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Abstract

We present a dual formulation of the Cosserat theory of elasticity. In this theory a local
element of an elastic body is described in terms of local displacement and local orien-
tation. Upon the duality transformation these degrees of freedom map onto a coupled
theory of a U(1) vector-valued one-form gauge field and an ordinary U(1) gauge field.
We discuss the degrees of freedom in the corresponding gauge theories, relation to sym-
metric tensor gauge theories, the defect matter and coupling to the curved space.
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1 Introduction

Duality is a powerful tool that allows one to access non-perturbative physics of interacting
systems. Recently there was a resurgence of interest in various dualities in a quantum field
theory [1–3]. The most well-known example of duality in quantum field theory is the boson-
vortex duality [4–7], which maps a superfluid in 2+1 dimensions to an Abelian Maxwell theory.
Upon this transformation the superfluid vortices are mapped to matter, charged under the dual
gauge field.

In a parallel development a duality transformation for a quantum theory of elasticity was
constructed [8–11]. It turns out that the dual theory is an Abelian gauge theory of (sym-
metric) tensor gauge field. Such theories have recently emerged in condensed matter physics
in the study of algebraic spin liquids [12–14], and, later, of gapless fracton phases [15–17].
Symmetric tensor gauge theories couple to an unusual type of matter. The dynamics of such
matter is restricted by a set of global conservation laws, that preserve not only the total charge
of the system, but also various multipole moments of the charge density. These conserva-
tion laws lead to partial, or complete, immobility of charged quasiparticles [16, 18, 19]. The
phenomenon of restricted mobility of excitations has recently attracted attention in the study
of topological phases of matter, spin liquids and self-correcting quantum memory. Namely,
a new type of topological order, fracton order was found and established [20–35]. Fracton
systems exhibit certain similarities to traditional topologically ordered phases, namely topo-
logical1 groundstate degeneracy on a torus and robustness to local perturbations. At the same
time, fracton phases are quite unusual in that the topological degeneracy depends exponen-
tially on the system size and on the presence of topologically non-trivial lattice defects, such
as disclinations.

The relationship between fracton phases of matter and elasticity has been noticed by sev-
eral authors [36–42]. While formal details are different among these works, the essential
observation is quite simple. Crystalline defects, such as dislocations and disclinations exhibit
the phenomenon of restricted mobility. In particular, dislocations have to satisfy the so-called
glide constraint, which forces them to move along their Burgers vector, provided that total
number of lattice sites is conserved, while disclinations cannot move without creating dislo-
cations. This parallels the phenomena in the physics of type-I gapless fracton phases where
certain fractons can only move via creating other fractons.

One way to access the physics of crystalline defects is to utilize the duality transforma-
tion, which maps a theory of elasticity onto a tensor gauge theory coupled to crystalline defect
matter. In this work, we consider a generalized theory of elasticity, known as micropolar or
Cosserat elasticity [43–45]. In Cosserat elasticity, the elastic medium is equipped with a mi-
crostructure, which has a microscopic origin. Accordingly, a local volume element is described
(in 2+ 1 dimensions) by a displacement vector ui and a local orientation θ . In thermal equi-
librium (or in the ground state, at T = 0) both of these fields constant in space. The theory is
assumed to have a global translational and rotational symmetry (although the latter require-
ment can be relaxed). The displacement field is generally gapless, while the orientation field is

1That is, present in the absence of any symmetry.
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generally gapped. We construct a dual theory via solving the constraints imposed by the con-
servation of momentum and (non-)conservation of the angular momentum. The dual theory
contains a general tensor gauge field (more precisely, a vector-valued one-form gauge field)
and a real U(1) one-form gauge field. This gauge theory contains two gapless and one gapped
degree of freedom. The crystalline defects, which are singularities in the displacement and
rotation fields, naturally couple to these gauge fields.

The manuscript is organized as follows. In Section 2 we provide an introduction to the dual
formulation of the theory of elasticity. This section contains no new results, but is used to fix
the notations and to make the manuscript self-contained. In Section 3 we describe the duality
transformation for Cosserat elasticity. In Section 4 we present our conclusions. Appendix A is
devoted to the inversion of elasticity coefficients and Appendix B to the Stückelberg mechanism
of the massive mode in the gauge theory dual to Cosserat elasticity.

