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Abstract

Symmetries in Quantum Field Theory may have ’t Hooft anomalies. If the symmetry
is unbroken in the vacuum, the anomaly implies a nontrivial low-energy limit, such as
gapless modes or a topological field theory. If the symmetry is spontaneously broken, for
the continuous case, the anomaly implies low-energy theorems about certain couplings
of the Goldstone modes. Here we study the case of spontaneously broken discrete sym-
metries, such as Z2 and T . Symmetry breaking leads to domain walls, and the physics
of the domain walls is constrained by the anomaly. We investigate how the physics of
the domain walls leads to a matching of the original discrete anomaly. We analyze the
symmetry structure on the domain wall, which requires a careful analysis of some prop-
erties of the unbreakable CPT symmetry. We demonstrate the general results on some
examples and we explain in detail the mod 4 periodic structure that arises in the Z2
and T case. This gives a physical interpretation for the Smith isomorphism, which we
also extend to more general abelian groups. We show that via symmetry breaking and
the analysis of the physics on the wall, the computations of certain discrete anomalies
are greatly simplified. Using these results we perform new consistency checks on the
infrared phases of 2+ 1 dimensional QCD.
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1 Introduction

Suppose a quantum field theory in d + 1 space-time dimensions has a spontaneously broken
Z2 symmetry generated by the unitary operator U . Such a theory has two degenerate ground
states related by U . In this situation the theory admits a protected dynamical excitation that
interpolates between these two vacua, known as a domain wall. It may be analyzed by choos-
ing a coordinate x⊥ and frustrated boundary conditions for x⊥→±∞ which force the system
into one of the ground states for x⊥→∞ and its U-conjugated ground state for x⊥→−∞.

The domain wall always admits massless Nambu-Goldstone bosons due to the sponta-
neously broken translational symmetry in the normal coordinate x⊥, with action given by the
Nambu-Goto theory, but in many cases there could be other parametrically light excitations
trapped on the domain wall, such as the Jackiw-Rebbi modes we discuss below.

The following basic question is the starting point of this paper: Does the original Z2 sym-
metry act on the Hilbert space of the domain wall? This question is sharply defined when
there are light excitations (relative to the bulk excitations) trapped on the wall beyond the
obvious translational Nambu-Goldstone modes, but the question makes sense also in various
other situations which we will discuss below.

On the one hand, it would seem that the answer is positive since intuitively the Z2 symme-
try is restored on the wall, since the domain wall is localized where the order parameter for
the Z2 symmetry vanishes. On the other hand, the answer seems to be negative since the Z2
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Figure 1: The Z2 domain wall is created by imposing frustrated boundary conditions
for the order parameter φ along a coordinate x⊥ or breaking the symmetry with a
spatially-varying potential. Indeed, the global symmetry U does not act on the wall
but if we combine it with C P⊥T , a canonical symmetry which involves a reflection in
the normal coordinate x⊥, then we obtain a symmetry of the domain wall degrees of
freedom, which is anti-unitary if U is unitary and vice versa.

transformation does not leave the boundary conditions at x⊥→±∞ invariant—it exchanges
the two sides of the wall—and so the Z2 symmetry cannot be considered a symmetry.

It turns out that neither of the options above is entirely correct. The resolution of this gen-
eral question proceeds as follows. Consider acting with the spontaneously broken Z2 operator
U . This interchanges the two vacua on either side of the wall and hence does not leave the
bulk invariant. We then want to apply some “canonical" reflection symmetry across the wall to
restore the boundary conditions (it is canonical in the sense that it always exists; for instance,
parity symmetry does not always exist). We obtain such a canonical symmetry from Lorentz
invariance, using the C PT theorem, which guarantees us some space-orientation-reversing
symmetry, which by combination with a rotation can be chosen to act by reflection in the x⊥
coordinate. To emphasize this, we write it C P⊥T .

We therefore consider the symmetry

T ′ = U · (C P⊥T ) , (1)

which by construction leaves the boundary conditions invariant and therefore indeed acts on
the wall! But observe that this is an anti-unitary symmetry, since C P⊥T is anti-unitary. Thus,
the correct answer to the question about the fate of the spontaneously broken, unitary, Z2
symmetry is that it becomes some anti-unitary symmetry acting on the wall.

By the same argument, if we began with a spontaneously broken anti-unitary Z2 symme-
try, the domain wall would inherit a unitary symmetry. In fact, we will derive a 4-periodic
dimensional hierarchy for Z2:

¦

unitary
U2=1

©

=⇒
¦

anti−unitary
T2=1

©

=⇒
¦

unitary
U2=(−1)F

©

=⇒
¦

anti−unitary
T2=(−1)F

©

=⇒
¦

unitary
U2=1

©

, (2)

where (−1)F is the fermion parity operator and the arrow indicates the induced symmetry
on the domain wall. For bosons the hierarchy is 2-periodic, obtained from the one above by
removing (−1)F :

¦

unitary
U2=1

©

=⇒
¦

anti−unitary
T2=1

©

=⇒
¦

unitary
U2=1

©

. (3)

We will also explore similar hierarchies for larger symmetry groups and domain wall junctions.
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With this understanding of the structure of the symmetries at the domain wall or junction,
we can ask interesting questions about ’t Hooft anomalies. For instance, the original theory
determines the dynamics of the domain walls and junctions, but suppose we know the anoma-
lies on the domain walls and junctions, what can we infer about the anomalies of the original
theory?

We will show that for Z2 symmetries of all four types above, the anomaly on the domain
wall determines the original anomaly. The proof of this extends the so-called Smith isomor-
phism theorem of cobordism theory. For more general symmetry groups, one typically has
to study multiple types of domain walls and junctions to obtain the anomaly. However we
will also show that in some cases the anomaly on the wall is not uniquely determined by the
original anomaly, and with different symmetry breaking potentials there could be different
anomalies.

In general it is hard to compute the discrete time reversal or Z2 anomalies of an interacting
theory. But by repeatedly using the anomaly-matching relations we derive for the domain
walls, we can reduce the calculation of the anomaly either to a gravitational anomaly, or all
the way down to quantum mechanics, where the computation of the anomaly just amounts to
determining the projective representation of the symmetry group on the ground states.

To put this discussion in context, recall that for continuous symmetries with a local ’t Hooft
anomaly there are essentially two logical options:

• The vacuum is invariant under the symmetry: In this case there must be some massless
modes on which the unbroken symmetry acts (see [44] and references therein). We
should think about this as a conformal field theory which may or may not be trivial.

• The symmetry is broken spontaneously: There are massless Nambu-Goldstone modes
corresponding to the broken symmetries. The anomaly leads to various interactions
among these Nambu-Goldstone modes in conjunction with prescribed couplings to back-
ground fields which lead to tree-level diagrams that reproduce the anomaly [45,46].

For discrete symmetries the story is less clear and this paper is merely a step in that di-
rection. It is still true that there are essentially two options, corresponding to an invariant
vacuum or symmetry breaking. In the former case, some (but not all) discrete anomalies can
be reproduced by a topological field theory—massless modes are not always necessary (see,
for example, [19,21–24,47]). In the symmetry breaking case, there are no Nambu-Goldstone
bosons but there are domain walls instead. So this paper is essentially about how these do-
main walls reproduce the original anomaly. This is the discrete avatar of the question about
how Nambu-Goldstone bosons reproduce continuous anomalies. What we find is that for the
simplest possible symmetry classes (essentially those in (2),(3)) the domain wall worldvol-
ume theory itself has to have an anomaly and therefore must support multiple vacua, massless
particles, or a topological theory.

For instance, in the fermionic case, we will argue for a general formula, relating the time
reversal T2 = (−1)F anomaly in 2 + 1 dimensions, ν3 (which is defined mod 16) and a Z2
anomaly on its 1+ 1 dimensional domain wall, ν2 (which is defined mod 8):

ν3 = 2ν2 − 2(cR − cL) mod 16, (4)

where cL and cR are the left and right central charges of the theory on the domain wall, re-
spectively. The result (4) applies when the theory on the wall does not break the Z2 symmetry
spontaneously. In the event that it does, there is a further reduction to quantum mechanics
and the matching of the anomalies is even simpler. We will discuss the details of the case of
a nonsymmetric vacuum on the wall in the main text. The formula (4) allows us to extract
the original time reversal anomaly in 2+1 dimensions from domain wall constructions. It is
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typically much easier to compute the discrete Z2 anomaly in 1+1 dimensions and the central
charges are likewise straightforward to compute. Interestingly, as we change the coupling con-
stants of a given 2+1 dimensional theory, different domain walls may appear with different
ν2, cL , cR. But due to (4) the combination on the right hand side is always the same.

In the bosonic case, consider for instance a bosonic theory in 1+1 dimensions (say, free of
gravitational anomalies). It may have a Z2 symmetry with a ’t Hooft anomaly. If the symmetry
breaks spontaneously then there is a domain wall which is a kink, essentially a point particle
for a low-energy observer. The anomaly implies that time reversal symmetry acts projectively
on this particle, meaning with T2 = −1 on the Hilbert space, so there is an exact Kramers
degeneracy over the entire spectrum of such kinks in the system with frustrated boundary
conditions:

Z2 anomaly in 1+ 1 dimensions −→ Kramers doublet domain walls (kinks) . (5)

To demonstrate these general ideas we consider three classes of examples:

• Fermions in 2 + 1 dimensions. Such theories have a time reversal anomaly classified
by Z16. For free fermions, one can compute it directly in 2+ 1 dimensions by carefully
studying the Dirac operator on unorientable space-times [34]. This is quite delicate. We
instead compute the anomalies by coupling the theory to a heavy pseudo-scalar which
we condense. This reduces the problem to a more familiar problem in 1+1 dimensions
and we can further reduce it to quantum mechanics by studying the domain wall within
the domain wall. This example also demonstrates that there can be multiple domain
walls with different anomalies depending on the details of the symmetry breaking, but
all of their anomalies must match the original theory.

• Abelian gauge theory in 1+ 1 dimensions. We discuss a particular Z2 symmetry in the
CP1 model and show that it has an anomaly by reducing the problem to the quantum
mechanics on the domain wall in a spontaneously broken phase. The domain walls
form a Kramers doublet demonstrating (5). We show how this surprising Z2 anomaly is
consistent with the deformations of the theory.

• Sigma models with a Wess-Zumino term or Hopf term in 2+1 dimensions. Such theories
appear in the infrared of interesting systems such as 2+ 1 dimensional gauge theories.
These models often have nontrivial anomalies involving time reversal symmetry. We
study the symmetries and domain walls of these models. Some of our results provide
new consistency checks of conjectured renormalization group flows in 2+1 dimensional
QCD.

The outline of the paper is as follows. In Section 2 we discuss the properties of the C PT
symmetry and use it to derive the dimensional hierarchy for Z2 symmetries, as well as derive
an anomaly-matching condition (by anomaly-matching we mean the relationship between the
domain wall anomaly and the anomaly of the original theory). In Section 3 we discuss several
examples in detail. In Section 4 we give a mathematical perspective on the anomaly matching
condition based on cobordism theory, including proofs of the Smith isomorphism and some
generalizations.

Note Added: As this paper was being completed, we were made aware of a related work [51]
which studies the reduction from the unitary U2 = 1 to anti-unitary T2 = 1 case of (2), captured
by the classic Smith isomorphism of Section 4.4. Some related calculations also appear in [3].
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2 C PT and the Domain Wall Symmetry Algebra

2.1 A Canonical C PT and its Properties

A generic QFT does not necessarily have a time reversal symmetry, parity, or any unitary global
symmetry. But in a unitary QFT with Lorentz invariance there is always an anti-unitary sym-
metry called C PT which reverses time (T), a spatial coordinate (P), and may act on internal
degrees of freedom (C). This C PT symmetry is not unique, of course. For one, we can con-
jugate by a spatial rotation symmetry to obtain a C PT which involves reflection around a
different spatial coordinate. Also, if the theory admits a unitary internal symmetry, U , we can
consider U · C PT , which is another C PT -like symmetry.

In spelling out some properties of the C PT symmetry below, we have to be precise about
which C PT symmetry we have in mind. One constructive way to think about it is that in any
given relativistic QFT there is one (up to rotations) canonical C PT symmetry which is obtained
in the following way. We first deform the theory by arbitrary Lorentz-invariant perturbations.
This is guaranteed to break all the internal global symmetries, but there is still one unbreakable
C PT symmetry that survives. This is our canonical C PT symmetry to which the statements
below pertain.1 Of course, once we have identified this canonical C PT symmetry we can use
it in the original, undeformed theory, which possibly has various other symmetries.

There is one subtlety (other than the rotation degree of freedom which we fix when we set
the direction of P) in the definition of C PT through the procedure above, which is that there
is always an unbreakable internal unitary symmetry (−1)F (where F is the fermion number)
which is part of the Lorentz group. So we can still combine C PT with (−1)F if we wish.
However, that will not make any difference for the statements below.

There are several important properties of the canonical C PT symmetry (from now on we
often omit the word ‘canonical’):

1. Any unitary internal symmetry U commutes with C PT :

U · (C PT ) = (C PT ) · U . (6)

This follows in essence from the Coleman-Mandula theorem. (This also applies for
U = (−1)F .)

2. Any time reversal symmetry T commutes with C PT up to the fermion parity:

T · (C PT ) = (−1)F (C PT ) · T . (7)

The proof is given in Appendix A. Equation (7) means that on bosonic states T and C PT
commute while on fermionic states they anti-commute.

