “cascade” of scatterings
initiating when P1 and P2 collide.

The complete flea gas algorithm is illustrated in Fig. 2. The first step is to identify the
pair of particles P1 and P2 that scatter first, and the corresponding scattering time tcoll. This
is performed by the routine FIND(P1, P2, tcoll) in Fig. 2. This can be done efficiently by using
standard methods in molecular dynamics simulations (see for instance Ref. [98]). Then, all
the particles are evolved until tcoll, when the scattering between P1 and P2 occurs. This is
described by the procedure COLLIDE in Fig. 2. P1 and P2 are instantaneously displaced by
a distance d1,2 and d2,1 (cf. (26)). The displacement of the particles is implemented with
the procedures JUMPLEFT and JUMPRIGHT, which are described in Fig. 3. Note that the two
scattering particles are marked before starting the collision (see procedure MARK). This is
to prevent that, while scattering with near particles, P1 and P2 scatter again with each other.
Marked particles, instead of scattering, cross each other. After the scattering cascade starting
with their first collision happened, P1 and P2 are unmarked.

1: procedure EVOLVE(tmax)
2: t = 0
3: while t < tmax do
4: FIND(P1, P2, tcoll)
5: ∀γ, xγ→ xγ + vγ tcoll
6: ∀γ, UNMARK(Pγ)
7: COLLIDE(P1, P2)
8: t = t + tcoll
9: end while

10: end procedure

11: procedure COLLIDE(P1, P2)
12: if MARKED(P1, P2) then
13: x1↔ x2
14: else
15: MARK(P1, P2)
16: x1↔ x2
17: JUMPRIGHT(P1, d12)
18: JUMPLEFT(P2, d21)
19: end if
20: end procedure

Figure 2: Flea gas dynamics. The main procedure EVOLVE evolves the system up to
tmax. The routine FIND(P1, P2, tcoll) finds the particles P1 and P2 that scatter first at
time tcoll. The positions xγ of the particles are evolved up to tcoll. vγ are the bare
velocities (cf. Eq. (29)). Then, particles P1 and P2 scatter. The function UNMARK re-
moves the mark assigned to the particles when they scatter for the first time. The scat-
tering is implemented by COLLIDE: P1 and P2 are displaced by a distance d12 = −d21
(cf. Eq. (26)). The functions JUMPLEFT and JUMPRIGHT implementing this shift are
in Fig. 3. Before scattering the particles are marked. Marked particles cross each
other. Note that while P1 is scattering with P2, a scattering with a third particle P3
can occur, initiating a scattering “cascade”.
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1: procedure JUMPRIGHT(P1, d)
2: while d > 0 do
3: if |x3 − x1|> d then
4: x1 = x1 + d
5: d = 0
6: else
7: d = d − |x3 − x1|
8: x1 = x3
9: COLLIDE(P1, P3)

10: end if
11: end while
12: end procedure

13: procedure JUMPLEFT(P1, d)
14: while d < 0 do
15: if |x1 − x3|< |d| then
16: x1 = x1 + d
17: d = 0
18: else
19: d = d + |x1 − x3|
20: x1 = x3
21: COLLIDE(P3, P1)
22: end if
23: end while
24: end procedure

Figure 3: Jump algorithms for the flea gas dynamics. When scattering with each
other, particles P1 and P2 are instantaneously displaced by a distance d, which de-
pends on the species and the rapidity of the particles, and it is extracted from the scat-
tering matrix of the model (see Eq. (26)). The functions JUMPRIGHT and JUMPLEFT

implement this displacement. In JUMPRIGHT and JUMPLEFT particle P3 is the next
particle on the right and on the left of P1, respectively. If during the jump P1 does
not meet particle P3, the position of P1 is shifted by d. If |x1− x3|< |d|, then particle
P1 scatters with P3. The procedure COLLIDE is defined in Fig. 2.