2 Symmetric elasticity

This section serves as an introduction to the elastic dualities. The results contained here can
be found in Refs. [36–38,40,41].

2.1 Symmetric elasticity

We start with an introduction to the ordinary theory of elasticity. The fundamental assumption
in the traditional, “symmetric” elasticity is the lack of local structure of the elastic medium.
All deformations, both elastic (phonons) and plastic (dislocation and disclination defects) are
described using the displacement field ui [46]. Smooth variations of ui correspond to the
smooth distortions of the lattice, whereas singular configurations of ui correspond to the lattice
defects. We will assume complete rotational invariance.

In symmetric elasticity we introduce the symmetric strain tensor ui j = ∂iu j + ∂ jui . The
action (or free energy at finite temperature) is assumed to depend only on ui j .

S[ui] =

∫

d td2 x
�

u̇i u̇i − C i jklui jukl

�

, (1)

where C i jkl is a tensor of elastic moduli. In two spatial dimensions it has two independent
components and encodes shear and bulk elastic moduli. The summation over repeated in-
dices is assumed. Note that, in the definition of the elastic coefficients, we do not follow the
standard convention for symmetric elasticity [46]. Our choice will facilitate the comparison
of the results of this section to Cosserat elasticity. The equation of motion takes the form of a
conservation law for momentum density, Pi . We introduce the momentum density as T i0 = P i

and T i j is the stress tensor. Then the conservation of momentum takes the form

Ṗ i + ∂ j T
i j = 0 ⇔ ∂µT iµ = 0. (2)

The stress tensor is given by
T i j = C i jklukl . (3)

The partition function for elasticity reads

Z =

∫

DuieiS[ui]. (4)

Next we reformulate the partition function in terms of the dual variables by essentially
performing a Legendre transformation. Using the Hubbard-Stratonovich trick the action is
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brought to the following form

S[P i , T i j , ui] =

∫

d td2 x
�

Pi P
i + C−1

i jkl T
i j T kl + ui(∂µT iµ)

�

. (5)

We discuss the inversion of C−1
i jkl in Appendix A. The resulting partition function is given by

Z =

∫

DP i DT i j DuieiS[P i ,T i j ,ui] =

∫

DP i DT i j Dui
singeiS[P i ,T i j ,ui

sing]δ
�

∂µT iµ
�

, (6)

where in the second line the integral over (the smooth part of) ui was taken. To resolve the
δ-function we introduce the dual variables.

2.2 Duality

We are going to resolve the constraint δ
�

∂µT iµ
�

by introducing a tensor gauge field

T iµ = εµνρ∂νA
i
ρ. (7)

The “vector potential” in this case is a vector-valued one form Ai = Ai
µd xµ. A representation

of the stress tensor in terms of a vector potential is not unique. The formulation contains the
gauge redundancy of the stress tensor

δAi
µ = ∂µα

i . (8)

In components we have

P i = εkl∂kAi
l , T i j = ε jk(−∂0Ai

k + ∂kΦ
i). (9)

We introduce a notation Φi = Ai
0. It is convenient to define the generalized electric and mag-

netic fields
Bi = εkl∂kAi

l , E i
j = ε

i
k(−∂0Ak

j + ∂ jΦ
k). (10)

Thus the momentum and stress tensor map to the vector magnetic field and tensor electric
field

P i = Bi , T i j = εi
kε j

l Ekl . (11)

It is important that the index i is spatial in nature. This means that the components of the
one-form Ai

µ are spatial vectors. Under (spatial) coordiante transformations Ai
µ transforms as

(1, 1) tensor
δAi

µ = ξ
k∂kAi

µ + Ai
j∂µξ

j − Aj
µ∂ jξ

i . (12)

The antisymmetric part of the stress tensor is given by antisymmetric part of the tensor
electric field E i

j

Todd = εi
j T i

j = εi
j E i

j . (13)

In symmetric elasticity the stress tensor is symmetric, consequently there is a further local
constraint

εi
j E i

j = 0 ⇔ Ei j = E ji . (14)

This constraint can be written in terms of a vector potential

∂0(Ai j − A ji) = ∂ jΦi − ∂iΦ j . (15)

