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Abstract

Magnetotransport theory of layered superconductors in the flux flow steady state is
revisited. Longstanding controversies concerning observed Hall sign reversals are re-
solved. The conductivity separates into a Bardeen-Stephen vortex core contribution, and
a Hall conductivity due to moving vortex charge. This charge, which is responsible for
Hall anomaly, diverges logarithmically at weak magnetic field. Its values can be extracted
from magetoresistivity data by extrapolation of vortex core Hall angle from the normal
phase. Hall anomalies in YBa,Cu305, BiySr,CaCuyOg_,, and Nd, g5Ceg 15Cu0,4_, data
are consistent with theoretical estimates based on doping dependence of London pene-
tration depths. In the appendices, we derive the Streda formula for the hydrodynamical
Hall conductivity, and refute previously assumed relevance of Galilean symmetry to Hall
anomalies.
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1 Introduction

The Hall effect in the flux flow (FF) regime of superconducting films has long been an in-
triguing and controversial subject. The pioneering theory of Bardeen and Stephen (BS) [1]
predicted that the Hall sign is inherited from the normal phase which persists inside the vortex
cores. Soon thereafter, in a challenge to BS theory, Hall sign reversals have been measured
in diverse superconductors [2-6]. This effect, named “Hall anomaly”, is illustrated in Fig. 1.
Proposed explanations included the effects of disorder [2], thermal excitations [7], interlayer
vorticity [8], and vortex charge [6,9,10]. These effects were incorporated into the FF trans-
port theory by vortex dynamics equations [9,11,12], and time dependent Ginzburg-Landau
theory [13-15].

However, the microscopic origin of non-dissipative vortex forces and imaginary relaxation
rates, as well as the definition of the relevant vortex charge in a screened environment, have
been subjects of ongoing debates, lasting for more than 50 years.

In this paper, we take on the Hall anomaly problem with a new approach to flux flow
transport theory. This approach allows us to show that an additional Hall current is carried by
moving vortex charge (MVC), which does not vanish in a layered superconductor geometry.
The MVC can be estimated from independently measured thermodynamic coefficients, and

flux flow regime normal phase

longitudinal resistivity

Hall resistivity

o

“Hall anomaly”

Figure 1: Bardeen Stephen theory and Hall anomaly in the flux flow regime. For this
illustration, vortex cores are assumed to obey Drude theory of metals. The deviation
of Hall resistivity from Bardeen Stephen theory, and its sign reversal, are ascribed to
moving vortex charge.


https://scipost.org
https://scipost.org/SciPostPhys.8.4.061

Scil SciPost Phys. 8, 061 (2020)

compared to the value extracted from magnetoresistivities data.
The strategy of this paper is as follows.

®

(i)

(dii)

(iv)

We first revisit FF transport theory. While a vortex dynamical equation was used to
explain dissipative FF transport [16, 17], its form and some of its coefficients have not
been microscopically derived. The source of the difficulty might be in computing the
resistivity by imposing a bias current on superconductors without Galilean symmetry
(see expanded discussion in Section 9).

Here, in contrast to previous approaches [1-17], we completely avoid bias currents,
vortex forces and their phenomenological equations of motion. The mean vortex velocity
in the steady state is constrained by the external electric field. The current is calculated
as a linear response to the applied electric field, and Galilean symmetry is not assumed.

We show that the conductivity (per layer) separates into two additive terms,

B»(T) 2le|Q
oaﬂ:(%)ofﬁge+eaﬂ n \J . (1)

e < 0 is the electron charge, and €,p with a,8 € {x,y} is the antisymmetric tensor.
The first term recovers BS formula [ 1] which describes the transport currents generated
inside the moving vortex cores. B and B, are the magnetic field and upper critical field
respectively. The second term is due to the MVC, whose value is Q,,.

We use the Streda formula [18, 19] to relate Q, to the extra charge induced into the
superconducting layer by the addition of one vortex. In isotropic superconductors, Q, =0
due to in-plane screening by co-moving charges. In layered superconductors, screening
in dopant (weakly superconducting) layers results in,

Qv = QO IOg(chz/B) . (2)

Q, is proportional to the derivative of superfluid stiffness with respect to electron den-
sity, and to the interlayer dielectric constant, which can be experimentally determined
without microscopic knowledge of the normal state correlations. o represents vortex
core properties and is of order unity. Generically, Q, has opposite sign to first term in
Eq. (1), which can produce the Hall sign reversal depicted in Fig. 1.

Q, can be extracted from experimental magnetresistivity data, and compared to Eq. (2),
using a Hall angle extrapolation for estimating the BS term. Values extracted for hole
doped [6,20], and electron doped [20] cuprates are consistent with Eq. (2), where Q,
can be fit to independent estimates of the doping derivative of London penetration depth
and interlayer dielectric constant.

We briefly discuss effects of inhomogeneous pinning at low magnetic field, and supercon-
ducting fluctuations. The paper ends with a summary of our results and their comparison to
previous theories.