3.
(C PT )2 = 1 . (8)

The proof of this proceeds as follows: if the right hand side were nonzero and not a
c-number it would have to be a unitary non-space time symmetry, which would be in
contradiction with the C PT symmetry being canonical, except if it were (−1)F which is
also unbreakable. It is also easy to rule out the option of a pure c-number on the right
hand side of (8): We cannot absorb this c-number in the definition of C PT since it is
anti-unitary and hence (eiαC PT )2 = (C PT )2. But it suffices to assume that the ground
state is C PT invariant to arrive at (C PT )2 = 1 since if the ground state is invariant

1In this discussion we ignore higher-form symmetries, which cannot be broken by local perturbations of the
Lagrangian, but these do not introduce any ambiguity into the definition of C PT .
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C PT |0〉 must give eiα|0〉 for some α and hence acting on it again and using the anti-
unitary nature of C PT we find (C PT )2|0〉 = 1. Now, since (C PT )2 is assumed to be a
c-number it must be 1 in all the states and not just the vacuum. Thus it only remains to
decide whether (C PT )2 = (−1)F or (C PT )2 = 1. We show in Appendix A that the right
answer is (8).2

An elegant and nontrivial consistency check of (6),(7), and (8) is that these relations are
compatible with domain wall constructions, meaning that the symmetries on the wall we ob-
tain from combining with C P⊥T continue to satisfy the claimed commutation relations with
the C PT intrinsic to the wall. Let us see how this comes about.

We start from a d + 1 dimensional QFT with time reversal symmetry, T . We assume it is
spontaneously broken and hence there are two different vacua related by T . We then consider
the domain wall between these two vacua. As explained in the introduction we can consider
U = T · C PT which is a symmetry that leaves the bulk invariant if the operator P is taken to
act perpendicularly to the wall.

Since U is unitary and does not act on the space-time of the wall, it should commute
with the C PT symmetry of the wall which we will denote by (C PT )d , while (C PT )d+1 will
be reserved for the original C PT in the theory. (C PT )d+1 and (C PT )d can be related by a
conjugation by a π/2 spatial rotation in the plane that includes the vector perpendicular to
the wall and a vector on the wall, so (C PT )d = R(−π/2)·(C PT )d+1 ·R(π/2). Let us now check
that U and (C PT )d commute. First we compute

U · (C PT )d = T · (C PT )d+1 · (C PT )d = T · (C PT )d+1 · R(−π/2) · (C PT )d+1 · R(π/2) . (9)

Using R(−π/2) · P = P · R(π/2) and that T, C commute with rotations3 we get

= T · (C PT )d+1 · (C PT )d+1 · R(π) = T · R(π) , (10)

where we have used (8).
On the other hand,

(C PT )d · U = (C PT )d · T · (C PT )d+1 = R(−π/2) · (C PT )d+1 · R(π/2) · T · (C PT )d+1 . (11)

Using again R(−π/2) · P = P · R(π/2) we get

R(−π) · (C PT )d+1 · T · (C PT )d+1 = (−1)F R(−π) · T , (12)

where we used (8) again as well as (7). Since R(2π) is the same as (−1)F we find that (10)
and (12) exactly agree, hence U commutes with (C PT )d .

The computation may be repeated beginning with a unitary symmetry which commutes
with (C PT )d+1 and finding an anti-unitary symmetry on the wall which commutes with (C PT )d
up to (−1)F .

Finally, because of the relation (C PT )d = R(−π/2) · (C PT )d+1 · R(π/2), it is easy to see
that if (C PT )2d+1 = 1, then so does (C PT )d .

2To decide between these two options one has to be careful about what is meant by P. When we write P we
always mean a reflection in one coordinate (and not, for instance, a reflection of 3 coordinates in 3+1 dimensions
as is often used in the literature).

3Angular momentum is odd under T , thus, by anti-unitarity, rotations are even

7

https://scipost.org
https://scipost.org/SciPostPhys.8.4.062


SciPost Phys. 8, 062 (2020)

2.2 The 4-Periodic Hierarchy and Some Generalizations

Now let us see how the 4-periodic dimensional hierarchy for Z2 symmetries (2) follows from
the three properties (6),(7),(8).

First, take U = T · (C PT ). U is clearly unitary. Further,

U2 = T · (C PT ) · T · (C PT ) = (using (7))= (−1)F T · T · (C PT ) · (C PT ) =

= (−1)F T2 · (C PT )2 = (using (8))= (−1)F T2.
(13)

So if T2 = (−1)F , U2 = 1 and vice versa.
Next, we take T ′ = U · C PT with U a unitary internal symmetry. T ′ is anti-unitary, and

T ′2 = U · (C PT ) · U · (C PT ) = (using (6))= U · U · (C PT ) · (C PT ) =

= U2 · (C PT )2 = (using (8))= U2 .
. (14)

So T ′2 = U2.
We can generalize this as follows. Given any symmetry group G with a homomorphism

ϕ : G→ Z2 ,

we can arrange a spontaneous symmetry breaking pattern involving a single real order param-
eter transforming by

φ 7→ (−1)ϕ(g)φ,

which breaks G down to the kernel H of ϕ. Let Ug be the operator corresponding to g ∈ G
(unitary or anti-unitary). There is a G-symmetry on the domain wall of the order parameter
generated by

Ũg = Ug · (C P⊥T )ϕ(g). (15)

(Note that there may still be nontrivial degrees of freedom in the bulk, e.g. if the unbroken
symmetries in the kernel of ϕ are anomalous. In any case, Ũg is a symmetry, but may act on
both bulk and localized degrees of freedom, depending on the situation.)

Another interesting class of examples are theories with a time reversal symmetry T which
squares to a unitary Z2 symmetry T2 = U , with U2 = 1. Such Z4 time reversal symmetry
transformations appear, for instance, in gauge theories in 2 + 1 dimensions where U arises
from a mod 2 magnetic symmetry [48, 49, 53]. We can imagine breaking T spontaneously
with U unbroken, corresponding to the map Z4→ Z2. Repeating the computations above, we
find that on the wall we have a unitary symmetry V , V = T · C P⊥T , such that

V 2 = U · (−1)F . (16)

Therefore, the theory on the wall now enjoys a unitary Z4 symmetry. If we performed this
procedure again, we would obtain an anti-unitary symmetry T with T2 = U · (−1)F . It looks
like we obtain 4-periodicity, but note that this group, as an extension of Z4 by fermion parity,
actually splits: by the innocuous redefinition U 7→ U · (−1)F it becomes the same algebra we
started with. Thus we actually obtain a 2-periodic hierarchy unlike in (2). Note that once
we make the redefinition U 7→ U · (−1)F the original symmetry algebra now takes the form
T2 = U(−1)F . Hence, once one repeats the domain wall construction twice this factor of (−1)F

is physical and cannot be removed. But the hierarchy is still 2-periodic since the symmetry
groups T2 = U(−1)F and T2 = U are isomorphic as symmetry groups.

It is also possible to consider symmetry breaking patterns with multiple order parameters,
forming a linear representation V of G. For instance, we can break Z4 down to nothing with
two real order parameters transforming in the π/2-rotation representation of Z4. Such a
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Figure 2: With two real order parameters φ1,2 fully breaking a Z4 symmetry we have
four ground states, labelled 0,1, 2,3. These can be identified with the four signs of
the VEVs of the two order parameters φ1,2 = ±. Choosing a boundary condition for
φ1,2 such that they wind the unit circle at infinity along a pair of spatial coordinates
we obtain a codimension-2 junction where four domain walls coalesce. The global
Z4 symmetry does not act on this junction but we can combine it with a π/2 rotation
to obtain a Z4 symmetry of the junction. In this case, we did not use C PT , so both
Z4 symmetries are unitary.

theory has four vacua |VACk〉 , k = 0 . . . 3, related by the action of the generator of Z4, U , by
U |VACk〉= |VACk+1〉, with k defined mod 4.

In this situation we have a domain wall between any pair of vacua, but there will be no
way to assign symmetries to them. However we can consider a 4-way junction of domain
walls, where each of the four vacua meet at a corner. Let us suppose they are ordered 0,1, 2,3
counterclockwise over the four quadrants of the plane. Then while U is not a symmetry of the
boundary conditions, U ·R(π/2) is, where R(π/2) is a π/2 counterclockwise rotation. We see
U · R(π/2) is unitary and satisfies (U · R(π/2))4 = (−1)F . If it is possible to trivially gap out
the domain wall degrees of freedom, we can consider this as a symmetry of the codimension-2
system at the 4-way junction.

If we further arrange for such a symmetry to be spontaneously broken to (−1)F we can
repeat the procedure and find that at the junction inside the junction there is an ordinary Z4
symmetry. Similar arguments apply in the case that the original Z4 is anti-unitary.

Thus we find two 2-periodic structures

¦

unitary
U4=1

©

=⇒
¦

unitary
U4=(−1)F

©

=⇒
¦

unitary
U4=1

©

, (17)

�anti−unitary
T4=1

	

=⇒
¦

anti−unitary
T4=(−1)F

©

=⇒
�anti−unitary

T4=1

	

. (18)

In Section 4 we will show how to derive the hierarchies for general symmetry groups and
symmetry-breaking patterns.

2.3 Anomalies

It is now time to explain how the anomaly of the induced symmetry on the wall relates to the
anomaly of the broken symmetry. The discussion in this subsection is a little technical and the
reader interested in seeing some explicit examples demonstrating the general results can skip
directly to Section 3. (It is in Section 3 that we present the concrete anomaly matching rules
for the Z2 class.)
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We will work in the context of anomaly-inflow. Let ZSPT(X , A) be the partition function
of the SPT on a D + 1 dimensional spacetime X , possibly with boundary, equipped with a
background gauge field A in a fixed gauge, and let Zdyn(Y, A′) likewise be the partition func-
tion of our anomalous theory on a D dimensional closed spacetime with background A′, also
in a fixed gauge. Anomaly in-flow is the condition that the following combination is gauge
invariant (independent of the gauge):

ZSPT(X , A)Zdyn(∂ X , A|∂ X ). (19)

This allows us to characterize the anomaly by studying the associated SPT.4 Moreover, this SPT
is determined by its partition functions on closed manifolds, which are topological invariants
of (X , A) as well as gauge invariant.

We will see below that when one restricts the gauge field to a submanifold carrying lo-
calized degrees of freedom, the type of symmetry that the gauge field couples to can change,
depending on the normal bundle of the submanifold. However, because the normal bundle of
∂ X is canonically trivial, A and A|∂ X couple to the same kind of G symmetry–that is, an (anti-
)unitary element on the boundary acts (anti-)unitarily in the bulk, and an element squaring
to (−1)F on the boundary squares to (−1)F in the bulk.

Suppose for now G = Z2. We can break the symmetry simultaneously in the bulk and the
boundary, such that a bulk domain wall terminates on a boundary domain wall. If we suppose
also that the SPT has no gravitational component, then

ZSPT(X , A) = ZSPT′(Y, A|Y ), (20)

where Y is the worldvolume of the bulk domain wall and ZSPT′ is a D dimensional SPT partition
function we interpret in a moment. We assume that in the case of no gravitational anomaly
the boundary theory may be trivially gapped away from the domain wall, so that we can
continuously deform

Zdyn(∂ X , A|∂ X )→ Zdyn′(∂ Y, A|∂ Y ), (21)

where the right hand side is the partition function of the degrees of freedom localized on the
boundary domain wall5. It follows that up to adding some boundary-local counterterms,

ZSPT′(Y, A|Y )Zdyn′(∂ Y, A|∂ Y ) (22)

is gauge invariant. Thus we obtain an anomaly matching condition between our theory and
the modes on the wall, in the case of vanishing gravitational anomaly.

Indeed, (20) says that we can obtain the bulk SPT, hence the anomaly of Zdyn just knowing
ZSPT′(Y, A|Y ), which (22) says is captured by the anomaly of the domain wall. Note however
that (20) only captures ZSPT′ for spacetimes and gauge backgrounds which appear as a domain
wall. In Section 4 we will explore this class. A conclusion there is that these spacetimes and
gauge backgrounds do not completely capture ZSPT′ , which means that the anomaly of the
domain wall can be ambiguous. We will see an example of this in Section 3.1.

The restriction A|Y requires some discussion. We would like to interpret it as a gauge field
of a symmetry action on the domain wall degrees of freedom along Y . First, observe that
the domain wall need not be orientable even though X is. An example is X = RP3 with its
non-trivial Z2 gauge field being Poincaré dual to an embedded RP2. In fact, we have the
identification

w1(NY ) = A|Y , (23)

4So far, all known anomalous theories can be paired with an SPT satisfying anomaly in-flow, although there can
be difficulties in identfying the proper symmetry algebra [30].

5If we cannot nondegenerately gap out the system away from the domain wall, e.g. if there is a nontrivial TQFT
leftover on either side of it, then we do not have a simple characterization of the domain wall anomaly.
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where NY is the normal bundle of Y and w1 is the first Stiefel-Whitney class, which mea-
sures the obstruction to choosing a section of NY . Indeed, A|Y may be identified with the
self-intersection of Y , or the zero set of a generic section of NY , which gives the above identi-
fication.

Meanwhile, the tangent bundle of X splits along Y as

T X |Y = NY ⊕ T Y, (24)

and since T X is oriented, we get an identification

w1(NY ) = w1(T Y ) = A|Y . (25)

This means that the symmetry on the domain wall which couples to A|Y simultaneously re-
verses the orientation of T Y and NY . This is equivalent (up to rotations in T Y ) to a π-rotation
in a plane containing NY , which agrees with our identification of the symmetry of the domain
wall as a C PT transformation (which in Euclidean signature is a π-rotation) combined with
our internal symmetry.

Thus, we interpret the right hand side of (20) as the partition function of a D dimensional
SPT obtained on the bulk domain wall, protected by a symmetry which combines the original
internal symmetry and the C PT action with P reflecting the normal coordiante.

It is clear that this realization of C PT (ie. a π-rotation) commutes with all internal symme-
tries. We will discuss also its relationship with the fermion parity and its commutation relation
with anti-unitary symmetries from this point of view in Section 4.

For groups other than Z2, there are in general several different ways of breaking the sym-
metry, partially or totally. For instance, if G has a map to Z2, or equivalently a one dimensional
real representation, then we can construct a G-symmetric domain wall with action (15). In
order to trivially gap the degrees of freedom away from the domain wall we need there to be
both no gravitational anomaly and no ’t Hooft anomaly when the symmetry is restricted to the
unbroken subgroup. In such a case, we can dimensionally reduce the anomaly calculation as
above.