This is solved by a symmetric vector potential and curl-free Φi . That is,

Ai j − A ji = 0, εi j∂iΦ j = 0. (16)
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The first constraint is not gauge invariant. Indeed, applying a gauge transformation to the first
constraint and demanding the invariance we find a constraint on the gauge freedom

∂iα j − ∂ jαi = 2εi j∂iα j = 0. (17)

Thus, αi is curl-free, which, in two dimensions, implies that αi is a total gradient αi = ∂iα.
The second constraint implies that Φi is also a total gradient Φi = ∂iΦ. Thus, the symmetric
tensor gauge field Ai j and the scalar potential Φ transform as

δAi j = ∂i∂ jα, δΦ= α̇. (18)

The action (5) takes the form

S[Bi , Ei j] =

∫

d td2 x
�

C̃−1
i jkl E

i j Ekl + BiBi +ρ
iΦi + Ai jJ

i j
�

(19)

=

∫

d td2 x
�

C̃−1
i jkl E

i j Ekl + BiBi +ρΦ+ Ai jJ
i j
�

, (20)

where C̃−1
i jkl = ε

ii′ε j j′εkk′εl l ′C−1
i′ j′k′ l ′ and C−1

i jkl is the inverse tensor of elastic moduli (see Ap-
pendix A). In the first line we use the vector charge formulation and in the second line we use
the scalar charge formulation. We have also introduced the sources ρ and J i j , which, as we
will argue in the next section, are mapped to the crystalline defects. Finally, we observe that
the canonical momentum conjugate to Ai j is

δS
δȦi j

= 2C̃−1
i jkl E

kl = Πi j . (21)

The Gauss law associated with the gauge symmetry (46) takes the form (which is particularly
simple in terms of the canonical momentum)

2∂ j(C
−1
i jkl E

kl) = ∂ jΠ
i j = ρi , (22)

where ρi is the vortex density. This is the Gauss law for the “vector charge” theory. After
imposing the symmetry of the stress tensor we find the reduced Gauss law

∂i∂ jΠ
i j = ρ, (23)

which is the Gauss law for the “scalar charge” theory. Moreover, taking the divergence of (22)
we find that the “vector charge” ρi is the first moment of the scalar charge ρ

∂ iρi = ρ ⇒ ρi =

∫

x iρ. (24)

The gauge symmetry then implies a continuity equation for the symmetric tensor current

ρ̇ + ∂i∂ jJ
i j = 0. (25)

2.3 Mapping to defects

The densities of crystalline defects are given by [8,47–49]

ρvac = ∂iu
i , ρi

disl = ε
kl∂k∂lu

i
sing, ρdisc = ε

i j∂i∂ jϕ, (26)
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where ρvac,ρ
i
disl,ρdisc are the densities of vacancies, dislocations and disclinations correspond-

ingly. We have introduced a shorthand for the curl of the displacement vector

ϕ =
1
2
εi

j∂iu
j
sing. (27)

Under a local rotation by an angle ψ, u′i = Ri
j(ψ)u j , the angle ϕ is shifted as follows

ϕ′ = ϕ +ψ. (28)

In symmetric elasticity the existence of smooth, globally defined displacement field, ui , is
guaranteed by the integrability conditions [8]

ρi
disl = 0, ρdisc = 0, (29)

which are equivalent to the absence of dislocation and disclination defects.
We now show that upon the duality transformation the defect densities map onto the den-

sities of dual charges. In particular, we need to show that the density of disclinations maps
on the scalar charge density. To do this we decompose the displacement vector in (19) as
ui = ui

reg + ui
sing. Integrating over the regular part of ui leads to the conservation of the mo-

mentum constraint.
The singular part of ui then couples as follows

δSvortex =

∫

d td2 x
�

ui
sing∂µT iµ

�

=

∫

d td2 x
�

ρiΦi+J i jAi j

�

=

∫

d td2 x
�

ρΦ+J i jAi j

�

, (30)

where ρi = εi
jε

kl∂k∂lu
j
sing and J i j = εi

nε
µνk∂µ∂νu

n
sing. Thus we find that dual charge density

maps onto rotated dislocation density

ρi ⇐⇒ εi
jρ

j
disl, (31)

which implies that elementary vector charges ρ j are dislocations with the Burgers vector
bi = εi

jρ
j . The scalar charge density maps onto the density of disclinations by the virtue

of the following elementary identities

εi j∂
iρ

j
disl = ρdisc, ∂iρ

i = ρ. (32)