4.2 Entanglement dynamics in flea gas simulations

The entanglement entropy at a given time is computed by counting the entangled pairs (weighted
with their Yang-Yang entropy) that are shared between the subsystem of interest A (cf. Fig. 1)
and the rest, i.e., the number of pairs (Pγ, Pγ+1), such that xγ and xγ+1 are in different subsys-
tems. The result for the entanglement entropy reads as

S(t) =

*

∑

shared pairs
(λ,−λ)

sα,λ

ρα,λ

+

t

. (30)

Here the average 〈 〉t is over different realizations of the flea gas dynamics up to time t. The
sum is over the pairs that are shared between the two subsystems. Importantly, the factor
1/ρα,λ takes into account that different types (α,λ) of particles appear in the sum (30) with
a frequency `ρα,λ.

5 Numerical results

We now provide numerical results showing the validity of the flea gas method to calculate
the dynamics of the entanglement entropy after a generic quench in integrable systems. In
section 5.1 we present some preliminary benchmarks of the approach. In section 5.2 we discuss
the bipartite inhomogeneous quench depicted in Fig. 1 (b). Finally, in section 5.3 we discuss
the mutual information between two intervals.
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Figure 4: Flea gas versus GHD results. Panels (a) and (b) show the dressed group
velocities vα,λ for the first two strings plotted versus the quasiparticle rapidity λ. The
black line is the flea gas result. The data are for a chain with L = 2000 sites and are
averaged over 103 realizations of the dynamics. The dash-dotted line is the solution
of (23). The results shown are for the quench from the Néel state and ∆ = 1.5.
Panels (c) and (d) show the values of v1 and v2 for the quench from the initial thermal
density matrix (31). Panels (e) and (f) show profiles of observables in the quench
of the XXZ chain with ∆ = 2 from the bipartite thermal state with βL = βR = 0,
(βh)L = 1, (βh)R = 2, considered in Ref. [80]. We plot the local energy E and the
magnetization Sz as a function of ζ≡ x/t. The squares represent the flea gas results
averaged over 103 realizations of the dynamics. The full line was obtained in [80]
by solving the GHD equations (22).

5.1 Preliminary benchmarks

A crucial feature of the flea gas dynamics is that it gives rise to the correct dressing of the
group velocities of the quasiparticles given by (23). While this can be proven for the flea gas
algorithm for the Lieb-Liniger model, this is not the case for the XXZ chain. Here we provide
numerical evidence that, at least for the quenches that we consider, the flea gas dynamics
presented in Section 4 gives rise to the correct dressing of the group velocities.

We first consider the quench from a homogeneous chain prepared in the Néel state. Our
results are presented in Fig. 4 (a) and (b). The results are for the XXZ chain with∆= 1.5. The
figures show the dressed velocities of the first two strings vα,λ with α= 1, 2 plotted versus the
rapidity λ. The full lines are the flea gas results. These are obtained as ∆xγ/t, where ∆xγ is
the displacement of the particles with respect to their initial position. The data are averaged
over 104 realizations of the flea gas dynamics. As it is clear from the Figure, there are large
fluctuations in the central region around λ = π/2. This is because the density ρ1,λ is large at
the edges of the interval, whereas it is suppressed at the center, for instance, for ∆= 1.5 by a
factor of ∼ 50. This effectively reduces the statistics for the central rapidities. For α = 2 the
density ρ2,λ has a maximum around λ = π/2. However, it is in general much smaller than
ρ1,λ, again resulting in large fluctuations for the group velocities of the two strings. In Fig. 4
the dash-dotted lines are the analytical results for the dressed velocities, which are obtained
by solving numerically (23). Clearly, the agreement with the flea gas results is very good.