More interesting is the case Zn with n odd. This group has a single nontrivial irreducible
representation (up to automorphisms), given by the 2π/n rotation of R2, which represents
the target space of two real order parameters, like we have discussed above for Z4. There
is a codimension-2 defect associated with the symmetry breaking pattern where the n vacua
meet at a corner. Let Y ⊂ X be the D − 1 dimensional worldvolume associated to this defect
inside the D + 1 dimensional spacetime of the SPT in the anomaly in-flow setup. To have
a relation like (20) we need to assume both that there is no gravitational anomaly and that
the Zn domain wall (which doesn’t have any internal symmetries) also has no gravitational
anomaly. Likewise in this case we expect to be able to trivally gap the boundary theory away
from the boundary defects ∂ Y , giving an anomaly matching our original theory and the theory
on the defect with two fewer dimensions. We will prove this matching in Section 4.5.
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3 Examples and Matching Rules

3.1 A Majorana Fermion in 2+ 1 Dimensions

We will be using Lorentzian signature (−,+,+) in 2+1 dimensions. Our gamma matrices are6

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 . (28)

They satisfy
{γµ,γν}= 2ηµν , [γµ,γν] = 2εµνργρ . (29)

The Majorana fermion is a real two dimensional spinor λα. The Lagrangian of a massive
Majorana fermion is

∫

d3 x
�

iλ̄γµ∂µλ+ iM λ̄λ
�

. (30)

Time reversal symmetry and parity act as follows:

T : λ(x0, x1, x2)→±γ0λ(−x0, x1, x2) , (31)

P : λ(x0, x1, x2)→±γ1λ(x0,−x1, x2) . (32)

The signs are uncorrelated and arbitrary in principle. We can change the signs at will by
combining P, T with fermion number symmetry (−1)F .

The mass term satisfies T (λ̄λ) = −λTγ0γ0γ0λ= λ̄λ. Taking into account the factor of i in
the mass term (which is necessary to get a real action) and that T is anti-linear, we find that
the under time reversal symmetry M → −M . The same is true under parity. By contrast, the
kinetic term is both time reversal and parity invariant.

The theory does not have a notion of charge conjugation symmetry—there are no unitary
non-space time symmetries other than (−1)F . Therefore C PT in this theory is just PT , mod-
ulo the sign choice of how it acts on the fermion, corresponding to including a (−1)F in the
definition. Three important properties that we can readily verify are

(PT )2 = 1 ,

T2 = (−1)F ,

T · PT = (−)F PT · T .

(33)

These properties agree with (6), (7),(8), and the three properties are independent of whether
or not one inserts additional factors of (−1)F in the definitions of P and/or T .

There is a remarkable anomaly of the massless Majorana. Since with M = 0 the theory
has time reversal symmetry, it is in principle possible to ask about gauging it. This means that
we could study the massless Majorana fermion on unorientable manifolds with Pin+ structure
(since T2 = (−1)F [1]). It turns out that there is an obstruction to doing so which is valued in
Z16. In other words, if we had 16 Majorana fermions and we defined time reversal symmetry

6We take the sigma matrices to be

σ1 =
�

0 1
1 0

�

, σ2 =
�

0 −i
i 0

�

, σ3 =
�

1 0
0 −1

�

. (26)

They satisfy the usual relations

{σi ,σ j}= 2δi j , [σi ,σ j] = 2iεi jkσk , (27)

where ε123 = 1.
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to act on all of them with the same sign in (31), then we could consistently place the system
on unorientable Pin+ manifolds. This obstruction is interpreted as a Z16 ’t Hooft anomaly.

More generally, theories with time reversal symmetry and T2 = (−1)F have such an anomaly
ν3 valued in Z16 [34,53,54] (see also references therein). For theories of free fermions, if our
time reversal symmetry acts on N+ Majorana fermions with sign + in (31) and sign − on N−
fermions then the time reversal anomaly is given by

ν3 = N+ − N− mod 16 . (34)

Let us see how to derive this interesting fact from domain wall constructions. To that
end we would like to break the time reversal symmetry spontaneously, but this is very hard to
arrange in a controlled fashion in a theory of Majorana fermions only. However we can modify
the theory without changing the anomaly and achieve a simple setup where time reversal
symmetry breaking occurs.

We add to the Majorana fermion a real pseudo-scalar φ coupled via

L= LKinetic + iφλ̄λ+ V (φ2) . (35)

LKinetic includes the usual kinetic terms for the pseudo-scalar and Majorana fermion. V (φ2) is
an arbitrary potential.

This theory has no non-space time symmetries (other than the usual (−1)F ). However it
has time reversal symmetry which acts on the fermion as before (31) and on the pseudo-scalar
as

T : φ(x0, x1, x2)→−φ(−x0, x1, x2) . (36)

It is clear that the time reversal anomaly of this theory is the same as that of the massless
Majorana fermion. This is easiest to see by turning off the Yukawa interaction iφλ̄λ and then
giving φ a large mass. We can then integrate out φ and arrive back at the free Majorana
fermion theory.

But now we can also arrange the potential V (φ2) such that φ condenses, for instance by
taking V (φ2) = m2

φ
φ2 +φ4, with m2

φ
large and negative. This leads to two minima φ = ±v

and time reversal symmetry is spontaneously broken (parity is broken too, but PT is not spon-
taneously broken). Note that these minima are both gapped since the fermion acquires an
effective mass due to the VEV of φ.

We can now require that for x2 → ∞ we approach the vacuum φ(∞) = v and for
x2 → −∞ we approach the vacuum φ(−∞) = −v. The system then autonomously finds
the least energy configuration with these prescribed boundary conditions at infinity. This con-
figuration is the domain wall, and at low energies it looks like a 1+1 dimensional object. The
domain wall is not invariant under time reversal (36) since it clearly breaks the boundary con-
ditions on φ. However, as explained above, consider the transformation T · (C P⊥T ) = T P2T .
It acts on the pseudoscalar φ and the fermion λ by (taking the plus signs in (31),(32))

φ(x0, x1, x2)→−φ(x0, x1,−x2) ,

λ(x0, x1, x2)→ γ0γ2γ0λ(x0, x1,−x2) = γ2λ(x0, x1,−x2) .
(37)

The transformation of the pseudoscalar φ now clearly leaves the domain wall configuration
invariant (in this particular model T P2T = P2).7

While in many familiar examples, such as the Ising model, the domain wall would not
support any light degrees of freedom other than the translational zero mode, here the theory

7More precisely, it leaves the domain wall invariant if the center of mass is at the origin. The same comment
applies to the general construction. We can always further combine our transformation with a translation so that
the general domain wall configuration is left invariant.
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on the wall is richer [55]. Since the bulk is gapped, at low energies we therefore have a
genuine 1+ 1 dimensional theory on the wall. We can identify the light degrees of freedom
on the domain wall by solving the equations of motion of the fermion in the presence of the
domain wall

γµ∂µλ= φ(x
2)λ , (38)

which we treat by separation of variables, λ= h(x2)λ̃(x0, x1), such that

(γ0∂0 + γ
1∂1)λ̃= 0 (39)

and
γ2∂2h(x2)λ̃= φ(x2)h(x2)λ̃ . (40)

The point is that (39) has two normalizable solutions which are left and right moving corre-
sponding to γ2λ̃= ±λ̃. Therefore for positive v we have to take γ2λ̃= −λ̃ and thus

v > 0 : γ2λ̃= −λ̃ , h(x2) = e−
∫

d x2φ(x2) , (41)

and similarly
v < 0 : γ2λ̃= +λ̃ , h(x2) = e+

∫

d x2φ(x2) . (42)

The fermion is clearly localized to the wall as its wave function h(x2) decays exponentially
far from the wall. The theory on the wall therefore has a chiral fermion, whose chirality is
determined by whether v is positive or negative (or the sign of the Yukawa coupling).

Under the residual symmetry on the wall, T P2T ,

T P2T : λ→ γ2λ= −h(−x2)sgn(v)λ̃= −sgn(v)λ .

As a result, the fermion that originally transforms under time reversal symmetry as λ→ γ0λ,
when it is stuck to the wall, picks up a minus sign if it is right moving and a plus sign if it is
left moving. This is an ordinary Z2 symmetry which we can denote by (−1)FR . In short, one
could say that the original time reversal symmetry becomes (−1)FR , which is an ordinary Z2
symmetry.

Unitary Z2 symmetries of 1+ 1 dimensional theories have a Z8 ’t Hooft anomaly (in the
bosonic case, where the anomaly is Z2, the anomaly is connected with the charge of the twisted
sector as shown in detail in [56])8. More concretely, for theories of free fermions, if we have
some number of fermions charged under (−1)FR , then the associated ’t Hooft anomaly for
(−1)FR is the number of such fermions mod 8.9 There is no way for this anomaly to determine
the ν3 ∈ Z16 anomaly of the 2+1 dimensions theory. However, if we combine this Z8 invariant
ν2 with the gravitational anomaly of the domain wall theory, that is 2(cR − cL) ∈ Z, where cR
and cL are the central charges of the right-moving and left-moving sectors,10 respectively, then
we find

ν3 = 2ν2 − 2(cR − cL) mod 16. (43)

As we argue in Section 4.4, there must be a linear relationship between these three quantities,
so to verify the anomaly relation (43) we only need to check a couple of cases.

First of all, for the N+ = 1, N− = 0 theory discussed above with v > 0, the domain wall
carries a right-moving fermion cR − cL = 1/2 which is odd under T P2T , yielding ν2 = 1, from
which we find ν3 = 1 from (43), matching (34). On the other hand for v < 0 the domain wall

8In non-chiral theories the Z2 anomaly ν2 manifests itself as the spin of the ground states in the twisted sector.
For chiral theories, to obtain ν2 we have to look at the difference in spin between the twisted and untwisted sectors.

9This is closely related to the subject of GSO projection in string theory, see [5,58,59].
10For local theories of fermions, 2(cR− cL) must be an integer by the quantization of gravitational Chern-Simons

terms.
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carries a left-moving fermion cR− cL = −1/2 which is even under T P2T , yielding ν2 = 0, from
which we again find ν3 = 1, matching (34). These two examples determine (43) uniquely.

These two examples illustrate that as we change the coupling constants of a theory, there
may be multiple domain walls with different anomalies, but they will all have to satisfy the
relation (43). Another interesting set of examples can be constructed in the N+ = 2, N− = 0
theory (two copies of the N+ = 1 theory) because now we can choose the signs of the Yukawa
couplings independently between the two fermions. The three cases are:

++ : cR − cL = 1, ν2 = 2 (44)

+− : cR − cL = 0, ν2 = 1 (45)

−− : cR − cL = −1, ν2 = 0. (46)

We see all three of them match ν3 = 2 by (43). Note that a nonchiral domain wall with cR = cL
is only possible if ν3 ∈ 2Z by (43)!

3.2 The CP1 Model in 1+ 1 Dimensions

The main purpose of our next example is to derive an analog of (43) when reducing from
1+1 dimensions to quantum mechanics in a bosonic system with a unitary Z2 symmetry. To
gradually warm up to the main example, let us first start with free U(1) gauge theory in 1+1
dimensions,

L= − 1
2e2

F2 +
θ

2π
F , (47)

where F = da is the field strength of the dynamical U(1) gauge field a. Charge conjugation
symmetry acts by aµ→−aµ. Time reversal symmetry acts by

T : ax(x , t) 7→ ax(x ,−t),

at(x , t) 7→ −at(x ,−t),

and parity acts by
P : ax(x , t) 7→ −ax(−x , t),

at(x , t) 7→ at(−x , t).

In these conventions, the term θ
2π F breaks time reversal, parity, and charge conjugation

symmetry for generic θ . The unbreakable combination, hence our canonical C PT , is PT .
Under PT the term θ

2π F is invariant. A very important fact is that while θ
2π F is odd under

time reversal, parity, and charge conjugation, because 1
2π F has integer integrals over closed

two-cycles, all three discrete symmetries are preserved at θ = π (and also obviously at θ = 0).
The theory with generic θ is only invariant under PT , C P, and C T .

The theory at generic θ has one ground state. For 0 ≤ θ < π the expectation value of the
electric field in the vacuum is 〈Ft x〉=

e2θ
2π . The symmetries PT , C P, and C T are all unbroken,

consistently with the vacuum being unique.
At θ = π a first order transition occurs and another degenerate vacuum appears where the

expectation value of the electric field is 〈Ft x〉= −
e2

2 . The symmetries PT , C P, and C T are all
unbroken but now C ,P,T are all spontaneously broken.

It is interesting to ask about the domain wall between these two vacua at θ = π. However,
the equations of motion of the theory (47) force the electric field to be constant in space and
hence a domain wall between these two vacua would have infinite tension. So the example of
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pure U(1) gauge theory in 1+1 dimensions is somewhat exceptional because it has degenerate
vacua but the potential barrier between them is infinite.11

The absence of a finite-tension domain wall can be interpreted as follows: Since the electric
field on one side of the wall is− e2

2 and on the other side e2

2 , by the Gauss law, we can interpolate
between the two vacua with the aid of a charged particle of charge 1. But since the pure gauge
theory does not have dynamical charged particles, the tension (which is the worldline mass of
the particle) seems infinite. Therefore the Wilson line of a charge 1 particle serves as a wall
between the two vacua but it is not dynamical.