2.4 Glide constraint

The dynamics turns out to be further constrained if the number of point defects (vacancies
and interstitials) is not allowed to fluctuate. Indeed, consider the following moment

Q2 =

∫

x i x
iρ =

∫

Ei
i =

∫

∂iu
i =

∫

ρvac. (33)

Thus, if the total number of vacancies,
∫

ρvac, remains constant in time, then so does Q2. Con-
servation of Q2, on the other hand, implies that the dipoles can only move perpendicular to
their dipole moment. The motion along the dipole moment changes Q2 because it requires
adding an interstitial or a vacancy. This corresponds to a well known fact in the theory of
elasticity: the dislocations can only move along their Burgers vector.

This completes our introduction to the duality transformation of 2D quantum elasticity.
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3 Duality for Cosserat elasticity

3.1 Cosserat elasticity

Cosserat elasticity is a generalization of the symmetric elasticity, which considers an elastic
medium with a microstructure. There are various mechanisms for such a structure to be gen-
erated, such as multiple atoms in the unit cell or higher gradient effects in the symmetric
elasticity. The major assumption is that local elements of the medium can transfer both forces
and torques to nearby elements of the medium. In the realm of classical elasticity effects asso-
ciated to Cosserat elasticity were recently observed in the context of metamaterials [50, 51],
where the lattice constant of the medium is mesoscopic and the building blocks are chiral, thus
allowing the transfer of angular momentum through shear stresses.

To account for the microstructure, in addition to the displacement vector ui , we introduce a
local angle that describes a local orientation of the medium, θ . Because of the local torques the
stress tensor in the medium is no longer symmetric. Formally, we introduce a non-symmetric
strain tensor and a rotation vector

γi j = ∂iu j − εi jθ , τi = ∂iθ . (34)

The anti-symmetric part of the strain tensor now takes form

1
2
εi jγi j =

1
2
εi j∂iu j − θ = ϕ − θ . (35)

Upon choosing θ = 0 and picking a preferred frame of reference, that decouples the antisym-
metric part stemming from non-zero orbital angular momentum, the Cosserat theory reduces
to the symmetric elasticity. ϕ = θ corresponds to a special limit of Cosserat elasticity, in which
the local rotation or spin is completely frozen, known as the couple-stress theory [45,52]. In
general Cosserat theory, the field θ is completely independent of ui .

The action is a functional of θ and ui . It reads

S[ui ,θ] =

∫

d td2 x
�

θ̇ θ̇ + u̇i u̇i − C i jklγi jγkl + ζτiτ
i
�

, (36)

where C i jkl and ζ correspond to elastic coefficients in the theory. The Hubbard-Stratonovich
transformations bring the partition function to the form

Z =

∫

Du Dθ DP DT DL eiS[u,θ ,P,T,L], (37)

where

S =

∫

d td2 x
�

Pi P
i + (L0)

2 + ζ−1 Li L
i + C−1

i jkl T
i j T kl + ui

�

∂µT iµ
�

+ θ
�

∂µLµ − εi j Ti j

��

. (38)

Integrating out (the smooth part of) θ and ui leads to the following constraints

∂µT iµ = 0, ∂µLµ − εi j Ti j = 0. (39)

These constraints correspond to conservation laws of momentum and angular momentum. It
is important to note that in the Cosserat theory the stress tensor is not symmetric. We will
resolve the constraints by introducing gauge fields.

7
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3.2 Duality

The constraints (39) are dealt with in two steps. First, we introduce the tensor gauge field to
resolve the first constraint as before

δAi
µ = ∂µα

i . (40)

In components we have

P i = εkl∂kAi
l , T i j = ε jk(−∂0Ai

k + ∂kΦ
i). (41)

We follow the notation of the previous section introducing Φi = Ai
0 and the generalized electric

and magnetic fields
Bi = εkl∂kAi

l , E i
j = ε

i
k(−∂0Ak

j + ∂ jΦ
k). (42)

Thus momentum and stress tensor map onto the vector magnetic field and tensor electric field

P i = Bi , Ti j = εi
kε j

l Ekl . (43)

In the Cosserat theory the stress tensor is not symmetric. Therefore we cannot implement the
same reduction of asymmetric components. Consequently, the Cosserat theory is not dual to a
symmetric tensor theory.