2 Flux Flow Steady State

We consider a homogeneous thin film of a type-II superconductor, below the zero field tran-
sition temperature T < TC(O), A magnetic field B = Bz induces a two dimensional (2D) vortex
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density ! n, = B/®, = (2nl3) !, where &, = hc/(2le|) is the Josephson flux quantum. The FF
regime is defined by (see Fig. 1),

max{Bmeh(T), } < B(T) < Bu(T), @

®9
21A2(T)
where B, = ®,/2nE2, £ is the vortex core radius, and By, is the vortex lattice melting
field [17, 21, 22]. For thin enough films, London’s penetration depth can easily exceed the
inter-vortex separation A > [;. Hence, the magnetic field is approximately uniform and a
more appropriate term for “flux flow” would be “vorticity flow”.

In cuprates, and other highly anisotropic layered superconductors, B.,.(T) < B.,(T) at
low temperatures [23]. In the FF regime defined in Eq. (3), the critical current is zero, or
immeasurably small, such that we will later be able to apply linear response theory to compute
the longitudinal and transverse conductivities.

The global phase field of the superconductor, outside the vortex cores, can be separated
into the vorticity phase and transport phase:

$(x) = py(@) + py(x)
N, 4
¢y =sgn(e) Y arg(z — X,), @

i=1

where X are the vortices’ positions, and f d{ - V¢ =0 on any orbit.

Henceforth we fix the gauge choice to be Ay(x, t) = 0 throughout the paper. For a config-
uration of static vortices q5(sc) = 0. We introduce an external DC electric field into the vector
potential as A = Az — cEt, where V x Ay = B2z. If ¢(x) remains time-independent, the 2D
current density will increase linearly in time, viz.

=2 (ve_2
i(0)="p(Vo—1-A®) o< Bt 5)

where p, is the 2D superfluid stiffness, and the mean free energy density will increase as
f(t) ~ pst?. The runaway energy will be cut off by destruction of the superfluid stiffness, or
by mobilization of the vortices, which will result in V¢ # 0.

Let us first consider a single moving vortex with velocity V as depicted in Fig. 2. Outside the
vortex core of radius &, a dipolar electromotive force field (EMF) &£ = —;—ZVQBV, is associated
with the vortex motion. The EMF inside the metallic vortex core £°™ is determined by the

voltage drop between the core boundary points at J; = {ac l[le—X|?=¢& 2},

Lp)
. B h
fdf-é“’e:—gbv

) 26

; (6)

1

Py

2e

T

where x; € J;. From the definition of ¢,(x—V't), the core EMF is linearly related to the vortex

velocity by,
h
£ = zx V. 7
2elE?” 7
Since V2¢, = 0 everywhere, £ is divergence free, in analogy to an in-plane 2D “magnetic
field”. The EMF produced by each moving vortex can be parameterized by a 2D “magnetic

moment”,

52
= ?5l§0re . (8)

!n this paper, a vortex (antivortex) is defined by the anticlockwise (clockise) circulation of the electrical current,
rather than the winding of the phase (see Figure 2).
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g = _%Vév

Vo= _£<ZSV(X2) ~
Score(V) _
V1= —2—297.5\'(3(1) -

Figure 2: Electromotive force field (EMF) £ (red lines with arrows), created by a
single moving vortex of velocity V. The circulating supercurrent is depicted by a
wide blue arrow. A core EME £°'¢, is imposed by the voltage drop (V;—V,) across
the metallic region (yellow disk) of radius &.

In analogy with magnetostatics [24], a finite density of 2D “moments” produces a 2D “mag-
netization field” m = n, 1. Henceforth 6 = ALA fdzx o, denotes coarse graining of o over an

AA

area AA which includes many vortices. The relation between the EMF and these “magnetic
moments” is given by the “magnetic field” to “magnetization” ratio, £ = 4mm. By Egs. (7-8)
this relation implies,

F::ﬂngzL%xjv=—VxB/c . 9
2le] 2le]
V denotes the average vortex velocity, and 7, is the vorticity current. The last equality in
Eq. (9) uses n, = B/®,, and is known as Josephson’s relation [25]. In vortex dynamics ap-
proaches [1,16], Josephson’s relation is used to express the EMF as a function of the computed
vortex velocity.
Here we turn this relation on its head. By demanding a steady state % (7) = 0, the exter-
nally imposed electric field must be cancelled, on average, by —% (V¢), and hence E = &.
This constrains the average vortex velocity to be,

V(E) = éE x B. (10)

It should be emphasized that in our approach, the vortex velocity is independent of any Hamil-
tonian parameters. The transport problem is formulated in terms of a linear response of the
transport current to the externally applied electric field E.