In order to have dynamical domain walls let us therefore add to the theory a charged scalar
Φ:

L= − 1
2e2

F2 +
θ

2π
F + |DaΦ|2 + V (|Φ2|) , (48)

where V (Φ) is a gauge invariant potential for the charged scalar and DaΦ = ∂Φ + iaΦ. We
will take the scalar Φ to be massive, i.e. V (|Φ2|) = M2|Φ2|+ λ|Φ4| for M2 positive and large
compared to e2. C , P, and T act in the following way on Φ:

C : Φ(x , t)→ Φ∗(x , t) , T : Φ(x , t)→ Φ∗(x ,−t) , P : Φ(x , t)→ Φ(−x , t) . (49)

It is worth giving an intuitive explanation of why we do not perform a complex conjugation of
Φ in the action of P. When we reverse the time and the electric field in a motion of a classical
particle we do not get a consistent trajectory, unless we in addition change the sign of the
charge of the particle. This is why our time reversal symmetry is accompanied by conjugating
Φ. But if we reverse the sign of the electric field along with a reflection in space we do get a
consistent trajectory without having to reverse the sign of the charge. One can see this from
the Lorentz force law F = q(E + v × B), which must be T -even and P-odd.

On a more technical level, the coupling of Φ to the gauge field a takes place through the
combination iaµ(Φ∂ µΦ∗−Φ∗∂ µΦ). The difference between the time reversal and parity is that
the former leads to another sign due to the factor of i in front and hence we need to perform
a complex conjugation.

At θ = π the theory (50) still has two exactly degenerate vacua because integrating out the
massive Φ cannot lead to terms which break the symmetries C , P, T . The domain wall (kink)
between the two vacua is just our Φ particle.

This model clearly has no anomalies. The easiest way to see it is that for M2 < 0 (and
large) the Φ field condenses and we have a single trivial vacuum.

The story becomes much more interesting (and relevant to the main subject of this paper)
if there are two (or more) species of Φ:

L= − 1
2e2

F2 +
θ

2π
F +

∑

k=1,2

|DaΦ
k|2 + V (|(Φ1)2|, |(Φ2)2|) . (50)

For generic choices of the potential there is still no anomaly since we can have one of
the Φ’s be heavy and the other condense and we would thus end up with a trivial vacuum.
However, we can require the following version of charge conjugation symmetry:

C ′ : aµ→−aµ , Φ1→ (Φ2)∗ , Φ2→−(Φ1)∗ . (51)

This symmetry C ′ precludes Φ1,Φ2 from having different signs for their mass squared so we
cannot drive the system to a trivial phase quite as easily. A subtle point is to note that on the

11Another way to say it is that on a circle the two vacua at θ = π do not “mix” and remain exactly degenerate.
This can be understood due to an anomaly involving one-form symmetry in 1+ 1 dimensions which becomes an
ordinary symmetry in quantum mechanics. Such anomalies are not limited to U(1) gauge theories and there are
many other examples with similar consequences.
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scalar fields (C ′)2Φ1,2(C ′)−2 = −Φ1,2. Since this minus sign is a gauge transformation, strictly
speaking,(C ′)2 = 1. But in some sense that we will explain below this minus sign “comes to
life” on the domain wall because there is de-confinement there.

In bosonic systems in 1+1 dimensions the anomalies for a Z2 symmetry are classified by
Z2 as well (the anomaly inflow term is just iπ

∫

A3 where A is a background Z2 gauge field).
It turns out that C ′ has such a ’t Hooft anomaly. We will see below several derivations of that
fact, starting from the domain wall construction which shows that the domain wall furnishes
a Kramers doublet (5).

Consider for instance the potential

V (|Φ1|2, |Φ2|2) = M2(|Φ1|2 + |Φ2|2) +λ(|Φ1|4 + |Φ2|4) . (52)

This potential obeys the C ′ symmetry and we can imagine adding various other interactions
to the Lagrangian to break all the other discrete symmetries (except for the unbreakable PT
symmetry).12 We take θ = π and M2 > 0. The theory has two vacua, where the degeneracy is
protected by C ′. Unlike in the pure gauge theory, now the domain wall has finite energy since
we have the Φ particles which have charge 1.

As always, to understand what remains of C ′ on the domain wall we have to compose it
with the unbreakable PT symmetry. It is straighforward to see that C ′PT acts as follows on
the Φ particles:

C ′PT : Φ1→ Φ2 , Φ2→−Φ1 .

This is an anti-unitary symmetry that acts on the domain wall. Therefore, we have established
that in this bosonic system the domain wall has two states, corresponding to the excitations
Φ1,2, which realize a time reversal symmetry T ′ = C ′PT action as

T ′|Φ1〉= |Φ2〉 , T ′|Φ2〉= −|Φ1〉 .

In particular, it is impossible to lift the degeneracy on the wall due to this T ′ symmetry, which
satisfies T ′2 = −1 and hence realized projectively on the domain wall. This is our Kramers
doublet, which has anomaly polynomial iπ

∫

M2
w2

1 [18], where w1 is the orientation class,

which can be thought of as the gauge field that couples to T ′. When we apply our general
anomaly-matching of Section 4, we will see this matches the 1+1D anomaly iπ

∫

M3
A3 for the

background gauge field that couples to C ′, as desired.
Let us now give an independent derivation for this anomaly using the results of [29].

Considering the class of models (50), we can choose the potential to preserve an SU(2) global
symmetry if the potential is only a function of |Φ1|2 + |Φ2|2. The model then automatically
also admits the charge conjugation symmetry C (and C ′). Altogether, taking into account the
gauge transformations, the symmetry of the model is O(3). In [29] it was argued that there is
an anomaly iπ

∫

M3
w3(O(3)). Restricting to the Z2 subgroup of the scalar matrix −1 ∈ O(3),

which is our C ′, we find w3(O(3)) = A3, so this result is already enough to imply the C ′

anomaly.
However, there is another possible anomaly for the O(3) symmetry: iπ

∫

M3
w3

1(O(3)),

which would also contribute iπ
∫

M3
A3 and lead to a trivial anomaly. We need to show that

the w3
1 anomaly is absent for the O(3) symmetry above. To do so, assume towards a contra-

diction that there were such an anomaly and consider restricting O(3) to the subgroup of the
diagonal matrix with eigenvalues +1,+1,−1, which is conjugate to C . Then we would find an

12For instance, we can break the “naive” charge conjugation symmetry C

C : aµ→−aµ , Φ1→ (Φ1)∗ , Φ2→ (Φ2)∗

by adding the operator i(Φ1(Φ2)∗ −Φ2(Φ1)∗) with a small coefficient.
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anomaly iπ
∫

M3
A3 for C . However, we have shown C is anomaly-free by giving a symmetric

deformation to a trivial theory, a contradiction, so the total O(3) anomaly is just the w3 term.
Finally, we make some comments on emergent symmery in the model (50) with θ = π. If

we choose the potential to respect SU(2) symmetry, e.g.

V = M2(|Φ1|2 + |Φ2|2) +λ(|Φ1|2 + |Φ2|2)2, (53)

and take M2 > 0 then we have a domain wall with a doubly degenerate ground state, which
we have analyzed above in detail. But if we take M2 < 0 the scalar fields condense and we
obtain the CP1 model at θ = π. This flows to a conformal field theory which is the SU(2)1
WZW model (see [65] for the references on this classic result). The symmetry of the infrared
model is SO(4) in which the ultraviolet O(3) symmetry is contained. The above discussion
fixes the anomaly of the O(3) subgroup of SO(4). In fact this is enough to fix the whole SO(4)
anomaly. This will be useful in the next subsection.

Indeed, SO(4) has two Chern-Simons levels, one coming from the Pontryagin class and
the other from the Euler class [17]. When restricting to O(3) we find that the former yields
the w3

1 anomaly while the latter yields the w3 anomaly we want. This follows from the fact
that the Euler class of a rank 4 bundle is w4 mod 2, and when we restrict the vector represen-
tation of SO(4) to O(3) it splits as the sign of O(3) plus the vector of O(3), and so w4 splits
as w4(SO(4)) = w1(O(3))w3(O(3)) = Sq1w3(O(3)). Thus the SO(4) anomaly is the level 1
Chern-Simons term corresponding to the Euler class in H4(BSO(4),Z). We will give another
interpretation of this anomaly in the next subsection.

For other anomalies in the 1+1D abelian Higgs model, especially with regards to the
anomaly matching between charge conjugation, parity, and time reversal, coming from the
C PT theorem, see [62] and references therein. A paper which recently showed the anomaly
for the SU(2)1 point is in some sense extremal for c = 1 is [9]. For recent generalizations to
the CPN model, see [8].

3.3 The S4 Sigma Model in 2+ 1 Dimensions

In this section we present another example of the Z2 anomaly matching in the chains (2),(3)
but this time for time reversal symmetry in 2+1 dimensional bosonic theories. As one may
guess, the domain wall construction leads to a bosonic theory in 1+1 dimensions with a unitary
Z2 anomaly, exactly of the same type studied in detail in the last subsection. So the bosonic
time reversal anomaly in 2+1 dimensions that we study here reduces to the πi

∫

A3 anomaly
on the domain wall, and that, in turn, can be further reduced by symmetry breaking on the
wall to a Kramers doublet in quantum mechanics.

As a general comment, among the renormalizable quantum field theories in 2+1 dimen-
sions, it is not entirely trivial to write a bosonic theory with a time reversal anomaly. One can
do it in a theory with fermions which obey a spin-charge relation, so that only bosonic states
are gauge invariant. Such constructions typically lead to rather more complicated phases than
those we are interested in. So we will instead study a manifestly bosonic theory in that there
are no fermions in the Lagrangian nor does the WZW term require a choice of a spin structure,
but it will come at the price of being a non-renormalizable sigma model. Of course, the ques-
tion of renormalizability is not important for the discussion of anomalies which is why we are
allowed to proceed.

We study a (bosonic) non-linear sigma model in 2+1 dimensions with target space S4. We
denote the field as a real 5-vector ~n= (n1, n2, n3, n4, n5) satsifying the constraint |~n|2 = 1. We
also denote by Ω the volume 4-form on S4 normalized by

∫

S4 Ω= 1. We take as our action the
(Euclidean) WZW action

S =

∫

X
d3 x(∂ ~n)2 + 2πi

∫

Z
n̂∗Ω, (54)
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where Z is a 4-manifold with ∂ Z = X and n̂ : Z → S4 restricts to ~n on the boundary. It is
always possible to find such a filling Z and extension n̂ because ΩSO

3 (S
4) = 0. However, the

exponentiated action does not actually depend on the choice of (Z , n̂) because the coefficient
is 2πi and the periods of n̂∗Ω over closed 4-manifolds are integers by our normalization.

Besides the SO(5) rotation symmetry of ~n, the kinetic term above also has a unitary an-
tipodal symmetry

C : ~n 7→ −~n, (55)

extending the SO(5) group to O(5), as well as spacetime parity and time reversal symmetries
P and T acting trivially on ~n. However, the WZW term breaks the symmetry (55) and only has
the combined symmetries PT, C P, and C T .

We are interested in the ’t Hooft anomalies of C T and of the enlarged group SO(5)×ZC T
2 .

First we would like to understand the pure anomalies of the C T symmetry. For this sake we will
construct a C T domain wall. Since for now we will not be interested in the SO(5) symmetry,
we will (partially) break it in order to simplify the domain wall construction. A particularly
simple potential with SO(4) symmetry on S4 may be defined by the square of the“height map"

W (~n) = −n2
5 , (56)

which has a minimum at the south pole n5 = −1 and at the north pole n5 = 1 and is maximal
over the equatorial S3. This potential breaks explicitly SO(5)×ZC T

2 down to its SO(4)×ZC T
2

subgroup. The SO(4) rotates the first four coordinates (n1, n2, n3, n4) and C T flips the sign of
all n’s along with reversing the time coordinate.

As in Section 3.1, we will implement this potential by a coupling to a real scalar φ with
total action

S′ = S +

∫

X
d3 x

�

(∂ φ)2 + V (φ2) +φn5

�

, (57)

where V (φ2) is a Landau-Ginzburg potential. This coupling preserves the subgroup
SO(4)×ZC T

2 where C T acts on φ by

C T : φ 7→ −φ (58)

(accompanied by reflection of the time coordinate). We can give φ a very large mass in V (φ2)
and the full SO(5)oZC T

2 symmetry will be restored, so the SO(4)×ZC T
2 anomaly of S′ must

match the SO(4)×ZC T
2 anomaly of S for the unbroken subgroup. Since we can do this for any

SO(4)×ZC T
2 subgroup by choosing different axes for our coupling potential, this gives a very

strong constraint on the SO(5)×ZC T
2 anomaly of S.

To study the C T domain wall, we choose V (φ2) in such a way that φ condenses and we
thus have two vacua, related by C T . We then choose the frustrated boundary conditions for
x2 →±∞ such that we approach the vacuum φ = ±v, respectively. The low energy degrees
of freedom for ~n will be paths from n5 = 1 at x2 = −∞ to n5 = −1 at x2 = +∞. Such paths
are given by great semicircular paths from the north to south pole of S4 and are parametrized
by the equatorial S3 where the path crosses. Thus, the low energy degrees of freedom on the
wall are described by a 1+ 1 dimensional NLSM with target S3.

Further, the winding number of the crossing points around the equatorial S3 is the same
as the winding number of the paths around the big S4, so the level 1 WZW term becomes the
level 1 WZW term on the domain wall, yielding the SU(2)1 WZW theory in the infrared on the
domain wall.13

13The 2+1D S4 sigma model also arises in the low energy limit of the Higgs phase of SU(2) gauge theory with
two fundamental Higgs fields. The WZW level equals the Chern-Simons level of the SU(2) gauge field [2] and this
leads to another way to characterize the domain wall.
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We must study the induced unitary symmetry on the wall which comes from the sopnta-
neously broken anti-unitary C T . The role of the canonical C PT symmetry in the original 2+1
dimensional theory is played by PT . We choose our P = P2, reflecting x2 7→ −x2. As a result,
both C T and PT reverse the domain-wall profile. Their product, C P thus acts as a unitary
symmetry U on the domain-wall degrees of freedom. If we write the S3 degree of freedom on
the wall as a 4-vector ~l = (l1, l2, l3, l4) by

l j(x0, x1) = n j(x0, x1, 0), (59)

we find
U : ~l 7→ −~l. (60)

Meanwhile, the SO(4) enjoyed by the action (57) acts in the usual way on this 4-vector. There-
fore, the transformation U in this particular case is in fact part of SO(4). (We could break the
original SO(5) symmetry completely, while U would have survived on the domain wall as long
as C T is retained.)