Next, we solve the angular momentum conservation constraint. To do so we express the
antisymmetric part of the stress tensor Todd = εi j Ti j in terms of the tensor electric field

Todd = ε
i j Ei j = ε

i jȦi j − εi j∂iΦ j . (44)

In these variables the conservation of angular momentum equation takes form

∂0(L
0 + εi jAi j) + ∂i(L

i + εi jΦ j) = 0. (45)

This equation is then solved via introducing an ordinary U(1) gauge field

L0 + εi jAi j = ε
i j∂ia j = b, L i + εi jΦ j = ε

i j(∂ia0 − ∂0ai) = ε
i je j , (46)

where b and ei are the magnetic and electric fields correspondingly. It is important to note
that the action depends on the non-conserved variables Lµ, which leads to a quite unusual
gauge redundancy of the action. Indeed, although not conserved, the components of total
angular momentum density and current Lµ are observable. Therefore, the gauge redundancy
is comprised of variations of Ai j and aµ that leave Lµ unchanged. Solving (46) for Lµ we find

L0 = −εi jAi j + b, L i = εi je j − εi jΦ j . (47)

These are invariant under the following set of transformations

δaµ = ∂µλ (48)

δΦi = α̇i , δAi j = ∂ jαi , δai = −αi , δa0 = 0. (49)

These transformations constitute the gauge redundancy of the stress tensor.
The action for the dual gauge fields takes form

S =

∫

d td2 x
�

C̃−1
i jkl Ei j Ekl + BiB

i + ζ−1(b+ εi jAi j)
2 + (ei −Φi)(ei −Φi)

�

. (50)

The canonical momentum conjugate to Ai j is given by (21), while the canonical momentum
conjugate to ai is given by

πi = ei −Φi . (51)
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We can fix a gauge where ai = 0 by choosing αi = εikak and a0 = λ̇. In this case the
source-free action takes form

S =

∫

d td2 x
�

C̃−1
i jkl Ei j Ekl + BiB

i + ζ−1(εi jAi j)
2 −ΦiΦi

�

. (52)

This action has two gapless and one gapped mode. The gapped mode is the anti-symmetric
part of Ai j with the mass being fixed by the stiffness of the local orientation, ζ, whereas the
remaining components are gapless.

We could have expected having only two gapless modes from the Goldstone’s theorem for
non-semi-simple groups. Indeed, the gauge fields describe a dual formulation of the Goldstone
modes generated via spontaneous breaking of rotational and translation symmetries. These
symmetries are not independent and breaking of rotational symmetry does not lead to the new
gapless modes. However, there is a gapped mode that corresponds to the local orientation of
the medium.

3.3 Defects

In the Cosserat theory a more general set of integrability conditions is possible. Namely, we
demand that singularity in θ exactly cancels singularity in ϕ. That is [45]

ρi
disl = 0, ρdisc +ρθ = 0, (53)

where ρθ is another defect density specific to the Cosserat theory

ρθ = ε
i j∂i∂ jθ . (54)

It is natural to combine the disclination defects with the angle defects into rotational defects

ρrot = ρdisc +ρθ = ε
i j∂i∂ j(ϕ + θ ). (55)

These disclination defects have two independent contributions. The functional integral is de-
fined to integrate over all possible configurations of ui and θ , including the singular ones.
Equations (53) state that a globally defined ui is exists if there are no dislocations and discli-
nations of ui are canceled by disclinations of θ .

It may be convenient to express the asymmetric strain tensor in terms of the angles

γi j =
1
2
(∂iu j + ∂ jui) +

1
2
(∂iu j − ∂ jui) + εi jθ = ui j + εi j(ϕ + θ ). (56)

If we denote φ = ϕ + θ the action retains the same form except for the τiτ
i term. That term

takes form
∫

d td2 xτiτ
i →

∫

d td2 x(∂iφ − ∂iθ )(∂
iφ − ∂ iθ ). (57)

Thus, θ cannot be eliminated from the theory and its singularities must be summed over
independently.