The current has two separate components: the metallic vortex cores which serve as ideal
current pumps, and the MVC transported by the moving vortices (see Fig. 3).
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Figure 3: Flux flow steady state transport. The electric field dictates the mean vortex
velocity according to Josephson relation V = 5z E x B. Each moving vortex core is
an ideal current pump of both longitudinal and Hall components j°°"¢. The core cur-
rents combine to a transport current density 5% = j°' marked by long blue arrows.
Moving vortex charges of average magnitude Q, produce an additional Hall current,

which is responsible for the Hall anomaly.

3 Core and transport currents

Within the BS model, the vortex cores are metallic disks of radius &, with superconducting
stiffness p, =0 inside the core and constant outside. The electrons in the disk are subjected to
a core EMF which interpolates between its boundaries which move at velocity V' of Eq. (10),
as depicted in Fig. 2. The scattering impurities are, naturally, at rest in the lab frame. Lorentz
transformation of the EMF from the moving frame to the lab frame (to linear order in V' /c)
combined with the external field E, yields £ + E+ V x B/c = £°™, where we have used
Eq. (10). The core current in the lab frame is determined by the core conductivity tensor,

jCCzOI'e — Z O_;oﬁreg%ore . (1 1)
B

For a homogeneous superconducting film, we assume that all vortices move at the same av-
erage speed and produce the same core current density. The moving vortex cores act as ideal
current pumps of the DC transport current. Due to the finite viscosity of the core electrons, the
current density is continuous at the core boundaries,

2
jcore — jtr(x) = Eepqustr(m) (CC S 35) , (12)

where ¢, was defined in Eq. (4). For weak enough electric field, additional vortex-antivortex
pairs in the superconducting medium are not produced by the vortex motion and the transport
current remains laminar, i.e. V x V¢, = 0. By charge conservation, V2¢,, = 0 everywhere
outside the vortex cores. Thus, as a harmonic function, ¢,, is determined (up to a constant)
by its gradients on the vortex core boundaries. The unique solution for the transport current,

is a globally uniform current density 5 = ', as depicted in Fig. 3.

6
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Local fluctuations in core currents and charge density are eliminated in the coarse grained
DC current density 5. Substituting Eq. (7) in Eq. (11), the BS conductivity is obtained:

Bo(T)
BS __ c2 core
Oup = (—B )aaﬁ , 13

which constitutes the first term in Eq. (1).

Note that the BS Hall angle tan(653°%) = oif,/ o5 equals to the Hall angle of the metallic
core. In Drude metals, tan(6y) = w7, Where w, is the cyclotron frequency and 7.(T) is
the transport relaxation time which varies on the temperature scales of the normal phase.
The alternative Hall angle result of Nozieres and Vinen [11] is not validated by the derivation
above.

In the “dirty limit” £ > [, 2, where [, is the core mean free path, (T, B) can be
approximated by extrapolating the normal phase conductivity c"°™2(T, B) from T > T.(B) to
T < T.(B). For cuprate superconductors and other cases of relatively short £, an extrapolation
procedure which exploits the continuity of the BS Hall angle will be proposed in Section 7.

Fig. 1 illustrates the expected BS resistivities for Drude-theory core conductivity. The ad-
ditional effect of MVC is discussed in the following sections.

4 Hall conductivity of charged vortices

In this section we discuss the contribution of MVC to the Hall conductivity. In the static E=0
case, in the absence of micrscopic particle-hole symmetry, one expects local vorticity currents
to induce charge density modulations 6 p¥(x— X;), which would be centred around the vortex
positions {X;}. Vortex charge has been previously proposed in the context of Hall anomalies
[9,10], see discussion in Section 9. Vortex induced charge density modulations have also been
observed experimentally [26]. If indeed each vortex drags (on average) an MVC of value Q,,
there will be an additional Hall current given by,

™ =07, = 2|e,lQVE x 2, (14)

which will produce the second term of Eq. (1). (See Fig. 3).

The sign and magnitude of Q, are a-priori open to many options: The total conduction
electron density per vortex or some fraction of it [15]? The superconducting condensate den-
sity per vortex? Coulomb screening could neutralize the total vortex charge, and must be
carefully considered [27]. These dilemmas have long been debated.

Here, MVC is well defined using Kubo linear response theory. In the case of A > [z, the
vortex system behaves as an incompressible fluid due to the long range logarithmic interactions
between vortices. The coarse-grained charge density response to any local variation of the
magnetic field 6B, is given by

5p"(w, t) = fdzx’ dt' R(x—a',t —t") 5B, («/, ), (15)

where, by the aforementioned incompressibility, R is a local function of space and time.
The dynamical Hall conductivity of the charged vortex fluid is proportional to the Fourier
transform of R [19],
0.y (g, ) =cR(q, w), (16)

2For simplicity we ignore proximity and Andreev reflection corrections at the vortex core boundaries, which
would be small in the dirty limit of £ > [;.
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which is shown in Appendix A. The second term in Eq. (1) is the DC limit
0?}‘,” =lim,_,, me}‘,’c(O, w).