We also considered the dressed velocities in homogeneous thermal states. Panels (c) and
(d) show results for the dressed velocities in the state described by the thermal density matrix

ρ0 =
1
Z

e−βH+(βh)Sz
, (31)

where β is the inverse temperature and h a transverse magnetic field. The data are for β = 0.5
and βh = 0.25. The continuous lines are flea gas results for the dressed velocities of the first
two strings, which perfectly match the analytical results of TBA (dash-dotted lines).
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Figure 5: Comparison between bare and dressed velocities. The results are for the
thermal density matrix (31) with β = 0.5, βh = 0.25 and ∆ = 1.5. The continuous
line and the dotted line are the dressed and the bare velocities, respectively. Panel
(a) and (b) show the velocities for the unbound and the two-particle bound states.
Note that non monotonicity of the velocities implies that for some α,β ,λ,µ one has
sign(vbare

α,λ − vbare
β ,µ) 6= sign(vα,λ − vβ ,µ).

We now move the quenches from piecewise homogeneous states. Here we consider the
initial density matrix as

ρ0 =
1
Z

e−βL HL+(βLhL)Sz
L ⊗ e−βRHR+(βRhR)Sz

R , (32)

where quantities with the subscript L/R refer to the left and right chains (see Fig. 1 (b)). The
quench from (32) was investigated in Ref. [80] using GHD. Here we consider βL = 0, (βh)L = 1,
and βR = 0, (βh)R = 2, with h being the magnetic field (∆ = 2). Due to the inhomogeneous
initial condition now the dressed velocities depend on ζ ≡ x/t (see Fig. 1 (b)). To check the
validity of the flea gas method, in principle, one has to check that the flea gas gives the correct
result for vα,λ(ζ) for any ζ. Here, instead, we consider the space-time dependence of the local
energy density E(ζ) and magnetization Sz(ζ) plotted versus ζ= x/t, with t the time after the
quench, and x the distance from the origin of the lightcone. Both the quantities for x , t →∞
become functions of ζ. In Figure 4 (e) and (f) the square symbols are the results of the flea
gas simulation for a chain with L = 2000 and t = 100, whereas the full lines are the analytical
results obtained in Ref. [80] by solving the GHD equations. The agreement between the flea
gas and the GHD results is spectacular.

As a further check of the validity of the flea gas method we now discuss results for the
dynamics of the von Neumann entanglement entropy after a quench from homogeneous initial
states, for which analytical results (cf. Eq. (2)) are available. Our results are discussed in
Fig. 7. The figure shows data for the XXZ chain with ∆ = 2, quenching form the Néel state
(see section 2). The rescaled entropy S/` is plotted versus t/`, with ` the subsystem size. In
the simulation we considered `= 100 and a chain of length L = 2000. The data are obtained
by averaging over ∼ 104 independent realizations of the flea gas dynamics. The continuous
line is the flea gas result (30) up to t/` ≈ 1.5, although results for larger times can be easily
obtained. The dash-dotted line is the analytical result (2) obtained in Ref. [32]. The agreement
between the two is excellent.

Some remarks are in order. First, the flea gas picture is expected to capture correctly only
the ballistic part of the entanglement dynamics, i.e., the leading behavior in t/`. Note that,
however, subleading corrections, for instance diffusive corrections as O(

p
t), are generically

expected in the entanglement dynamics. In the flea gas framework diffusive corrections arise
because of the average over the different realizations of the initial state, and are associated
with the fluctuations of the particles trajectories. On the other hand, the diffusive corrections
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Figure 6: Effect of the “wrong” scattering events on the quasiparticles trajectories. We
show the shift∆x experienced by the quasiparticles with rapidity λ due to scatterings
with other particles. The data are for the initial thermal density matrix in (31) with
β = 0.5 and βh = 0.25. (a) shows ∆x due to all the scatterings (dotted line) and
only to the wrong scattering events (continuous line) for the unbound particles. In
(b) we show the result for the two-particle bound states. Panel (c) shows the shift
due to the wrong collisions for the unbound particles (same data as in (a)).

that are present in the flea gas are not expected to be the same as the quantum diffusive
corrections of the XXZ chain. The origin of diffusion in interacting integrable models and in
the flea gas have been under constant investigation in the last few years [91–95]. Finally, as it
is clear from Fig. 7, subleading corrections are small. Only for very short times some deviations
from (2) are present, which disappear in the scaling limit t,`→∞.