Next we turn to the study of defect matter and Gauss laws. To this end, we separate the
local displacement and local orientation into regular and singular parts: ui → ui

reg + ui
sing

and θ → θreg + θsing and integrate over ui
reg and θreg, which leads to the angular momentum

conservation constraint. The coupling of ui
sing and θsing to the gauge fields can be brought to

the following form

δS =

∫

d td2 x
�

ui
sing∂µT iµ + θsing

�

∂µLµ + εi j Ti j

�

�

(58)

=

∫

d td2 x
�

(ρi + 2εi j∂ jθsing)Φi + (J
i j + 2θ̇singε

i j)Ai j + jµaµ
�

, (59)
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where
j0 = ρθ = ε

ik∂k∂iθsing, j i = εi j (∂i∂0 − ∂0∂i)θsing. (60)

The total disclination density is given by (55).
The Gauss laws are succinctly formulated in terms of the canonical momenta2

∂iπ
i = ρθ , ∂ jΠ

i j = ρi − ei , (61)

where we have denoted the density of θ -vortices % = j0 = εi j∂i∂ jθ .
One immediate consequence of the Gauss law constraint equations is

∂i∂ jΠ
i j = ∂iρ

i +ρθ = ρrot. (62)

This corresponds to the fact that both angle singularities and displacement singularities con-
tribute to disclinations (or to the “scalar charge”). The dipole moment of the joint density is
conserved

Di =

∫

x i(∂ jρ
j +ρθ ) =

∫

ρi +

∫

x iρθ =

∫

∂ (. . .) = 0, (63)

however neither ρi nor x i% are separately conserved, but they satisfy a constraint
∫

ρi = −
∫

x iρθ . (64)

This is not surprising since it can be seen from (59) that dislocation density now consists of
two contributions: ρi

disl − 2∂ iθsing.

3.4 Restricted motion

We consider a general dual theory coupled to the defect currents ( jµ,ρ, J i j). The gauge in-
variance of the action reflects the conservation laws

∂µ jµ = 0, ∂0ρ
i + ∂ jJ

i j = j i . (65)

The second equation implies that the current of j0-charges violates the conservation of J i j .
Taking the divergence of the second equation we find that the total current of θ and ϕ defects
is conserved

∂0∂iρ
i + ∂i∂ jJ

i j = ∂i j i = −∂0 j0 ⇒ ∂0(∂iρ
i +ρθ ) + ∂i∂ jJ

i j = 0

⇒ ∂0ρrot + ∂i∂ jJ
i j = 0, (66)

where we have used the relation between the vector charge, disclination density, ρθ and
ρrot.

The physical content of this relation is that singularities in ϕ and θ are fractons and cannot
freely move around. The dipoles of these singularities still satisfy the glide constraint in view
of (62). However, there is no way to probe singularities of ϕ and of θ separately. Both defects
are disclinations and cannot be distinguished at the level of longwave effective theory.

Finally, we note that that the massive variable εi jAi j can be integrated out from (52). After
performing the integration we get back to the dual formulation of the symmetric elasticity
theory.

2These Gauss laws generate the gauge transformations (48)-(49). Indeed, Poisson brackets of these relations
with the gauge fields give, for example,

δak =
¦

i

∫

d2 x(∂ j E
i j + e j)λi , ak

©

= i

∫

d2 xλi

¦

e j , ak

©

= λk.
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3.5 Duality in curved space

It has been previously noted that general symmetric tensor gauge theories are not well-defined
on a curved space [26,39]. Indeed, when the background geometry is curved the generalized
magnetic field is no longer gauge-invariant, thereby increasing the number of effective degrees
of freedom. At the same time elasticity is perfectly well-defined on a curved lattice and defects
satisfy similar constraints [53,54]. One may wonder how to reconcile these two facts.

Resolution of this conflict is quite simple: it turns out that the duality map is no longer valid
in curved space. Indeed, consider the conservation of the stress tensor constraint in curved
space. We have

∂0(
p

gP i) + ∂i(
p

gT i j) = Γ i
k, j T

k j , (67)

where Γ i
k, jd x j is the Christoffel symbol. These equations cannot be solved in terms of the

gauge fields as in the previous Section. We leave the detailed investigation of curved space
dualities to future work.