Since R is a local function in space and time, R(g, w) is a smooth function of q, w, whose
order of limits (g, w) — 0 commute. Therefore, we can reverse the order of limits, and obtain

the thermodynamic relation,

ap—VC

o™ = ¢ lim R(q, 0 =c(
q—0 (a,0) JB

xy

) E%Qv, (17)
(n

where the first equality is known as the Streda formula [18] (see Appendinx A). Eq. (17)
defines Q, as

Q= f d2x 5% (=), (18)

d
dN,
that is to say, Q, is the change in total charge after inserting one additional flux quantum into
the system. For the calculation in the following section, we note that the background charge
density which is not created by the vorticity, does not contribute to the MVC Hall current.

Streda formula is known for its application to gapped quantum Hall (QH) phases. There,
the order of limits (g, w) — 0 also commute due to the locking of local charge and magnetic
flux variations. Intriguingly, the local flux-charge attachment property is shared between the
QH and the vortex liquid phases [28]. The difference between the vortex fluid and the QH
liquid is that Q,, in the QH phases is quantized at particular rational multiples of e.

5 Screened Ginzburg-Landau theory of the MVC

Three dimensional screening ensures that the total charge accumulated around a static vortex
vanishes, except near the surface [27]. Here we need to know whether for a moving vortex,
the screening charges move with the vortex and cancel any contribution of & p"¢ to the Hall
current.

This question is answered by applying the theory of vortex charge screening of Khomskii
and Freimuth [9] to the layered superconductor. Since Thomas-Fermi screening length is much
shorter than £ and [, the local electrochemical equilibrium equation,

edp(r)+ou(r)=0, (19)

relates between between the screening electrostatic potential ¢, and the local chemical po-
tential deviation 6u induced by the vorticity. Here, » = (x,%) is a three dimensional (3D)
coordinate. The 3D charge density deviation is determined by Poisson’s equation,

V() =~ 5p%(r), o)
0

where € is the local dielectric constant. Our goal is now to determine the profile of 6u(r).
In the absence of pinning, our vortex fluid is described as a slowly flowing hexagonal vortex
lattice (VL). The quantities calculated will be accurate to leading order in the vortex velocity.
We begin with the 2D Ginzburg-Landau (GL) free energy density of the superconducting con-
densate, ,

f=al¥+3b ¥ +K|(V-FEA)w 21

with A = %Bi x x. In the superconducting phase, a < 0 and the coherence length is
£ = (=K/a)"?. Throughout we assume B < B, in which case we may write
U(z) ~ (—a/b)/?exp(ip), where ¢ is given by Eq. (4) after setting ¢, = 0. This form

8
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1.0

0.5

0.0

Figure 4: Ginzburg Landau free energy density of a vortex lattice, f"!(x,y) of
Eq. (22), in arbitrary units. & is the vortex core radius, and blue arrows represent
a circulating current. The local chemical potential deviation Su(z) = df"'/dn,, is
approximately proportional to f"(x,y). By symmetry, the normal gradient V, 5u
vanishes on the unit cell boundaries. If the total charge per unit cell is non zero, it
must be screened in the third dimension, as depicted in Fig. 5

for ¥(x) presumes that the vortex core size is zero, which we shall correct below. The GL free
energy density is thus written as

vl . & _ 1 2 €core e Y
F@ =5 g (V9 a2 L0 e =X, (22)
where p; = —2Ka/b is the superfluid stiffness, €., is the dimensionless vortex core energy,
and B
T
@(m)=§¢—0|w|2—zi:ln|a:—Xi| . (23)

Setting (V2®) = 0 (charge neutrality of a 2D Coulomb gas) forces the vortex density to be
rigidly determined by n, = B/®,. The profile of f (x), outside the vortex cores, is depicted in
Fig. 4.

The local chemical potential deviation in Eq. (19) can be derived from Eq. (22),

dfﬂ

Su(z,0) = In
(S

(z). (24)

In isotropic three dimensional superconductors, &, u(z,z) = 0. The in-plane screening case
is depicted in Fig. 5(a). The total 2D charge deviation in the unit cell area,

szx visu(z,2) =0, (25)

uc
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Figure 5: Three dimensional screening of vortex charge density. (a) Stacked super-
conducting planes with in-plane screening. (b) Staggered dopant layers and super-
conducting planes where an unscreened Hall current flows in the superconducting
planes.

which is the consequence of V | §u"!(r) vanishing by symmetry on the 2D unit cell boundaries,
see Fig. 4.
In layered superconductors, neighboring dopant layers are positioned at z = +a,/2, with

Su(zx,*a./2) o< p;l P < p,. The interlayer modulation can be approximately modelled by,

1dfv

5 vl — —
u'(z,2) 2 dn,

(w)(l + cos(27rz/ac)) + (’)(pf"p/ps) . (26)

This modulation results in interlayer screening. The charge deviation given by Eq. (20) is

2
5p%P(x,2) = ‘o {Vzl — (i_rc) } su'l(z,z) . 27

4e c

The MVC, by (17), is given by differentiating the total areal charge of a superconducting
plane, with respect to vortex number:

a./4
d €g d d
— d>2 d 3D —__-0 d2 vl )
Q, dNVJ Xf zp”(z,2) Sea. dN, dn, xf'(z) (28)
—a./4

We can discard the uniform condensation energy —p,/4£2 in Eq. (22) which does not depend
on N,. As shown in Eq. (25), the integral over the in-plane Laplacian Vzl vanishes over each

10
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unit cell. The relevant vortex charge density is obtained by the second contribution of Eq. (27).
This charge density is screened on the neigboring dopant layers, see Fig. 5(b).