5.1.1 Effect of the wrong collisions

In section 4.1 we stressed that the fact that the group velocity of the quasiparticles are not
monotonic increasing functions of the bare ones. This implies that
sign(vα,λ− vβ ,µ) 6= sign(vbare

α,λ− vbare
β ,µ). As a consequence two quasiparticles colliding with veloc-

ities vbare
α,λ and vbare

α,λ are shifted by the “wrong” distance sign(vbare
α,λ − vbare

β ,µ)dα,β(λ,µ).
Here we investigate this effect. We consider the initial state defined by the thermal density

matrix (31) with β = 0.5 and βh= 0.25. We consider the XXZ chain with∆= 1.5. The reason
is that for ∆→ 1 the dressing of the quasiparticles velocities is larger, which should enhance
the effect of the wrong scatterings.

In Fig. 5 we compare the bare velocities and the dressed ones (dotted and continuous line,
respectively). We show results only for α= 1,2. The effect of the dressing is clearly visible in
the figure. Importantly, one consequence of the dressing is that the maximum of the velocities
are shifted, as compared with the bare ones. This already implies that for some values of
α,λ and β ,µ one has that sign(vα,λ − vβ ,µ) 6= sign(vbare

α,λ − vbare
β ,µ), meaning that a priori the flea

gas dynamics is not fully equivalent to the GHD. On the other hand, the behavior of the bare
and dressed velocities is similar as a function of λ, suggesting that the effect of the wrong
scatterings should be “small”.

In Fig. 6 we investigate the effect of the wrong collisions on the shift of the quasiparticles
trajectories. In panel (a) we show the average total shift ∆x experienced by the quasiparticle
with rapidity λ due to wrong scatterings (continuous line) and the total number of scatterings
(dotted line). The results are for the quasiparticlew with α = 1, i.e., the unbound quasiparti-
cles. We observe that the wrong scatterings have a small effect on ∆x , which is barely visible
in the figure. Similar behavior is observed for the two-particle bound states. The results are
shown in panel (b). In panel (c) we show the effect of the wrong scatterings on the trajectories
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Figure 7: Dynamics of the von Neumann entanglement entropy after the quench from
the Néel state in the XXZ chain with∆= 2. The entropy density S/` is plotted versus
the rescaled time t/`, with ` the subsystem size. The continuous line corresponds
to the flea gas simulation for a subsystem with ` = 100. The length of the chain is
L = 2000. The results are averaged over ∼ 1000 realization of the dynamics. The
dash-dotted line is the analytical result (2).

of the quasiparticles with α = 1. The figure shows the same data as in (a). The average shift
due to the wrong scatterings is ≈ 10−3.

Finally, two observations are in order. First, although panel (c) suggests a finite contribu-
tion of the wrong scattering to ∆x , larger numerical simulations would be needed to ensure
that the data are in the scaling limit N , L→∞ with N the number of quasiparticles. Second,
in principle, it should be possible to correct the effect of the wrong scatterings by impos-
ing that upon colliding the displacement of the quasiparticle trajectories is the correct one
sign(vα,λ − vβ ,µ). Note that this requires knowing the dressed velocities vα,λ, which could be
calculated during the simulation.

5.2 Entanglement dynamics after a quench from inhomogeneous initial condi-
tions

Having established the validity of the flea gas method to simulate the entanglement dynamics
after homogeneous quenches, we now consider the case of the inhomogeneous initial state
in Fig. 1 (b). The calculation of the entanglement dynamics within the GHD framework is in
general a complicated task. Explicit analytic results can be obtained only in few cases. For in-
stance, the steady-state value of the von Neumann entanglement entropy for a finite subsystem
placed next to the interface between the two chains (see Fig. 1 (b)) can be easily calculated.
This corresponds to the limit `/t → 0. In this limit, the entire subsystem is described by the
GGE with ζ= 0 (see section 3.3). Following Ref. [32], the density of the steady-state von Neu-
mann entanglement entropy coincides with that of the GGE entropy with ζ= 0. One has [53]