Since the theory on the wall flows at long distances to the SU(2)1 WZW model, we can now
use the results of the previous section 3.2. There, U acts as a combined charge conjugation
and flavor rotation. See also a discussion in [39]. We found in the previous subsection the
anomaly

1
2

A3 ∈ H3(BZ2, U(1)), (61)

where A is a background Z2 gauge field coupled to U . As we will describe in Section 4.3 (cf.
(95)), this implies that S has the C T anomaly

1
2

w1(T X )4 ∈ Ω4
O, (62)

which in some sense is similar to ν= 8 in theΩ4
Pin+ = Z16 discussed in subsection 3.1. The con-

nection between the bosonic time reversal anomaly (62) and the Z2 anomaly on the wall (61)
is another instance of anomaly matching in our chain (2).

We now return to the problem of fixing the anomaly of our sigma model with S4 target
space including the continuous symmetries. In the 1+1 dimensional CP1 model the
SO(3) × Z2 = O(3) symmetry is manifest and the whole anomaly polynomial may be writ-
ten

1
2

A3 +
1
2

Aw2(SO(3)) ∈ H3(BO(3), U(1)). (63)

For the 2+ 1 dimensional theory this implies the anomaly

1
4

w1(T X )4 +
1
2

w1(T X )2w2(SO(3)) ∈ Ω4
SO(BO(3),ξ), (64)

where ξ is the fundamental representation of O(3). The first term is what we discussed above,
namely the bosonic time reversal anomaly. The second term is interesting – it represents a
mixed anomaly between time reversal symmetry and SO(3). Such mixed anomalies between
time reversal symmetry and continuous global symmetries are familiar from theories with
fermions, but they can also arise in bosonic models, and the S4 sigma model with a WZW term
is a nice example of that.

In fact, we can actually use the SO(4) anomaly we derived for the SU(2)1 theory of the
previous subsection to fix the SO(5)× ZC T

2 anomaly directly. We find by inspection the only
possibility is given by the twisted Euler class of the vector representation of O(5):

e(W ) ∈ H5(BO(5),ZC T ) = H4(BO(5), U(1)C T ). (65)
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We have seen an Euler class appear twice for anomalies of different WZW models, and
there is a particularly elegant reason why. The Euler class appears very naturally in the study
of domain walls, and we discuss it more and give a definition in Section 4.2. For now, we note
that one can derive the anomalies above right from the obstruction theory of the WZW term, as
was done for continuous symmetries in [38] but which works in general and will work for all
symmetries, including anti-unitary ones. It is based on considering the homotopy quotient of
the target space by the symmetry group (see [41] for a review). Indeed, gauging a target-space
symmetry is the same as extending the theory to one whose target is the homotopy quotient
X//G, which sits in a fibration

X → X//G→ BG.

Then, the anomaly is the obstruction to extending the WZW class from X to X//G. When X is
an n-sphere and G is a subgroup of O(n+1), this obstruction is always the Euler class, see [37].

3.4 Some Properties of the Spin CP1 Model in 2+ 1 Dimensions

In this section we clarify some of the basic properties of the Spin CP1 Model in 2+ 1 Dimen-
sions. We discuss its symmetries, its relation to the CP1 model at θ = π, and some of its
anomalies. We also remark on the relation of this model to QCD3 and perform an interesting
new consistency check on some conjectured RG flows.

To warm up, we first consider a theory of 2k-many 2-component complex fermions in
2+ 1 dimensions. These can be considered as 4k-many 2-component Majorana fermions λ j .
Following our analysis in Section 3.1, we consider a time reversal action (choosing all positive
signs)

T : λ(x0, x1, x1) 7→ γ0λ(−x0, x1, x2)

and parity
P : λ(x0, x1, x1) 7→ γ1λ(x0,−x1, x2).

As in Section 3.1, we verify T2 = (−1)F with the anomaly 4k mod 16. Further, PT satisfies
the three properties necessary for the canonical C PT symmetry.

This theory also has an interesting U(2) flavor symmetry for which our fermions form k
doublets. One checks that this symmetry commutes with T (and P), forming the full group
(SU(2)×U(1)×ZT

4 )/Z
F
2 , which we write as shorthand U(2)× T . The anomaly can be roughly

studied as the combination of SU(2)×T and U(1)×T anomalies. The former is theZ4 subgroup
k mod 4 of a Z4 ×Z2 classification and the latter is a Z4 subgroup 2k mod 8 of a Z8 [33].

To make contact with the non-linear sigma model, we would like to couple our fermions to
a unit 3-vector field ~n ∈ {(n1, n2, n3) ∈ R3 | (n1)2+(n2)2+(n3)2 = 1} by the Yukawa coupling
(using Lorentz signature)

in jψ̄τ jψ,

where τ j are a basis of the su(2) flavor algebra. In the presence of this coupling, the fermions
become gapped and the theory flows to a non-linear sigma model with target S2 we refer to
as the spin CP1 model, with action

∫

d3 x(∂ n)2 + iπkHopf(n), (66)

where, as discussed in [28], when k is odd the extra topological term, known as the Hopf term,
introduces nontrivial dependence on a spin structure.

One can of course study the sigma model (66) by itself, without the additional fermions
and Yukawa couplings (see [66] for some background). This model is also referred to as the
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θ = π CP1 model in 2+1 dimensions.14 The main consequence of the second term in (66) for
odd k is to render the Skyrmion into a fermion (which follows from the Callias index theorem).

We find our discrete symmetries act as

P, T : n j 7→ −n j ,

which indeed commute with the obvious SO(3) rotation symmetry of n j . There is also the
Skyrmion number S, ie. the winding number of n over a spatial slice, which is a conserved
charge which generates a symmetry U(1)S . We see that T takes the Skyrmion to the anti-
Skyrmion, hence commutes with the U(1)S group, which is given by eiαS .

In fact we can identify the SO(3)×U(1)S group of the spin CP1 model with the quotient of
U(2) by the fermion parity, using the Callias index theorem which says that the Skyrmion binds
k complex fermionic zero modes. Thus, including the trivial massive fermion the symmetry
group of the spin CP1 model is also U(2)× T . We would like to match the anomaly with the
free fermion theory.

The main reason for us to discuss this model here is that there is an apparent difficulty that
the action (66) only sees k mod 2 but the anomaly by the free fermion calculation depends
on k mod 4. Let us therefore discuss k even and try to find the discrepancy. This apparent
discrepancy is very important – as we will later see the same discrepancy arises when we try
to match the anomaly of (66) with QCD3 and the resolution of the discrepancy is going to be
the same.

The resolution is to realize that the k = 0 model, despite being a bosonic theory (when
the transparent massive fermions are ignored) has a mixed anomaly between the time rever-
sal symmetry and the Skyrmion number. This is quite similar to what we have found in the
previous section about the S4 bosonic WZW model. This anomaly has been derived and de-
scribed in [29]. Let F be the field strength of the gauge field that couples to U(1)S .15 Then
the anomaly we are talking about takes the form

1
2

w2
1

F
2π

.

In [29] a derivation was given in terms of an Abelian Higgs model that flows to the k = 0
model (66). For another way to derive this anomaly, one may compactify along an S2 carrying
2π flux for the U(1)S gauge field. Because of the nontrivial extension

Z2→ U(2)→ SO(3)× U(1)S ,

we find that the resulting 0+ 1 dimensional system has a pair of ground states transforming
in the spin-1/2 representation of SO(3). Because our time reversal commutes with this action
and this representation is quaternionic, we also have T2 = −1 on these ground states, which
is the meaning of the above anomaly.

Most importantly for us, this mixed anomaly means that if we redefine time reversal sym-
metry by the Z2 subgroup of U(1)S:

T → T (−1)S , (67)

14Even though the fermions are all gapped due to the Yukawa couplings, we make a distinction between the
model with the fermions and the pure model without the fermions for two reasons: First, the model with the
fermions has an additional U(1) symmetry inside U(2) which only acts on the heavy fermions and is not present
in the pure NLSM (66). Second, the pure NLSM has a spin-charge relation between Skyrmions and fermions while
there is no such spin-charge relation in the theory with heavy fermions. These issues would not be important for
us but it is useful to keep them in mind.

15Since time reversal flips the Skyrmion number, the background gauge field for U(1)S is invariant (as a one-
form) under time reversal. This is important in the argument below.
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we shift the pure T anomaly by ν= 8 mod 16. This may be demonstrated by our domain wall
picture as well.16

The apparent mismatch between the number of fermions being 4k mod 16 (hence obeying
a time reversal anomaly for even k which is not divisible by 4) and the theory at even k not
having a topological term is resolved by the fact that the theory (66) has two possible notions
of time reversal symmetry (67). This is nicely reflected in the domain wall construction of this
model.

In summary, we have found that for even k the time reversal anomaly of the model (66) is
either 0 or 8 mod 16 while for odd k it is either 4 or 12 mod 16, depending on how the time
reversal symmetry acts on the Skyrmions.

Let us now contrast this with some conjectures about the infrared behavior of QCD3. Con-
sider SU(N) gauge theory with vanishing Chern-Simons level and N f fundamental fermions
(N f must be even for consistency). We can pick a time reversal symmetry that commutes
with the U(N f ) flavor symmetry. This would act on the two fermion flavors by Ψi → γ0Ψ

†
i for

i = 1, .., N f . This commutes with U(N f ) even though complex conjugation is involved because
time reversal is an anti-unitary symmetry. The time reversal anomaly of this model is there-
fore given by counting the number of Majorana fermions in the ultraviolet and one finds 2N f N
mod 16. For N f = 2 we find 4N mod 16. It was conjectured [67] that the model flows at long
distances to the sigma model (66) with k = N . The ultraviolet anomaly is therefore in precise
agreement with our result 4k mod 16 for the anomaly of the non-linear sigma model (66).
It would be nice to repeat this analysis for arbitrary N f , match the other anomalies, and also
identify more clearly the mapping of the symmetries.

4 Dimensional Reduction and Cobordisms

In this section we will explore the mathematical description of the dimensional reduction pic-
ture in terms of the cobordism classification of SPT phases/’t Hooft anomalies. This will allow
us to prove a number of interesting results. In particular we will show that for a Z2 symmetry,
the anomaly is always captured by the domain wall. On the other hand, for Zn symmetries,
one has to study the gravitational response of the domain wall as well as the Zn anomaly on
the junction, and then one can reconstruct the anomaly. This way, the anomaly of all finite
abelian groups may be computed by dimensional reduction, focusing on one cyclic factor at a
time. For mixed anomalies involving a finite abelian group and a Lie group G, the anomaly cal-
culation can be dimensionally reduced to a pure G anomaly. We expect that, in most cases, by
restricting to different abelian subgroups, we can recover an arbitrary anomaly by dimensional
reduction.

4.1 Bordism and Cobordism Groups

We are interested in the (ξ-twisted) (S-)bordism groups ΩS
n(W,ξ), where W is a space, ξ→W

is a real vector bundle over W , and S→ O is a kind of stable structure for real vector bundles,
meaning that S is a group and an S-structure for a bundle is a lift of its transition maps (valued

16In more detail, at one step of the domain wall construction, we find that the even k theory reduces to the
1+1 dimensional compact boson on the domain wall, analogous to the discussion in Section 3.3. Using the action
of (PT )T on the wall, we find a unitary symmetry U which acts as a π rotation of the compact boson. As is
well known, the anomaly of such an action is not determined unless we know how U acts on the vortex. A nice
property we also used above is that the vortex number on the 1d wall equals the Skyrmion number of whole 2d
configuration. Thus we see that the two different time reversal symmetries give rise to unitary symmetries with
opposite anomalies, as expected. When U acts trivially on the vortex we have ν = 0 mod 16 and when U acts
nontrivially we have ν= 8 mod 16.

23

https://scipost.org
https://scipost.org/SciPostPhys.8.4.062


SciPost Phys. 8, 062 (2020)

in the subgroup O(r) ⊂ O = O(∞), where r is the rank of the bundle) to S17. Usually S = SO
(orientation) or S = Spin (spin structure), but it can also be Spinc or involve other internal
symmetries.

The group ΩS
n(W,ξ) consists of equivalence classes [X , f , s], where X is an n-manifold,

f : X → W is a map, and s is an S-structre on T X ⊕ f ∗ξ (sometimes called a ξ-twisted
S-structure). These classes form a group by disjoint union with inverses given by orientation-
reversal. We have

[X , f , s] = 0 , (68)

whenever there is an (n+ 1)-manifold Z with ∂ Z = X and with extensions of f and s. Such a
manifold is called a (ξ-twisted S-)nullbordism. A nullbordism of [X , f , s]− [X ′, f ′, s′] is called
a (ξ-twisted S-)bordism between them. Usually we supress f and s from the notation.

Meanwhile, the (ξ-twisted) (S-)cobordism groups are defined by Anderson duality [33].
This implies there is a short exact sequence

Ext(ΩS
n(W,ξ),Z)→ Ωn

S(W,ξ)→ Hom(ΩS
n+1(W,ξ),Z) (69)

analogous to the universal coefficient sequence [35]. This sequence splits, meaning

Ωn
S(W,ξ) = Ext(ΩS

n(W,ξ),Z)⊕Hom(ΩS
n+1(W,ξ),Z), (70)

but this splitting is non-canonical, meaning that if we have maps of bordism groups, we cannot
necessarily use this splitting to compute the map on the cobordism group. We will see an
important example of this below.

It has been argued that elements of Ωn
S(W,ξ) may be identified with partition functions of

invertible TQFTs for spacetime n-manifolds X equipped with a map f : X →W with ξ-twisted
S-structure [1,33].