Averaging Eq. (22) over a unit cell (UC) of the vortex lattice can be performed analytically
[29],

€t d
QV = _22ac dne {ps (SM + gcore)} > (29)
where ¢); is the dimensionless Madelung energy,
1 B,
ey == In| —=— ) —In|n(7)* , (30)
w=5n(=20) = Inln(=)]

where (1, T = exp(i/3)) are the complexified triangular lattice vectors, g = exp(2i77) and

oo
n(0) =g Ja-qv . 31)
n=1
is the Dedekind eta function. The dimensionless vortex core energy €., is of order unity in
BCS theory [30]. The log(1/B) dependence in Eq. (30) results from integration of the vorticity
current squared, |« — X;|72, over a unit cell area 27'cl§.
Combining Egs. (29-31), we arrive at a compact formula for the MVC in terms of the GL
parameters,

QV(T) B)= Qo log(chz/B) 5 (32)
where the temperature dependent parameters are,
€y dp s
T)e=—"%—"5— 33
Q(T)fe =~z o (33)

2 dpsY Y @By, 2 e
loga(T) = —1.47 + 2ot —) (—CB 12 )
oga(T) 47 nt ps(dne on, ? @ 9n,

a(T) is of order unity, and depends on &, and £°“™(n.). These quantities require a mi-
croscopic theory of the core properties, but do not effect the value of Q, and the logarithmic
dependence of Q, on magnetic field in Eq. (32).

6 Extraction of Q, from experiment

One would like to extract MVC values from experimental Hall and longitudinal magnetoresis-
tivities. The problem is that in unconventional superconductors, we often do not fully under-
stand the behavior of the metallic core conductivities, which are required for the subtraction.
Fortunately, the Hall conductivity in Eq. (1) exhibits a separation between the core and the
MVC contributions which can be exploited.

The BS Hall angle inside the metallic cores reflects the extrapolated behavior of the normal
phase. For temperatures not too far from T,, it is reasonable to linearly extrapolate of the
normal state temperature dependences of p,,, py, to below T, as depicted in Fig. 6. This
yields an extrapolated values of tan 6y — tan 6y .

Thus, the BS Hall conductivity can be deduced by multiplying the measured o5y (which
is not affected by the MVC), by the extrapolated Hall angle,

BS — o®*P(B, T)tan O4(B, T). (34)

axy - Yxx

Using Eq. 1, we can extract the experimental values of the MVC by subtracting oif’/ from the

experimental Hall conductivity agp,

h
exp - exp _ ~BS
QBT = 50 (oop—oB5). (35)

11
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Figure 6: Extrapolation (dashed lines) of the Hall angle from the normal state of
Bi,Sr,CaCu,0g_,into the FF regime using the ratio of linearly extrapolated resistiv-
ities (Inset) of the normal phase data of Ref. [6].

Figure 7: Moving vortex charge Q, extracted from Zhao et al. [6]. The resistivity
data of two unit cell thickness film of Bi,Sr,CaCu,Og_,are inputs into the procedure
described in Section 7. Dashed lines are fits to theory, Eq. 32. Inset: Fitted pa-
rameters aB., and QSXP(T), (which is negative). The weak temperature dependence
of QZXP is consistent with a constant parameter y which is roughy consistent with

phenomenological Uemura’s relations [31,32] of Eq. (37).

7 MVC of cuprate superconductors

A crude theoretical estimation of Q, of Eq. (33), can be obtained from measured doping and
temperature dependent London penetration depth A, in bulk three dimensional cuprate su-

12
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Table 1: Vortex charge coefficients of cuprates. Using Eq. 35, ngp is extracted from
Hall and magnetoresistivity data at fixed temperature T[K]. QI of Eq. 39, is fit to

QEXP using the listed values of egt. Data from refs. [6,20,34,35]. See text for details.