S = `
∑

α

∫ π/2

−π/2
dλ sα,λ(0). (33)

Here sα,λ(0) is the Yang-Yang entropy (cf. (14)) of the GGE with ζ = 0, which is obtained
by using the GHD (see section 3.3). The result does not depend on which side of the system
one places the interval, as long as ` is finite. Interestingly, one can show that the ζ = 0
macrostate describes the entanglement growth at short times, i.e., the limit 1 � t � ` as
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well [53,55]. First, the entanglement entropy is expected to grow linearly at short times. Here
we refer to the slope of the linear growth as the entanglement production rate [47, 53, 55].
The entanglement growth is due to the quasiparticles that cross the interface between the two
chains. This suggests that the entanglement production rate is described by the ζ = 0 GGE.
Indeed, if subsystem A is the semi-infinite chain, the entanglement production rate S/t is given
as [55]

S
t
=
∑

α

∫ π/2

−π/2
dλ sign(λ)vα,λ(0)sα,λ(0). (34)

Here vα,λ(0) is the group velocities of the particle-hole excitations around the ζ = 0 GGE,
which are obtained from (23). For a finite subsystem, the slope of the linear growth depends
on the details of the bipartition. For simplicity we now consider the case of a finite interval
of length ` placed in one of the two chains next to the interface (see Fig. 1 (b)). Clearly,
the entanglement entropy gets contributions from both the edges of the subsystem. For short
enough times but still in the linear regime, i.e, for large t with t/`� 1, the contributions of
the two edges decouple and can be summed independently. As in (34), one of the edges of
A is described by the GGE with ζ = 0. On the other hand, the other one is described by the
GGE with ζ = ±∞, depending on which side subsystem A is placed in. The entanglement
production rate is given as

S = t
∑

α

∫ π/2

−π/2
dλ

�

sign(λ)vα,λ(0)sα,λ(0) +
�

�vα,λ(σ∞)
�

� sα,λ(σ∞)
�

, (35)

where σ = ± identifies the side in which subsystem A is placed.
To illustrate how these features emerge in the flea gas simulations, in Fig. 8 we present

numerical results for the quench from the initial state obtained by joining the Néel state and
the dimer state |N〉 ⊗ |D〉 (see section 2 for the definition of these states, and section 3.2 for
their TBA treatment). The results are for the XXZ chain with ∆= 2. The full and dotted lines
correspond to the bipartitions with interval A being [−`, 0] (in the Néel region) and [0,`] (in
the dimer region) respectively. In both cases we consider L = 2000 and ` = 100. The results
are obtained by averaging over 10000 realizations of the flea gas dynamics (see section 4),
and using (30).

For the quench from |N⊗dimer〉, we observe that at∆= 2 one has sα,λ(+∞)≈ sα,λ(−∞)
and vα,λ(+∞) ≈ vα,λ(−∞). From (35) one obtains that the entanglement production rate
depends very mildly on which region the subsystem is placed. The theory predictions (35) for
the entanglement production rates are not distinguishable on the scale of the figure and are
reported as dash-dotted line. At intermediate ζ = t/`, the entanglement entropy depends on
all the values of ζ. This happens because the entangling quasiparticles explore macrostates
with different ζ as they travel in subsystem A (see Fig. 1). Although it is possible, in principle,
to write an analytic formula [55] for the evolution of the entanglement entropy at any time,
its numerical evaluation is a demanding task. In contrast, the flea gas method allows to access
easily the full-time entanglement dynamics, as it is clear from Fig. 8.