For W = BG, S = SO (resp. Spin) these classify ’t Hooft anomalies of bosonic (resp.
fermionic) systems in n− 1 spacetime dimensions with bosonic symmetry G. The first factor
in (70) can be regarded as the torsion phases (global anomalies), while the second factor
contains generalized gravitational Chern-Simons terms. In these cases, the bordism group
only depends on

w1(ξ) ∈ H1(BG,Z2), (71)

which represents a homomorphism G→ Z2 which picks out the anti-unitary elements, and

w2(ξ) ∈ H2(BG,Z2), (72)

which classifies the extension
ZF

2 → Gtot→ G, (73)

where ZF
2 is generated by the fermion parity operator. In general, the (co)bordism group is

independent of any twist ξ which itself admits S-structure.

4.2 The Smith Maps and Anomaly Matching

Suppose we have a theory with (G,ξ) symmetry in D spacetime dimensions. Its anomaly is
characterized by an element

αD ∈ ΩD+1
S (BG,ξ). (74)

Let V be an r dimensional representation of G. We introduce r many real order parameters
transforming according to V . There is a codimension-r defect where along an (r − 1)-sphere
linking the defect the order parameters wrap the unit (r − 1)-sphere in V . This defect may be

17Here stable means that an S-structure on a pair of bundle V1, V2 defines an S-structure on V1 ⊕ V2.
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endowed with a G symmetry using CPT and rotations as we have discussed. Elsewhere, we
assume the system is trivially gapped, so this defect has an anomaly

αD−r ∈ ΩD−r+1
S (BG,ξ⊕ V ), (75)

where the modified twist comes about because G acts on the normal bundle of the defect in
the representation V . We will define a map

fV : Ωn−r
S (BG,ξ⊕ V )→ Ωn

S(BG,ξ) (76)

such that if our theory may be trivially gapped away from the V -defect, then its anomaly
satisfies

fV (αD−r) = αD, (77)

and so the defect captures the anomaly. We believe the converse holds as well, compare Section
2.3. This is the case for G = Z2 and V = σ the one-dimensional sign representation in the
absence of gravitational anomaly, which corresponds to the Z2 domain wall we have discussed,
and we will show this fact from the geometric point of view. In other cases the cokernel of fV ,
which is the obstruction to trivially gapping the theory away from the V -defect, also involves ’t
Hooft anomalies. We will describe how this works for a general finite abelian group in Section
4.5.

We will actually define and work mostly with the dual bordism map

ΩS
n(BG,ξ⊕ V )→ ΩS

n−r(BG,ξ) , (78)

which describes the analogous reduction from (X , A) to (Y, A|Y ) in our physical anomaly-
matching relation (20).

Suppose X is a closed n-manifold endowed with a G bundle, equivalently a map A : X → BG.
Let V be an r dimensional real representation of G. We can consider V as a Rr bundle over
BG. It has an Euler class,

[e(V )] ∈ H r(BG,Zdet(V )), (79)

where Zdet(V ) denotes integer coefficients twisted by the determinant line of V . The pullback
A∗[e(V )] = [e(A∗V )] can actually be represented by a codimension r submanifold in X as
follows.

First consider the pullback bundle π : A∗V → X . We choose a smooth section of this
bundle: s : X → A∗V such that π ·s = id. Locally, s may be represented as an r-tuple of smooth
real-valued functions s = (s1, . . . , sr). Thus we can modify s locally near each zero so that zero
is a regular value. Let us restrict our attention to sections with this property. Then the zero
locus of s is a codimension r submanifold E(s) of X .

If there are no zeros of s, then s generates a trivial sub-bundle of V and hence [e(V )] = 0.
Moreover, if the zero locus of s is the boundary of an (r +1)-chain, then we can modify s near
this (r + 1)-chain so that it is non-vanishing. Hence by usual obstruction theory arguments
E(s) is a Poincaré dual representative of [e(V )].

Furthermore, the bordism class of E(s) only depends on the bundle A∗V . Indeed suppose
s′ is another section of A∗V , regular at zero. Then we have a 1-parameter family of sections

s(t) = ts′ + (1− t)s (80)

such that s(0) = s, s(1) = s′. We can consider this family to be a section over the extended
bundle A∗V on X × [0,1]t . We perturb this resulting section to be regular at zero, which we
can do without modifying anything near X × 0 or X × 1 since the section is already regular at
zero there and regularity is an open condition. It follows that the zero locus of this section is
a (n− r + 1)-manifold with boundary E(s)t E(s′), ie. a bordism between them.
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Finally, it is clear that if we have a bordism of (X , A)with (X ′, A′), that the two submanifolds
so constructed are also bordant.

Thus we have constructed a map

ΩO
n (BG)→ ΩO

n−r(BG). (81)

If X has tangent structure we can do even better. Indeed, observe that the normal bundle of
E(s) is equivalent to the restriction of V . Therefore, if X is equipped with structure on T X⊕A∗ξ,
where ξ is some vector bundle over BG, then E(s) is equipped with that same structure on the
restricted bundle,

(T X ⊕ A∗ξ)|E(s) = T Y ⊕ (A|E(s))∗(V ⊕ ξ). (82)

This is likewise true of the bordism above that we constructed, since it is also a zero locus of
a section of A∗V , and may be assumed likewise of any bordism of (X , A). Therefore, with such
tangent structures we actually obtain a map

ΩS
n(BG,ξ)→ ΩS

n−r(BG,ξ⊕ V ), (83)

where S is some structure, such as an orientation, spin structure, or spinc structure (it could
even be another gauge field). We call this the Smith map, because it generalizes the Smith
isomorphism described in [36]. See also [50]. Taking duals (in the sense of Anderson duality
(69)), we further obtain the desired map

fV : Ωn−r
S (BG,ξ⊕ V )→ Ωn

S(BG,ξ), (84)

which we also call the Smith map. Note that this map does not need to split according to (69).
We note that one can analogously define Smith maps for any space W equipped with a

rank n vector bundle V ,
ΩS

D(W,ξ)→ ΩS
D−n(W,ξ⊕ V ). (85)

4.3 Some Properties of the Smith Maps

We collect here some elementary facts about the Smith maps, some of which are proven in [36]
for unitary representations for untwisted bordism.

Consider the map ΩS
D → Ω

S
D(BG,ξ) given by endowing an S-manifold with the trivial G

bundle. The cokernel of this map is called the reduced bordism group Ω̃S
D(BG,ξ). This is dual to

the reduced cobordism group Ω̃D
S (BG,ξ) which is the subgroup of cobordism invariants which

are trivial if the G bundle is trivial. Clearly the image of all cobordism Smith maps are reduced
cobordism invariants and the bordism Smith maps descend to reduced bordism classes. We
refer to

Ω̃S
D(BG,ξ)→ ΩS

D−n(BG,ξ⊕ V ) (86)

and its dual
ΩD−n

S (BG,ξ⊕ V )→ Ω̃D
S (BG,ξ) (87)

as the reduced Smith maps. We note that if ξ= 0, then the inclusion of bordism groups above
splits, since given an S-manifold with a G bundle we can forget the G bundle. It follows

ΩS
D(BG) = ΩS

D ⊕ Ω̃
S
D(BG). (88)

This lets us interpret the elements of Ω̃S
D(BG) as those S-manifolds with G-bundles which are

S-nullbordant after forgetting the G-bundle.
If we have V = V1⊕ V2, then we can decompose the Smith map of V into a composition of

the Smith maps of V1 and V2. This is because a section of V is a section s1 of V1 plus a section
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s2 of V2, so its vanishing locus may be taken to be the intersection of the vanishing loci, or
equivalently we take the vanishing locus of s1 and consider s2 as a section of V2 restricted to it
and then take the vanishing locus of the restricted section, or vice versa. This shows that all
Smith maps commute up to signs (−1)n1n2 where n j = dim Vj from the intersection count. For
Euler classes, this means

e(V1 ⊕ V2) = e(V1)∪ e(V2). (89)

Furthermore, the sum of all S-bordism groups

ΩS
∗ =

⊕

n
ΩS

n (90)

forms a ring under Cartesian product of manifolds. For any (G,ξ) then, the sum of G-equivariant
ξ-twisted S-bordism groups

ΩS
∗(BG,ξ) =

⊕

n
ΩS

n(BG,ξ) (91)

forms an ΩS
∗ -module. It is easy to see that the Smith maps are module homomorphisms, that

is they commute with the action of ΩS
∗ .

Group cohomology classes provide cobordism invariants by integration, giving a map for
finite groups

Hn(BG, U(1)detξ)→ Ωn
S(BG,ξ) (92)

for any S, landing in the torsion subgroup of the cobordism group. Using Anderson duality
applied to H∗(BG,Z), we get more generally a map

Hn+1(BG,Zdetξ)→ Ωn
S(BG,ξ) , (93)

which may include non-torsion pieces such as Chern-Simons terms for Lie groups G. If we
have a rank r representation V , cup product with the Euler class defines a map

Hn+1(BG,Zdetξ)→ Hn+r+1(BG,Zdet(ξ⊕V )) (94)

ω 7→ω∪ [e(V )], (95)

which commutes with the above map to the Smith homomorphism of V . That is, in group
cohomology terms, the Smith map is just given by cup product with the Euler class. For a
related discussion in the context of crystalline symmetries, including a computation of Euler
classes for all 2d point groups and 3d axial point groups, see [6].

4.4 Z2 Smith Maps and the 4-Periodic Hierarchy

Let us consider the case G = Z2, which relates directly to our anomaly discussions above.
All representations of Z2 are sums of the trivial and the sign representation σ. The trivial
bundles may be split off from ξ without affecting anything, since we only study stable tangent
structure. Thus, ξ= mσ for some m≥ 0. The Smith maps go

ΩD−1
S (BZ2, (m+ 1)σ)→ ΩD

S (BZ2, mσ). (96)

All the others are compositions of these.
If we are interested in bosonic anomalies, then we use oriented cobordism with S = SO. In

this case, our manifolds have an orientation on T X⊕A∗mσ. If m is even, then mσ is orientable
over BZ2, so this is equivalent to an orientation of T X . Therefore, there is a mod 2 periodicity
of the Smith maps, as we have observed:

ΩD−1
O → ΩD

SO(BZ2) (97)

27

https://scipost.org
https://scipost.org/SciPostPhys.8.4.062


SciPost Phys. 8, 062 (2020)

ΩD−1
SO (BZ2)→ ΩD

O. (98)

If we are interested in fermionic anomalies, then we use spin cobordism with S = Spin.
Now our manifolds have spin structures on T X ⊕ A∗mσ. It turns out that mσ admits a spin
structure over BZ2 if m = 0 mod 4. Thus, there is a mod 4 periodicity of the Smith maps,
corresponding to (2):

ΩD
Spin(BZ2)← ΩD−1

Pin− ← Ω
D−2
Spinc/2 ← ΩD−3

Pin+ ← Ω
D−4
Spin (BZ2) , (99)

where Spinc/2 denotes Spinc structure where the U(1) gauge field has holonomies only in
the subgroup Z2 < U(1). This is the appropriate structure for unitary symmetries U with
U2 = (−1)F .

Theorem 4.1. Classical Smith Isomorphism For G = Z2, ξ = 0, V = σ, but for any n and
structure S, the reduced Smith map

Ω̃S
n(BZ2)→ ΩS

n−1(BZ2,σ) (100)

is an isomorphism. More generally,

Ω̃S
n(BZ2, mσ)→ ΩS

n−1(BZ2, (m+ 1)σ) (101)

is injective (but not always surjective). Equivalently, the following sequence is exact

ΩS
n→ Ω

S
n(BZ2, mσ)→ ΩS

n−1(BZ2, (m+ 1)σ), (102)

where the first map is taking an S-manifold and considering it as a Z2-twisted S-manifold with
trivial Z2 bundle.

Proof. Let’s first prove the first Smith map is surjective. Let us begin with a (n− 1)-manifold
X with σ-twisted S-structure, ie. a Z2 bundle A and S-structure on T X ⊕ A∗σ, where A∗σ is a
real line bundle. The tangent space of this line bundle is again T X ⊕ A∗σ, where A is pulled
back to the total space. We thus obtain an S-structure on this open n-manifold.

We consider the sphere bundle Z = Sph(A∗σ) obtained by taking the fiber-wise one-point
compactification of A∗σ. This is a compact n-manifold with (untwisted) S-structure. Further,
the zero section, an embedded copy of X , is Poincaré dual to a Z2 bundle Â on Z . Applying
the Smith map to (Z , Â) we obtain our original manifold with its twisted S-structure.

Now let’s prove injectivity in the general twisted case. Suppose X is an n-manifold with
Z2 bundle A and mA∗σ-twisted S-structure which is zero under the Smith map. To be precise,
we choose a section s of A∗σ which is regular at zero so that its zero locus Y = Y (s, A∗σ) is an
(n− 1)-submanifold. Y inherits an (m+ 1)A∗σ-twisted S-structure from X .

Since X goes to zero under the Smith map, there is an n-manifold Z with ∂ Z = Y and to
which this twisted S-structure extends, with Z2 bundle Â. We consider the unit interval bundle
inside Â∗σ→ Z . Call this Z̃ . This is an (n+ 1)-manifold with an inclusion

Ỹ ,→ ∂ Z̃ , (103)

where Ỹ is a tubular neighborhood of Y . Thus we can glue Z̃ to X ×[0,1] along Ỹ ×1 to obtain
a smooth n+1-manifold W one of whose boundary components is X ,→ X ×0. We denote the
union of the other boundary components as X ′.

Furthermore, Z∪(Y ×[0,1]) ⊂W is Poincaré dual to a Z2 bundle Ã over W which restricts
to A on X and to nothing on X ′. By construction, W has an mÃ∗σ-twisted S-structure extending
that of X . Thus, (X , A) is bordant to (X ′, 0) in ΩS

n(BG, mσ). This means it’s zero in reduced
bordism, since it is in the image of ΩS

n. Thus, the map is injective.
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Figure 3: The injectivity proof for the Smith isomorphism theorem in a nutshell: one
uses a nullbordism Z of the image of the Smith map (X , A) 7→ (Y, A|Y ) to construct
a bordism (W, Ã), depicted above, of (X , A) to (X ′, 0) (blue), with the latter carrying
no Z2 bundle. Indeed the green curve Poincaré dual to Ã only meets the boundary of
the bordism along X .