Compounds T[K] | Qa7 /e | AJa | QfF/e €o

BizerCHCUZOS_X 75 —045 684 —0.0560 9
YBa,Cu;0, 91 | —1.68 | 410 | —0.13¢, | 12.4
Nd; g5Ceq15Cu0,_, | 11 | +0.97 | 533 | +0.086€, | 11.3

perconductors. The two dimensional (per layer) superfluid stiffness p;, is related to A by

2 ¢
0 4o~
pszﬁl—;=6.3x10 Y22 xa.[eV/em] . (36)
a, is the c-axis layer separation, which will later drop out of Q.
In the underdoped regime x < 0.15, the doping and temperature dependent p, of cuprates
[31-33] is roughly captured by an empirical formula

Py T) = py(opes0) (ﬂ) kT, 37)

opt
for [x| < xop, where x = 1—n.a? is the doping concentration per copper, Xopt A 0.16 is optimal
doping, and a ~ 3.8A. is the copper-copper distance in the superconducting planes. Note that

x is positive (negative) for hole (electron) doped materials, and that y is weakly doping and
temperature dependent, which is consistent with the empirical Uemura scaling [31,32], given

by pO ~ yT..
Thus,
dpy(T (Xopt, 0)
ps(T) ~ —sgn(x)a? Ps Xopv 7 , (38)
dne |xopt|
which by Egs. (33) and (36) yields,
th €o a’y
Q' =—3650esgn(x) ( )(—) , (39)
Xopt /\A

whose values for hole-doped Bi,Sr,CaCu,0g_, and YBa,Cu30,, and electron-doped
Nd; g5Ceg 15Cu0,_, are listed in Table 1.

The experimental values of QBXP in Table 1, are extracted from the data of Refs. [6, 20].
The agreement is quite reassuring: we can fit Qq° = Q™ using € = 9 —11.3. This short
wavelength parameter is difficult to obtain experimentally. Dielectric constants are expected
to be similar in the different cuprates, due to similar local environments. These values are not
extremely different from e, = 4.5 which was used to fit ellipsometry data of Bi,Sr,CaCu,0g_,

in Ref. [36].

8 Inhomogeneous flow and fluctuations

This paper has implicitly assumed weak effects of disorder and pinning in the FF regime.
Eq. (1) applies to homegenous vortex motion, ‘deep’ in the FF regime as defined by Eq. (3).
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Figure 8: Inhomogeneous flux flow. The pinned vortices do not contribute to the
voltage drop, and the transport currents avoid their metallic cores. The external
voltage V*'drops only on the flux flow strip of width L, which effectively enhances
the Bardeen Stephen conductivity by a factor of L/Lf, but not the moving vortex
charge contribution, see Eq. (40).

Short range (relative to &) disorder determines the normal state conductivities of o',

Long range disorder may broaden the melting transition at weak fields, due to formation of
"vorticity rivers" of total cross section L, between pinned regions of cross section L — L. In
Fig. 8 we depict two domains, which can be generalized to describe realistic systems with
multiple rivers and pinned domains.

The FF conductivity, Eq. (1) is readily modified to take into account such inhomogeneous
flow. The mean vortex velocity in the rivers, is enhanced by a geometric factor V. — Vﬁ.
Thus, the core currents of the moving vortices are also enhanced by that factor. Due to the
laminar inter-vortex current flow, the identity 5% = j'® for the average current density still
holds. The transport current through the superconductor bypasses the resistive cores of the
pinned vortices, see Fig. 8. The BS conductivity is therefore multiplied by a factor of L/L.

The MVC Hall current, however, remains unchanged, because it is proportional to the total
vorticity current, and the effective conductivity due to partial pinning is

FF—partial __ By L 2|e|Qv
Tup ‘(?)(ﬁ)“ﬁfﬁe*eaﬂ ho “0)

The partial pinning parameter L/L < 1 depends on the sample inhomogeneities, and is
an increasing function of field, temperature, and current. A signature of the partial pinning
regime, would be a non linear current-voltage relation.

We note partial pinning enhances both the BS Hall and longitudinal conductivities. There-
fore, we can still extract Q" from o5y, oi};p, and the extrapolated Hall angle, using Eq. (35).
The primary difficulty at low fields is to measure the extremely low values of p,, and p,, in
the linear response regime.

Fig. 1 depicts the resistivities of Bardeen-Stephen mean field theory, in which B, is a

sharp phase transition. In reality, for quasi-2D films and especially for few monolayers as
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in Ref. [6], T.(B) (or B.,(T)) denote a broad crossover between the flux flow and normal
metal regimes. Evidently, short range phase correlations which are required to define vortices,
persist in a limited range of T > T., and B > B.,(T). In the thin Bi,Sr,CaCu,Og_, films,
T, = Tkr is of Kosterlitz-Thouless type, where, as Halperin and Nelson [37] have shown,
mobile vortices exist in some range above Tx;. Consequently, if these vortices are charged
by Q, # 0, they can produce a Hall sign reversal even slightly above Txr. In thicker films,
superconducting order pairing fluctuations [17,38] play an important role above T.. We note
that for cuprates, the normal state (a.k.a. the “bad metal”) longitudinal and Hall conductivities
are poorly understood.