In Fig. 9 we present further checks of the validity of the flea gas method for inhomogeneous
quenches. We consider the initial state obtained by joining the tilted Néel state and the dimer
state, i.e., |N,θ 〉⊗ |dimer〉 (see section 2), where θ is the tilting angle. Panel (a) and (b) show
results for θ = π/3, whereas in (c) and (d) we consider θ = π/6. In all the cases we choose
` = 100 and total system size L = 2000. In (a) and (d) the subsystem is placed on the Néel
side (A = [−`, 0]), whereas in (b) and (c) is in the dimer side (A = [0,`]). The fact that
the production rate depends on the position of the interval is now apparent. The dash-dotted
lines are the theory predictions (cf. (35)) for the entanglement production rates. In Fig. 9 (a)
some deviations from (35) are visible. These, however, are due to finite-size and finite-time
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Figure 8: Dynamics of the von Neumann entanglement entropy after the quench
from the initial state obtained by joining the Néel and the dimer state in the XXZ
chain with ∆ = 2. The entropy density S/` is plotted versus the rescaled time t/`,
with ` being the subsystem size. The interval is placed next to the interface between
the two chains. Here we choose `= 100, while the total chain size is L = 2000. The
full and the dotted lines are the flea gas results for an interval placed in the Néel
and dimer part, respectively. The results are obtained by averaging over ∼ 10000
realizations of the dynamics. The dash-dotted line is the GHD prediction (35) valid
in the space-time scaling limit. Notice that the asymptotic value of the entropy at
t →∞ does not depend on the region where the subsystem is placed.

effects. In the inset of Fig. 9 we report results for `= 500, which are now in perfect agreement
with (35). We observe that in general very large subsystems are needed to provide a robust
numerical check of the GHD prediction (35).

5.3 Mutual information after quenches from inhomogeneous initial conditions

It is interesting to investigate the dynamics of the mutual information between two intervals.
To this purpose, we now consider a tripartite system. Subsystem A is made of two intervals
A1 and A2 at a distance d. Here we consider only d = 0, although the method works also for
d > 0. The two subsystems are embedded in an infinite system. The mutual information IA1:A2

is a measure of the correlation shared between A1 and A2, although it is not a proper measure
of the entanglement between them. IA1:A2

is defined as

IA1:A2
≡ SA1

+ SA2
− SA1∪A2

, (36)

where SA1
, SA2

, and SA1∪A2
are the von Neumann entanglement entropies of A1, A2 and A1∪A2

with the rest of the system.
In the quasiparticle picture, the mutual information is proportional to the entangled pairs

that are shared only between A1 and A2. On the other hand, the contribution of the quasipar-
ticles to the mutual information is, again, the GGE thermodynamic entropy. Thus, the flea gas
formula for IA1:A2

is the same as (30) where the sum is restricted to the pairs of quasiparticles
shared between A1 and A2.

The qualitative behavior of the mutual information is as follows. For two disjoint intervals
at a distance d, the mutual information is zero at short times. At t ∼ d/t, IA1:A2

exhibits a linear
increase. This corresponds to entangled pairs starting to be shared between A1 and A2. The
growth persists up to t ∼ (d+`)/t, when the mutual information starts to decrease. In systems
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Figure 9: The same as in Fig. 8 for the quench from the state obtained by joining
the tilted Néel and the dimer state. The data are for the XXZ chain at ∆= 2 and for
tilting angles θ = π/3 (in (a) and (b)) and θ = π/6 (in (c) and (d)). The curves
show the flea gas results for a subsystem of size ` = 100 and chain size L = 2000.
The data are averaged over∼ 10000 realizations of the flea gas dynamics. In (a) and
(d) the subsystem is placed on the Néel side, whereas in (b) and (c) it is in the dimer
side. The dash-dotted lines are the GHD predictions in the space-time scaling limit.
The inset in (a) shows results for `= 500 and chain size L = 2000.

with only one quasiparticle with perfect linear dispersion (as in CFT systems), the decrease
is linear. In generic integrable models a much slower decrease is observed [47]. This is due
to the fact that quasiparticles have a nontrivial dispersion, and slow quasiparticles entangle
the two subsystems at long times. The mutual information can, in principle, be used as a tool
to reveal the quasiparticle content of an integrable model. Typically, different species have
different maximum velocities vα,M . This implies that if the distance between the two intervals
is large enough, the mutual information exhibits a multi-peak structure in time, each peak
corresponding to a different species [20,99].