4 Conclusion

We have constructed a dual theory for Cosserat elasticity. It was found that the Cosserat theory
is dual to a theory of general tensor gauge field coupled to an ordinary, non-propagating, U(1)
gauge field. The defect matter couples to both gauge fields. The stress tensor of the Cosserat
theory is not symmetric, which ultimately leads to the dual description in terms of the non-
symmetric tensor gauge theory. The odd part of the stress tensor maps onto the antisymmetric
part of the tensor gauge field. The latter is massive and can be integrated out to obtain a low
energy theory valid below its mass scale. The resulting low energy theory is a theory of a
symmetric tensor gauge field, previously discussed in literature. It would be very interesting
to extend the dual formulation of elasticity to other spatially ordered phases such as various
types of smectic and nematic order.
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A Inverting the general tensor of elastic moduli

In the most general case, without making any assumptions about the form of elastic tensors,
beyond isotropy and rotational invariance the action depends on the matrix of elastic coeffi-
cients Ci jkl . This matrix is a rank−4 tensor, which can be efficiently represented in terms of
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the following projectors

P0
i jkl =

1
2
δi jδkl , (68a)

P1
i jkl =

1
2
(δikδ jl −δilδ jk), (68b)

P2
i jkl =

1
2
(δikδ jl +δilδ jk)−

1
2
δi jδkl . (68c)

One can check that Pm
i jabPn

abkl = Pm
i jkl if m = n and zero otherwise. The tensor of elastic

coefficients can be decomposed into

Ci jkl = p0P0
i jkl + p1P1

i jkl + p2P2
i jkl . (69)

In this form the elasticity matrix can be inverted using the properties of projectors

C−1
i jkl =

1
p0

P0
i jkl +

1
p1

P1
i jkl +

1
p2

P2
i jkl . (70)

We note that in classical elasticity the above tensor is only partially invertible due to the lack
of rotational degrees of freedom. In this case p1 = 0 and the inverse is defined only in the
invertible subspace

C−1
i jkl =

1
p0

P0
i jkl +

1
p2

P2
i jkl . (71)

B Stückelberg mechanism

B.1 Stückelberg mechanism in Proca theory

As an example of the Stückelberg mechnism we discuss the massive Proca lagrangian [55,56]

LProca = −
1
4

F2
µν −

1
2

m2AµAµ. (72)

An immediate consequence of the mass term is the breaking of the U(1) gauge symmetry

Aµ→ Aµ + ∂µα. (73)

The idea behind Stückelberg trick is to restore gauge invariance at the expense of an addi-
tional gauge field. To see this we can decompose a vector field in the in the transverse and
longitudinal components

Aµ = AT
µ + ∂µπ̃. (74)

This procedure allows one to rewrite the Proca Lagrangian

LProca = −
1
2
(∂µAT

ν)
2 −

1
2

m2(AT
µ)

2 −
1
2
(∂µπ)

2, (75)

where π= mπ̃. We note that the transverse field satisfies

∂ µAT
µ = 0, (76)

which follows if we take the derivative of equations of motion

∂ µF T
µν +m2AT

ν = 0. (77)

Given the above relation we see that our theory propagates a massive transverse mode and a
massless scalar mode. The new Lagrangian is also gauge invariant with respect to the following
substitutions

Aµ→ AT
µ − ∂µχ, (78a)

π→ π+mχ. (78b)
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B.2 Stückelberg mechanism in the dual Cosserat theory

To illustrate the Stückelberg mechnism in the context of Cosserat theory we take the action

S =

∫

d td2 x
�

C̃−1
i jkl Ei j Ekl + BiB

i + (b+ εi jAi j)
2 + (ei −Φi)(ei −Φi)

�

, (79)

and investigate gauge symmetries. The transformations that leave the action invariant read

a0→ a0 − ∂0π̂ (80a)

a j → a j + ∂ jπ̂−χ j , (80b)

Aµ j → Aµ j + ∂µχ j , (80c)

where µ ∈ {0,1, 2}. We see that because the theory becomes massive due to the coupling
between two gauge fields a Stückelberg π̂ naturally appears.
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