9 Discussion

Hall anomalies in superconductors have been an open theoretical problem for more than four
decades. Some of the confusion in the field originates in the formulation of vortex forces and
viscosities. Vortex dynamics approaches calculate the vortex velocity (and the associated EMF
it generates) as a response to the force exerted by a bias current, in addition to other forces. The
conductivity tensor depends on the coefficients of these forces. However, conductivities can
only be methodically computed by Kubo formulas, where the current is derived as a response
to an applied electric field (as in our approach), and not vice versa.

The vortex dynamical equation has seen endless debates since first introduced by BS [1]
and Nozieres and Vinen [11] to describe flux flow. Missing in this equation are effects of re-
alistic band structure, impurities, time-retardation and the multi-vortex interactions. While
the friction term can be derived from the longitudinal core conductivity by equating the Joule
power dissipation [ 1], non-dissipative forces have been difficult to justify microscopically [39].
Hall voltage producing forces were related to imaginary relaxation time of the time dependent
Ginzburg Landau equation [13], and to the topological phase-density action [15]. The sign
and magnitude of such a terms were determined by Ref. [15] by appealing to Galilean invari-
ance. However, this argument is not valid to flux flow in superconductors for two fundamental
reasons:

1. Superconductors in a periodic potential with impurities are not Galilean invariant.
Kelvin’s circulation theorem is valid for a perfectly Galilean liquid, where vortices must
move at the velocity of the background current, i.e. “go with the flow”. This rule would
indeed produce the Galilean Hall conductivity of o, = cp/B. However, de Gennes and
Nozieres [40] pointed out that superconducting vortices may only exhibit “go with the
flow” effects for w.T = tan(fy) > 1. As seen in Fig. 6, the experimental values of
tan(6y) ~ 107 are well outside this regime. A counterexample is provided around half
filling pa®? ~ 1 (a is a lattice constant), where the o, vanishes and changes sign due
to particle hole symmetry of the bandstructure.

Xy

2. As shown by several arguments in Appendix B, the onset of short range superconducting
stiffness prevents the vortices from “going with the flow”. The vortex liquid is incom-
pressible due to its long range interactions. As a consequence, the Hall conductivity is
given by the non Galilean invariant Streda formula, Eq. (46): 0., =c(dp/dB) # cp/B.

In this paper the vortex velocity is not driven by various forces, but dictated by the electric
field via Josephson relation (10). The moving vortices’ cores act as ideal transport current
pumps. The derivation of Eq. (1) vindicates BS result for the magnetic field dependent Hall
conductivity (in the absence of MVC), vis-a-vis Nozieres and Vinen’s [11] Galilean symmetry
motivated prediction.
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An important feature of the present approach is the separability of the conductivity tensor
in Eq. (1). This feature allows us to subtract the core conductivity term, which is poorly under-
stood in many systems. The normal state conductivities are highly sensitive to material specific
disorder, superconducting fluctuations (discussed in Section 8) , and inelastic scattering. In
cuprates, it is fair to say, little is yet understood about its normal state transport coefficients.

Hall sign reversals are a result of Q, afcoyre < 0. Whether there are one or two sign rever-
sals, depends on the individual temperature dependence of each of the two terms in Eq. (1).
0'3‘;;6 depends on quasiparticle scattering time, while the MVC is determined by the superfluid
stiffness which saturates at low temperatures. A second (lower temperature) sign reversal,
such as observed in Ref. [6], indicates that quasiparticle scattering is dominated by inelastic
(electron-electron and electron phonon) processes.

Previous authors [9, 10] have discussed the role of vortex charge in Hall anomalies, with
emphasis on the vortex core charge density. Coulomb screening however can completely neu-
tralize the total vortex charge in an isotropic superconductor, as depicted in Fig. 5(a). Here
we have considered the geometry of dopant layers with interlayer screening. This allows the
vortices to drag the MVC within the superconducting layers, while the vertically displaced
screening charges reside in neighboring low mobility dopant layers. The major contribution
for the MVC arises from vorticity kinetic energy density far outside the cores. Integration of
this contribution over inter-vortex separation yields the log(B.,/B) dependence of |Q,| at low
fields, which is consistent with the experimental data in Fig. 7.

Eq. (1) has been applied to analyse cuprate flux flow transport data in Section 7. We
find reassuring agreement between estimates of the doping-dependent London penetration
depth, interlayer dielectric constant, and the values of Q, extracted from experiments, as given
in Table 1. Independent measurements of vortex charging in these systems by resonance,
capacitance and force microscopy, would be very informative.