The injectivity of the reduced (bordism) Smith map is dual to a surjectivity of

Ωn−1
S (BZ2, (m+ 1)σ)→ Ω̃n

S(BZ2, mσ),

which means that in the absence of “gravitational" anomalies contained in Ωn
S , we can trivially

gap the theory away from the domain wall and reduce the calculation to a calucation of the
anomaly of the induced symmetry on the wall, as we anticipated in Section 2.3.

Here is an important example where the bordism Smith map is not surjective: ΩPin+
5 = 0

but ΩSpin
4 = Z. The problem is that we cannot use our surjectivity trick above because the

generator of ΩSpin
4 , the K3 surface, is simply connected. Thus, if we attempt to construct a

5-manifold as above with zero section as the K3 surface, our only choice is K3 × S1, with
nontrivial Z2 bundle around S1. However, we cannot freely choose the Z2 bundle for a Pin+

structure; it has to be the orientation line, but K3× S1 is orientable, so its orientation line is
trivial, a contradiction.

This is Anderson dual to a failure of injectivity for

Z⊕Z8 = Ω
3
Spin(BZ2)→ Ω4

Pin+ = Z16, (104)

which we saw in an anomaly context in Section 3.1. This is also an example that shows
the splitting (70) is non-canonical, since by duality this map must be surjective, while if it
commuted with the splitting then the Z factor would be sent to zero. We do not know a
mathematical way to compute this map, but because it is linear we were able to check some
well-chosen examples in Section 3.1 and we found it is

(k,ν2) 7→ 2ν2 − k, (105)

cf. (43). The noninjectivity in (104) and (43) meant that the anomaly on the domain wall was
not determined by the bulk anomaly but on the other hand it did determine the bulk anomaly
because we still had surjectivity.

As an example, let us study the hierarchy beginning with Ω0
Pin+ = Z2. We have, up to

D = 4,
Z2 Z4 Z8 Z8 ⊕Z Z16

Z2 Z2 Z 0
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where we have listed the cokernels in the second row, which are the gravitational responses,
by the theorem. As we have discussed, the last Smith map is not injective, and requires a
computation. From D = 4 on we have,

Z16 Z16 Z16 Z16 ⊕Z2 Z32 ⊕Z2 Z64 ⊕Z4 · · ·

0 0 Z2 0 Z2
2

· · · Z128 ⊕Z8 ⊕Z2 Z128 ⊕Z8 ⊕Z2 ⊕Z3 ???

Z3
2 Z3 0

which extends (and corrects) the table of [1]. See [7] for an extensive computation of the grav-
itational components. Note that where the two 7D and three 11D gravitational Chern-Simons
terms appear there is again a kernel of the Smith map, requiring an extra computation, analo-
gous to what we did in Section 3.1. However, we do know that these maps are surjective, since
their cokernels are trivial by the theorem. Note also that beginning in D = 8 we have another
tower analogous to the tower beginning in D = 0 above which reflects the ring structure of
the bordism group18: these 8+ k dimensional phases are detected by spacetimes of the form
X8 × Yk where X8 is a generator of Ωspin

8 and Yk is a test spacetime for a k dimensional phase.
We summarize our calculations using the theorem in the following table19. In each row

we first list the total group of phases and then below it the cokernel of the incoming Smith
map (on the far left is ΩD

spin, which is the biggest possible cokernel). The Smith maps go
down and to the left. Most of these groups can be computed just using the theorem and some
low dimensional starting points, see e.g. [40]. To compute the other cokernels and check the
results we used Atiyah-Hirzebruch spectral sequence techniques, see [27] for a review.

D U2 = 1 T2 = 1 U2 = (−1)F T2 = (−1)F

1 Z2 ⊕Z2 Z2 Z4 0
Z2 Z2 Z2 Z2 0

2 Z2 ⊕Z2 Z8 0 Z2
Z2 Z2 Z2 0 Z2

3 Z8 ⊕Z 0 2Z Z2
Z Z 0 2Z 0

4 0 0 0 Z16
0 0 0 0 0

5 0 0 Z16 0
0 0 0 0 0

6 0 Z16 0 0
0 0 0 0 0

Observe how typically the gravitational terms might not be consistent with the symmetry.
The entries where the group of phases equals the cokernel are pure gravitational, and the

18Our Anderson dual cobordism groups, hence the group of SPT phases, however do not form a ring, because of
some degree shifts, or more precisely because U(1) is not a ring.

19We would like to thank Miguel Montero for pointing out an error in the U2 = (−1)F symmetry class in the first
version of this table. It is now consistent with the appendix of [10].
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incoming Smith map is zero. For some reason, the hierarchy we discussed in detail above
is more interesting than the others—it is also the one where the unitary U2 = 1 symmetry
(untwisted spin cobordism) always lines up with the gravitational Chern-Simons terms, so
these always give nontrivial phases in this hierarchy. If one had a good understanding of
the kernel of the cobordism Smith map, then one could easily compute all of the Z2 SPT
classification, without resorting to spectral sequence techniques.

4.5 The Smith Maps for Abelian Groups

In this section we would like to prove some results for general symmetry groups G and their
domain walls and junctions, as well as give some more physical interpretations. The most
physically interesting results to derive are statements about the kernel of the (bordism) Smith
maps, since this kernel is dual to the cokernel of phases or anomalies which are not detected
by the domain wall or junction. Our key result is the following:

Theorem 4.2. Let G = Zn, ξ an arbitary representation, and V = V2 the two-dimensional real
representation given by a 2π/n rotation of the plane. The following sequence is exact

Ω̃S
n(BZ,ξ)→ Ω̃

S
n(BZn,ξ)→ ΩS

n−2(BZn,ξ⊕ V2), (106)

where the first map takes a Z gauge field and forms its quotient to give a Zn gauge field, and the
second map is the Smith map based on V2.

Proof. First we must show the image of the first map is in the kernel of the second map. This
is because the unit circle bundle inside A∗V2 has Chern class e(A∗V2), which is zero if A lifts to a
Z gauge field, hence V2 admits a nonvanishing section. (Note for higher dimensional bundles
having a vanishing Euler class is not sufficient to guarantee a nonvanishing section.)

Conversely, we begin with an (X , A) in the kernel of the second map and we want to show
it is in the image of the first map. We follow the construction in the proof of Theorem 4.1,
which gives us a bordism from (X , A) to (X ′, A′) where e(A′∗V2) = 0. This means A′ has a lift to
a Z bundle since e(A′∗V2) is the Bockstein of A′. Thus, (X ′, A′) and hence (X , A) is in the image
of the first map.

This kernel is dual to a cokernel of phases (or anomalies) which are not distinguished by
the symmetric junction. These phases are determined by their image in Ω̃n

S(BZ,ξ). This group
actually has a simple characterization. These are the terms which are linear in A, in the sense
that

Ω̃n
S(BZ,ξ) = H1(BZ,Ωn−1

S ), (107)

which may be derived from the Atiyah-Hirzebruch spectral sequence. Intuitively, such a linear
term implies that the domain wall carries a fermionic phase which is nontrivial without any
symmetry.

For example, with G = Z2, we have 2 + 1 dimensional phases representing a nontrivial
element of

H1(BZ2,Ω2
spin) = Z2, (108)

characterized by the domain wall carrying a Kitaev wire. One might worry about this leading
to a gravitational anomaly on the junction but actually it works out because the Z2 junction
has two domain walls coming in. The Z2 junction gives us the map

Z4 = Ω
1
spin(BZ2,σ⊕σ)→ Ω3

spin(BZ2) = Z8, (109)

and we see this is consistent with the Z2 cokernel above. Note that since V2 = σ⊕σ for Z2,
this map is the composition of the two Smith maps for σ:

Ω1
spin(BZ2,σ⊕σ)→ Ω2

spin(BZ2,σ)→ Ω3
spin(BZ2) (110)
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Z4→ Z8→ Z8 ⊕Z. (111)

As expected from Theorem 4.1, the second is an isomorphism onto the reduced piece while
the first has cokernel Ω2

spin = Z2.
Another interesting example is with n= 4k, we have

Ω3
Spin(BZn) = Z2n ⊕Z2. (112)

The first piece describes Gu-Wen-Freed phases [31, 32], while the second piece is the phase
with the Kitaev wire on the domain wall. We can detect this wire using the one-dimensional
representation σ, we find the Smith map is

Ω2
Spin(BZn,σ) = Z4 ⊕Z2→ Ω3

Spin(BZn), (113)

with the first factor surjecting onto the Z2 factor of Ω3
Spin(BZn) and the second going to zero.

Meanwhile, under the V = V2 Smith map,

Ω1
Spin(BZn, V2) = Z2n→ Ω3

Spin(BZn) (114)

surjects onto the Z2n piece, leaving the cokernel Z2 as before.
Further, for n odd, H1(BZ2,Ωn−1

S ) = 0 for S = Spin or SO, since for these Ωn−1
S is a product

of Z2’s and possibly Z’s in dimensions 4k−1 from gravitational Chern-Simons terms [7]. Thus
for n odd, the Smith homomorphism relevant for Zn anomalies based on the two-dimensional
representation is injective, and the Zn anomaly is uniquely determined by the junction.

Finally we note that because the theorem is proved for arbitary structure S, we can apply it
to product groups G = Zn×H, where the H gauge field and possible H-twisted spin structure
or orientation are considered part of the tangent structure S. We can thus bootstrap these the-
orems to results about any finite abelian group, for which we find the anomaly is characterized
by splitting G = Zn ×H for each cyclic factor Zn, looking at the H anomaly on the Zn domain
wall, and looking at the G anomaly on the codimension-2 Zn junction.

5 Discussion

Other dimensional hierarchies of topological phases have been considered before, e.g. in free
systems in [26]. In [25], the authors described a dimensional reduction procedure which
applies to free fermion phases modified by strong interactions. While apparently quite similar
to our example in Section 3.1 the overall picture of phases which appeared in their “Bott
spiral", which includes all the symmetry classes in the 10-fold way, has a very much more
regular structure than what we found in Section 4.4. It would be very interesting to relate the
two pictures and lead to a better understanding of interacting SPT phases.

There is an apparent similarity between our dimensional reduction procedures and the
decorated domain wall methods [11,15,16,57]. One should consider dimensional reduction as
a probe of a phase or anomaly, while decorated domain walls are a method to construct them.
They have to be consistent. For instance, if one gives a decorated domain wall construction of
a 2+1 dimensional SPT phase by placing a Kitaev wire on the domain wall, then this phase is
the image of the Smith map of the sign representation applied to the 1+1 dimensional Kitaev
phase.

However, in general there are many possible domain wall decorations not described by
Smith maps and they must satisfy some complicated consistency relations, not all of which are
known (see [27] for a review). These form the differentials of the Atiyah-Hirzebruch spectral
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sequence (AHSS), a rather abstract algebraic object. It’s especially nice to have a geomet-
ric understanding of these consistency conditions, since this usually comes along with some
physical intuition. We expect this to be possible because so far all of the known consistency
conditions have some degree of understanding along these lines.

More precisely, the decorated domain wall construction begins by considering elements

ω ∈ Hk(BG,ΩD−k
S ) (115)

in the E2 page of the AHSS, which describes a decoration of certain codimension-k defects of a
G-gauge field with D−k dimensional fermionic phases in ΩD−k

S . We expect that whenω is the
Euler class of a rank-k representation V , then it can be extended to a fully consistent decorated
domain wall construction of a fermionic phase which is in the image of a Smith map based on
V . One needs to be careful about the twists to obtain a precise statement. If something like
this is true, it would place strong geometric constraints on the AHSS differentials, and be very
interesting. This might also lead to a deeper understanding of Theorem 4.2, which appears to
be a statement about the “extension problem" of the AHSS in this context, cf. (107).

With regards to crystalline symmetries, there is an even simpler procedure to reduce to the
domain wall, first described by [42, 43]. For example, suppose we have a unitary reflection
symmetry across some hyperplane. We disorder the system on one side of the hyperplane by
some interaction, and then add the reflection-conjugated interaction to the other side of the
hyperplane to obtain a system localized to the hyperplane but still with the unitary symmetry,
although now it acts internally!

One may wonder if the anomaly on the hyperplane can be understood in terms of the orig-
inal anomaly and it turns out it can. By the crystalline equivalence principle of [41], we can
identify the reflection SPT with an associated time reversal SPT (see also [52]). We see that
reflection and time reversal are related by C PT . Then applying our reduction, we obtain a
unitary internal symmetry on the hyperplane, which is the same as the unitary above, since
(C PT )2 = 1. More generally, if one examines the necessary twists in the crystalline equiva-
lence principle, one finds they exactly cancel the twists in the Smith maps, so the crystalline
Smith map does not change the type of symmetry enjoyed on the Wyckoff position, although
it becomes internal. See also [4].

If one takes a subspace larger than a Wyckoff position, e.g. a coordinate plane in R3,
where our unitary Z2 acts as parity symmetry x , y, z 7→ −x ,−y,−z, the symmetry goes from
an orientation-reversing symmetry to an orientation-preserving rotation on the plane, which is
the crystalline analog of the 2-fold periodic structure, and becomes a 4-fold periodic structure
when fermions are carefully accounted for. See [12–14]. When one uses equivariant homology
all twists in the dimensional reduction disappear, indicating that in the crystalline setting, they
are just due to Poincaré duality.

However, if our symmetry acts internally in the lattice model, we do have to break the
symmetry to form the domain wall, and in this case it is not clear how we should define the
symmetry on the wall. We leave this interesting question to future work.