The mutual information after quenches from inhomogeneous initial states has not been
investigated yet. In contrast with homogeneous global quenches [47], deriving the quasiparti-
cle picture for the mutual information in inhomogeneous settings is a formidable task. Again,
the reason is that the quasiparticles trajectories are nontrivial functions of time. We now show
that the flea gas approach allows to simulate effectively the full-time dynamics of the mutual
information. We restrict ourselves to the case of two adjacent intervals, although the method
works for disjoint intervals as well.

We present our results in Fig. 10, focusing on the XXZ chain with ∆ = 2. The initial
state that we consider is |N,θ 〉 ⊗ |D〉. Different panels show different values of θ . The data
are for two equal-length adjacent intervals [−`, 0] and [0,`] with ` = 100. The total chain
length is L = 2000. As expected, the mutual information is initially zero, it grows linearly at
intermediate times, and it eventually decays to zero at asymptotically long times. Importantly,
the initial slope of the mutual information depends only on the GGE with ζ = 0 because the
interface between A1 and A2 is at the origin. In particular, the slope of the inital growth of the
mutual information coincides with the entanglement production rate for the two semi-infinite
chains (see Eq. (34)). This initial growth is reported in Fig. 10 as dash-dotted line, and it
perfectly describes the behavior of the flea gas results.

6 Conclusions

In this work we showed that the so-called flea gas method put forward in Ref. [96] provides
a versatile tool for simulating the entanglement dynamics after quenches from generic ini-
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Figure 10: Dynamics of the mutual information between two intervals after the
quench from the state |Néel,θ 〉 ⊗ |dimer〉 in the XXZ chain with ∆ = 2. Here we
show the mutual information between two adjacent intervals next to the interface
between the two chains. The data are for two intervals with `= 100 embedded in a
chain with . The different panels are for different tilting angles θ . The dash-dotted
lines are the GHD predictions for the slope of the linear growth at short times. No-
tice that the slope depends on the macrostate with ζ= 0 that describes the interface
between the two chains.

tial states in integrable systems. We benchmarked the method in the Heisenberg XXZ chain,
although it can be applied, in principle, to any integrable model. The method works for arbi-
trary initial states, both globally homogeneous as well as piecewise homogeneous. For glob-
ally homogeneous quenches the approach requires only the GGE macrostate that describes the
steady-state. For piecewise homogeneous states, the key ingredients are the GGE macrostates
describing the steady-state in the bulk of the two systems. Although in this case the entan-
glement dynamics can be obtained, in principle, by combining the quasiparticle picture with
Generalized Hydrodynamics, obtaining explicit formulas [55] is a demanding task because
the trajectories of the quasiparticles are nontrivial functions of time. Indeed, results can be
obtained only in some limits. In contrast, in this work we showed that the flea gas approach
allows to obtain easily the full-time dynamics of the entanglement entropy and of the mutual
information between two intervals. Thus, the method paves the way to the study of entangle-
ment dynamics using “molecular dynamics” simulations.

Our results open several possible new research directions. First, it would be important
to investigate whether it is possible to prove analytically that for the XXZ chain the flea gas
dynamics as described in section 4.1 gives the correct dressing for the group velocities.

Also, it would be useful to apply the method to more complicated setups, such as multipar-
tite systems, or different initial states. Also, it would be important to go beyond the ballistic
regime, studying corrections to the linear entanglement growth. This requires first to under-
stand the subleading diffusive corrections in the flea gas method. Second, it requires to modify
the flea gas dynamics to correctly reproduce the diffusive corrections that arise from the quan-
tum fluctuations [92,93]. An interesting direction would be to generalize the flea gas approach
to study the entanglement dynamics in the presence of defects or impurities. Finally, it would
be enlightening to understand whether it is possible to treat the entanglement of operators in
integrable spin chains by using the flea gas approach, generalizing the results of Ref. [100] for
the Rule 54 chain.
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