At very strong magnetic fields, Hall sign reversals in cuprates have been attributed to Fermi
surface reconstructions in the normal metallic phase [41,42], which exhibits quantum oscilla-
tions. It would be interesting to investigate the crossover between Hall anomalies at relatively
weak field magnetic fields, and Fermi-liquid regimes at much higher fields.
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A Dynamical Hall conductivity and Streda formula

We restrict ourselves to a 2D system with area A. The dynamical Hall conductivity is defined
as

e_ﬁEn — e_ﬁEm

h x .
oo (@)= 2 ( I i e hw))lm(muq mymlj7gn)), D)

n,m

where Z = Tre PH and {E,, |n)} is the spectrum of H.
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Charge conservation yields,

. i .
Pq:ﬁ[H,Pq]:_l‘I'Jq- (42)

Maxwell’s equation j = ¢ V xM, relates the magnetization to the current density, and in Fourier
representation, j, = ic ¢ x M, . Without loss of generality, we can choose q = (q,,0,0) and
M = M?%, and relate the matrix elements,

oy 1
<n|]q|m> __@(En_Em)(nlpq“n) (43)

(mlj,In) = icq, (mIMZ In).
Inserting the current matrix elements (43) in (41) yields

e_/jEn — e_ﬁEm

Oyylg, w) = ALZ Z (m) Re((n|Pq|m> (m|qu|n))

nm (44)
_ op
=c 5B (g, w).
The DC Hall conductivity is given by the DC transport limit,
Oxy = ol)lin,o éli% O)(y(qJ w). (45)
The Streda formula is the static thermodynamic susceptibility,
o3 — lim lim o, (q,w) =¢ (a_p) (46)
Xy g—0w—0 7 0B u, T '

When the limits (g, w) — (0, 0) of Eq. (44) commute, 0, = O)S(t;eda. This condition is satisfied
in gapped quantum Hall phases, and for the vortex liquid discussed in Section 4. In both of
these systems the response of §p(z, t) to 6B(z’, t") defined by R(x — =/, t — t’) in Eq. (15) is
local. For resistive gapless metals, the two limits are different, and Streda’s formula does not
describe the Hall conductivity.

B Invalidity of Galilean Hall conductivity in flux flow regime

To discuss the hydrodynamic contribution to the Hall current we consider “coreless” vortices
by setting O';‘;/re — 0 in Eq. (1). Here we do not assume underlying particle hole symmetry,
since we wish to discuss the approximately Galilean invariant superconductor.

In a normal Galilean invariant liquid with total charge density p, vortices “go with flow” as
dictated by Kelvin’s circulation theorem. That is to say the averaged particles’ velocity should
be equal to that of the vortices, i.e. jy,; = oV . In the presence of an electric field, Josephson’s
mean vortex velocity is V = cE x 2/B — see Eq. (10) — and the Galilean invariant (GI) Hall

conductivity would be
G _ P
w=F 47)
In this Appendix, we show that Eq. (47) is not valid in the flux flow regime of superconductors
even in an approximate Galilean Hamiltonian. The conceptual point is that Eq. (47) does
not capture the effects of short range superconducting stiffness py # 0, which differentiates

between flux flow and normal metal regimes.
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1. The current induced by a moving vortex in the (Galilean invariant) dynamical Gross-
Pitaevskii theory was calculated in the superfluid phase by Arovas and Freire [43] using
the mapping to dual (2+1)D electrodynamics:

zx(r—Vt)

VP +0O(Vv?). (48)

Jv o<

This current integrates to zero, and does not produce a global Hall current jy,; = pV,
which is required for Eq. (47).

2. Consider a charged two dimensional bosonic superfluid of density n and charge g, and

Hamiltonian ¢
(pi — ¢ A)
H= ) ——— 49
2" “
on a narrow ring, subjected to a perpendicular magnetic field A = —%r X z. A vortex

lattice of density n, = B/®, is produced in the bulk of the ring. Now a radial electric field
E || # is adiabatically turned on. The vortex lattice will start moving around the annulus
at Josephson’s velocity V' = cE x 2/B. We can understand the null drag effect of the
moving vortex lattice by analogy to that of moving potential term fdzx plz—Vit)p(x).

At low velocities, the rigid condensate “sticks" to the lab frame in which it was prepared,
and is not dragged by the moving potential (in other words: it is hard to pump a super-
fluid). This statement can be verified by the following Gedankenexperiment: we boost
the Hamiltonian to the rotating frame of velocity V/, which is implemented by inserting
an effective Aharonov-Bohm (AB) flux ®,5 = (m*c/q)V L. Superconducting stiffness en-
sures that the circulating persistent current in the moving frame would be j = —nqV at
a finite flux. The persistent current does not decay even in the presence of the (now)
static potential ¢(x). (This is to be contrasted with the metallic phase, where the current
decays to zero by scattering at all fluxes ®,5 = integer x ®,.) Boosting back to the non-
rotating lab frame, by setting ®,5 — 0, restores the motion of the potential, and rewinds
the current back to zero. Thus the moving potential does not drag the condensate.

3. Due to the local stiffness (rigidity) of the superconductor, the vortex liquid is incompress-
ible due to the logarithmic interactions between vortices. This justifies the interchange
of g, w order of limits of the hydrodynamical Hall conductivity, resulting in the applica-
bility of the Streda formula o, = ¢ (0 p/JB). The Streda formula for the vortex liquid is
proven in Appendix A. Thus, the distinction between a Galilean normal metal and a lower
temperature flux flow regime can be captured by the inequality of p/B # (dp/3dB).
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