Acknowledgments

I.H is supported in part by the Clore Foundation, the I-CORE program of Planning and Bud-
geting Committee (grant number 1937/12), the US-Israel Binational Science Foundation, GIF
and the ISF Center of Excellence. Z.K is supported in part by the Simons Foundation grant
488657 (Simons Collaboration on the Non-Perturbative Bootstrap). R.T is supported by the
Zuckerman STEM Leadership Program and the NSF GRFP Grant Number DGE 1752814.

33

https://scipost.org
https://scipost.org/SciPostPhys.8.4.062


SciPost Phys. 8, 062 (2020)

A Conventions for the action of C , P, T

We work out the action of C , P, T on the minimal possible fermion representation in 2+1, 1+1
and 0+1 dimensions. The more general cases are treated briefly since the conclusions remain
the same.

A.1 2+ 1 Dimensions

We take the sigma matrices to be

σ1 =

�

0 1
1 0

�

, σ2 =

�

0 −i
i 0

�

, σ3 =

�

1 0
0 −1

�

. (116)

They satisfy the usual relations

{σi ,σ j}= 2δi j , [σi ,σ j] = 2iεi jkσk , (117)

where ε123 = 1.
We will need to adapt these matrices for the Lorentzian signature in 2+1 dimensions that

we are going to use. We will denote the corresponding matrices by γ0,1,2 and we will take the
signature to be (−,+,+) and the metric is denoted by ηµν with µ,ν= 0,1, 2.

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 . (118)

These satisfy
{γµ,γν}= 2ηµν , [γµ,γν] = 2εµνργρ . (119)

The generators of the Lorentz group SO(2, 1) are just the [γµ,γν] such that on a two-dimensional
spinor λα (at the origin) the Lorentz transformations act as λ′ = e

1
2 [γ

µ,γν]Θµνλ, where the Θµν
parameterize boosts and rotations. The Θµν are real anti-symmetric matrices. We can re-write
the transformation as λ′ = eγ

ρΞρλ with Ξρ = ε
µν
ρΘµν.

We can impose a Majorana condition on λ by noting that all the γ matrices are real and
hence we can take λα to be real. We define λ̄≡ λTγ0 and see that it transforms as

λ̄→ λT (eγ
ρΞρ)Tγ0 = λTγ0e−γ

ρΞρ = λ̄e−γ
ρΞρ . (120)

As a result, λ̄λ is invariant and λ̄γµ∂µλ is likewise an invariant. Note that

(λ̄γµ∂µλ)
† = −∂µλT (γµ)Tγ0λ= ∂µλ

Tγ0γµλ= ∂µλ̄γ
µλ,

and hence integrating by parts we get a minus sign and hence we need to put an i in front of
the kinetic term as well as in front of the mass term

∫

d3 x iλ̄γµ∂µλ+ iM λ̄λ . (121)

Time reversal symmetry and parity act as follows:

T : λ(x0, x1, x2)→±γ0λ(−x0, x1, x2) , (122)

P : λ(x0, x1, x2)→±γ1λ(x0,−x1, x2) . (123)

The signs are uncorrelated and arbitrary in principle. But we will take the two signs in P, T to
be always correlated.
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For the mass term: T (λ̄λ) = −λTγ0γ0γ0λ = λ̄λ. Taking into account the factor of i in
the mass term and that T is anti-linear, we find that under time reversal symmetry M →−M .
Applying parity, P(λ̄λ) = λTγ1γ0γ1λ = −λ̄λ and parity is a linear operator so the mass is
again seen to be odd under parity.

The action on the kinetic term is T (λ̄γµ∂µλ) = −λ̄γ0∂0λ− λ̄γi∂iλ = −λ̄γµ∂µλ and again
together with the factor of i in front of the kinetic term we find that the kinetic term is time
reversal even. Similarly, it is parity even.

Three important properties that we immediately recognize are

(C PT )2 = 1 ,

T2 = (−1)F ,

T · C PT = (−)F C PT · T .

(124)

It is important to note that because T is anti-linear all the three relations in (124) are
invariant under multiplying T by i. For the same reason the first relation is also invariant
under multiplying P by i. In the last relation we can add an arbitrary c number phase but the
existence of (−1)F is invariant.

A.2 1+ 1 Dimensions

The signature is chosen to be (−,+) and in terms of the sigma matrices (116) we have as
before

γ0 = iσ2 ,γ1 = σ1 . (125)

The boost transformations are given by eβ[γ
0,γ1] with real β . Therefore the representation is

reducible and we can call the boost eigenstates as λ+ and λ−. The non-chiral fermion is given
simply by

λ=

�

λ+
λ−

�

. (126)

The kinetic term and mass term are as in 2+1 dimensions (except that now the index µ ranges
over 1,2)

L= iλTγ0γµ∂µλ+ iMλTγ0λ . (127)

For now let us assume that charge conjugation symmetry acts trivially, time reversal sym-
metry acts as before and parity acts as before:

T : λ(x0, x1)→±γ0λ(−x0, x1) , (128)

and we note that the mass term is odd under time reversal symmetry. In particular, as expected
time reversal symmetry acts by exchanging fermions that are moving to the left with fermions
that are moving to the right.

We find again the relations

(C PT )2 = 1 ,

T2 = (−1)F ,

T · C PT = (−)F C PT · T .

(129)

For the massless fermion λ however we do not need to assume that charge conjugation
symmetry acts trivially. Up to overall conjugation by (−1)F there is one more nontrivial choice,
where

C : λ→ σ3λ , (130)
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namely, it acts like fermion number only on λ− but not on λ+. Sometimes it would be denoted
by (−1)FL . This is a chiral Z2 symmetry. The transformation (130) commutes with boosts and
hence with the Poincaré group. However, it does not commute with time reversal symmetry
or parity. This charge conjugation symmetry likewise forbids a mass term.

With the choice (130) we find the relations

C2 = 1 ,

C T = (−1)F T C ,

(C PT )2 = 1 ,

T2 = (−1)F ,

T · C PT = C PT · T .

(131)

Note that the difference in the last equation is due to the fact that this C PT is not the canonical
one.

A.3 0+ 1 Dimensions

Here the minimal fermion is just a single component fermion λ. The Lagrangian is

L= iλ
d
d t
λ . (132)

This theory is however trivial since upon quantization we have one Hermitian operator λ that
also satisfies λ,λ= 1 and so the Hilbert space consists of only one state.

Now let us consider a collection of such fermions

L= i
N
∑

I=1

λI d
d t
λI . (133)

The Hamiltonian again vanishes identically and the operators λI satisfy the Clifford algebra

{λI ,λJ}= δI J , (134)

in addition, the λI are Hermitian. It is well known that the construction proceeds slightly
differently for even and odd N . For even N we combine the fermions into pairs (in an arbitrary
fashion)

ψk = λk + iλk+N/2 , k = 1, ..., N/2 (135)

and we have that {ψk,ψk′} = 0, {ψk, ψ̄k′} = 2δk,k′ which means that we have a 2N/2 dimen-
sional Hilbert space isomorphic to

⊗N/2
k=1 |sk〉 with sk = ±1. The ψk acts only on the kth spin

such that

ψk =
p

2

�

0 1
0 0

�

, ψ̄k =
p

2

�

0 0
1 0

�

(136)

and the different ψ’s all anti-commute otherwise. Now we need to define a time-reversal
operation. We can define it in each of the N/2 blocks.

The theory has charge conjugation symmetry C implemented on the Hilbert space by the

matrix

�

0 1
1 0

�

. It is instructive to consider the U(1)N/2 symmetry inside the SO(N) symmetry

and require that charge conjugation symmetry reverses those charges

CeiαQ = e−iαQC . (137)
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Then in this case it is known that if we choose the U(1) charges to be integral the algebra of
C ,Q is centrally extended while if we allow for half-integral charges then the central extension
can be removed. We can readily see that as an operator

C2 = 1 , CψC =ψ† , Cψ†C =ψ . (138)

In particular, the fundamental representation goes to the anti-fundamental representation. It
is easy to verify that this leaves the action invariant.

We can take Q = ψψ† − 1/2 so that the equations above are all mutually consistent. If
we do not include the factor of 1/2, we get some central extension of the C ,Q algebra, which
reflects the well known O(2) anomaly in QM.

Similarly time reversal reverses those U(1) charges. So this implies that

eiαQT = TeiαQ . (139)

Note that because of the i in the exponent and the anti-linearity of T , TQ = −QT is equivalent
to the above.

We can define T as the composition of complex conjugation and C above, which again
would lead to a central extension if the U(1) charges are chose to be integral. Note that with
this definition T2 = 1.

Interestingly, we can a priori also choose a different action of T , which is obtained by
a composition of the above-chosen time reversal symmetry and a rotation by π. This leads
to time reversal symmetry acting by the combination of complex conjugation and the matrix
�

0 −1
1 0

�

. Now we have T2 = −1 and taking into account that we have N/2 blocks we find

T2 = (−1)N/2. For an anti-unitary operator, T2 = −1 cannot be converted to T2 = 1 by
multiplying the operator with i.

We can consider with the above conventions the transformation C T . It always satisfies
(C T )2 = 1. This is the analog of C PT . We can also think about C T as fermion number
because (if it is nontrivial, then) it acts like diag(−1, 1) which is the same as multiplying all
the fermions by a minus sign. This is why it is an unbreakable symmetry and it is the correct
analog of CPT.

It is nice to note that with the above choice of C and T such that C T is fermion number,
we find that

C T · T = −T · C T (140)

and taking into account that we have N fermions

C T · T = (−)N/2T · C T , (141)

which is analogous to the result in higher dimensions if we think of (−1)N/2 as (−1)F .

B Analytic Continuation and CPT

B.1 Analytic Continuation

We study correlation functions

〈φ1(x1, z1) · · ·φn(xn, zn)〉 (142)

for complex times z j = t j + iτ j . We can rewrite this in terms of a real time correlator

〈e−τ1Hφ1(x1, t1)e
(τ1−τ2)Hφ2(x2, t2) · · · 〉 (143)
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We see for these correlation functions to be finite they must be imaginary-time-ordered, mean-
ing that the τ’s are increasing

τ1 < τ2 < · · · (144)

so that all the exponential factors come with a negative factor. Note that we don’t worry about
the first exponential factor because it is absorbed by the ground state on the left.

B.2 Reflection Positivity

The first identity we can assert considering these correlation functions is given by unitarity, for
which

φ(x , z)† = (eizHφ(x , 0)e−izH)† (145)

= eiz∗Hφ(x , 0)†e−iz∗H . (146)

Thus, if φ(x , 0) is a Hermitian operator, then

φ(x , z)† = φ(x , z∗). (147)

We find therefore
〈φ(x , z∗)φ(x , z)〉> 0, (148)

and so on for more complicated operator insertions. Let us note that for z = iτ, this reads

〈φ(x ,−iτ)φ(x , iτ)〉> 0, (149)

which is automatically imaginary-time-ordered as long as τ > 0 (which is required for the
states φ(x , z)|0〉 to exist), and is moreover reflection symmetric under τ 7→ −τ, hence the
term reflection positivity.

B.3 Time Reversal

Now let us suppose that our theory has an anti-unitary symmetry T with

HT = T H. (150)

Any such symmetry is regarded as a time-reversal symmetry because

T−1ei tH T = e−i tH (151)

is functionally the same as t 7→ −t. However, for imaginary time, it takes a bit more care to
see what it should do.

First, let us note that anti-unitarity of T means that for any pair of Hilbert space states,

〈a|b〉= 〈Ta|T b〉∗ = 〈T b|Ta〉. (152)

Now we consider the imaginary-time-ordered correlation function

〈φ1(z1)φ2(z2)〉, (153)

ie. τ1 < τ2, where we have suppressed the position coordinates because they are irrelevant
at this stage of the discussion. We can write this as 〈0|φ1(z1)φ2(z2)0〉 and apply T to obtain

〈φ1(z1)φ2(z2)〉= 〈T−1φ2(z2)
†T T−1φ1(z1)

†T 〉= 〈(T−1φ2T )(−z2)(T
−1φ1T )(−z1)〉. (154)

We observe that the final result is still imaginary-time-ordered, as −τ2 < −τ1! Thus, time
reversal acts geometrically in analytic continuation as z 7→ −z.
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B.4 The C PT Algebra

C PT symmetry arises in Euclidean signature from the analytic continuation of a boost along a
coordinate x to parameter iπ, for which it becomes a rotation in the x-τ plane. This operator
is: 1) a symmetry just like an ordinary boost, 2) anti-unitary because it flips time. Note that
a normal boost does not have a well-defined unitary property because it doesn’t fix a time
slice. We can call this operator C PT because we can easily decompose it to a P part, due to
the space coordinate flip, a T part due to the time coordinate flip, and a unitary internal C
part which is whatever is needed to complete the composition of the operator, in fact you can
define C = (C PT ) · T−1 · P−1, where C PT is the operator constructed above and P and T are
any reflection and time reversal operators (which need not be symmetries), respectively.

Now that we have this representation, we want to argue for (C PT )2 = 1.20 In cases where
the theory can be analytically continued to imaginary time, one can consider the iπ boost
as a π rotation. A π rotation on operators depends on their spin, where a factor of (−1)s

accompanies the obvious coordinates rotation, i.e., even integer spin operators get a (+1)
factor, odd integer spin operators get (−1) and half integer spin operators get a (±i) factor.
Thus, as is well known, under two π rotations, or a 2π rotation, one gets a (−1)F factor.
However, since T complex conjugates as well as reflects time, the (±i) factor that the half-
integer spin operators get after the first C PT operation is complex conjugated by the second
C PT operation and cancels the second factor and therefore in total one gets (C PT )2 = 1.

In order to address the commutation of T and C PT we use similar arguments. C PT by
itself is, in the Euclidean analytic continuation, an anti-unitary π rotation and since T is anti-
unitary, if we operate with T after C PT it reverses the sign of the ±i factor the half-integer
operators received, compared to the other way around, when you operate first with T and
only then with C PT . Thus, in total, one gets T · C PT = (−1)F C PT · T .
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